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e |f we now alsowant to estimate ¢ at the sametime, we want

that pair (f1, 0) that maximizes .
e With 1o = X, which 0 maximizes L?
o Settlng =0, -2l 1%(X'—X)2(3_3X—2—n/&20,
or ¢ = \/Z (Xj—X)?/n.
iii. Exponential: [(\; X) = —AX + In()\) =
likelihood arising from anind. sample Xy, ---, X, is

(X X7, X)) = —Asl_ X+ nln()).

o Setting the first derivative = 0, — = X + n/\=0,or
1/ X /) = 1/ X
e Dowehaveamaximum? I"(\; X1, -, Xn) = —n/\?;
always negative, and so ) isa global maximizer.
e Recallthatthisis not an unbiased estimator: in fact, its
expectation is infinite.
e meanis 4t = 1/\

> Similar calculationssay 1 = X .

iv. Harder m.l.e. example: Cauchydistn. Take X{,---, X, ~

Cauchy p; le,---,Xn(le' c, X ) — Hl/(l_'_( J M) )
[, X1, -+, Xn) = —xlog(1+ (X — p)?).
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e Likelihood equationis —x(u — X;)/(1+ (X — 1)?) =0.

e SeeFig. 6.

Fig. 6: Log Likelthood for Cauchy Exrample
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Center parameter 6
Dataare-6.41,-19.83,-2.73, 2.34,-0.48.

v. Uniform Example:
o Xl,"',XnNU[O,e].

e Productofdensitiesis
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ﬁ {1/«9 it X, <46 _ ﬁ {1/9 ifo > X,

i—1 10 otherwise ;=110 otherwise
:{1/6” ifﬁzXNi:{l/Q” if @ > max X
0 otherwise 0 otherwise

e Density is not continuous, and so can't differentiate to
maximize.
> Also doesn't satisfy requirement of CR lower bound
> Densityiszeroif § < max X;

> Density decreases as theta increases if § > max X

> Hence MLE s 6 — max X
e. Invariance property: If 7 = ¢(8), for ¢ onto, then 7 = ¢(8).
f. Often easier to consider this function’s log 1(8) .

I. @ shows up in the exponents of the normal, exponential, and

Poisson distns, and
il. Inthe above-mentioned distis, and in the binomial
distribution, for any valueof X, L(0) > 0V6 (sound
familiar)?
g. Relaxed definition:

i. Since the log likelihood is concerned with relative comparisons

of potential parameter values, we can eliminate any terms not



Lecture 4 36
containing 6.

ii. Hencewe'll also call a log-likelihood function to be that defined

above, plus any function of the data not containing 6 .

WMS: 9.4

N. Sufficiency: How much of information do we have to consider, and

how much can we toss away as not giving information about the

quantity of interest?
1. Example:
a. Xq, -+, Xp ~ Bin(m,d) anind. sample.

b. § =x; X;/(mn) isan unbiased, consistent, efficient estimator

of 0.

c. Isthere any other part of the data, other than that summarized

by 0, that gives information about 67

d. Theseparate p.m.f.sfor the variables are

(m) (1l — )",

Ly
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e. Hencethejointp.m.f. is
PXy X, (X150 T )
n

= 11 (m)ﬁmi(l—ﬂ)mmi
1=1\2;

_ WZ xi(l . 7T)mn—z Z; ﬁ (m)
1=1\T;

_ 7Tmn«9(1 . 7T>mn—mn9 ﬁ (m)
1=1\Tj

and

A

A mn _ /
pw;ﬂ_) _ (mné)ﬂmnﬁu . 71_)’mn an;

hence

iy ()

pr'”)X?’L‘é(xl, o 7xn|€7 Tr) N W
1 Lq

Hence the additional information given by the X; after we know

their total tells us nothing about .

2. Definition: T(X1, -+, Xy,) is sufficient for 0 if the distn of
X1, -+, X, conditionalon T" doesn’'t depend on 6.

a. factorization theorem : T' issufficient if and only if full p.m.f.

can be factored as

le,---,Xn(xla R 7$n> — g(t(mla e 71'71)7 (9>U(T, Ly 71'71)-
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b. T sufficient = p.m.f. of the data can be written

PXy e X, (X1, o 0) = pp(t;0) X

le,---,Xn‘T(ZEla T 7$n‘t($17 e >$n>>
I. the latter factor independent of 6

c. You can also show other direction.

3. Theideasand theorems above also hold for densities.

4. Another example, consider X1, -+, Xy, ~ N(u, 0?) .
a. Thejointp.d.f.is

n oxp(—(z; — p)*/(207))

le,---,Xn($1a“‘>$n> :111 /o

o=z — 1))/ (20%)
o (2m)/2
i exp (— L xz2+22;;22? a:z-—n,uQ)
(o (2m)"/2)

b. If we think we know o without looking at the data, the model

becomes

exp((2u =t 2 — np®)/(20%)) x exp((— = 27)/(20%))
Un(27r>n/2 '
c. Factorization showsthat =" ; X; issufficient for 1.

i. Sois i =1T/n.

38
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ii. [iisagood estimator but 7" is not.

5. Example XY ~ P(0)
a. ,EL:lX-I—%Y
. j=%= X=2andY =0orX=0andY =1
PIX=2i=3=
exp(—p)p* /2 exp(—p) p?

exp(—pu)p? /2! exp(—p) + exp(—p) exp(—p)ut /1 p2 + 240
lii. dependson p: [1 notsufficient

b, f1=3X+1y

. P X =zx|p=u|=
exp(—p)u” [zl exp(—p) ™"/ (2u — )l 2ul
exp(—2u) 2t/ (2u)! z!(2u — x)!

ii. doesnotdependon p : sufficient
6. Henceentiredataset X, - -, X, issufficient.
a. Forindependent data, so is ordered data set.
7. Example where sufficient statistic doesn't tell the whole story:
a. A collection of cars is inspected for defective wheels
b. Estimate the proportion 7 of wheels which are defective.

c. Under the binomial model, the sample proportion is sufficient for

inferenceon 7.

d. Consider two scenarios:
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Scenario 1: Scenario 2:
# of wheels # of times  # of wheels # of times

defective observed defective observed

0 5 0 44
1 19 1 0
2 36 2 0
3 27 3 0
4 13 4 56
Total 100 Total 100

I. Both scenaria give the same estimate of 7
ii. the second case gives strong evidence that the binomial model
Iswrong.

lii. This demonstrates that the sufficient statistic tells about the
parameters in the model; remainder tells about the suitability
of the model itself.

WMS: 9.5

O. Rao Blackwell Theorem: Reduce the variance of an unbiased

estimate by conditioning on a sufficient statistic.

1. Suppose
a. 0 unbiased for 0

b. U sufficientfor 0
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2. Let 0 =E|0|U]
a. Then Var [9] = Var [E [9|UH +E [\/ar [9\UH > Var [é] .
3. Hence can find another estimator with often smaller variance.
4. Example: X1, -+, X, ~ U[0,0].
a. 0= 2X1 unbiased.
b. U = max X sufficient.

c. Applying the Rao-Blackwell procedure,
E[X U =Up Xy =U|U +E[X1I(X; <U)|U|P|X| < U]
=U/n+((n—1)/n)U/2
d. 0=U(1+1/n).
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