Lecture 4 33

• If we now also want to estimate $\hat{\sigma}$ at the same time, we want that pair $(\hat{\mu}, \hat{\sigma})$ that maximizes l.

- With $\mu = \bar{X}$, which σ maximizes L?
- $\begin{array}{l} \bullet \quad \text{Setting } \frac{\partial L}{\partial \pmb{\theta}} = 0 \text{ , } -\Sigma_{j=1}^n \frac{1}{2} (X_j \bar{X})^2 \hat{\sigma}^{-3} \times -2 n/\hat{\sigma} = 0 \text{ ,} \\ \text{or } \hat{\sigma} = \sqrt{\Sigma_{j=1}^n (X_j \bar{X})^2/n} \text{ .} \end{array}$
- iii. Exponential: $l(\lambda;X) = -\lambda X + \ln(\lambda) \Rightarrow$ likelihood arising from an ind. sample X_1, \cdots, X_n is $l(\lambda;X_1,\cdots,X_n) = -\lambda \sum_{j=1}^n X_j + n \ln(\lambda)$.
 - Setting the first derivative =0 , $-\Sigma_{j=1}^n X_j + n/\hat{\lambda} = 0$, or $\hat{\lambda}=1/(\Sigma_{j=1}^n X_j/n)=1/\bar{X}$.
 - Do we have a maximum? $l''(\lambda; X_1, \dots, X_n) = -n/\lambda^2$; always negative, and so $\hat{\lambda}$ is a global maximizer.
 - Recall that this is not an unbiased estimator; in fact, its expectation is infinite.
 - ullet mean is $\mu=1/\lambda$
 - $hd \ \$ Similar calculations say $\hat{\mu}=ar{X}$.
- iv. Harder m.l.e. example: Cauchy distń. Take $X_1,\cdots,X_n\sim$ Cauchy μ ; $f_{X_1,\cdots,X_n}(X_1,\cdots,X_n;\mu)=\pi\,1/(1+(X_j-\mu)^2)$. $l(\mu,X_1,\cdots,X_n)=-\,\Sigma\log(1+(X_j-\mu)^2)\,.$

34

- Likelihood equation is $-\Sigma(\mu-X_j)/(1+(X_j-\mu)^2)=0$.
- See Fig. 6.

Center parameter θ Data are -6.41, -19.83, -2.73, 2.34, -0.48.

2

v. Uniform Example:

- $X_1, \cdots, X_n \sim \mathcal{U}[0, \theta]$.
- Product of densities is

- Density is not continuous, and so can't differentiate to maximize.
 - Also doesn't satisfy requirement of CR lower bound
 - \triangleright Density is zero if $\theta < \max X_i$
 - $hd Density decreases as theta increases if <math>\theta \geq \max X_i$
 - ightharpoonup Hence MLE is $\hat{ heta} \max X_i$
- e. Invariance property: If $m{ au}=g(m{ heta})$, for g onto, then $\hat{m{ au}}=g(\hat{m{ heta}})$.
- f. Often easier to consider this function's $\log\ l(oldsymbol{ heta})$.
 - i. heta shows up in the exponents of the normal, exponential, and Poisson distńs, and
 - ii. In the above-mentioned distńs, and in the binomial distribution, for any value of ${\bf X}$, $L({\bf \theta})>0 \, \forall {\bf \theta}$ (sound familiar)?
- g. Relaxed definition:
 - i. Since the log likelihood is concerned with relative comparisons of potential parameter values, we can eliminate any terms not

36

ii. Hence we'll also call a log-likelihood function to be that defined above, plus any function of the data $\cot \cot \theta$.

WMS: 9.4

N. Sufficiency: How much of information do we have to consider, and how much can we toss away as not giving information about the quantity of interest?

1. Example:

- a. $X_1, \dots, X_n \sim \mathcal{B}in(m, \theta)$ an ind. sample.
- b. $\hat{\theta} = \Sigma_i \, X_i/(mn)$ is an unbiased, consistent, efficient estimator of θ .
- c. Is there any other part of the data, other than that summarized by $\hat{\theta}$, that gives information about θ ?
- d. The separate p.m.f.s for the variables are

$$\binom{m}{x_i} \pi^{x_i} (1-\pi)^{m-x_i},$$

e. Hence the joint p.m.f. is

$$p_{X_1, \dots, X_n}(x_1, \dots, x_n; \pi)$$

$$= \prod_{i=1}^n \binom{m}{x_i} \pi^{x_i} (1 - \pi)^{m - x_i}$$

$$= \pi^{\sum x_i} (1 - \pi)^{mn - \sum x_i} \prod_{i=1}^n \binom{m}{x_i}$$

$$= \pi^{mn\hat{\theta}} (1 - \pi)^{mn - mn\hat{\theta}} \prod_{i=1}^n \binom{m}{x_i}$$

and

$$p(\hat{\theta};\pi) = \binom{mn}{mn\hat{\theta}} \pi^{mn\hat{\theta}} (1-\pi)^{mn-mn\hat{\theta}};$$

hence

$$p_{X_1,\dots,X_n|\hat{\theta}}(x_1,\dots,x_n|\hat{\theta};\pi) = \frac{\prod_{i=1}^n \binom{m}{x_i}}{\binom{mn}{\sum_i x_i}}.$$

Hence the additional information given by the X_i after we know their total tells us nothing about π .

- 2. Definition: $T(X_1, \dots, X_n)$ is sufficient for θ if the distń of X_1, \dots, X_n conditional on T doesn't depend on θ .
 - a. $factorization\ theorem: T$ is sufficient if and only if full p.m.f. can be factored as

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n) = g(t(x_1,\dots,x_n);\theta)u(T,x_1,\dots,x_n).$$

b. T sufficient \Rightarrow p.m.f. of the data can be written

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta) = p_T(t;\theta) \times$$
$$p_{X_1,\dots,X_n|T}(x_1,\dots,x_n|t(x_1,\dots,x_n))$$

- i. the latter factor independent of $\, heta$
- c. You can also show other direction.
- 3. The ideas and theorems above also hold for densities.
- 4. Another example, consider $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$.
 - a. The joint p.d.f. is

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{1}^{n} \frac{\exp(-(x_i - \mu)^2/(2\sigma^2))}{\sigma\sqrt{2\pi}}$$

$$= \frac{\exp(-(\Sigma_1^n(x_i - \mu)^2)/(2\sigma^2))}{\sigma^n(2\pi)^{n/2}}$$

$$= \frac{\exp\left(\frac{-\Sigma_1^n x_i^2 + 2\mu \Sigma_1^n x_i - n\mu^2}{2\sigma^2}\right)}{(\sigma^n(2\pi)^{n/2})}$$

b. If we think we know σ without looking at the data, the model becomes

$$\frac{\exp((2\mu \,\Sigma_1^n \,x_i - n\mu^2)/(2\sigma^2)) \times \exp((-\,\Sigma_1^n \,x_i^2)/(2\sigma^2))}{\sigma^n (2\pi)^{n/2}}.$$

- c. Factorization shows that $\Sigma_{i=1}^n X_i$ is sufficient for μ
 - i. So is $\hat{\mu} = T/n$.

ii. $\hat{\mu}$ is a good estimator but T is not.

5. Example $X, Y \sim \mathcal{P}(\theta)$

a.
$$\hat{\mu} = \frac{1}{3}X + \frac{2}{3}Y$$

i.
$$\hat{\mu} = \frac{2}{3} \Rightarrow X = 2$$
 and $Y = 0$ or $X = 0$ and $Y = 1$

ii.
$$P\left[X = 2|\hat{\mu} = \frac{2}{3}\right] = \frac{\exp(-\mu)\mu^2/2! \exp(-\mu)}{\exp(-\mu)\mu^2/2! \exp(-\mu) + \exp(-\mu)\exp(-\mu)\mu^1/1!} = \frac{\mu^2}{\mu^2 + 2\mu},$$

iii. depends on μ : $\hat{\mu}$ not sufficient

b.
$$\hat{\mu} = \frac{1}{2}X + \frac{1}{2}Y$$

i.
$$\begin{aligned} & \mathbf{P}\left[X = x | \hat{\mu} = u\right] = \\ & \frac{\exp(-\mu)\mu^x/x! \exp(-\mu)\mu^{2u-x}/(2u-x)!}{\exp(-2\mu)\mu^{2u}/(2u)!} = \frac{2u!}{x!(2u-x)!}, \end{aligned}$$

- ii. does not depend on μ : sufficient
- 6. Hence entire data set X_1, \dots, X_n is sufficient.
 - a. For independent data, so is ordered data set.
- 7. Example where sufficient statistic doesn't tell the whole story:
 - a. A collection of cars is inspected for defective wheels
 - b. Estimate the proportion π of wheels which are defective.
 - c. Under the binomial model, the sample proportion is sufficient for inference on π .
 - d. Consider two scenarios:

Scenario 1: $\#$ of wheels $\#$ of times		Scenario 2: $\#$ of wheels $\#$ of times	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
defective	observed	defective	observed
0	5	0	44
1	19	1	0
2	36	2	0
3	27	3	0
4	13	4	56
Total	100	Total	100

- i. Both scenaria give the same estimate of $\,\pi$
- ii. the second case gives strong evidence that the binomial model is wrong.
- iii. This demonstrates that the sufficient statistic tells about the parameters in the model; remainder tells about the suitability of the model itself.

WMS: 9.5

- O. Rao Blackwell Theorem: Reduce the variance of an unbiased estimate by conditioning on a sufficient statistic.
 - 1. Suppose
 - a. $\tilde{\theta}$ unbiased for θ
 - b. U sufficient for θ

Lecture 5 41

2. Let $\hat{\theta} = \operatorname{E}\left[\tilde{\theta}|U\right]$

a. Then
$$\operatorname{Var}\left[\hat{\theta}\right] = \operatorname{Var}\left[\operatorname{E}\left[\hat{\theta}|U\right]\right] + \operatorname{E}\left[\operatorname{Var}\left[\hat{\theta}|U\right]\right] \geq \operatorname{Var}\left[\tilde{\theta}\right]$$
.

- 3. Hence can find another estimator with often smaller variance.
- 4. Example: $X_1, \dots, X_n \sim \mathcal{U}[0, \theta]$.
 - a. $\tilde{\theta} = 2X_1$ unbiased.
 - b. $U = \max X_j$ sufficient.
 - c. Applying the Rao-Blackwell procedure,

$$E[X_1|U] = UP[X_1 = U|U] + E[X_1I(X_1 < U)|U]P[X_1 < U]$$
$$= U/n + ((n-1)/n)U/2$$

$$\mathbf{d.} \ \hat{\theta} = U(1+1/n) \, .$$

0.4