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WMS: 1
I. Aims of Statistics:

A. Probability is the study of relative proportions of random
outcomes based on structure of generating process.

B. Statistics is the inverse problem:
1. Observe data generated by process
2. Infer process.

WMS: 8.1
II. Estimation

A. Aim
1. Want to estimate some number θ , called a parameter .

a. Fraction of population supporting a candidate
b. Population Average effect of some cholesterol–lowering

medication.
c. Mass of an electron

2. Rule that gives estimate is called an estimator.
3. Want it based on some data.

WMS: 8.2, 8.4
B. Preliminaries: What makes a good estimator

1. Quantify what happens if you make a wrong decision
a. Suppose that you pay a penalty L(a, θ) if your guess is

a when the truth is θ
i. Penalty is called Loss function .
ii. Most typically, L(a, θ) = (a− θ)2 : Squared error

loss.
C. Typically, want rule that depends on data, δ(X)

1. Example
a. If X ∼ Bin(n, θ) , δ(X) might be X/n
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b. If X is a sample from a population with expectation
θ , then δ(X) might be X̄

c. If X is a sample from a population with median θ ,
then δ(X) might be sample median

2. Select estimator before wee see data.
a. Consider average of loss function

R(δ, θ) = E [L(δ(X), θ)] .
b. R is called risk function .

i. Risk function for squared error loss is called mean
squared error (MSE) .

c. Review expectation
d. Let µ = E [δ(X)]
e. R(δ, θ) is variance plus bias squared.

= E
[

(δ(X)− µ+ µ− θ)2
]

= E
[

(δ(X)− µ)2 + 2(δ(X)− µ)(µ − θ) + (µ− θ)2
]

= E
[

(δ(X)− µ)2
]

+ E [2(δ(X)− µ)(µ − θ)]

+ E
[

(µ− θ)2
]

= Var [δ(X)] + 2(µ− θ)E [(δ(X)− µ)] + (µ− θ)2

= Var [δ(X)] + (E [δ(X)]− θ)2

f. We can often make the second part 0 :
i. If E [δ(X)] = θ , then δ(X) is called unbiased .
ii. and E [δ(X)] − θ is called the bias .

g. We will see that unbiasedness does not completely
specify the best estimator
i. Ex.: X ∼ N(θ, σ2) with σ known.
ii. δ(X) = aX + b
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iii. R(δ, θ) = (aθ + b − θ)2 + a2σ2 =
(a− 1)2θ2 + 2b(a− 1)θ + b2 + a2σ2

iv. If a 6= 1 maximum is ∞ ⇒ choose a = 1 , and risk
is b2 + a2σ2 ⇒ choose b = 0

h. “Best” (ie, minimax) estimator might allow some bias
in return for smaller variance

WMS: 8.3
D. Examples

1. Estimate of the range of a uniform distribution from the
range of a sample
a. X1, . . . , Xn ∼ U[α, β] , i.i.d..
b. X(1), . . . , X(n) are ordered values: order statistics.

c. δ(X) = X(n) −X(1)

d. Density of X(n) is

n
1

β − α

(

y − α

β − α

)n−1

e. E
[

X(n)

]

is

=

∫ β

α

yn
1

β − α

(

y − α

β − α

)n−1

dy

=

∫ 1

0

(α+ z(β − α))nzn−1 dz

= nα

∫ 1

0

zn−1 dz + n(β − α)

∫ 1

0

zn dz

= α+
n

n+ 1
(β − α)

f. E
[

Y(1)

]

= −(−β+ n
n+1 (−α−(−β)) = β− n

n+1 (β−α)
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g. E [Range] = α − β + 2n
n+1 (β − α) = en(β − α) for

en = n−1
n+1 .

h. Bias is −2
n+1 (β − α)

i. Almost unbiased.
• limn→∞ bias = 0 .
• Called asymptotically unbiased .

i. Hence to get unbiased estimator, use n+1
n−1Range .

i. Let vn = Var
[

X(n) −X(1)

]

(β − α)−2 , which does
not depend on α or β .

ii. MSE of δ(X) = aRange(X) is
{(aen − 1)2 + a2vn}(β − α)2

iii. Differentiating, setting the derivative to zero, and
solving for a gives a = en/(e

2
n + vn) .

iv. Since vn > 0 , minimizing a leaves δ(X) with a
slight bias.

2. Estimating variance
a. X1, . . . , Xn i.i.d., expectation µ , variance σ2 .
b. X̄ =

∑n
j=1 Xj/n

c. Then
∑n

j=1(Xj − µ)2 is

=

n
∑

j=1

(Xj − X̄)2 +

n
∑

j=1

(X̄ − µ)2 + 2

n
∑

j=1

(X̄ − µ)(Xj − X̄)2

=

n
∑

j=1

(Xj − X̄)2 + n(X̄ − µ)2.

d.
∑n

j=1(Xj − X̄)2 =
∑n

j=1(Xj − µ)2 − n(µ− X̄)2

e. S2 =
∑n

j=1(Xj − X̄)2/(n− 1)
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i. = [
∑n

j=1(Xj − µ)2 − n(X̄ − µ)2]/(n− 1)

f.
E
[

S2
]

=

∑n
i=1 E

[

(Xi − µ)2
]

n− 1
− n

E
[

(X̄ − µ)2
]

n− 1

= nσ2/(n− 1)− σ2/(n− 1) = σ2

.

i. Makes no assumption about distribution of
observations.

3. Estimating Standard Deviation
a. X1, . . . , Xn ∼ N[µ, σ2] , i.i.d..
b. (n− 1)S2/σ2 ∼ χ2(n− 1) .

i. χ2
k distribution is distribution of sum of squares of

k independent N(0, 1) random variables
c. E

[

S
√
n− 1/σ

]

=

∫

∞

0

√
x exp(−1/2x)x(n−1)/2−1 dx

2(n−1)/2Γ((n− 1)/2)

=
√
2

Γ(n/2)

Γ((n− 1)/2)

∫

∞

0

exp(−1/2x)xn/2−1 dx

2n/2Γ(n/2)

=
√
2

Γ(n/2)

Γ((n− 1)/2)
.

d. E [S] = σ

√
2Γ(n/2)

Γ((n− 1)/2)
√
n− 1

e. Bias is σ

( √
2Γ(n/2)

Γ((n− 1)/2)
√
n− 1

− 1

)

f. See Fig. 1.
01
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Fig. 1: Bias in estimation of σ by S
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Calculations for
√

∑n
k=1(Xk − X̄)2/(n− 1) with normal observations
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