WMS: 1 I. Aims of Statistics:

- A. Probability is the study of relative proportions of random outcomes based on structure of generating process.
- B. Statistics is the inverse problem:
 - 1. Observe data generated by process
 - 2. Infer process.

WMS: 8.1

II. Estimation

A. Aim

- 1. Want to estimate some number θ , called a parameter .
 - a. Fraction of population supporting a candidate
 - b. Population Average effect of some cholesterol-lowering medication.
 - c. Mass of an electron
- 2. Rule that gives estimate is called an estimator.
- 3. Want it based on some data.
 - WMS: 8.2, 8.4
- B. Preliminaries: What makes a good estimator
 - 1. Quantify what happens if you make a wrong decision
 - a. Suppose that you pay a penalty $\,L(a,\theta)\,$ if your guess is $a\,$ when the truth is $\,\theta\,$
 - i. Penalty is called Loss function .
 - ii. Most typically, $L(a,\theta) = (a-\theta)^2$: Squared error loss.
- C. Typically, want rule that depends on data, $\,\delta({m X})\,$
 - 1. Example
 - a. If $X \sim {\mathcal B}{\mathrm{in}}(n,\theta)$, $\delta(X)$ might be X/n

Lecture 1

- iii.
 $$\begin{split} R(\delta,\theta) &= (a\theta+b-\theta)^2+a^2\sigma^2 = \\ (a-1)^2\theta^2+2b(a-1)\theta+b^2+a^2\sigma^2 \end{split}$$
- iv. If $a\neq 1$ maximum is $\infty \Rightarrow$ choose a=1 , and risk is $b^2+a^2\sigma^2 \Rightarrow$ choose b=0
- h. "Best" (ie, minimax) estimator might allow some bias in return for smaller variance WMS: 8.3

D. Examples

- 1. Estimate of the range of a uniform distribution from the range of a sample
 - a. $X_1, \ldots, X_n \sim \mathcal{U}[\alpha, \beta]$, i.i.d..
 - b. $X_{(1)}, \ldots, X_{(n)}$ are ordered values: order statistics.
 - c. $\delta(\mathbf{X}) = X_{(n)} X_{(1)}$
 - d. Density of $X_{(n)}$ is

$$n \frac{1}{\beta - \alpha} \left(\frac{y - \alpha}{\beta - \alpha} \right)^{n-1}$$

e.
$$\mathbf{E} \left[X_{(n)} \right]$$
 is

$$= \int_{\alpha}^{\beta} yn \frac{1}{\beta - \alpha} \left(\frac{y - \alpha}{\beta - \alpha} \right)^{n-1} dy$$

$$= \int_{0}^{1} (\alpha + z(\beta - \alpha))nz^{n-1} dz$$

$$= n\alpha \int_{0}^{1} z^{n-1} dz + n(\beta - \alpha) \int_{0}^{1} z^{n} dz$$

$$= \alpha + \frac{n}{n+1}(\beta - \alpha)$$
f. $\mathbf{E} \left[Y_{(1)} \right] = -(-\beta + \frac{n}{n+1}(-\alpha - (-\beta)) = \beta - \frac{n}{n+1}(\beta - \alpha)$

- b. If ${\pmb X}$ is a sample from a population with expectation θ , then $\delta({\pmb X})$ might be \bar{X}
- c. If ${\bm X}$ is a sample from a population with median θ , then $\delta({\bm X})$ might be sample median
- 2. Select estimator before wee see data.
 - a. Consider average of loss function P(S, 0) = P(S, 0)
 - $R(\delta, \theta) = E[L(\delta(\mathbf{X}), \theta)].$
 - b. R is called risk function .
 i. Risk function for squared error loss is called mean squared error (MSE) .
 - c. Review expectation
 - d. Let $\mu = \operatorname{E} \left[\delta(\boldsymbol{X}) \right]$
 - e. $R(\delta, \theta)$ is variance plus bias squared. $= E \left[(\delta(\mathbf{X}) - \mu + \mu - \theta)^2 \right]$ $= E \left[(\delta(\mathbf{X}) - \mu)^2 + 2(\delta(\mathbf{X}) - \mu)(\mu - \theta) + (\mu - \theta)^2 \right]$ $= E \left[(\delta(\mathbf{X}) - \mu)^2 \right] + E \left[2(\delta(\mathbf{X}) - \mu)(\mu - \theta) \right]$ $+ E \left[(\mu - \theta)^2 \right]$ $= Var \left[\delta(\mathbf{X}) \right] + 2(\mu - \theta) E \left[(\delta(\mathbf{X}) - \mu) \right] + (\mu - \theta)^2$
 - $= \operatorname{Var} \left[\delta(\boldsymbol{X}) \right] + (\operatorname{E} \left[\delta(\boldsymbol{X}) \right] \theta)^2$
 - f. We can often make the second part 0: i. If $\mathop{\mathrm{E}}\nolimits[\delta({\boldsymbol{X}})]=\theta$, then $\delta({\boldsymbol{X}})$ is called unbiased. ii. and $\mathop{\mathrm{E}}\nolimits[\delta({\boldsymbol{X}})]-\theta$ is called the bias.
 - g. We will see that unbiasedness does not completely specify the best estimator
 - i. Ex.: $X \sim \mathcal{N}(\theta, \sigma^2)$ with σ known.

ii.
$$\delta(X) = aX + b$$

g. $E[\text{Range}] = \alpha - \beta + \frac{2n}{n+1}(\beta - \alpha) = e_n(\beta - \alpha)$ for $e_n = \frac{n-1}{n+1}$.

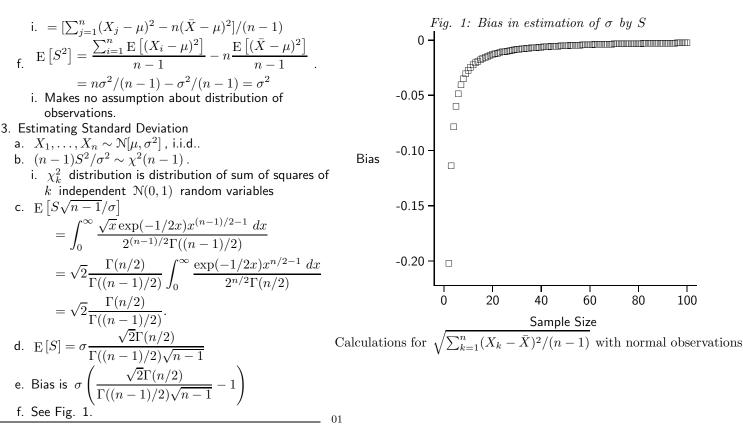
h. Bias is
$$\frac{-2}{n+1}(\beta - \alpha)$$

- i. Almost unbiased.
 - $\lim_{n\to\infty} bias = 0$.
- Called asymptotically unbiased .
- i. Hence to get unbiased estimator, use $\frac{n+1}{n-1}$ Range.
- i. Let $v_n = \operatorname{Var} \left[X_{(n)} X_{(1)} \right] (\beta \alpha)^{-2}$, which does not depend on α or β .
- ii. MSE of $\delta(\mathbf{X}) = a \text{Range}(\mathbf{X})$ is $\{(ae_n 1)^2 + a^2 v_n\}(\beta \alpha)^2$
- iii. Differentiating, setting the derivative to zero, and solving for a gives $a=e_n/(e_n^2+v_n)$.
- iv. Since $v_n>0$, minimizing a leaves $\delta({\boldsymbol X})$ with a slight bias.
- 2. Estimating variance

a.
$$X_1, \dots, X_n$$
 i.i.d., expectation μ , variance σ^2 .
b. $\bar{X} = \sum_{j=1}^n X_j/n$
c. Then $\sum_{j=1}^n (X_j - \mu)^2$ is
 $= \sum_{j=1}^n (X_j - \bar{X})^2 + \sum_{j=1}^n (\bar{X} - \mu)^2 + 2\sum_{j=1}^n (\bar{X} - \mu)(X_j - \bar{X})^2$
 $= \sum_{j=1}^n (X_j - \bar{X})^2 + n(\bar{X} - \mu)^2$.
d. $\sum_{j=1}^n (X_j - \bar{X})^2 = \sum_{j=1}^n (X_j - \mu)^2 - n(\mu - \bar{X})^2$
e. $S^2 = \sum_{j=1}^n (X_j - \bar{X})^2/(n-1)$

4

5 Lecture 2



Lecture 2

7 Lecture 2

This page intentionally left blank.

This page intentionally left blank.

8