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c. X ∼ Bin(π,m) , Y ∼ Bin(ρ, n) .
i. “noninformative” “reference” prior on both.

ii. Likelihood πX(1− π)m−XρY (1− ρ)n−Y

iii. Prior π−1(1− π)−1ρ−1(1− ρ)−1

iv. More interesting paramterization

δ = π − ρ ∈ (−1, 1) , τ = π + ρ ∈ (|δ| , 2− |δ|)
v. π = (δ + τ)/2 , ρ = (τ − δ)/2
vi. Posterior (δ + τ)X−1(1 − δ − τ)m−X−1(τ −

δ)Y −1(1− τ + δ)n−Y −1

• The jacobian of the (π, ρ) → (δ, τ)
transformation is constant, and will wash out of

calculation.
WMS: 16.4-16.5

L. Bayesian hypothesis testing.

1. As before, decide between H0 : θ ∈ Ω0 vs.

HA : θ ∈ Ωa .

a. Here I used notation similar to that of frequentist

analysis.

b. At present, no “null” and “alternate” subtext.

2. Choose hypothesis with highest posterior probability.

3. Often report posterior odds P [Ω0|data] /P [Ωa|data]
4. Factor B by which prior odds P [Ω0] /P [Ωa] was

changed is called Bayes factor .

a. B = (P [Ω0|data] P [Ωa])/(P [Ωa|data] P [Ω0])
b. When hypothesis Ω0 and Ωa are both simple, Bayes

factor is the likelihood ratio.

c. Point hypotheses are only workable if there’s positive

prior probability on them.
B: 4.6
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M. Bayesian Hierarchical Models

1. Bayesian alternative to frequentist random effects
modeling.

2. Setup:

X11, . . . , X1n1
∼ i.i.d.N(θ1, σ

2)

X21, . . . , X2n2
∼ i.i.d.N(θ2, σ

2)

...
...

Xk1, . . . , Xknk
∼ i.i.d.N(θk, σ

2)

3. θki.i.d.N(µ, τ2)
4. µ , σ and τ given non-informative prior.
5. Since theese are all conjugate priors, one can produce a

normal posterior for µ .
6. Cf. frequentist approach Xji = µ + ηj + ǫij ,

ηj ∼ N(σ2) , ǫij ∼ N(τ2) .
7. Results similar.

:
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