Lecture 13

- c. $X \sim \mathcal{B}in(\pi, m)$, $Y \sim \mathcal{B}in(\rho, n)$.
 - i. "noninformative" "reference" prior on both. ii. Likelihood $\pi^X(1-\pi)^{m-X}\rho^Y(1-\rho)^{n-Y}$

 - iii. Prior $\pi^{-1}(1-\pi)^{-1}\rho^{-1}(1-\rho)^{-1}$ iv. More interesting paramterization
 - $\delta = \pi \rho \in (-1, 1), \ \tau = \pi + \rho \in (|\delta|, 2 |\delta|)$

 - v. $\pi = (\delta + \tau)/2$, $\rho = (\tau \delta)/2$ vi. Posterior $(\delta + \tau)^{X-1}(1 \delta \tau)^{m-X-1}(\tau \delta)^{Y-1}(1 \tau + \delta)^{n-Y-1}$
 - The jacobian of the $(\pi, \rho) \rightarrow (\delta, \tau)$ transformation is constant, and will wash out of calculation.

WMS: 16.4-16.5

- L. Bayesian hypothesis testing.
 - 1. As before, decide between $H_0: \theta \in \Omega_0$ vs.
 - $H_A: \theta \in \Omega_a$.
 - a. Here I used notation similar to that of frequentist analysis.
 - b. At present, no "null" and "alternate" subtext.
 - 2. Choose hypothesis with highest posterior probability.
 - 3. Often report posterior odds $P[\Omega_0|data]/P[\Omega_a|data]$
 - 4. Factor B by which prior odds $P[\Omega_0]/P[\Omega_a]$ was changed is called Bayes factor .
 - a. $B = (P [\Omega_0 | data] P [\Omega_a]) / (P [\Omega_a | data] P [\Omega_0])$
 - b. When hypothesis Ω_0 and Ω_a are both simple, Bayes factor is the likelihood ratio.
 - c. Point hypotheses are only workable if there's positive prior probability on them. B: 4.6

Lecture 14

This page intentionally left blank.

M. Bayesian Hierarchical Models

- 1. Bayesian alternative to frequentist random effects modeling.
- 2. Setup:

$$X_{11}, \dots, X_{1n_1} \sim i.i.d.\mathcal{N}(\theta_1, \sigma^2)$$
$$X_{21}, \dots, X_{2n_2} \sim i.i.d.\mathcal{N}(\theta_2, \sigma^2)$$
$$\vdots$$
$$X_{k1}, \dots, X_{kn_k} \sim i.i.d.\mathcal{N}(\theta_k, \sigma^2)$$

- 3. $\theta_k i.i.d. \mathcal{N}(\mu, \tau^2)$
- 4. μ , σ and τ given non-informative prior.
- 5. Since theese are all conjugate priors, one can produce a normal posterior for μ .

÷

6. Cf. frequentist approach $X_{ji} = \mu + \eta_j + \epsilon_{ij}$, $\eta_i \sim \mathcal{N}(\sigma^2)$, $\epsilon_{ij} \sim \mathcal{N}(\tau^2)$.

This page intentionally left blank.

123 Lecture 14

13

122