
960-584– Biostatistics I– Fall, 2003

Homework 4 Solutions, 10 Nov 2003

1. The following are counts of deaths by falls in a certain cohort, by month, presented by
Ryan and Joiner (1994) and originally published in the World Almanac and Book of
Facts (1984).

Month Falls Days in Month Ice Score
Jan 1150 31 1
Feb 1034 28 1
Mar 1080 31 2
Apr 1126 30 0
May 1142 31 0
Jun 1100 30 0
Jul 1112 31 0
Aug 1099 31 0
Sep 1114 30 0
Oct 1079 31 0
Nov 999 30 2
Dec 1181 31 2

The final column above contains a score for how icy
each particular month is. This data may also be found at
http://www.stat.rutgers.edu/~kolassa/960-584/falls.dat.

a. Fit a Poisson regression model to these data, allowing the rate of death from falls to
vary by what category of icyness is present in the month. Make sure you account for the
differing number of days in the month as well. Assume a constant rate of death from
falls within each month.

Here are the SAS commands to do the job:

data falls; infile ’falls.dat’; input falls days ice;

l=log(days); run;

proc genmod data=falls; class ice ;

model falls=ice/dist=poi offset=l; run;

and here are the results:

Standard Wald 95% Chi- Pr >

Parameter DF Estimate Error Confidence Limits Square ChiSq

Intercept 1 3.5677 0.0175 3.5334 3.6020 41494.8 <.0001

ice 0 1 0.0246 0.0209 -0.0163 0.0655 1.39 0.2382

ice 1 1 0.0437 0.0277 -0.0105 0.0979 2.50 0.1142

ice 2 0 0.0000 0.0000 0.0000 0.0000 . .

To get credit you need to give estimates and standard errors.

b. Assume that the model from part (a) fits well. Test whether the relative risk of the
level 1 icyness time to the level 0 icyness time is the same as the relative risk of the level 2
icyness time to the level 1 icyness time.
Three solutions are given. Only one is required for full credit. Let Zj be the iciness
score for month j . The model from part (a) is log(λj) = β0 + β1Xj + β2Wj , with
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Xj =

{

1 if Zj = 0
0 otherwise

, and Wj =

{

1 if Zj = 1
0 otherwise

. This model satisfies the requirement

of part (b) if and only if the ratio of rates for ice score 1 to the rate for ice score 0 is
the same as the ratio of rates for ice score 2 to the rate for ice score 1. This holds if
[exp(β0 + β2)/ exp(β0 + β1)] = [exp(β0)/ exp(β0 + β2)] , or equivalently β2 = 2β1 . The model for
part (b) is log(λj) = β0 + β1Xj + 2β1Wj = β0 + β1(Xj + 2Wj) = β0 + β1(2− Zj) . Equivalently,

log(λj) = γ0 + γ1Zj (∗)

for γ1 = −β1 and γ0 = β0 + 2β1 . Hence

proc genmod data=falls;

model falls=ice/dist=poi offset=l; run;

fits this model; this model differs from the previous model in that ice is used as a continuous
variable here. We need to test whether this model is adequate; use the likelihood ratio test. The two
log likelihoods are 79357.3920 and 79356.5290 ; twice the difference is 1.726 , which fails to exceed
the χ2

1
critical value of 1.962 . Do not reject the null hypothesis. The second model is adequate.

Alternatively, we could also have performed this analysis by creating an additional
covariate which when added to the model (*) reproduces the model of part (a). That is,
log(λj) = γ0 + γ1Zj + γ2Xj = γ0 + γ1(2−Xj − 2Wj) + γ2Xj = γ0 + 2γ1 − 2γ1Wj + (γ2 − γ1)Xj .
Hence this model agrees with the model of part (a) with β0 = γ0 + 2γ1 , β1 = γ2 − γ1 , and
β2 = −2γ1 . The present hypothesis corresponds to γ2 = 0 . This may be tested using

data falls; set falls; x=0; if ice=1 then x=1; run;

proc genmod data=falls;

model falls=ice x/dist=poi offset=l; run;

Tests of coefficients are given by

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi- Pr >

Parameter DF Estimate Error Limits Square ChiSq

Intercept 1 3.5923 0.0113 3.5701 3.6145 100295 <.0001

ice 1 -0.0123 0.0104 -0.0328 0.0081 1.39 0.2382

x 1 0.0314 0.0238 -0.0153 0.0780 1.74 0.1875

The null hypothesis of γ2 = 0 is not rejected; the second model is adequate.
Again alternatively, we might test this null hypothesis by directly manipulating the rate

estimates. Let κj be the log of the rate for iciness score j . Then under the null hypothesis,
κ1 − κ0 = κ2 − κ1 , or κ2 − 2κ1 + κ0 = 0 . Hence we can test this hypothesis by dividing
κ̂2− 2κ̂1 + κ̂0 by its standard error and comparing to a standard normal distribution. The standard
error is the square of the sum of the inverse number of falls. To do this in SAS, do
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proc sort data=falls; by ice; run;

proc means data=falls sum noprint; by ice; var falls days;

output out=byice sum=; run;

data byice; set byice; drop _type_ _freq_;

lograte=log(falls/days); mult=1; if ice=1 then mult=-2;

top=mult*lograte; bot=mult**2/falls; run;

proc means data=byice sum noprint;

output out=test sum=; run;

data test; set test; test=top/sqrt(bot);

keep test top bot; run;

proc print noobs data=byice; run;

proc print noobs data=test; run;

to obtain
ice falls days lograte mult top bot

0 7772 214 3.59231 1 3.59231 .000128667

1 2184 59 3.61138 -2 -7.22275 .001831502

2 3260 92 3.56769 1 3.56769 .000306748

and
top bot test

-0.062751 .002266917 -1.31796

Again, this test statistic fails to exceed the Z statistic cutoff of ±1.96 ; do not reject the null
hypothesis.

c. Does the model in part (a) fit well?

Output from the commands in (a) show that the Pearson goodness of fit statistic, divided by its
degrees of freedom, is 1.6936. No, it doesn’t seem to fit well.

d. Fit the same model of part (a) to the slightly collapsed data set

Month Falls Days in Month Ice Score
Jan–Feb 2184 59 1
Mar 1080 31 2
Apr–Oct 7772 214 0
Nov–Dec 2180 61 2

Compare the parameter estimates, standard errors, and goodness of fit statistics that you
see. Explain any similarities and differences.

Coefficients and standard errors are identical. This is generally the case for generalized linear
models, when data lines with identical covariates are collapsed. Goodness of fit measures are much
different.
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2. In each of six labs, twenty chicks were randomly divided into a treatment group and a
control group. The treatment (T) group were exposed to pulsed electro-magnetic
radiation, and the control (C) chicks were placed in the presence of a similar apparatus
which was not turned on. The chicks were examined for deformities, and the results
were tabulated below:

Lab 1 2 3 4 5 6

C T C T C T C T C T C T

Healthy Chicks 5 6 7 6 8 8 9 9 8 8 9 9
Unhealthy Chicks 3 4 2 3 2 2 1 1 2 1 1 1 .

These data may also be found at http://www.stat.rutgers.edu/~kolassa/960-584/hen.dat.
Note that most of the labs have fewer than 20 chicks classified, because some of the
chicks were lost to causes unrelated to the presence or absence of radiation during the
experiment. This data is a subset of that collected by Berman, et. al. (1990). Perform
these calculations using logistic regression.

a. Ignoring the fact that these data were collected in different labs, test the null
hypothesis that chick deformities are unrelated to radiation.

This entire question may be done either using logistic regression, conditional logistic regression, or
contingency table methods. You need do ONLY ONE OF THESE. These SAS commands will do
the job:

data hen; infile ’hen.dat’; input lab sick treat count;

healthy=1-sick; run;

proc genmod data=hen descending;

model sick=treat/dist=bin; freq count; run;

The important part of the output is:

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 -1.4307 0.3356 18.1719 0.0001

TREAT 1 0.0870 0.4666 0.0348 0.8521

SCALE 0 1.0000 0.0000 . .

Hence there is no evidence at all that radiation influences deformities. You might also have
performed these calculations using conditional logistic regression; recall that phreg models the
probability that the response is zero, and so we use healthy as the response:

proc phreg data=hen; model healthy*healthy(1)=treat/risklimits ties=discrete;

freq count; run;

and we see
Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard

Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

treat 1 0.08621 0.46457 0.0344 0.8528 1.090

Again there is no evidence at all that radiation influences deformities. Finally, the standard
contingency table approach is also acceptable; here we use
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proc freq data=hen; table sick*treat/chisq relrisk; weight count; run;

to obtain
Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.0348 0.8520

Again there is no evidence at all that radiation influences deformities.

b. Again ignoring the fact that these data were collected in different labs, calculate a 95%
confidence interval for the odds ratio associating deformities with radiation.

The interval is exp(0.0870 ± 1.96 × 0.4666) = (0.437, 2.722) . The answers from the conditional
logistic regression

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

treat 1.090 0.439 2.709

and from the contingency table analysis

Type of Study Value 95% Confidence Limits

---------------------------------------------------------------

Case-Control (Odds Ratio) 1.0909 0.4371 2.7225

are also acceptable.

c. Test the null hypothesis that chick deformities are unrelated to radiation, accounting
for the fact that the data were collected from different labs.
Here are the sas commands to do the job:

proc genmod data=hen descending; class lab;

model sick=treat lab/dist=bin; freq count; run;

Here is the important part of the output:

INTERCEPT 1 -2.2196 0.7848 7.9980 0.0047

TREAT 1 0.0443 0.4829 0.0084 0.9269

LAB 1 1 1.7429 0.8888 3.8456 0.0499

LAB 2 1 1.2418 0.9124 1.8523 0.1735

LAB 3 1 0.8110 0.9317 0.7576 0.3841

LAB 4 1 0.0000 1.0541 0.0000 1.0000

LAB 5 1 0.5244 0.9755 0.2890 0.5908

LAB 6 0 0.0000 0.0000 . .

Here we see results that are qualitatively the same as for the analysis ignoring lab. Again, do
not reject the null hypothesis; there is no evidence that radiation impacts deformities. We could
also have done this analysis with conditional logistic regression or via a contingency table:

proc phreg data=hen; model healthy*healthy(1)=treat/risklimits

ties=discrete;

strata=lab; freq count; run;

proc freq data=hen; table lab*sick*treat/cmh relrisk; weight count; run;

and found
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Analysis of Maximum Likelihood Estimates

Parameter Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq

treat 1 0.08621 0.46457 0.0344 0.8528

and
Summary Statistics for sick by treat

Controlling for lab

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

---------------------------------------------------------------

1 Nonzero Correlation 1 0.0080 0.9288

respectively, and also found no impact of treatment on deformities.

d. Allowing for the fact that these data were collected in different labs, calculate a 95%
confidence interval for the odds ratio associating deformities with radiation. Compare the
width of the interval with that obtained in part (b).

Again, the confidence interval is given by exp(0.0443 ± 1.96 × 0.4829) = (0.406, 2.693) . The width
is almost exactly the same. The conditional logistic regression and contingency table confidence
intervals are

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

treat 1.090 0.439 2.709

and

Type of Study Method 95% Confidence Limits

-------------------------------------------------------------

Case-Control Mantel-Haenszel 0.4063 2.6885

(Odds Ratio) Logit 0.4034 2.7324

respectively. Again, there is little difference in widths.

e. Estimate odds ratios for each table separately. Describe what you see.

Odds ratios for the individual labs are

1 2 3 4 5 6
1.11111 1.75000 1.00000 1.00000 0.50000 1.00000 .

These calculations might be done two ways: Using proc freq, the commands

proc freq data=hen noprint; output out=outset relrisk;

by lab; table treat*sick/relrisk; weight count; run;

proc print data=outset noobs; var LAB _RROR_; run;

Using proc genmod, the command

proc genmod data=hen; class lab;

model sick=treat lab lab*treat/dist=bin; freq count; run;

gives (with lab effects deleted):
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Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 -2.1972 1.0541 4.3450 0.0371

TREAT 1 0.0000 1.4907 0.0000 1.0000

TREAT*LAB 1 1 0.1054 1.7811 0.0035 0.9528

TREAT*LAB 2 1 0.5596 1.8344 0.0931 0.7603

TREAT*LAB 3 1 -0.0000 1.8634 0.0000 1.0000

TREAT*LAB 4 1 -0.0000 2.1082 0.0000 1.0000

TREAT*LAB 5 1 -0.6931 1.9930 0.1210 0.7280

TREAT*LAB 6 0 0.0000 0.0000 . .

Then lab 6 is treated as the baseline, and the estimated odds ratio is 1. Hence all of the other
estimates of comparisons with lab 6 are the odds ratios for those labs as well. Exponentiating gives
the above results. Hence most of the labs show no effect; lab 1 shows a small effects indicating
treatment damages chicks, lab 2 shows a larger effect in the same direction, and lab 5 shows a
larger protective effect of treatment. None of these are significant.
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