Lecture 6
c. Cohort Study

i. Notation: O, ~ P(Q ), independent
ii. Aredistributionsinto rows independent of distribution into
columns?
e Equivalentto £, = Fj B /Bty
. Use 2 test statistic as before
9
o T=>1-00—Ej1)/Ej)
e Expectation satisfies
> EJ+ =0Ojy E+k = O, (3 equations, 4 unknowns)
> EgEr/(EEor) =g
> If ¢pg = 1 then E]k = Oj_|_0+]€/0++
> Hence statistic has distribution X%

e Equivalently, T = (Ogy — Eoo)z/?} for some v

> v= (B!

_ ( Ort . Or  Onr | Oy )_1
04000+  O4001+ O4100+  O41014
= 041004010014 /04 4
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iv. v above is same as approximation arising from stratified cohort

formulation
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e Hence approximate inference is same as if we had conditioned

on row totals

e Thisconditioning is suggested by conditionality principal.

e Normal approx. works poorly unless Ejk: > bV, k. See
Figure5.

e (Could have continuity correction described earlier.

> Choice of cc and variance give 4 possible tests
v. Likelihood ratio

e \Write down probability for table as function of ¢

e (Comparevalueat 1 to highest value it takes

o 2xlog(L) ~ x?

B&D1:4.2
2. Exact Inference for Various Designs
a. Aswith approximate analysis,

I. case—control approach is mathematically equivalent to the

stratified cohort approach

ii. conditionality principal justifies treating the unstratified cohort

design as a stratified cohort design.

b. Cohortinference is generated from distribution of
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Table Corner
Row margins are 10 , 10 and column margins are 10 , 10
1~ i
— Fxact
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Table Corner

Row margins are 20 , 10 and column margins are 10 , 20

Opo ~ Bin(mp, Op), O19 ~ Bin(71, 014).
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I. 7 is proportion of exposed PYAR among controls =

P [Control|Unexposed]

ii. 71 is proportion of unexposed PYAR among controls =

P [Control |Exposed]

Op+y (011 O
c. P00, 010|004, O14] = (o) (o) 7o (1 =
WO)OOW?lO(l —mp)0u

d. Rewritingintermsof 1) leaves dependence on one of these:

T = my /(1 — o+ mp) and
O O

P [O00, 010|040, O+1] = - . (1— 7T1)Ol+
Opo | \ O10

0 Op1—010,,,0

_ [ Oo+) [O1+ ( 1 — 7 )O”
Opo J \ O10 )] \1 — 7y + mp9p

x w5 (1 — 7T0>O+1—01+¢010
_ [ Oo+\ (O W(?H)(l — )P +14p010
Ooo O10 (1 —my+ 7TO¢)01+

e. Distribution of I" still dependson 7

I. mo contributes a constant factor to all tables with same

O—l—Oa O—l—l
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ii. Lookingonly atsuch tables

iii. Processis conditionalon Op, and O1 aswellas O, and
O.i.
Iv. removes dependenceon 7
v. Distribution is called hypergeometric
vi. If ¢ #£ 1 called noncentral hypergeometric
f. cuts number of tables to be examined.
I. Both a blessing and a curse.
e Indicateby |0, Oy} conditionalon Op; and Oy and
O+Q and O+1.

. 0411000490
i. Vary_; |Op|Oj4, O4p) = 22000

O11%(0++—1)
iii. Conditioning is not suggested by conditionality principal.

e P [disease] = m(Ogs + O1290/(1 — mg + m1)))
e Dependenceis weak.
g. Testing ¥
i. One-sided
o Hy:vp=1vgvs Hy: >y
o UseT = {b or equivalently O

e p-valueissum of probabilities for table with upper left corner
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at least observed

ii. Fortwo—sided test
e order tables according to null probability
e Implies something other than doubling smaller 1-sided
p-value
e Resultiscalled Fisher’s Exact Test
Se: 7 pp. 201-205
h. Confidence Bounds for 1)
i. Distribution of ¢ ?
o VN7
e Forstratified cohort study?
> log(7/[1 — mp]) = log(Op1) — log(Onp)
> Under unknown 1, stratified cohort sampling,
%00 log(odds) = Ogy~ 1+ Og; 1
> Var [log(odds)] ~ (Ogg~" + Op1~H)*(Ogo " +
Op1 ™)'= (O~ ! + O ™)
> Bottom row is independent with same structure
> Var M ~Op L +0107 +0p  +01,71

e Conditioning on all marginals?

47



Lecture 6 48
> No closed form expression for variance

AN

> Hence Var {w} ~ 000_1 + 010_1 + 001_1 + 011_1

AN

ii. Hence Clfor log(1)) is log() + 1.96 x
\/000_1 + 0107 +Opt + 07!

iii. Exact Confidenceintervals (¢, 1) satisfies
Py, [OOO > observed|O 4, O+k] = .025,
Py Oy < observed|O 4, O, 1| =.025

o SeeFigure4/.
Se: 7 pp. 234-239

3. Controling for the presence of additional variables
a. Notation:

i. Add superscript ¢ to tell which table
Se: 6 pp. 187-190

b. Additional variable provides an alternative explanation for

association between disease and exposure: confounding

i. Definition: distortion of disease /exposure association by other

factor

e Otherfactor related to exposure
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e Other factor causally related to disease
C —-D

!
E

ii. Canchange direction of relationship: Simpson’s Paradox
(See example)
iii. Rational
e Define the effect of exposure to be that with everything else
held constant
e what you will get if you try to intervene on exposure
e Thisiswhat you get if you assign exposure
iv. Example
e Aspirinis associated with stomach upset
e Does aspirin cause stomach upset?
e Alternative explanation: stress causes
> stomach upset
> diseases like headaches for which aspirin is likely treatment.
e Regardless of what book says, you can't tell direction of
causation from an observational study

c. Testing whether common oddsratiois 1
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. Use T =1 w0 — EL)

e Intuition might suggest w; = 1/4/Var {Oooi|0j+, OH@}
o Wewilluse w; =1
e Use asstandard error sum of exact variances.
> Implies assumption that tables are independent.
ii. Called Mantel-Haenszel test.

d. Estimation of the common odds ratio
2 L1 000’011 /O 44"

-1 010'001"/ O+
ii. 0o onlyifall bottom productsare0

I. Mantel-Haenszel est'émator

lii. logit estimator
. log(Ogy' 011" /[010°0
b = exp <Z _1 wi log(Opy'O11'/[010'On ]))
Z =1 Wy
1 1 1 I y—1
o w, = TR ST ST
' (000Z Oo1" ~ O1o' 011’>
e Omitterm ¢ if ng = () forsome 7, k

> w; =0

> Corresponding logit will be oo
> Acceptablesince lim, .oz log(z) = 0

e This w; minimizes variance

e SEof log(¢) is 1/ 22w
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Se: 6 pp. 163-165

4. K exposure groups, for K possibly greater than 2.

a. lableentries Contr. Cases Total
Exp. cat. 0 Ooo O Oo+
Exp. cat. 1 O10 O11 01+

Exp.cat. K —10g_100rg_11 O _14+
Total O+Q O_|_1 O_|_+
b. Estimation of effect

I. Pick one group as baseline
ii. Calculate odds ratio compared to this group as before
lii. Also can calculate Cl
e Vianormal theory and same SE or exactly
iv. Remember these thingsare NOT independent
c. Testing
i. Don't:
e Test pairwise
e because of multiple comparisons problems.
ii. Use same statistic as before

e Calculate expectedvalues F;. = 0,0 /O4 4
2 K—-1
o T=>7: 127100 —E;p)?/Ej
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o T ~ X%(—l (approximately)

> Samerequirement of > 5 expected
> Exact methods are available
This time the test statistic won't correspond to one tail
Now use Pearson statistic.
e DF are same as number of odds ratios one could estimate.
iii. Could also analyze stratified 2 x K tables.
Se: 6 pp. 167-178
d. Could also treat ordered categories
i. Assign each of the categories a score ;.
e By default these are equally spaced
e Alternatively, one can use Ridit scores ). =
2k O4j + (01 +1)/2]/O4
> Gives Mann—Whitney—Wilcoxon test
> Test statistic has interpretation as estimated probability that
a random individual from one group has a higher score than
random individual from the other
ii. Called Mantel-Haenszeltest.

iii. Calculate T' = Z;ii_ol 2. (Or1 — €exq)
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iv. Multiple of correlation betw. row and column scores (0 and 1):

v. Squaring and rescaling makes it ~ X%

e Rescalingisdone using exact variance

o Var[Op] = 031.010041(0+4 — O ) /(O44%(O4 4 —
1))

o Var [Op1 +Oj1] = (Opy + 054 )010011(044 — Op 4 —
0j1)/(04+*(04y — 1))

e Cov|O1,041] = (Var [Op1 4+ Oj1] — Var[Oyq] —
Var [O11])/2 = =054 01[040041]/(04+%(O4+ — 1))

e Hence

K—1 K—1
Vg [T 010041 Z 0 Ok+ Z Ok 12
p— _
arlT] O44(O44 — 1) { ROL Oy =0 vk )

O+

e Formally equivalent to test Wlth ordered categories for SMR
e Treatingthisasstandard least—squares regression gives you
reasonable SE for test statistic
> Regresssing scores on 0 and 1 gives standard two—sample
pooled ¢ test
> Squaring 3/SE gives X% statistic
Se: 6 pp. 181-186
e. When do you need to stratify?
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i. Heruristically: when stratifier is a confounder

e Thatis, itisrelated to both exposure and disease
e Empirically, the odds ratio will change if both row and column
proportions differ according to stratifier.
f. If ¢» = 1 afterstratification, disease and exposure are
conditionally independent.
g. If ¢ forthevariousstrata are different, there is an interaction
between the confounder and exposure.
i. Inthe next lecture we'll find out how to measure and test it.
h. Checking for confounding via hypothesis test
i. Procedure
e test for association betw. C' and D and betw. (' and F/,
e adjust if these are significant
ii. Uses significance as a proxy for strength of effect
iii. Tomake it work at all, typically make very loose criteria for
significance
iv. Should not be used for factors that are not confounders

v. Adjust even if effect mitigated by matching.
Se: 9 pp. 277-279, 289-291
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5. Extreme case of stratification: Each has two elements

a. AKA matching
i. Can either be case—control pairs or exposed—unexposed pairs
ii. Let n;; = number of pairs with case at exposure level 7,

control at exposure level [

e Pairswith the same exposure levels for case and control are
called concordant.
e Pairswith different exposure levels for case and control are
called discordant.
Se: 9 pp. 280-282, 287-289
b. Assumption (exposed—unexposed pairs):
I. Let W]i be the probability of event in exposure group k for pair
?
i. Assume t(1 — 778)/[#0( )] = YVi
c. Use Mantel-Haenszel test
I. For concordant pairs
e Expected values are exactly observed
e Varianceiszero

e Hence contribution is zero
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ii. Fordiscordant pairs

e Expectedisall %

e Obsd-expected is
> (1 — %) — L for pairs with + association
> (0 — %) = —% for pairs with - association

e Nullvariance contribution for pair is

ool —

> approximately ((%)_1 + (%)_1 + (%)_1 + (%)—1)—1 —
> More precisely % X (2/1) = %
iii. Test statistic is same as test that binomial proportion equals %
o take %(nm — no1)
e multiply by \/4/(n1p + no1) = 2/+/n10 + no1
e Comparetostandard normal

d. Called McNemar's Test
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