Lecture 6 42

- c. Cohort Study
 - i. Notation: $O_{jk} \sim \mathcal{P}(Q_{jk})$, independent
 - ii. Are distributions into rows independent of distribution into columns?
 - Equivalent to $E_{jk} = E_{j+}E_{+k}/E_{++}$
- iii. Use χ^2 test statistic as before
 - $T = \sum_{j,k=0}^{1} (O_{jk} \hat{E}_{jk})^2 / \hat{E}_{jk}$
 - Expectation satisfies
 - ho $\hat{E}_{j+}=O_{j+}$ $\hat{E}_{+k}=O_{+k}$, (3 equations, 4 unknowns)
 - $\hat{E}_{00}\hat{E}_{11}/(\hat{E}_{10}\hat{E}_{01}) = \psi_0$
 - ightharpoonup If $\psi_0=1$ then $\hat{E}_{jk}=O_{j+}O_{+k}/O_{++}$
 - \triangleright Hence statistic has distribution χ_1^2
 - ullet Equivalently, $T=(O_{00}-\hat{E}_{00})^2/v$ for some v

$$\triangleright \quad v = (\sum \hat{E}_{jk}^{-1})^{-1}$$

$$= \left(\frac{O_{++}}{O_{+0}O_{0+}} + \frac{O_{++}}{O_{+0}O_{1+}} + \frac{O_{++}}{O_{+1}O_{0+}} + \frac{O_{++}}{O_{+1}O_{1+}}\right)^{-1}$$

$$= O_{+1}O_{0+}O_{+0}O_{1+}/O_{++}^{3}$$

iv. v above is same as approximation arising from stratified cohort formulation

 Hence approximate inference is same as if we had conditioned on row totals

- This conditioning is suggested by conditionality principal.
- Normal approx. works poorly unless $\hat{E}_{jk} \geq 5 \forall j,k$. See Figure 5.
- Could have continuity correction described earlier.
 - ▷ Choice of cc and variance give 4 possible tests
- v. Likelihood ratio
 - ullet Write down probability for table as function of ψ
 - Compare value at 1 to highest value it takes
 - $2 \times \log(L) \sim \chi_1^2$

B&D1: 4.2

- 2. Exact Inference for Various Designs
 - a. As with approximate analysis,
 - i. case—control approach is mathematically equivalent to the stratified cohort approach
 - ii. conditionality principal justifies treating the unstratified cohort design as a stratified cohort design.
 - b. Cohort inference is generated from distribution of

 $O_{00} \sim \text{Bin}(\pi_0, O_{0+})$, $O_{10} \sim \text{Bin}(\pi_1, O_{1+})$.

Lecture 6 45

i. π_0 is proportion of exposed PYAR among controls = P [Control|Unexposed]

- ii. π_1 is proportion of unexposed PYAR among controls = P [Control|Exposed]
- c. $P[O_{00}, O_{10}|O_{0+}, O_{1+}] = \binom{O_{0+}}{O_{00}} \binom{O_{1+}}{O_{10}} \pi_0^{O_{00}} (1 \pi_0)^{O_{01}} \pi_1^{O_{10}} (1 \pi_1)^{O_{11}}$
- d. Rewriting in terms of ψ leaves dependence on one of these:

$$\begin{split} \pi_1 &= \pi_0 \psi / (1 - \pi_0 + \pi_0 \psi) \text{ and} \\ \mathsf{P} \left[O_{00}, O_{10} | O_{+0}, O_{+1} \right] &= \begin{pmatrix} O_{0+} \\ O_{00} \end{pmatrix} \begin{pmatrix} O_{1+} \\ O_{10} \end{pmatrix} (1 - \pi_1)^{O_{1+}} \\ &\times \pi_0^{O_{+0}} (1 - \pi_0)^{O_{01} - O_{10}} \psi^{O_{1+}} \\ &= \begin{pmatrix} O_{0+} \\ O_{00} \end{pmatrix} \begin{pmatrix} O_{1+} \\ O_{10} \end{pmatrix} \left(\frac{1 - \pi_0}{1 - \pi_0 + \pi_0 \psi} \right)^{O_{1+}} \\ &\times \pi_0^{O_{+0}} (1 - \pi_0)^{O_{+1} - O_{1+}} \psi^{O_{10}} \\ &= \begin{pmatrix} O_{0+} \\ O_{00} \end{pmatrix} \begin{pmatrix} O_{1+} \\ O_{10} \end{pmatrix} \frac{\pi_0^{O_{+0}} (1 - \pi_0)^{O_{+1}} \psi^{O_{10}}}{(1 - \pi_0 + \pi_0 \psi)^{O_{1+}}} \end{split}$$

- e. Distribution of T still depends on π_0
 - i. π_0 contributes a constant factor to all tables with same $O_{\pm 0}, O_{\pm 1}$

Lecture 6

46

- ii. Looking only at such tables
- iii. Process is conditional on ${\cal O}_{0+}$ and ${\cal O}_{1+}$ as well as ${\cal O}_{+0}$ and O_{+1} .
- iv. removes dependence on π
- v. Distribution is called *hypergeometric*
- vi. If $\psi \neq 1$ called $noncentral \, hypergeometric$
- f. cuts number of tables to be examined.
 - i. Both a blessing and a curse.
 - Indicate by $|O_{j+}, O_{+k}|$ conditional on O_{0+} and O_{1+} and O_{+0} and O_{+1} .

ii.
$$\operatorname{Var}_{\psi=1}\left[O_{00}|O_{j+},O_{+k}\right] = \frac{O_{+1}O_{0+}O_{+0}O_{1+}}{O_{++}^2(O_{++}-1)}$$

- iii. Conditioning is not suggested by conditionality principal.
 - P [disease] = $\pi_0(O_{0+} + O_{1+}\psi/(1 \pi_0 + \pi_0\psi))$
 - Dependence is weak.
- g. Testing ψ
 - i. One-sided
 - $H_0: \psi = \psi_0 \text{ vs } H_A: \psi > \psi_0$
 - Use $T = \hat{\psi}$ or equivalently O_{00}
 - p-value is sum of probabilities for table with upper left corner

Lecture 6 at least observed

47

- ii. For two-sided test
 - order tables according to null probability
 - ullet Implies something other than doubling smaller 1-sided p-value
 - Result is called Fisher's Exact Test

- h. Confidence Bounds for ψ
 - i. Distribution of $\hat{\psi}$?
 - $\hat{\psi} \approx \mathcal{N}(\psi,?)$
 - For stratified cohort study?

$$> \log(\hat{\pi}_0/[1 - \hat{\pi}_0]) = \log(O_{01}) - \log(O_{00})$$

ightarrow Under unknown ψ , stratified cohort sampling,

$$\frac{d}{dO_{00}}\log(\text{odds}) = O_{00}^{-1} + O_{01}^{-1}$$

 $ightharpoonup Var [log(odds)] \approx (O_{00}^{-1} + O_{01}^{-1})^2 (O_{00}^{-1} + O_{01}^{-1})^{-1} = (O_{00}^{-1} + O_{01}^{-1})$

▷ Bottom row is independent with same structure

$$\triangleright \operatorname{Var}\left[\hat{\psi}\right] \approx O_{00}^{-1} + O_{10}^{-1} + O_{01}^{-1} + O_{11}^{-1}$$

Conditioning on all marginals?

▷ No closed form expression for variance

$$ightharpoonup Hence Var $\left[\hat{\psi}\right] \approx O_{00}^{-1} + O_{10}^{-1} + O_{01}^{-1} + O_{11}^{-1}$$$

ii. Hence CI for
$$\log(\psi)$$
 is $\log(\hat{\psi}) \pm 1.96 \times \sqrt{O_{00}^{-1} + O_{10}^{-1} + O_{01}^{-1} + O_{11}^{-1}}$

iii. Exact Confidence intervals (ψ_L,ψ_U) satisfies

$${\rm P}_{\psi_L}\left[O_{00} \geq {\rm observed}|O_{j+},O_{+k}\right] = .025$$
 ,
$${\rm P}_{\psi_U}\left[O_{00} \leq {\rm observed}|O_{j+},O_{+k}\right] = .025$$

• See Figure 4/.

- 3. Controling for the presence of additional variables
 - a. Notation:
 - i. Add superscript i to tell which table

- b. Additional variable provides an alternative explanation for association between disease and exposure: confounding
 - Definition: distortion of disease/exposure association by other factor
 - Other factor related to exposure

Other factor causally related to disease

$$C \to D$$

$$\downarrow$$

ii. Can change direction of relationship: Simpson's Paradox (See example)

 F_{i}

iii. Rational

- Define the effect of exposure to be that with everything else held constant
- what you will get if you try to intervene on exposure
- This is what you get if you assign exposure

iv. Example

- Aspirin is associated with stomach upset
- Does aspirin cause stomach upset?
- Alternative explanation: stress causes

 - diseases like headaches for which aspirin is likely treatment.
- Regardless of what book says, you can't tell direction of causation from an observational study
- c. Testing whether common odds ratio is $\,1\,$

Lecture 6

i. Use
$$T = \sum_{i=1}^{I} w_i (O_{11}{}^i - E_{11}^i)$$

- Intuition might suggest $w_i = 1/\sqrt{\operatorname{Var}\left[O_{00}^i|O_{j+},O_{+k}\right]}$
- We will use $w_i = 1$
- Use as standard error sum of exact variances.
 - ▷ Implies assumption that tables are independent.
- ii. Called Mantel-Haenszel test.
- d. Estimation of the common odds ratio

i.
$$Mantel-Haenszel\ estimator\ \frac{\sum_{i=1}^{I}O_{00}{}^{i}O_{11}{}^{i}/O_{++}{}^{i}}{\sum_{i=1}^{I}O_{10}{}^{i}O_{01}{}^{i}/O_{++}{}^{i}}$$

- ii. ∞ only if all bottom products are 0
- iii. logit estimator

$$\hat{\psi} = \exp\left(\frac{\sum_{i=1}^{I} w_i \log(O_{00}^i O_{11}^i / [O_{10}^i O_{01}^i])}{\sum_{i=1}^{I} w_i}\right)$$

•
$$w_i = \left(\frac{1}{O_{00}^i} + \frac{1}{O_{01}^i} + \frac{1}{O_{10}^i} + \frac{1}{O_{11}^i}\right)^{-1}$$

- Omit term i if $O_{jk}{}^i = 0$ for some j, k
 - $\triangleright w_i = 0$
 - riangleright Corresponding logit will be ∞
 - ightharpoonup Acceptable since $\lim_{x\to 0} x \log(x) = 0$
- This w_i minimizes variance
- SE of $\log(\hat{\psi})$ is $1/\sum_j w_j$

Se: 6 pp. 163–165

4. K exposure groups, for K possibly greater than 2.

a. Table entries Contr. Cases Total Exp. cat. 0 O_{00} O_{01} O_{0+} Exp. cat. 1 O_{10} O_{11} O_{1+} : : : : : Exp. cat. K-1 O_{K-10} O_{K-11} O_{K-1+} Total O_{+0} O_{+1} O_{++}

- b. Estimation of effect
 - i. Pick one group as baseline
 - ii. Calculate odds ratio compared to this group as before
- iii. Also can calculate Cl
 - Via normal theory and same SE or exactly
- iv. Remember these things are NOT independent
- c. Testing
 - i. Don't:
 - Test pairwise
 - because of multiple comparisons problems.
 - ii. Use same statistic as before
 - Calculate expected values $E_{jk} = O_{j+}O_{+k}/O_{++}$
 - $T = \sum_{j=1}^{2} \sum_{k=0}^{K-1} (O_{jk} E_{j,k})^2 / E_{jk}$.

- $T \sim \chi^2_{K-1}$ (approximately)
 - \triangleright Same requirement of >5 expected
 - Exact methods are available
 This time the test statistic won't correspond to one tail
 Now use Pearson statistic.
- DF are same as number of odds ratios one could estimate.
- iii. Could also analyze stratified $2 \times K$ tables.

- d. Could also treat ordered categories
 - i. Assign each of the categories a score x_k
 - By default these are equally spaced
 - Alternatively, one can use $Ridit\ scores\ x_k = [\sum_{j < k} O_{+j} + (O_{+k} + 1)/2]/O_{++}$

 - ► Test statistic has interpretation as estimated probability that
 a random individual from one group has a higher score than
 random individual from the other
 - ii. Called Mantel-Haenszel test.

iii. Calculate
$$T = \sum_{k=0}^{K-1} x_k (O_{k1} - e_{k1})$$

Lecture 6 53

iv. Multiple of correlation betw. row and column scores (0 and 1):

- v. Squaring and rescaling makes it $pprox \chi_1^2$
 - Rescaling is done using exact variance
 - $\operatorname{Var}[O_{k1}] = O_{k+}O_{+0}O_{+1}(O_{++} O_{k+})/(O_{++}^2(O_{++} O_{k+}))$ 1))
 - Var $[O_{k1} + O_{j1}] = (O_{k+} + O_{j+})O_{+0}O_{+1}(O_{++} O_{k+} O_{j+})/(O_{++}^2(O_{++} 1))$
 - Cov $[O_{k1}, O_{j1}] = (\text{Var} [O_{k1} + O_{j1}] \text{Var} [O_{k1}] \text{Var} [O_{k1}])/2 = -O_{k+}O_{j+}[O_{+0}O_{+1}]/(O_{++}^2(O_{++} 1))$
 - Hence

$$\operatorname{Var}\left[T\right] = \frac{O_{+0}O_{+1}}{O_{++}(O_{++}-1)} \left\{ \sum_{k=0}^{K-1} x_k^2 \frac{O_{k+}}{O_{++}} - (\sum_{k=0}^{K-1} x_k \frac{O_{k+}}{O_{++}})^2 \right\}$$

- Formally equivalent to test with ordered categories for SMR
- Treating this as standard least—squares regression gives you reasonable SE for test statistic
 - ightharpoonup Regresssing scores on 0 and 1 gives standard two–sample pooled t test
 - ho Squaring $\hat{eta}/{\sf SE}$ gives χ_1^2 statistic Se: 6 pp. 181–186
- e. When do you need to stratify?

- i. Heruristically: when stratifier is a confounder
 - That is, it is related to both exposure and disease
 - Empirically, the odds ratio will change if both row and column proportions differ according to stratifier.
- f. If $\psi=1$ after stratification, disease and exposure are $conditionally\ independent.$
- g. If ψ for the various strata are different, there is an interaction between the confounder and exposure.
 - i. In the next lecture we'll find out how to measure and test it.
- h. Checking for confounding via hypothesis test
 - i. Procedure
 - ullet test for association betw. C and D and betw. C and E ,
 - adjust if these are significant
 - ii. Uses significance as a proxy for strength of effect
- iii. To make it work at all, typically make very loose criteria for significance
- iv. Should not be used for factors that are not confounders
- v. Adjust even if effect mitigated by matching.

Se: 9 pp. 277–279, 289–291

- 5. Extreme case of stratification: Each has two elements
 - a. AKA matching
 - i. Can either be case—control pairs or exposed—unexposed pairs
 - ii. Let $n_{il}=\mbox{number of pairs with case at exposure level }i$, control at exposure level l
 - Pairs with the same exposure levels for case and control are called concordant.
 - Pairs with different exposure levels for case and control are called discordant.

- b. Assumption (exposed-unexposed pairs):
 - i. Let π_k^i be the probability of event in exposure group $k\,$ for pair i

ii. Assume
$$\pi_1^i(1-\pi_0^i)/[\pi_0^i(1-\pi_1^i)]=\psi \forall i$$

- c. Use Mantel-Haenszel test
 - i. For concordant pairs
 - Expected values are exactly observed
 - Variance is zero
 - Hence contribution is zero

- ii. For discordant pairs
 - Expected is all $\frac{1}{2}$
 - Obsd-expected is
 - $ho \quad (1-\frac{1}{2})=\frac{1}{2} \ \mbox{for pairs with} + \mbox{association}$
 - $(0-\frac{1}{2})=-\frac{1}{2}$ for pairs with association
 - Null variance contribution for pair is
 - ightharpoonup approximately $((\frac{1}{2})^{-1} + (\frac{1}{2})^{-1} + (\frac{1}{2})^{-1} + (\frac{1}{2})^{-1})^{-1} = \frac{1}{8}$
 - ightharpoonup More precisely $\frac{1}{8} \times (2/1) = \frac{1}{4}$
- iii. Test statistic is same as test that binomial proportion equals $\frac{1}{2}$
 - $\bullet \ \ \mathsf{take} \ \tfrac{1}{2}(n_{10}-n_{01}) \\$
 - multiply by $\sqrt{4/(n_{10}+n_{01})}=2/\sqrt{n_{10}+n_{01}}$
 - Compare to standard normal
- d. Called McNemar's Test