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e Heuristic explanation: Ratesfor (1,0,0) and (0,1, 1) arethe

same, and so can't tell difference between them.

e Problemis called colinearity

B&D2: 4.6
7. Model contains log of time at risk as an offset
a. Fitcomponentis added to every log rate

b. If you know something that rates might be proportional to, log of

this could be added to the offset as well
I. Forex, rate in unexposed population by age

8. Parameters are log of relative risk for individuals with covariate 1

unit apart, identical otherwise.
9. Testing parameter values is done via
a. standard errors, which come from Delta method (Wald test)

i. Also gives Cl
B&D1: 6.4

b. likelihood ratio
i. Write down probability for data

ii. Expressasfunction of unknown parameters

e Function L iscalled likelihood.
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ii. Parameter value that maximizes L is called the maxzimum

likelithood estimate
iv. Hy isplausibleif L isnot much higher somewhere else.
v. Hence test hypothesis by comparing maximized value to value
at null
e compare with ratio to get likelihood ratio test
e usuallytakelog: | =log(L).
e 2x differencein [ generally approximately ~ X% for k the
difference in number of unknown parameters.
vi. —2 X [ iscalled deviance
e aftersubtracting off —2x log likelihood for model with a
separate rate for each line in data set
e Bigger modelis called saturated model.
10. Does model fit well?
a. Predicted mean values for each of the groups ought to be about
right
b. Hence > (O — Eg [Oj})2/\/ar3 |O;] oughttobe
approximately 2

I. For Poisson regression, EB [Oj} = Val“B [O]‘] =
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exp(z,B)Q;
ii. DF is number of groups - number of parameters

c. Alternatively, use likelihood ratio

i. Embed in bigger model where every observation gets its own

parameter value
F. Regression models for probabilities instead of rates
B&D?2: 4.7
1. Proportional Mortality

a. What if we don't have person—years at risk?

b. How do risks of two (mutually exclusive) events compare?
i. Assume O ~ P(\), O ~ P(vy,)
i. Then 0.1 O, ~ Bin(m, O ") for m, = A,/ (A + 1)

iii. m, = exp(xpB)/lexp(@yB) + exp(w;1d)] =
exp(x (8 — 9))/[exp(@;i(8 — 6)) + 1]
iv. If second type of event does not depend on exposure, then
d=o0,and B8—0 =70
Se: 8 pp. 243-262
v. logit(m;) = =10

vi. Method is called logistic regression
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vii. Standard errors come from delta method

2. Fitting the model:

a. Start with a guess of best values for 3
i. Callthem 3Y
ii. Almost any value (like o) will do.

b. If 2 closeto y thenexpand exp(z)/(1+exp(z) as Taylor series
c. Then

Olj = O+j7T1j + \/O+J‘7Tj(1 — 7Tj)€j
~ O.|.j7T9(1 + (1 — W9>$]<,3 — 8"+
\/O+j71'9(1 — W?)Gj

d. Hence
01 O+ 7T
/ / ~ \/O+]7T — T ):13](,3 — ,30) +€j
\/O+]7T (1— 7T
. 7rj =1/(1+ exp(—a:j,BO))
€j ~ N(0,1)

iii. Now this looks like a regular regression problem
e. Use multiple regression to update guess
I. Do multiple times

ii. Method is called iteratively reweighted least squares.
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3. Parameter estimates are logs of odds for individuals with covariate

1 unit apart, identical otherwise.
4. Complications:
a. Do iterations bounce back and forth without converging?
b. Sometimes best fits for parameters are 00
c. Testscan mislead when some groups have small expected value
5. Problematic Examples
a. Cohort Study with Common Disease
I. Poisson methods fail

e Counts of cases large enough to be influenced by finiteness of

population are not rare enough
b. Studieswith rates that vary quickly with age,
I. changing rate is accounted for by using age interval as class
variable and modeling relation between class levels.
ii. 960-542 provides more powerful and natural ways to model
dependence of rate on time

Se: 7 pp. 214-220

6. Logistic regression for K X 2 tables:

a. Op1]0p4 ~ Bin(Op4,1/(1 4+ exp(—By — Bi))
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b. For 2 x 2 table analysis, cohort study (exposed and unexposed

group sizes fixed)
cases if; =1

i. Recall notation: Oy i f o
I. Recall notation Ok] isnumber o {controls |f]:Oat

exposed !fk =1 instrata ¢ (if needed)
none ifk =20

ii. Expression as binomials

exposure level {

e Number of cases among unexposed is Oy ~ Bin(mg, Op4.)
e Number of cases among exposed is O11 ~ Bin(my, O14)
lii. Write as regression model
o logit(ry) = fi
o logit(m) = log(m/(1—m1)) = log(mo/(1—))+log(1) =
Bo + B for B = log(2) .
iv. Recall we conditioned on O1_ toremove effect of 5
c. We have too many parameters
i. Candecrease ) and increase each other ;. and get same
probabilities
ii. Threetypical solutions:
e Set Sy = 0: Results in separate log odds fits for each row.
o Set 215:1 B = 0: Makes By an “average” log odds, and

rest are log odds ratios in comparison to average.
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e Set 3;s =0 forsome k' € {1,...,K}.

> Makes group k' the reference group
> By represents log odds for reference group
> By isthelogodds for group k with respect to group &’ .
> Typically choose k" as 1 or K .
iii. Unlike contingency table approach, this approach is not
conditional on number with disease.
Se: 7 pp. 220-229
d. We can use this approach for stratified /' x 2 tables
I. toestimate common odds ratios
ii. totest whether odds ratio is really constant.
e non-constant odds ratio is equivalent to interactions between
effect and stratification variable
iii. Unlike Mantel-Haenzel approach, this approach is not
conditional on disease numbers in each table.
e. Approach can be extended to scored categories.

i. Add inscore as a covariate
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