- Heuristic explanation: Rates for (1,0,0) and (0,1,1) are the same, and so can't tell difference between them.
- Problem is called colinearity

B&D2: 4.6

- 7. Model contains log of time at risk as an offset
 - a. Fit component is added to every log rate
 - b. If you know something that rates might be proportional to, log of this could be added to the offset as well
 - i. For ex, rate in unexposed population by age
- 8. Parameters are log of relative risk for individuals with covariate 1 unit apart, identical otherwise.
- 9. Testing parameter values is done via
 - a. standard errors, which come from Delta method (Wald test)
 - i. Also gives Cl

B&D1: 6.4

- b. likelihood ratio
 - i. Write down probability for data
 - ii. Express as function of unknown parameters
 - Function *L* is called *likelihood*.

- iii. Parameter value that maximizes L is called the maximum likelihood estimate
- iv. H_0 is plausible if L is not much higher somewhere else.
- v. Hence test hypothesis by comparing maximized value to value at null
 - compare with ratio to get *likelihood ratio test*
 - usually take log: $l = \log(L)$.
 - $2 \times$ difference in l generally approximately $\sim \chi_k^2$ for k the difference in number of unknown parameters.
- vi. $-2 \times l$ is called *deviance*
 - after subtracting off $-2 \times \log$ likelihood for model with a separate rate for each line in data set
 - Bigger model is called *saturated model*.
- 10. Does model fit well?
 - Predicted mean values for each of the groups ought to be about right
 - b. Hence $\sum_{j} (O_{jk} E_{\hat{\beta}} [O_j])^2 / \operatorname{Var}_{\hat{\beta}} [O_j]$ ought to be approximately χ^2
 - i. For Poisson regression, $E_{\hat{\beta}}[O_j] = Var_{\hat{\beta}}[O_j] =$

 $\exp(\boldsymbol{x}_k \hat{\boldsymbol{\beta}}) Q_j$

- ii. DF is number of groups number of parameters
- c. Alternatively, use likelihood ratio
 - i. Embed in bigger model where every observation gets its own parameter value
- F. Regression models for probabilities instead of rates

- 1. Proportional Mortality
 - a. What if we don't have person-years at risk?
 - b. How do risks of two (mutually exclusive) events compare?
 - i. Assume ${O_k}^1 \sim \mathcal{P}(\lambda_k)$, ${O_k}^2 \sim \mathcal{P}(\nu_k)$

ii. Then
$$O_k^{-1}|O_k^{+} \sim \text{Bin}(\pi_k, O_k^{+})$$
 for $\pi_k = \lambda_k/(\lambda_k + \nu_k)$

iii.
$$\pi_k = \exp(\boldsymbol{x}_k \boldsymbol{\beta}) / [\exp(\boldsymbol{x}_k \boldsymbol{\beta}) + \exp(\boldsymbol{x}_{jk} \boldsymbol{\delta})] = \exp(\boldsymbol{x}_{jk}(\boldsymbol{\beta} - \boldsymbol{\delta})) / [\exp(\boldsymbol{x}_{jk}(\boldsymbol{\beta} - \boldsymbol{\delta})) + 1]$$

iv. If second type of event does not depend on exposure, then $oldsymbol{\delta}={f o}$, and $oldsymbol{eta}-oldsymbol{\delta}=oldsymbol{eta}$

- v. $\operatorname{logit}(\pi_{jk}) = \boldsymbol{x}_k \boldsymbol{\beta}$
- vi. Method is called *logistic regression*

vii. Standard errors come from delta method

2. Fitting the model:

a. Start with a guess of best values for $oldsymbol{eta}$

- i. Call them $oldsymbol{eta}^0$
- ii. Almost any value (like o) will do.
- b. If z close to y then expand $\exp(z)/(1+\exp(z)$ as Taylor series
- c. Then

$$O_{1j} = O_{+j}\pi_{1j} + \sqrt{O_{+j}\pi_j(1-\pi_j)}\epsilon_j$$

$$\approx O_{+j}\pi_j^0(1+(1-\pi_j^0)\boldsymbol{x}_j(\boldsymbol{\beta}-\boldsymbol{\beta}^0)) + \sqrt{O_{+j}\pi_j^0(1-\pi_j^0)}\epsilon_j$$

d. Hence

$$\begin{split} & \frac{O_{1j} - O_{+j} \pi_j^0}{\sqrt{O_{+j} \pi_j^0 (1 - \pi_j^0)}} \approx \sqrt{O_{+j} \pi_j^0 (1 - \pi_j^0)} \boldsymbol{x}_j (\boldsymbol{\beta} - \boldsymbol{\beta}^0) + \epsilon_j \\ & \text{i. } \pi_j^0 = 1/(1 + \exp(-\boldsymbol{x}_j \boldsymbol{\beta}^0)) \\ & \text{ii. } \epsilon_j \sim \mathcal{N}(0, 1) \end{split}$$

- iii. Now this looks like a regular regression problem
- e. Use multiple regression to update guess
 - i. Do multiple times
 - ii. Method is called *iteratively reweighted least squares*.

- Parameter estimates are logs of odds for individuals with covariate 1 unit apart, identical otherwise.
- 4. Complications:
 - a. Do iterations bounce back and forth without converging?
 - b. Sometimes best fits for parameters are $\pm\infty$
 - c. Tests can mislead when some groups have small expected value
- 5. Problematic Examples
 - a. Cohort Study with Common Disease
 - i. Poisson methods fail
 - Counts of cases large enough to be influenced by finiteness of population are not rare enough
 - b. Studies with rates that vary quickly with age,
 - i. changing rate is accounted for by using age interval as class variable and modeling relation between class levels.
 - ii. 960-542 provides more powerful and natural ways to model dependence of rate on time

Se: 7 pp. 214–220

- 6. Logistic regression for $K \times 2$ tables:
 - a. $O_{k1}|O_{k+}\sim \mathsf{Bin}(O_{k+},1/(1+\exp(-\beta_0-\beta_k))$

- b. For 2×2 table analysis, cohort study (exposed and unexposed group sizes fixed)
 - i. Recall notation: $O_{kj}{}^{i}$ is number of $\begin{cases} cases & \text{if } j = 1 \\ controls & \text{if } j = 0 \end{cases}$ at exposure level $\begin{cases} exposed & \text{if } k = 1 \\ none & \text{if } k = 0 \end{cases}$ in strata *i* (if needed)
 - ii. Expression as binomials
 - Number of cases among unexposed is $O_{01} \sim Bin(\pi_0, O_{0+})$
 - Number of cases among exposed is $O_{11} \sim Bin(\pi_1, O_{1+})$
- iii. Write as regression model
 - $\operatorname{logit}(\pi_0) = \beta_0$
 - $\operatorname{logit}(\pi_1) = \log(\pi_1/(1-\pi_1)) = \log(\pi_0/(1-\pi_0)) + \log(\psi) = \beta_0 + \beta_1 \text{ for } \beta_1 = \log(\psi).$
- iv. Recall we conditioned on ${\it O}_{1+}$ to remove effect of β_0
- c. We have too many parameters
 - i. Can decrease β_0 and increase each other β_k and get same probabilities
 - ii. Three typical solutions:
 - Set $\beta_0 = 0$: Results in separate log odds fits for each row.
 - Set $\sum_{k=1}^{K} \beta_k = 0$: Makes β_0 an "average" log odds, and rest are log odds ratios in comparison to average.

71

- Set $\beta_{k'} = 0$ for some $k' \in \{1, \ldots, K\}$.
 - \triangleright Makes group k' the reference group
 - $\triangleright \quad \beta_0 \text{ represents log odds for reference group}$
 - $\triangleright \quad \beta_k$ is the log odds for group k with respect to group k'.
 - \triangleright Typically choose k' as 1 or K.
- iii. Unlike contingency table approach, this approach is not conditional on number with disease.

Se: 7 pp. 220-229

- d. We can use this approach for stratified $K \times 2$ tables
 - i. to estimate common odds ratios
 - ii. to test whether odds ratio is really constant.
 - non-constant odds ratio is equivalent to interactions between effect and stratification variable
- iii. Unlike Mantel–Haenzel approach, this approach is not conditional on disease numbers in each table.
- e. Approach can be extended to scored categories.
 - i. Add in score as a covariate