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• Heuristic explanation: Rates for (1, 0, 0) and (0, 1, 1) are the

same, and so can’t tell difference between them.

• Problem is called colinearity

B&D2: 4.6

7. Model contains log of time at risk as an offset

a. Fit component is added to every log rate

b. If you know something that ratesmight be proportional to, log of

this could be added to the offset as well

i. For ex, rate in unexposed population by age

8. Parameters are log of relative risk for individuals with covariate 1

unit apart, identical otherwise.

9. Testing parameter values is done via

a. standard errors, which come fromDeltamethod (Wald test)

i. Also gives CI

B&D1: 6.4

b. likelihood ratio

i. Write down probability for data

ii. Express as function of unknown parameters

• Function L is called likelihood.
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iii. Parameter value thatmaximizes L is called themaximum

likelihood estimate

iv. H0 is plausible if L is notmuch higher somewhere else.

v. Hence test hypothesis by comparingmaximized value to value

at null

• compare with ratio to get likelihood ratio test

• usually take log: l = log(L) .

• 2× difference in l generally approximately ∼ χ2k for k the

difference in number of unknown parameters.

vi. −2× l is called deviance

• after subtracting off −2× log likelihood formodel with a

separate rate for each line in data set

• Biggermodel is called saturatedmodel.

10. Doesmodel fit well?

a. Predictedmean values for each of the groups ought to be about

right

b. Hence
∑

j(Ojk − Eβ̂
[

Oj
]

)2/Var
β̂

[

Oj
]

ought to be

approximately χ2

i. For Poisson regression, Eβ̂
[

Oj
]

= Var
β̂

[

Oj
]

=
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exp(xkβ̂)Qj

ii. DF is number of groups - number of parameters

c. Alternatively, use likelihood ratio

i. Embed in biggermodel where every observation gets its own

parameter value

F. Regressionmodels for probabilities instead of rates

B&D2: 4.7

1. ProportionalMortality

a. What if we don’t have person–years at risk?

b. How do risks of two (mutually exclusive) events compare?

i. Assume Ok
1 ∼ P(λk) , Ok

2 ∼ P(νk)

ii. Then Ok
1|Ok

+ ∼ Bin(πk, Ok
+) for πk = λk/(λk + νk)

iii. πk = exp(xkβ)/[exp(xkβ) + exp(xjkδ)] =

exp(xjk(β − δ))/[exp(xjk(β − δ)) + 1]

iv. If second type of event does not depend on exposure, then

δ =  , and β − δ = β

Se: 8 pp. 243–262

v. logit(πjk) = xkβ

vi. Method is called logistic regression
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vii. Standard errors come from deltamethod

2. Fitting themodel:

a. Start with a guess of best values for β

i. Call them β0

ii. Almost any value (like  ) will do.

b. If z close to y then expand exp(z)/(1+exp(z) as Taylor series

c. Then

O1j = O+jπ1j +
√

O+jπj(1− πj)ǫj

≈ O+jπ
0
j(1 + (1− π0j)xj(β − β0))+

√

O+jπ
0
j(1− π0j)ǫj

d. Hence
O1j −O+jπ

0
j

√

O+jπ
0
j(1− π0j)

≈
√

O+jπ
0
j(1− π0j)xj(β − β0) + ǫj

i. π0j = 1/(1 + exp(−xjβ
0))

ii. ǫj ∼ N (0, 1)

iii. Now this looks like a regular regression problem

e. Usemultiple regression to update guess

i. Domultiple times

ii. Method is called iteratively reweighted least squares.
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3. Parameter estimates are logs of odds for individuals with covariate

1 unit apart, identical otherwise.

4. Complications:

a. Do iterations bounce back and forth without converging?

b. Sometimes best fits for parameters are ±∞

c. Tests canmisleadwhen some groups have small expected value

5. Problematic Examples

a. Cohort Studywith CommonDisease

i. Poissonmethods fail

• Counts of cases large enough to be influenced by finiteness of

population are not rare enough

b. Studies with rates that vary quickly with age,

i. changing rate is accounted for by using age interval as class

variable andmodeling relation between class levels.

ii. 960-542 providesmore powerful and natural ways tomodel

dependence of rate on time

Se: 7 pp. 214–220

6. Logistic regression for K × 2 tables:

a. Ok1|Ok+ ∼ Bin(Ok+, 1/(1 + exp(−β0 − βk))
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b. For 2× 2 table analysis, cohort study (exposed and unexposed

group sizes fixed)

i. Recall notation: Okj
i is number of

{

cases if j = 1
controls if j = 0

at

exposure level
{

exposed if k = 1
none if k = 0

in strata i (if needed)

ii. Expression as binomials

• Number of cases among unexposed is O01 ∼ Bin(π0, O0+)

• Number of cases among exposed is O11 ∼ Bin(π1, O1+)

iii. Write as regressionmodel

• logit(π0) = β0

• logit(π1) = log(π1/(1−π1)) = log(π0/(1−π0))+log(ψ) =

β0 + β1 for β1 = log(ψ) .

iv. Recall we conditioned on O1+ to remove effect of β0

c. We have toomany parameters

i. Can decrease β0 and increase each other βk and get same

probabilities

ii. Three typical solutions:

• Set β0 = 0 : Results in separate log odds fits for each row.

• Set
∑K
k=1 βk = 0 : Makes β0 an “average” log odds, and

rest are log odds ratios in comparison to average.
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• Set βk′ = 0 for some k′ ∈ {1, . . . ,K} .

⊲ Makes group k′ the reference group

⊲ β0 represents log odds for reference group

⊲ βk is the log odds for group k with respect to group k′ .

⊲ Typically choose k′ as 1 or K .

iii. Unlike contingency table approach, this approach is not

conditional on number with disease.

Se: 7 pp. 220–229

d. We can use this approach for stratified K × 2 tables

i. to estimate common odds ratios

ii. to test whether odds ratio is really constant.

• non-constant odds ratio is equivalent to interactions between

effect and stratification variable

iii. UnlikeMantel–Haenzel approach, this approach is not

conditional on disease numbers in each table.

e. Approach can be extended to scored categories.

i. Add in score as a covariate
08


