Se: 9 pp. 285-287
i. Test where units are pairs
ii. Each pair has two measurements
iii. Note that this is NOT a test of whether the two pairs agree
e. A measure of association might be constructed by taking
i. observed proportion agreeing
ii. minus expected proportion agreeing p_{e}

- Expectation same as for χ^{2} test
iii. All divided by its maximal value $1-p_{e}$
iv. Result is called kappa statistic.
f. What should we match on?
i. Often match on traits that are expected to impact disease
ii. Matching is to remove effect of something associated with both putative cause and effect
iii. Matching can reduce efficiency:
- If you match on something correlated to exposure,

you get pairs with similar exposure
\triangleright that don't give much info about effect of exposure on disease
- Matching on an intermediate step in causal chain,

$$
E \rightarrow C \rightarrow D
$$

\triangleright make exposed more similar to non-exposed.
\triangleright artificially deflate effect of exposure

- Both are known as over-matching
- Sometimes matched pairs are multiple observations on one individual.
g. Estimation for Matched pairs
i. From (1), pairs have probabilities

> 0
> $0 \begin{array}{cc}\frac{0}{\left(P_{1} \pi_{1}+P_{0} \pi_{0}\right)} \\ \pi_{1} P_{1} & \frac{\pi_{0} P_{0}}{P_{1}\left[1-\pi_{1}\right]+P_{0}\left[1-\pi_{0}\right]} \\ {\left[1-\pi_{0}\right] P_{0}} & \frac{\pi_{0} P_{0}}{\left(P_{1} \pi_{1}+P_{0} \pi_{0}\right)} \frac{\left[1-\pi_{1}\right] P_{1}}{\pi_{1} P_{1}\left[11-\pi_{1}\right]+P_{0}\left[1-\pi_{0}\right]} \\ {\left[1-\pi_{1}\right] P_{1}}\end{array}$ $1 \frac{\pi_{1} P_{1}}{\left(P_{1} \pi_{1}+P_{0} \pi_{0}\right)} \frac{\left[1-\pi_{0}\right] P_{0}}{P_{1}\left[1-\pi_{1}\right]+P_{0}\left[1-\pi_{0}\right]}$ $\frac{\pi_{1} P_{1}}{\left(P_{1} \pi_{1}+P_{0} \pi_{0}\right)} \frac{\left[1-\pi_{1}\right] P_{1}}{P_{1}\left[1-\pi_{1}\right]+P_{0}\left[1-\pi_{0}\right]}$
> ii. $n_{10} \mid n_{10}+n_{10} \sim \operatorname{Bin}\left(\pi_{1}\left(1-\pi_{0}\right) /\left[\pi_{1}\left(1-\pi_{0}\right)+\right.\right.$
> $\left.\left.\pi_{0}\left(1-\pi_{1}\right)\right], n_{10}+n_{01}\right)=\operatorname{Bin}\left(\psi /(1+\psi), n_{10}+n_{01}\right)$
> after conditioning on $n_{10}+n_{01}$.
> - $\omega=\psi /(1+\psi) ; \psi=\omega /(1-\omega)$.
> iii. Hence $\hat{\psi}=n_{10} / n_{01}$
> iv. And get Cl for ψ by getting binomial Cl and transforming.
> Se: 9 pp. 282-285
h. This is also Mantel-Haenszel estimator
i. Sometimes it is hard to make matched pairs,
i. because collection of subjects doesn't contain pair
ii. or setting up pairs is a lot of work
j. Many models we will employ later will allow us to adjust for confounders without matching.

Se: 9 pp. 279-280
k. When matched groups are larger than 2
i. and not necessarily all the same size
ii. still use Mantel-Haenszel procedure
iii. exact binomial results no longer hold

Lecture 7
59
Lecture 7
ii. Implies that each person has chance $\exp \left(-\Delta \lambda_{j}\right)$ of surviving interval Δ without an event.
iii. As before, assume individuals act independently.
iv. Assume effectively $P_{j}=\infty$.

- Might not be true for communicable diseases.
b. Log linear model for effect of covariates
i. Suppose that $x_{k l}$ is covariate l in group k
c. Fit model that says $\log \left(\lambda_{k}\right)=+\sum_{l=1}^{L} x_{k l} \beta_{l}=\boldsymbol{x}_{k} \boldsymbol{\beta}$
i. Bold faced quantities are vectors
ii. Multiplication in last expression is inner product.
iii. Choice of stratification vs interest variables is arbitrary
d. $O_{k}=P_{k} \exp \left(\boldsymbol{x}_{k} \boldsymbol{\beta}\right)+\epsilon_{k}$ for
i. Approximately, $\epsilon_{k-} \sim \mathcal{N}\left(0, P_{k} \lambda_{k-}\right)$

4. Fitting the model
a. Start with a guess of best values $\boldsymbol{\beta}$
i. call them $\boldsymbol{\beta}^{0}$
ii. almost any value (like 0) will do
b. $O_{k} \approx P_{k} \lambda_{k}^{0}\left[1+\boldsymbol{x}_{k}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right)\right]+\epsilon_{k}$,
i. $\lambda_{k}^{0}=\exp \left(\boldsymbol{x}_{k} \boldsymbol{\beta}^{0}\right)$
ii. $\epsilon_{k} \sim \mathcal{N}\left(0, \lambda_{k}^{0}\right)$
iii. Now this looks like a regular regression problem

- except that variances of errors are not equal.
iv. $\left(O_{k}-P_{k} \lambda_{k}^{0}\right) /\left(P_{k} \lambda_{k}^{0}\right) \approx \boldsymbol{x}_{k}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right)+\epsilon_{k}^{*}$
v. $\operatorname{Var}\left[\epsilon_{k}^{*}\right] \approx 1 /\left[P_{k} \lambda_{k}^{0}\right]$
c. Use multiple regression to update guess
i. Do multiple times
ii. Method is called iteratively reweighted least squares.

5. Model is an example of a generalized linear model.
a. More specifically, Poisson regression
b. Parameter estimates are logs of relative risk
c. Testing done via
i. standard errors, which come from Delta method
(Wald test)

- Also gives Cl

> B\&D2: 4.3c-d
ii. likelihood ratio
d. Complications:
i. Do iterations bounce back and forth without converging?
ii. Sometimes best fits for parameters are $\pm \infty$
iii. Tests can mislead when some groups have small expected value
e. Does model fit well?
i. Predicted mean values for each of the groups ought to be about right
ii. Hence $\sum_{k}\left(O_{k}-e_{k}\right)^{2} / e_{k}$ ought to be approximately χ^{2}

- DF is number of groups - number of parameters

B\&D1: 6.4
iii. Alternatively, use likelihood ratio

- Write down probability for data
- Express as function of unknown parameters
\triangleright Function L is called likelihood.
- Parameter value that maximizes L is called the maximum likelihood estimate
- H_{0} is plausible if L is not much higher somewhere else.
- Hence test hypothesis by comparing maximized value to value at null
\triangleright compare with ratio to get likelihood ratio test
\triangleright usually take log: $l=\log (L)$.
$\triangleright 2 \times$ difference in l generally approximately $\sim \chi_{k}^{2}$ for k the difference in number of unknown parameters.

6. Fitting multiple regression
a. Setup: Response Y_{j}, explanatory variables $x_{i j}$
i. Maybe $x_{1 j}=1$ for all j
b. Want $Y_{j}=\boldsymbol{x}_{j} \boldsymbol{\beta}+\epsilon_{j}$
c. A way to do the fitting:
i. Let $R_{j}=Y_{j}$
ii. Choose $\hat{\beta}_{1}$ to make $x_{1 j}$ best fit R_{j} :

- $\hat{\beta}_{1}$ minimizes $\sum_{j}\left(R_{j}-\beta_{1} x_{1 j}\right)^{2}$
- $\hat{\beta}_{1}=\sum_{j} x_{1 j} R_{j} / \sum_{j} x_{1 j}^{2}$
- Now change R_{j} to what you haven't explained: $R_{j}=$ old $R_{j}-\hat{\beta}_{1} x_{1 j}$: residuals
iii. Choose $\hat{\beta}_{2}$ to make $x_{2 j}$ best fit R_{j} :
- after removing information about $x_{1 j}$ from $x_{2 j}$:
\triangleright New $x_{2 j}=x_{2 j}-\left(\sum_{l} x_{1 l} x_{2 l}\right) /\left(\sum_{l} x_{1 l}^{2}\right) x_{1 j}$
- $\hat{\beta}_{2}=\sum_{j} x_{2 j} Y_{j} / \sum_{j} x_{2 j}^{2}$
- Adjust $\hat{\beta}_{1}$ for the fact that $x_{2 j}$ hat some $x_{1 j}$ in it.
iv. Iterate

Lecture 8
d. Example: $x_{1 j}=1 \forall j$
i. $\hat{\beta}_{1}=\left(\sum_{j} 1 \times Y_{j}\right) / \sum_{j} 1^{2}=\bar{Y}$
ii. New $x_{2 j}$ is $x_{2 j}-\bar{x}_{2}$ for $\sum_{l} x_{2 l} / n$
iii. $\hat{\beta}_{2}=\sum_{l}\left(x_{2 j}-\bar{x}_{2}\right)\left(Y_{j}-\bar{Y}\right) / \sum_{l}\left(x_{2 j}-\bar{x}_{2}\right)^{2}$
iv. New $\hat{\beta}_{2}$ is $\bar{Y}-\bar{x}_{2} \hat{\beta}_{1}$.
v. Subexample: For each j, either $x_{2 j}$ or $x_{3 j}$ is 1 and the other is 0 .

- Corresponds to model allowing for intercept and effect of membership in two groups
- Then new $x_{3 j}=0$
- Then $\hat{\beta}_{3}=0 / 0$
vi. Hence can't estimate separate parameter values for intercept and all groups.

