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Se: 9 pp. 285–287
i. Test where units are pairs
ii. Each pair has two measurements
iii. Note that this is NOT a test of whether the two

pairs agree
e. A measure of association might be constructed by

taking
i. observed proportion agreeing
ii. minus expected proportion agreeing pe

• Expectation same as for χ2 test
iii. All divided by its maximal value 1− pe
iv. Result is called kappa statistic.

f. What should we match on?
i. Often match on traits that are expected to impact

disease
ii. Matching is to remove effect of something associated

with both putative cause and effect
iii. Matching can reduce efficiency:

• If you match on something correlated to exposure,
E → D
↓
C

⊲ you get pairs with similar exposure
⊲ that don’t give much info about effect of

exposure on disease
• Matching on an intermediate step in causal chain,

E → C → D
⊲ make exposed more similar to non-exposed.
⊲ artificially deflate effect of exposure
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• Both are known as over-matching

• Sometimes matched pairs are multiple observations
on one individual.

g. Estimation for Matched pairs

i. From (1), pairs have probabilities
0 1

0 π0P0

(P1π1+P0π0)
[1−π0]P0

P1[1−π1]+P0[1−π0]
π0P0

(P1π1+P0π0)
[1−π1]P1

P1[1−π1]+P0[1−π0]

1 π1P1

(P1π1+P0π0)
[1−π0]P0

P1[1−π1]+P0[1−π0]
π1P1

(P1π1+P0π0)
[1−π1]P1

P1[1−π1]+P0[1−π0]

ii. n10|n10 + n10 ∼ Bin(π1(1 − π0)/[π1(1 − π0) +
π0(1− π1)], n10 + n01) = Bin(ψ/(1 + ψ), n10 + n01)
after conditioning on n10 + n01 .
• ω = ψ/(1 + ψ) ; ψ = ω/(1− ω) .

iii. Hence ψ̂ = n10/n01

iv. And get CI for ψ by getting binomial CI and
transforming.

Se: 9 pp. 282–285

h. This is also Mantel–Haenszel estimator
i. Sometimes it is hard to make matched pairs,

i. because collection of subjects doesn’t contain pair

ii. or setting up pairs is a lot of work
j. Many models we will employ later will allow us to

adjust for confounders without matching.
Se: 9 pp. 279–280

k. When matched groups are larger than 2

i. and not necessarily all the same size

ii. still use Mantel-Haenszel procedure
iii. exact binomial results no longer hold
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iv. Returns in efficiency from many control matches to a
single case diminish

B&D2: 4.1
E. Modeling disease rates in terms of covariates

1. Before
a. Exposure dichotomous, or categorical with few levels
b. Simple model allowed disease rates to vary from

exposure group to exposure group
2. Now

a. want covariate with more levels
i. Suppose L covariates
• Includes constant 1
• For nickel smelters, might be indicators of

exposure group
• For car example, might be age of driver, time of

day of accident, etc.
• Includes dochotomous “response”, if present.

b. Identify K relatively homogeneous groups
i. ie., same (or similar) values for all covariates

c. Need some structure betw. rates at different exposure
levels
i. Interpret ability
ii. stability of estimates

d. We will assume linearity on log scale
B&D2: 4.3a

3. Assume that
a. numbers of events in an interval are Poisson

i. P [Oj = d] = exp(−λjQj)(λjQj)
d/d!
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ii. Implies that each person has chance exp(−∆λj) of
surviving interval ∆ without an event.

iii. As before, assume individuals act independently.
iv. Assume effectively Pj = ∞ .

• Might not be true for communicable diseases.
b. Log linear model for effect of covariates

i. Suppose that xkl is covariate l in group k

c. Fit model that says log(λk) = +
∑L

l=1 xklβl = xkβ

i. Bold faced quantities are vectors
ii. Multiplication in last expression is inner product.
iii. Choice of stratification vs interest variables is

arbitrary
d. Ok = Pk exp(xkβ) + ǫk for

i. Approximately, ǫk− ∼ N (0, Pkλk−)
4. Fitting the model

a. Start with a guess of best values β

i. call them β0

ii. almost any value (like 0) will do
b. Ok ≈ Pkλ

0
k[1 + xk(β − β0)] + ǫk ,

i. λ0k = exp(xkβ
0)

ii. ǫk ∼ N (0, λ0k)
iii. Now this looks like a regular regression problem

• except that variances of errors are not equal.
iv. (Ok − Pkλ

0
k)/(Pkλ

0
k) ≈ xk(β − β0) + ǫ∗k

v. Var [ǫ∗k] ≈ 1/[Pkλ
0
k]

c. Use multiple regression to update guess
i. Do multiple times
ii. Method is called iteratively reweighted least squares.
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5. Model is an example of a generalized linear model.
a. More specifically, Poisson regression

b. Parameter estimates are logs of relative risk
c. Testing done via

i. standard errors, which come from Delta method
(Wald test)
• Also gives CI

B&D2: 4.3c–d
ii. likelihood ratio

d. Complications:
i. Do iterations bounce back and forth without

converging?
ii. Sometimes best fits for parameters are ±∞
iii. Tests can mislead when some groups have small

expected value
e. Does model fit well?

i. Predicted mean values for each of the groups ought
to be about right

ii. Hence
∑

k(Ok − ek)
2/ek ought to be approximately

χ2

• DF is number of groups - number of parameters
B&D1: 6.4

iii. Alternatively, use likelihood ratio
• Write down probability for data
• Express as function of unknown parameters
⊲ Function L is called likelihood.

• Parameter value that maximizes L is called the
maximum likelihood estimate
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• H0 is plausible if L is not much higher
somewhere else.

• Hence test hypothesis by comparing maximized
value to value at null
⊲ compare with ratio to get likelihood ratio test

⊲ usually take log: l = log(L) .
⊲ 2× difference in l generally approximately

∼ χ2
k for k the difference in number of

unknown parameters.
6. Fitting multiple regression

a. Setup: Response Yj , explanatory variables xij
i. Maybe x1j = 1 for all j

b. Want Yj = xjβ + ǫj
c. A way to do the fitting:

i. Let Rj = Yj

ii. Choose β̂1 to make x1j best fit Rj :

• β̂1 minimizes
∑

j(Rj − β1x1j)
2

• β̂1 =
∑

j x1jRj/
∑

j x
2
1j

• Now change Rj to what you haven’t explained:

Rj = old Rj − β̂1x1j : residuals

iii. Choose β̂2 to make x2j best fit Rj :
• after removing information about x1j from x2j :

⊲ New x2j = x2j − (
∑

l x1lx2l)/(
∑

l x
2
1l)x1j

• β̂2 =
∑

j x2jYj/
∑

j x
2
2j

• Adjust β̂1 for the fact that x2j hat some x1j in
it.

iv. Iterate
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d. Example: x1j = 1∀j

i. β̂1 = (
∑

j 1× Yj)/
∑

j 1
2 = Ȳ

ii. New x2j is x2j − x̄2 for
∑

l x2l/n

iii. β̂2 =
∑

l(x2j − x̄2)(Yj − Ȳ )/
∑

l(x2j − x̄2)
2

iv. New β̂2 is Ȳ − x̄2β̂1 .
v. Subexample: For each j , either x2j or x3j is 1

and the other is 0 .
• Corresponds to model allowing for intercept and

effect of membership in two groups
• Then new x3j = 0

• Then β̂3 = 0/0
vi. Hence can’t estimate separate parameter values for

intercept and all groups.
07
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