- Se: 9 pp. 285-287
- i. Test where units are pairs
- ii. Each pair has two measurements
- iii. Note that this is NOT a test of whether the two pairs agree
- e. A measure of association might be constructed by taking
 - i. observed proportion agreeing
 - ii. minus expected proportion agreeing p_e
 - Expectation same as for χ^2 test
 - iii. All divided by its maximal value $1 p_e$
- iv. Result is called kappa statistic.
- f. What should we match on?
 - i. Often match on traits that are expected to impact disease
 - ii. Matching is to remove effect of something associated with both putative cause and effect
- iii. Matching can reduce efficiency:
 - If you match on something correlated to exposure,

 $E \to D$ C

- ▷ you get pairs with similar exposure
- b that don't give much info about effect of exposure on disease
- Matching on an intermediate step in causal chain, $E \to C \to D$
 - ▷ make exposed more similar to non-exposed.
 - artificially deflate effect of exposure

Lecture 7

iv. Returns in efficiency from many control matches to a single case diminish

B&D2: 4.1

- E. Modeling disease rates in terms of covariates
 - 1. Before
 - a. Exposure dichotomous, or categorical with few levels
 - b. Simple model allowed disease rates to vary from exposure group to exposure group
 - 2. Now
 - a. want covariate with more levels
 - i. Suppose L covariates
 - Includes constant 1
 - · For nickel smelters, might be indicators of exposure group
 - For car example, might be age of driver, time of day of accident, etc.
 - Includes dochotomous "response", if present.
 - b. Identify K relatively homogeneous groups
 - i. ie., same (or similar) values for all covariates c. Need some structure betw. rates at different exposure levels
 - i. Interpret ability
 - ii. stability of estimates
 - d. We will assume linearity on log scale B&D2: 4.3a
 - 3. Assume that
 - a. numbers of events in an interval are Poisson i. $\mathsf{P}[O_j = d] = \exp(-\lambda_j Q_j)(\lambda_j Q_j)^d/d!$

- Both are known as *over-matching*
- Sometimes matched pairs are multiple observations on one individual.
- g. Estimation for Matched pairs
 - i. From (1), pairs have probabilities

$$\begin{array}{ccc} 0 & \frac{\pi_0 P_0}{(P_1 \pi_1 + P_0 \pi_0)} \frac{[1 - \pi_0] P_0}{P_1 [1 - \pi_1] + P_0 [1 - \pi_0]} & \frac{\pi_0 P_0}{(P_1 \pi_1 + P_0 \pi_0)} \frac{[1 - \pi_1] P_1}{P_1 [1 - \pi_1] + P_0 [1 - \pi_0]} \\ 1 & \frac{\pi_1 P_1}{P_1} \frac{[1 - \pi_0] P_0}{P_1 (1 - \pi_0) P_0} & \frac{\pi_1 P_1}{P_1} \frac{[1 - \pi_1] P_1}{P_1 P_1} \end{array}$$

 $\overline{(P_1\pi_1 + P_0\pi_0)} \ \overline{P_1[1 - \pi_1] + P_0[1 - \pi_0]} \quad \overline{(P_1\pi_1 + P_0\pi_0)} \ \overline{P_1[1 - \pi_1] + P_0[1 - \pi_0]}$ ii. $n_{10}|n_{10} + n_{10} \sim \text{Bin}(\pi_1(1-\pi_0)/[\pi_1(1-\pi_0) +$ $\pi_0(1-\pi_1)$, $n_{10}+n_{01}$) = Bin $(\psi/(1+\psi), n_{10}+n_{01})$ after conditioning on $n_{10} + n_{01}$. • $\omega = \psi/(1+\psi); \ \psi = \omega/(1-\omega).$

1

- iii. Hence $\psi = n_{10}/n_{01}$
- iv. And get CI for ψ by getting binomial CI and transforming.

Se: 9 pp. 282-285

- h. This is also Mantel-Haenszel estimator
- i. Sometimes it is hard to make matched pairs,
 - i. because collection of subjects doesn't contain pair
- ii. or setting up pairs is a lot of work
- j. Many models we will employ later will allow us to adjust for confounders without matching. Se: 9 pp. 279-280
- k. When matched groups are larger than 2
 - i. and not necessarily all the same size
- ii. still use Mantel-Haenszel procedure
- iii. exact binomial results no longer hold
- Lecture 7
 - ii. Implies that each person has chance $\exp(-\Delta\lambda_i)$ of surviving interval Δ without an event.
 - iii. As before, assume individuals act independently.
 - iv. Assume effectively $P_j = \infty$.
 - Might not be true for communicable diseases.
 - b. Log linear model for effect of covariates i. Suppose that x_{kl} is covariate l in group k
 - c. Fit model that says $\log(\lambda_k) = +\sum_{l=1}^L x_{kl}\beta_l = \boldsymbol{x}_k \boldsymbol{\beta}$ i. Bold faced quantities are vectors
 - ii. Multiplication in last expression is inner product.
 - iii. Choice of stratification vs interest variables is arbitrary
 - d. $O_k = P_k \exp(\boldsymbol{x}_k \boldsymbol{\beta}) + \epsilon_k$ for i. Approximately, $\epsilon_{k-} \sim \mathcal{N}(0, P_k \lambda_{k-})$
 - 4. Fitting the model
 - a. Start with a guess of best values β i. call them β^0
 - ii. almost any value (like 0) will do
 - b. $O_k pprox P_k \lambda_k^0 [1 + oldsymbol{x}_k (oldsymbol{eta} oldsymbol{eta}^0)] + \epsilon_k$,
 - i. $\lambda_k^0 = \exp(\boldsymbol{x}_k \boldsymbol{\beta}^0)$
 - ii. $\epsilon_k \sim \mathcal{N}(0, \lambda_k^0)$
 - iii. Now this looks like a regular regression problem • except that variances of errors are not equal.
 - iv. $(O_k P_k \lambda_k^0) / (P_k \lambda_k^0) \approx \boldsymbol{x}_k (\boldsymbol{\beta} \boldsymbol{\beta}^0) + \epsilon_k^*$
 - v. Var $[\epsilon_k^*] \approx 1/[P_k \lambda_k^0]$
 - c. Use multiple regression to update guess
 - i. Do multiple times
 - ii. Method is called *iteratively reweighted least squares*.

60

59

- 5. Model is an example of a *generalized linear model*. a. More specifically, Poisson regression
 - b. Parameter estimates are logs of relative risk
 - c. Testing done via
 - i. standard errors, which come from Delta method (Wald test)
 - Also gives Cl
 - B&D2: 4.3c-d
 - ii. likelihood ratio
 - d. Complications:
 - i. Do iterations bounce back and forth without converging?
 - ii. Sometimes best fits for parameters are $\pm\infty$
 - iii. Tests can mislead when some groups have small expected value
 - e. Does model fit well?
 - i. Predicted mean values for each of the groups ought to be about right
 - ii. Hence $\sum_k (O_k e_k)^2 / e_k$ ought to be approximately χ^2
 - DF is number of groups number of parameters B&D1: 6.4
 - iii. Alternatively, use likelihood ratio
 - Write down probability for data
 - Express as function of unknown parameters \triangleright Function L is called *likelihood*.
 - Parameter value that maximizes L is called the maximum likelihood estimate

- H₀ is plausible if L is not much higher somewhere else.
- Hence test hypothesis by comparing maximized value to value at null
 - ▷ compare with ratio to get *likelihood ratio test*
 - \triangleright usually take log: $l = \log(L)$.
 - \triangleright 2× difference in l generally approximately $\sim \chi^2_k$ for k the difference in number of unknown parameters.
- 6. Fitting multiple regression
 - a. Setup: Response Y_j , explanatory variables x_{ij} i. Maybe $x_{1j} = 1$ for all j
 - b. Want $Y_i = \boldsymbol{x}_i \boldsymbol{\beta} + \epsilon_i$
 - c. A way to do the fitting:
 - i. Let $R_j = Y_j$
 - ii. Choose $\hat{\beta}_1$ to make x_{1j} best fit R_j :
 - $\hat{\beta}_1$ minimizes $\sum_i (R_j \beta_1 x_{1j})^2$

 - $\hat{\beta}_1 = \sum_j x_{1j} R_j / \sum_j x_{1j}^2$ Now change R_j to what you haven't explained: $R_i = \text{old } R_i - \hat{\beta}_1 x_{1i}$: residuals
 - iii. Choose $\hat{\beta}_2$ to make x_{2j} best fit R_j :
 - after removing information about x_{1j} from x_{2j} : \triangleright New $x_{2j} = x_{2j} - (\sum_l x_{1l} x_{2l}) / (\sum_l x_{1l}^2) x_{1j}$
 - $\hat{\beta}_2 = \sum_j x_{2j} Y_j / \sum_j x_{2j}^2$
 - Adjust \hat{eta}_1 for the fact that x_{2j} hat some x_{1j} in it.
 - iv. Iterate

63 Lecture 8

Lecture 8

- d. Example: $x_{1j} = 1 \forall j$

 - i. $\hat{\beta}_1 = (\sum_j 1 \times Y_j) / \sum_j 1^2 = \bar{Y}$ ii. New x_{2j} is $x_{2j} \bar{x}_2$ for $\sum_l x_{2l} / n$

iii.
$$\hat{\beta}_2 = \sum_l (x_{2j} - \bar{x}_2) (Y_j - \bar{Y}) / \sum_l (x_{2j} - \bar{x}_2)^2$$

- iv. New $\hat{\beta}_2$ is $\bar{Y} \bar{x}_2 \hat{\beta}_1$.
- v. Subexample: For each j, either x_{2j} or x_{3j} is 1 and the other is 0.
 - Corresponds to model allowing for intercept and effect of membership in two groups
 - Then new $x_{3j} = 0$
 - Then $\hat{\beta}_3 = 0/0$
- vi. Hence can't estimate separate parameter values for intercept and all groups. 07

This page intentionally left blank.

64