Multivariate Tail Probability Approximations

John E. Kolassa and Donghyun Lee Rutgers, the State University of New Jersey

21 December 2023

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i
(1) $Y_{i}= \begin{cases}1 & \text { for better on canine } \\ -1 & \text { for worse on canine } \\ 0 & \text { for no difference }\end{cases}$

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i
(1) $Y_{i}= \begin{cases}1 & \text { for better on canine } \\ -1 & \text { for worse on canine } \\ 0 & \text { for no difference }\end{cases}$
(2) in ordinal regression model with no intercept, indicator variables for ordering, other covariates.

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i
(1) $Y_{i}= \begin{cases}1 & \text { for better on canine } \\ -1 & \text { for worse on canine } \\ 0 & \text { for no difference }\end{cases}$
(2) in ordinal regression model with no intercept, indicator variables for ordering, other covariates.
(3) sufficient statistics \bar{X}^{1} and \bar{X}^{2} for treatment effect under the two orderings.

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i
(1) $Y_{i}= \begin{cases}1 & \text { for better on canine } \\ -1 & \text { for worse on canine } \\ 0 & \text { for no difference }\end{cases}$
(2) in ordinal regression model with no intercept, indicator variables for ordering, other covariates.
(3) sufficient statistics \bar{X}^{1} and \bar{X}^{2} for treatment effect under the two orderings.
(2) Null hypothesis is that there is no systematic difference in response to therapies, regardless of ordering.

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i
(1) $Y_{i}= \begin{cases}1 & \text { for better on canine } \\ -1 & \text { for worse on canine } \\ 0 & \text { for no difference }\end{cases}$
(2) in ordinal regression model with no intercept, indicator variables for ordering, other covariates.
(3) sufficient statistics \bar{X}^{1} and \bar{X}^{2} for treatment effect under the two orderings.
(2) Null hypothesis is that there is no systematic difference in response to therapies, regardless of ordering.
(3) Alternative hypothesis is that canine therapy is superior for at least one of the ordering.

Motivation Example

(1) Krause-Parello et al. (2018) present results of a crossover study.
(1) Studies US military subject to physical trauma
(2) Measures efficacy of canine therapy on PTSD, vs standard therapy.
(3) Evaluate performance on both therapies for subject i
(1) $Y_{i}= \begin{cases}1 & \text { for better on canine } \\ -1 & \text { for worse on canine } \\ 0 & \text { for no difference }\end{cases}$
(2) in ordinal regression model with no intercept, indicator variables for ordering, other covariates.
(3) sufficient statistics \bar{X}^{1} and \bar{X}^{2} for treatment effect under the two orderings.
(2) Null hypothesis is that there is no systematic difference in response to therapies, regardless of ordering.
(3) Alternative hypothesis is that canine therapy is superior for at least one of the ordering.
(9) p-value for intersection union test is calculated from $\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1}\right.$ or $\bar{X}^{2} \geq \bar{x}^{2}$ |other sufficient statistics $]$.

Notation

(1) Random vector $\boldsymbol{X}_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ has a continuous distribution,

Notation

(1) Random vector $\boldsymbol{X}_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ has a continuous distribution,
(2) Moment generating function

$$
M\left(\tau_{1}, \ldots, \tau_{p}\right)=\mathrm{E}\left[\exp \left(\tau_{1} X_{i}^{1}+\cdots+\tau_{p} X_{i}^{p}\right)\right]
$$

Notation

(1) Random vector $\boldsymbol{X}_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ has a continuous distribution,
(2) Moment generating function

$$
M\left(\tau_{1}, \ldots, \tau_{p}\right)=\mathrm{E}\left[\exp \left(\tau_{1} X_{i}^{1}+\cdots+\tau_{p} X_{i}^{p}\right)\right]
$$

(1) finite for $\left|\tau_{i}\right|<\epsilon$ for all $i \leq p$ and some $\epsilon>0$.

Notation

(1) Random vector $\boldsymbol{X}_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ has a continuous distribution,
(2) Moment generating function

$$
M\left(\tau_{1}, \ldots, \tau_{p}\right)=\mathrm{E}\left[\exp \left(\tau_{1} X_{i}^{1}+\cdots+\tau_{p} X_{i}^{p}\right)\right]
$$

(1) finite for $\left|\tau_{i}\right|<\epsilon$ for all $i \leq p$ and some $\epsilon>0$.
(3) Let the cumulant generating function be $K\left(\tau_{1}, \ldots, \tau_{p}\right)=\log \left(M\left(\tau_{1}, \ldots, \tau_{p}\right)\right)$.

Notation

(1) Random vector $\boldsymbol{X}_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ has a continuous distribution,
(2) Moment generating function

$$
M\left(\tau_{1}, \ldots, \tau_{p}\right)=\mathrm{E}\left[\exp \left(\tau_{1} X_{i}^{1}+\cdots+\tau_{p} X_{i}^{p}\right)\right]
$$

(1) finite for $\left|\tau_{i}\right|<\epsilon$ for all $i \leq p$ and some $\epsilon>0$.
(3) Let the cumulant generating function be $K\left(\tau_{1}, \ldots, \tau_{p}\right)=\log \left(M\left(\tau_{1}, \ldots, \tau_{p}\right)\right)$.
(9) Consider n independent random vectors $\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ with such a distribution.

Notation

(1) Random vector $\boldsymbol{X}_{i}=\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ has a continuous distribution,
(2) Moment generating function

$$
M\left(\tau_{1}, \ldots, \tau_{p}\right)=\mathrm{E}\left[\exp \left(\tau_{1} X_{i}^{1}+\cdots+\tau_{p} X_{i}^{p}\right)\right]
$$

(1) finite for $\left|\tau_{i}\right|<\epsilon$ for all $i \leq p$ and some $\epsilon>0$.
(3) Let the cumulant generating function be $K\left(\tau_{1}, \ldots, \tau_{p}\right)=\log \left(M\left(\tau_{1}, \ldots, \tau_{p}\right)\right)$.
(9) Consider n independent random vectors $\left(X_{i}^{1}, \ldots, X_{i}^{p}\right)$ with such a distribution.
(5) Let $\overline{\boldsymbol{X}}=\sum_{i=1}^{n} \boldsymbol{X}_{i} / n$

Objective

(1) Approximate joint tail probabilities for $\overline{\boldsymbol{X}}$.

Objective

(1) Approximate joint tail probabilities for $\overline{\boldsymbol{X}}$.
(2) Use existence of cumulant generating function to obtain relative error behavior uniform for values of \bar{x} in an open ball about the mean.

Objective

(1) Approximate joint tail probabilities for $\overline{\boldsymbol{X}}$.
(2) Use existence of cumulant generating function to obtain relative error behavior uniform for values of $\overline{\boldsymbol{x}}$ in an open ball about the mean.
(1) Measure theoretical error behavior in terms of inverse powers of \sqrt{n}.

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,
(1) Integrate density over values of \bar{w}^{j} from \bar{x}^{j} to $+\infty$.

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,
(1) Integrate density over values of \bar{w}^{j} from \bar{x}^{j} to $+\infty$.
(2) Swap integration re $\boldsymbol{\tau}$ and $\overline{\boldsymbol{w}}$.

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,
(1) Integrate density over values of \bar{w}^{j} from \bar{x}^{j} to $+\infty$.
(2) Swap integration re $\boldsymbol{\tau}$ and $\overline{\boldsymbol{w}}$.
(3) Get

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,
(1) Integrate density over values of \bar{w}^{j} from \bar{x}^{j} to $+\infty$.
(2) Swap integration re τ and $\overline{\boldsymbol{w}}$.
© Get

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(1) $c_{i}>0$ for all i

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{x}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,
(1) Integrate density over values of \bar{w}^{j} from \bar{x}^{j} to $+\infty$.
(2) Swap integration re τ and $\overline{\boldsymbol{w}}$.
© Get

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(1) $c_{i}>0$ for all i
(3) When K is exactly quadratic, get Gaussian tail probabilities, exactly.

Inversion Integrals:

(1) Density $f_{n}\left(\bar{w}^{1}, \ldots, \bar{w}^{p}\right)$ is

$$
\frac{n^{p}}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{w}^{i} \tau_{i}\right]\right) d \tau_{1} \cdots d \tau_{p}
$$

(1) $\oint=\int_{c_{1}-i \infty}^{c_{1}+i \infty} \cdots \int_{c_{p}-i \infty}^{c_{p}+i \infty}$
(2) $\boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)$ in the interior of the domain of K.
(2) To find the tail probability
$\mathrm{P}[\overline{\boldsymbol{x}} \geq \overline{\boldsymbol{x}}]=\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots \cap \bar{X}^{p} \geq \bar{x}^{p}\right]$,
(1) Integrate density over values of \bar{w}^{j} from \bar{x}^{j} to $+\infty$.
(2) Swap integration re τ and $\overline{\boldsymbol{w}}$.
© Get

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(1) $c_{i}>0$ for all i
(3) When K is exactly quadratic, get Gaussian tail probabilities, exactly.
(1) Write $\bar{\Phi}(z)=\mathrm{P}\left[Z^{1} \geq z^{1} \cap \ldots \cap Z^{p} \geq z^{p}\right]$ for Z_{i} independent standard normals.

Univariate Overview

- Follows approach of Daniels (1987)

Univariate Overview

- Follows approach of Daniels (1987)
- All approaches require ordinate to be at or above expectation.

Univariate Overview

- Follows approach of Daniels (1987)
- All approaches require ordinate to be at or above expectation.
- Suppose a method for producing tail probability approximations $G_{Z}(z)$ satisfies $G_{-z}(-z)=1-G_{Z}(z)$.

Univariate Overview

- Follows approach of Daniels (1987)
- All approaches require ordinate to be at or above expectation.
- Suppose a method for producing tail probability approximations $G_{Z}(z)$ satisfies $G_{-z}(-z)=1-G_{Z}(z)$.
- Then $G_{Z}(z)$ works for tail probabilities for the entire range of z, requirments to be at or over the expectation notwithstanding.

Univariate Overview

- Follows approach of Daniels (1987)
- All approaches require ordinate to be at or above expectation.
- Suppose a method for producing tail probability approximations $G_{Z}(z)$ satisfies $G_{-z}(-z)=1-G_{Z}(z)$.
- Then $G_{Z}(z)$ works for tail probabilities for the entire range of z, requirments to be at or over the expectation notwithstanding.
- Call such an approximation reflexive.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(2) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(- Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(- Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:
$K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24$.
(0) Set $c_{1}=\hat{\tau}$.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:
$K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24$.
(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.
- Integrate term-wise.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \overline{\bar{x}}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.
- Integrate term-wise.
- Then $\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1}\right]$
$=\exp \left(n\left[\hat{z}^{2}-\hat{\omega}^{2}\right]\right)\left[\bar{\Phi}(\sqrt{n} \hat{z})\left(1-n \frac{\hat{\hat{p}}_{3}}{6}\right)+\phi(\sqrt{n} \hat{z})\left(\frac{\hat{\rho}^{3}\left(n \hat{z}^{2}-1\right)}{6 \sqrt{n}}+O(1 / n)\right)\right]$

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.
- Integrate term-wise.
- Then $\mathrm{P}\left[\bar{X}^{1} \geq \bar{x}^{1}\right]$
$=\exp \left(n\left[\hat{z}^{2}-\hat{\omega}^{2}\right]\right)\left[\bar{\Phi}(\sqrt{n} \hat{z})\left(1-n \frac{\hat{\hat{p}}_{3}}{6}\right)+\phi(\sqrt{n} \hat{z})\left(\frac{\hat{\rho}^{3}\left(n \hat{z}^{2}-1\right)}{6 \sqrt{n}}+O(1 / n)\right)\right]$
- $\hat{z}=\hat{\tau} \sqrt{K^{\prime \prime}(\hat{\tau})}$

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.
- Integrate term-wise.
- Then $\mathrm{P}\left[\bar{\chi}^{1} \geq \bar{x}^{1}\right]$
$=\exp \left(n\left[\hat{z}^{2}-\hat{\omega}^{2}\right]\right)\left[\bar{\Phi}(\sqrt{n} \hat{z})\left(1-n \frac{\hat{\hat{P}}_{3}}{6}\right)+\phi(\sqrt{n} \hat{z})\left(\frac{\hat{\beta}^{3}\left(n \hat{z}^{2}-1\right)}{6 \sqrt{n}}+O(1 / n)\right)\right]$
- $\hat{z}=\hat{\tau} \sqrt{K^{\prime \prime}(\hat{\tau})}$
(c) $\hat{\omega}=\operatorname{sign}(\hat{\tau}) \sqrt{2(\hat{\tau} \bar{x}-K(\hat{\tau})}$

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.
- Integrate term-wise.
- Then $\mathrm{P}\left[\bar{\chi}^{1} \geq \bar{x}^{1}\right]$
$=\exp \left(n\left[\hat{z}^{2}-\hat{\omega}^{2}\right]\right)\left[\bar{\Phi}(\sqrt{n} \hat{z})\left(1-n \frac{\hat{\hat{P}}_{3}}{6}\right)+\phi(\sqrt{n} \hat{z})\left(\frac{\hat{\beta}^{3}\left(n \hat{z}^{2}-1\right)}{6 \sqrt{n}}+O(1 / n)\right)\right]$
- $\hat{z}=\hat{\tau} \sqrt{K^{\prime \prime}(\hat{\tau})}$
(2) $\hat{\omega}=\operatorname{sign}(\hat{\tau}) \sqrt{2(\hat{\tau} \bar{x}-K(\hat{\tau})}$
- $\hat{\rho}_{3}=K^{\prime \prime \prime}(\hat{\tau}) K^{\prime \prime}(\hat{\tau})^{-3 / 2}$.

Univariate Methods: Robinson (1982) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(3) Let $\hat{\tau}$ satisfy $K^{\prime}(\hat{\tau})=\bar{x}^{1}$.
(0) Expand $K(\tau)-\tau \bar{x}$ about $\hat{\tau}$:

$$
K(\hat{\tau})-\hat{\tau} \bar{x}+K^{\prime \prime}(\hat{\tau})(\tau-\hat{\tau})^{2} / 2+K^{\prime \prime \prime}(\hat{\tau})(\hat{\tau}-\hat{\tau})^{3} / 6+K^{\prime \prime \prime \prime}\left(\tau^{?}\right)(\hat{\tau}-\hat{\tau})^{4} / 24 .
$$

(0) Set $c_{1}=\hat{\tau}$.

- Exponentiate cubic and quartic terms.
- Integrate term-wise.
- Then $\mathrm{P}\left[\bar{x}^{1} \geq \bar{x}^{1}\right]$
$=\exp \left(n\left[\hat{z}^{2}-\hat{\omega}^{2}\right]\right)\left[\bar{\Phi}(\sqrt{n} \hat{z})\left(1-n \frac{\hat{\hat{p}}_{3}}{6}\right)+\phi(\sqrt{n} \hat{z})\left(\frac{\hat{\rho}^{3}\left(n \hat{z}^{2}-1\right)}{6 \sqrt{n}}+O(1 / n)\right)\right]$
- $\hat{z}=\hat{\tau} \sqrt{K^{\prime \prime}(\hat{\tau})}$
(2) $\hat{\omega}=\operatorname{sign}(\hat{\tau}) \sqrt{2(\hat{\tau} \bar{x}-K(\hat{\tau})}$
- $\hat{\rho}_{3}=K^{\prime \prime \prime}(\hat{\tau}) K^{\prime \prime}(\hat{\tau})^{-3 / 2}$.
- Not reflexive.

Univariate Methods: Lugannani and Rice (1980) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.

Univariate Methods: Lugannani and Rice (1980) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(2) Re-parameterize the inversion integral in terms of ω satisfying $(\omega-\hat{\omega})^{2} / 2=K(\tau)-\tau x-K(\hat{\tau})+\hat{\tau} x$.

Univariate Methods: Lugannani and Rice (1980) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(2) Re-parameterize the inversion integral in terms of ω satisfying $(\omega-\hat{\omega})^{2} / 2=K(\tau)-\tau x-K(\hat{\tau})+\hat{\tau} x$.
(3) Integral is $\frac{1}{(2 \pi i)} \oint \exp \left(n\left[\omega^{2} / 2-\hat{\omega} \omega\right]\right) \lambda \frac{d \omega}{\omega}$.

Univariate Methods: Lugannani and Rice (1980) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(2) Re-parameterize the inversion integral in terms of ω satisfying $(\omega-\hat{\omega})^{2} / 2=K(\tau)-\tau x-K(\hat{\tau})+\hat{\tau} x$.
(3) Integral is $\frac{1}{(2 \pi i)} \oint \exp \left(n\left[\omega^{2} / 2-\hat{\omega} \omega\right]\right) \lambda \frac{d \omega}{\omega}$.
(1) $\lambda=\frac{\omega}{\tau} \frac{d \tau}{d \omega}$.

Univariate Methods: Lugannani and Rice (1980) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(2) Re-parameterize the inversion integral in terms of ω satisfying $(\omega-\hat{\omega})^{2} / 2=K(\tau)-\tau x-K(\hat{\tau})+\hat{\tau} x$.
(3) Integral is $\frac{1}{(2 \pi i)} \oint \exp \left(n\left[\omega^{2} / 2-\hat{\omega} \omega\right]\right) \lambda \frac{d \omega}{\omega}$.
(1) $\lambda=\frac{\omega}{\tau} \frac{d \tau}{d \omega}$.
(9) Tail probability approximation is $\bar{\Phi}(\hat{\omega})+\phi(\hat{\omega})(1 / \hat{\omega}-1 / \hat{z}) / \sqrt{n}$.

Univariate Methods: Lugannani and Rice (1980) approach

(1) Recall $\mathrm{P}[\bar{X} \geq \bar{x}]=\frac{1}{2 \pi i} \oint \exp (n[K(\tau)-\bar{x} \tau]) \frac{d \tau}{\tau}$.
(2) Re-parameterize the inversion integral in terms of ω satisfying $(\omega-\hat{\omega})^{2} / 2=K(\tau)-\tau x-K(\hat{\tau})+\hat{\tau} x$.

- Integral is $\frac{1}{(2 \pi i)} \oint \exp \left(n\left[\omega^{2} / 2-\hat{\omega} \omega\right]\right) \lambda \frac{d \omega}{\omega}$.
- $\lambda=\frac{\omega}{\tau} \frac{d \tau}{d \omega}$.
- Tail probability approximation is $\bar{\Phi}(\hat{\omega})+\phi(\hat{\omega})(1 / \hat{\omega}-1 / \hat{z}) / \sqrt{n}$.
(1) Reflexive: Holds without regards to $\hat{\tau}>0$.

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(2) Kolassa (2003) works analogously as with Robinson:

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(2) Kolassa (2003) works analogously as with Robinson:
(1) Let $\hat{\tau}$ satisfy $K^{k}\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)=\bar{x}^{k}$ for $k=1, \ldots, p$.

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(2) Kolassa (2003) works analogously as with Robinson:
(1) Let $\hat{\tau}$ satisfy $K^{k}\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)=\bar{x}^{k}$ for $k=1, \ldots, p$.
(2) Expand $K(\tau)-\sum_{j} \tau_{j} \bar{x}^{j}$ about $\hat{\tau}=\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)$ to get:

$$
\begin{array}{r}
K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}+\sum_{j, k} K^{j k}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right) / 2 \\
+\sum_{j, k, \ell} K^{j k \ell}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right) / 6 \\
+\sum_{j, k, \ell, m} K^{j k \ell m}\left(\tau^{?}\right)\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right)\left(\tau_{m}-\hat{\tau}_{m}\right) / 24 .
\end{array}
$$

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(2) Kolassa (2003) works analogously as with Robinson:
(1) Let $\hat{\tau}$ satisfy $K^{k}\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)=\bar{x}^{k}$ for $k=1, \ldots, p$.
(2) Expand $K(\tau)-\sum_{j} \tau_{j} \bar{x}^{j}$ about $\hat{\tau}=\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)$ to get:

$$
\begin{array}{r}
K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}+\sum_{j, k} K^{j k}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right) / 2 \\
+\sum_{j, k, \ell} K^{j k \ell}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right) / 6 \\
+\sum_{j, k, \ell, m} K^{j k \ell m}\left(\tau^{?}\right)\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right)\left(\tau_{m}-\hat{\tau}_{m}\right) / 24 .
\end{array}
$$

(3) Expand exp of cubic and quartic terms.

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(2) Kolassa (2003) works analogously as with Robinson:
(1) Let $\hat{\tau}$ satisfy $K^{k}\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)=\bar{x}^{k}$ for $k=1, \ldots, p$.
(2) Expand $K(\tau)-\sum_{j} \tau_{j} \bar{x}^{j}$ about $\hat{\tau}=\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)$ to get:

$$
\begin{array}{r}
K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}+\sum_{j, k} K^{j k}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right) / 2 \\
+\sum_{j, k, \ell} K^{j k \ell}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right) / 6 \\
+\sum_{j, k, \ell, m} K^{j k \ell m}\left(\tau^{?}\right)\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right)\left(\tau_{m}-\hat{\tau}_{m}\right) / 24 .
\end{array}
$$

(3) Expand exp of cubic and quartic terms.
(0) Integral of resulting quartic term is $O(1 / n)$.

Methods in Multiple Dimensions

(1) The tail probability $\mathrm{P}[\overline{\boldsymbol{X}} \geq \overline{\boldsymbol{x}}]$ is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n\left[K\left(\tau_{1}, \ldots, \tau_{p}\right)-\sum_{i=1}^{p} \bar{x}^{i} \tau_{i}\right]\right) \frac{d \tau_{1} \cdots d \tau_{p}}{\tau_{1} \cdots \tau_{p}} .
$$

(2) Kolassa (2003) works analogously as with Robinson:
(1) Let $\hat{\tau}$ satisfy $K^{k}\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)=\bar{x}^{k}$ for $k=1, \ldots, p$.
(2) Expand $K(\tau)-\sum_{j} \tau_{j} \bar{x}^{j}$ about $\hat{\tau}=\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{p}\right)$ to get:

$$
\begin{array}{r}
K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}+\sum_{j, k} K^{j k}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right) / 2 \\
+\sum_{j, k, \ell} K^{j k \ell}(\hat{\tau})\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right) / 6 \\
+\sum_{j, k, \ell, m} K^{j k \ell m}\left(\tau^{?}\right)\left(\tau_{j}-\hat{\tau}_{j}\right)\left(\tau_{k}-\hat{\tau}_{k}\right)\left(\tau_{\ell}-\hat{\tau}_{\ell}\right)\left(\tau_{m}-\hat{\tau}_{m}\right) / 24 .
\end{array}
$$

(3) Expand exp of cubic and quartic terms.
(9) Integral of resulting quartic term is $O(1 / n)$.
© Integrate terms up to cubic term-wise.

Downsides of existing approximation

(1) Lots of terms

Downsides of existing approximation

(1) Lots of terms
(2) Terms are not particularly interpretable.

Downsides of existing approximation

(1) Lots of terms
(2) Terms are not particularly interpretable.
(1) (Multivariate) normal tail probability is multiplied by an exponential factor.

Downsides of existing approximation

(1) Lots of terms
(2) Terms are not particularly interpretable.
(1) (Multivariate) normal tail probability is multiplied by an exponential factor.
(3) You are stuck with $\hat{\tau}_{j}>0$

Downsides of existing approximation

(1) Lots of terms
(2) Terms are not particularly interpretable.
(1) (Multivariate) normal tail probability is multiplied by an exponential factor.
(3) You are stuck with $\hat{\tau}_{j}>0$
(9) Not reflexive (with definition extended beyond univariate).

Downsides of existing approximation

(1) Lots of terms
(2) Terms are not particularly interpretable.
(1) (Multivariate) normal tail probability is multiplied by an exponential factor.
(3) You are stuck with $\hat{\tau}_{j}>0$
(9) Not reflexive (with definition extended beyond univariate).
(1) Get around this using Boole's Law

Lugannani and Rice Analog:

© Wang (1990)

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$,

$$
\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\boldsymbol{\tau})-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)
$$

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$, $\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\boldsymbol{\tau})-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)$
(1) ω_{j} depends only on $\tau_{1}, \ldots, \tau_{j}$

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$, $\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\boldsymbol{\tau})-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)$
(1) ω_{j} depends only on $\tau_{1}, \ldots, \tau_{j}$
(2) $\hat{\omega}_{j}$ depends only on \bar{x}^{j}, \ldots,

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$, $\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\tau)-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)$
(1) ω_{j} depends only on $\tau_{1}, \ldots, \tau_{j}$
(2) $\hat{\omega}_{j}$ depends only on \bar{x}^{j}, \ldots,
(3) Integral is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n \sum_{j} \omega_{j}^{2}-\sum_{i=1}^{p} \hat{\omega}_{j} \omega_{j}\right) \lambda \frac{d \omega_{1} \cdots d \omega_{p}}{\omega_{1} \cdots \omega_{p}}
$$

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$,
$\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\tau)-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)$
(1) ω_{j} depends only on $\tau_{1}, \ldots, \tau_{j}$
(2) $\hat{\omega}_{j}$ depends only on \bar{x}^{j}, \ldots,
(3) Integral is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n \sum_{j} \omega_{j}^{2}-\sum_{i=1}^{p} \hat{\omega}_{j} \omega_{j}\right) \lambda \frac{d \omega_{1} \cdots d \omega_{p}}{\omega_{1} \cdots \omega_{p}}
$$

(1) $\lambda=\frac{\omega_{1} \cdots \omega_{p}}{\tau_{1} \cdots \tau_{p}} \frac{d \tau_{1} \cdots d \tau_{p}}{d \omega_{1} \cdots d \omega_{p}}$.

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$,
$\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\boldsymbol{\tau})-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)$
(1) ω_{j} depends only on $\tau_{1}, \ldots, \tau_{j}$
(2) $\hat{\omega}_{j}$ depends only on \bar{x}^{j}, \ldots,
(3) Integral is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n \sum_{j} \omega_{j}^{2}-\sum_{i=1}^{p} \hat{\omega}_{j} \omega_{j}\right) \lambda \frac{d \omega_{1} \cdots d \omega_{p}}{\omega_{1} \cdots \omega_{p}}
$$

(1) $\lambda=\frac{\omega_{1} \cdots \omega_{p}}{\tau_{1} \cdots \tau_{p}} \frac{d \tau_{1} \cdots d \tau_{p}}{d \omega_{1} \cdots d \omega_{p}}$.
(1) In one dimension, zeros in denominator of λ correspond to zeros in the numerator.

Lugannani and Rice Analog:

(1) Wang (1990)
(2) New parameterization $\sum_{j} \hat{\omega}_{j}^{2} / 2=K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}$,
$\sum_{j}\left(\omega_{j}-\hat{\omega}_{j}\right)^{2} / 2=K(\boldsymbol{\tau})-\sum_{j} \tau_{j} \bar{x}^{j}-\left(K(\hat{\tau})-\sum_{j} \hat{\tau}_{j} \bar{x}^{j}\right)$
(1) ω_{j} depends only on $\tau_{1}, \ldots, \tau_{j}$
(2) $\hat{\omega}_{j}$ depends only on \bar{x}^{j}, \ldots,
(3) Integral is

$$
\frac{1}{(2 \pi i)^{p}} \oint \exp \left(n \sum_{j} \omega_{j}^{2}-\sum_{i=1}^{p} \hat{\omega}_{j} \omega_{j}\right) \lambda \frac{d \omega_{1} \cdots d \omega_{p}}{\omega_{1} \cdots \omega_{p}}
$$

(1) $\lambda=\frac{\omega_{1} \cdots \omega_{p}}{\tau_{1} \cdots \tau_{p}} \frac{d \tau_{1} \cdots d \tau_{p}}{d \omega_{1} \cdots d \omega_{p}}$.
(1) In one dimension, zeros in denominator of λ correspond to zeros in the numerator.
(2) This fails for $p>1$.

Re-parameterize to fix lack of alignment of zeros

(1) Re-parameterize to $\xi_{j}=\omega_{j}-\sum_{k<j} \omega_{k} \zeta_{j}^{k}\left(\omega_{1}, \ldots, \omega_{j-1}\right)$ so that $\xi_{j}=0$ if and only if $\tau_{j}=0$.

Re-parameterize to fix lack of alignment of zeros

(1) Re-parameterize to $\xi_{j}=\omega_{j}-\sum_{k<j} \omega_{k} \zeta_{j}^{k}\left(\omega_{1}, \ldots, \omega_{j-1}\right)$ so that $\xi_{j}=0$ if and only if $\tau_{j}=0$.
(1) Ex. $\xi_{1}=\omega_{1}, \xi_{2}=\omega_{2}-\omega_{1} \zeta_{2}^{1}\left(\omega_{1}\right)$ for $\zeta_{1}^{2}=\omega_{2}\left(\tau_{1}, 0\right) / \omega_{1}$.

Re-parameterize to fix lack of alignment of zeros

(1) Re-parameterize to $\xi_{j}=\omega_{j}-\sum_{k<j} \omega_{k} \zeta_{j}^{k}\left(\omega_{1}, \ldots, \omega_{j-1}\right)$ so that $\xi_{j}=0$ if and only if $\tau_{j}=0$.
(1) Ex. $\xi_{1}=\omega_{1}, \xi_{2}=\omega_{2}-\omega_{1} \zeta_{2}^{1}\left(\omega_{1}\right)$ for $\zeta_{1}^{2}=\omega_{2}\left(\tau_{1}, 0\right) / \omega_{1}$.
(2) Adjustment also makes $\left\{\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots, \bar{X}^{p} \geq \bar{x}^{p}\right\} \approx\left\{\hat{\bar{\Xi}}^{1} \geq \hat{\xi}^{1} \cap \ldots, \hat{\bar{\Xi}}^{p} \geq \hat{\xi}^{p}\right\}$.

Re-parameterize to fix lack of alignment of zeros

(1) Re-parameterize to $\xi_{j}=\omega_{j}-\sum_{k<j} \omega_{k} \zeta_{j}^{k}\left(\omega_{1}, \ldots, \omega_{j-1}\right)$ so that $\xi_{j}=0$ if and only if $\tau_{j}=0$.
(1) Ex. $\xi_{1}=\omega_{1}, \xi_{2}=\omega_{2}-\omega_{1} \zeta_{2}^{1}\left(\omega_{1}\right)$ for $\zeta_{1}^{2}=\omega_{2}\left(\tau_{1}, 0\right) / \omega_{1}$.
(2) Adjustment also makes $\left\{\bar{X}^{1} \geq \bar{x}^{1} \cap \ldots, \bar{X}^{p} \geq \bar{x}^{p}\right\} \approx\left\{\hat{\overline{=}}^{1} \geq \hat{\xi}^{1} \cap \ldots, \hat{\bar{I}}^{p} \geq \hat{\xi}^{p}\right\}$.
(3) Adjustment makes singularities in λ removable.

Adjustment induces sample space rotation for $\hat{\Omega}_{j}$
(1) using $\zeta_{k}^{j}(\hat{\Omega})$.

SRLLR 2

Correlated gamma example, $\boldsymbol{x}=(4,5)$

Adjustment induces sample space rotation for $\hat{\Omega}_{j}$
(1) using $\zeta_{k}^{j}(\hat{\Omega})$.

SRLLR 2

Correlated gamma example, $\boldsymbol{x}=(4,5)$

Adjustment induces sample space rotation for $\hat{\Omega}_{j}$
(0) using $\zeta_{k}^{j}(\hat{\Omega})$.

Correlated gamma example, $\boldsymbol{x}=(4,5)$

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$

$$
\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C .
$$

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$
$\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C$.
(1) $\boldsymbol{\Sigma}$ is generated by transformation from $\boldsymbol{\omega}$ to $\boldsymbol{\xi}$.

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$
$\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C$.
(1) $\boldsymbol{\Sigma}$ is generated by transformation from $\boldsymbol{\omega}$ to $\boldsymbol{\xi}$.
(2) σ_{j} is a standard error for $\hat{\tau}_{j}$.

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$
$\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C$.
(1) $\boldsymbol{\Sigma}$ is generated by transformation from $\boldsymbol{\omega}$ to $\boldsymbol{\xi}$.
(2) σ_{j} is a standard error for $\hat{\tau}_{j}$.
(2) In order to make λ have removable singularities,

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$
$\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C$.
(1) $\boldsymbol{\Sigma}$ is generated by transformation from $\boldsymbol{\omega}$ to $\boldsymbol{\xi}$.
(2) σ_{j} is a standard error for $\hat{\tau}_{j}$.
(2) In order to make λ have removable singularities,
(1) exponent in inversion integral is no longer exactly quadratic.

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$
$\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C$.
(1) $\boldsymbol{\Sigma}$ is generated by transformation from $\boldsymbol{\omega}$ to $\boldsymbol{\xi}$.
(2) σ_{j} is a standard error for $\hat{\tau}_{j}$.
(2) In order to make λ have removable singularities,
(1) exponent in inversion integral is no longer exactly quadratic.
(2) C adjusts for this.

New approximation is simpler

(1) $\mathrm{P}\left[X^{1} \geq x^{1} \cap \ldots \cap X^{p} \geq x^{p}\right] \approx$
$\bar{\Phi}(\sqrt{n} \hat{\boldsymbol{\xi}} ; \boldsymbol{\Sigma})+\sum_{j=1}^{p} \bar{\Phi}\left(\sqrt{n} \hat{\boldsymbol{\xi}}_{-j} ; \boldsymbol{\Sigma}_{j}\right) \phi\left(\sqrt{n} \xi_{j}\right)\left(1 / \xi_{j}-1 /\left(\hat{\tau}_{j} / \sigma_{j}\right)\right)+C$.
(1) $\boldsymbol{\Sigma}$ is generated by transformation from ω to $\boldsymbol{\xi}$.
(2) σ_{j} is a standard error for $\hat{\tau}_{j}$.
(2) In order to make λ have removable singularities,
(1) exponent in inversion integral is no longer exactly quadratic.
(2) C adjusts for this.
(3) Avoids requirement that $\hat{\tau}_{j}>0$.

Example

(1) $p=2$,

Example

(1) $p=2$,
(2) $X_{1}=Z_{1}+Z_{2}, X_{2}=Z_{1}+Z_{3}, Z_{j}$ independent exponentials.

Example

(1) $p=2$,
(2) $X_{1}=Z_{1}+Z_{2}, X_{2}=Z_{1}+Z_{3}, Z_{j}$ independent exponentials.
(3) $n=1$!

Relative Error: Normal on raw scale

Relative Error: Normal on SRLLR scale

Relative Error: SRLLR scale, adjust for marginal non-normality

Relative Error: SRLLR scale, all adjustments

Work in various stages of completion

(1) Addressing removable singularities in C.

Work in various stages of completion

(1) Addressing removable singularities in C.
(2) $p>2$.

Work in various stages of completion

(1) Addressing removable singularities in C.
(2) $p>2$.
(3) r^{*} version placing $O(1 / \sqrt{n})$ corrections into argument of $\bar{\Phi}$.

Work in various stages of completion

(1) Addressing removable singularities in C.
(2) $p>2$.
(3) r^{*} version placing $O(1 / \sqrt{n})$ corrections into argument of $\bar{\Phi}$.
(4) Extension to lattice variables

Work in various stages of completion

(1) Addressing removable singularities in C.
(2) $p>2$.
(3) r^{*} version placing $O(1 / \sqrt{n})$ corrections into argument of $\bar{\Phi}$.
(9) Extension to lattice variables
(3) Extension to conditional distributions.

Daniels, H. (1987). Tail probability approximations. Review of the International Statistical Institute, 55:37-46.

Daniels, H. (1987). Tail probability approximations. Review of the International Statistical Institute, 55:37-46.
Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations. Annals of Statistics, 31:274-286.

Daniels, H. (1987). Tail probability approximations. Review of the International Statistical Institute, 55:37-46.
Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations. Annals of Statistics, 31:274-286.
Krause-Parello, C. A., Levy, C., Holman, E., and Kolassa, J. E. (2018). Effects of va facility dog on hospitalized veterans seen by a palliative care psychologist: An innovative approach to impacting stress indicators. American Journal of Hospice and Palliative Medicine ${ }^{\circledR}$, 35(1):5-14. PMID: 27895150.

Daniels, H. (1987). Tail probability approximations. Review of the International Statistical Institute, 55:37-46.
Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations. Annals of Statistics, 31:274-286.
Krause-Parello, C. A., Levy, C., Holman, E., and Kolassa, J. E. (2018). Effects of va facility dog on hospitalized veterans seen by a palliative care psychologist: An innovative approach to impacting stress indicators. American Journal of Hospice and Palliative Medicine $(\circledR$, 35(1):5-14. PMID: 27895150.
Lugannani, R. and Rice, S. (1980). Saddle point approximation for the distribution of the sum of independent random variables. Advances in Applied Probability, 12:475-490.

Daniels, H. (1987). Tail probability approximations. Review of the International Statistical Institute, 55:37-46.
Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations. Annals of Statistics, 31:274-286.
Krause-Parello, C. A., Levy, C., Holman, E., and Kolassa, J. E. (2018). Effects of va facility dog on hospitalized veterans seen by a palliative care psychologist: An innovative approach to impacting stress indicators. American Journal of Hospice and Palliative Medicine ${ }^{\circledR}$, 35(1):5-14. PMID: 27895150.
Lugannani, R. and Rice, S. (1980). Saddle point approximation for the distribution of the sum of independent random variables. Advances in Applied Probability, 12:475-490.
Robinson, J. (1982). Saddlepoint approximations for permutation tests and confidence intervals. Journal of the Royal Statistical Society Series B, 44:91-101.

Daniels, H. (1987). Tail probability approximations. Review of the International Statistical Institute, 55:37-46.
Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations. Annals of Statistics, 31:274-286.
Krause-Parello, C. A., Levy, C., Holman, E., and Kolassa, J. E. (2018). Effects of va facility dog on hospitalized veterans seen by a palliative care psychologist: An innovative approach to impacting stress indicators. American Journal of Hospice and Palliative Medicine $®$, 35(1):5-14. PMID: 27895150.
Lugannani, R. and Rice, S. (1980). Saddle point approximation for the distribution of the sum of independent random variables. Advances in Applied Probability, 12:475-490.
Robinson, J. (1982). Saddlepoint approximations for permutation tests and confidence intervals. Journal of the Royal Statistical Society Series B, 44:91-101.
Wang, S. (1990). Saddlepoint approximations for bivariate distributions. Journal of Applied Probability, 27:586-597.

