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Motivation Example
1 Krause-Parello et al. (2018) present results of a crossover study.

1 Studies US military subject to physical trauma
2 Measures efficacy of canine therapy on PTSD, vs standard therapy.
3 Evaluate performance on both therapies for subject i

1 Yi =


1 for better on canine

−1 for worse on canine

0 for no difference
2 in ordinal regression model with no intercept, indicator variables for

ordering, other covariates.
3 sufficient statistics X̄ 1 and X̄ 2 for treatment effect under the two

orderings.

2 Null hypothesis is that there is no systematic difference in response to
therapies, regardless of ordering.

3 Alternative hypothesis is that canine therapy is superior for at least
one of the ordering.

4 p-value for intersection union test is calculated from
P
[
X̄ 1 ≥ x̄1 or X̄ 2 ≥ x̄2|other sufficient statistics

]
.
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Notation

1 Random vector Xi = (X 1
i , . . . ,X

p
i ) has a continuous distribution,

2 Moment generating function

M(τ1, . . . , τp) = E
[
exp(τ1X

1
i + · · ·+ τpX

p
i )
]
,

1 finite for |τi | < ϵ for all i ≤ p and some ϵ > 0.

3 Let the cumulant generating function be
K (τ1, . . . , τp) = log(M(τ1, . . . , τp)).

4 Consider n independent random vectors (X 1
i , . . . ,X

p
i ) with such a

distribution.

5 Let X̄ =
∑n

i=1 Xi/n
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Objective

1 Approximate joint tail probabilities for X̄ .

2 Use existence of cumulant generating function to obtain relative error
behavior uniform for values of x̄ in an open ball about the mean.

1 Measure theoretical error behavior in terms of inverse powers of
√
n.
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Inversion Integrals:
1 Density fn(w̄

1, . . . , w̄p) is

np

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

w̄ iτi ]) dτ1 · · · dτp

1
∮
=

∫ c1+i∞
c1−i∞ · · ·

∫ cp+i∞
cp−i∞

2 c = (c1, . . . , cp) in the interior of the domain of K .
2 To find the tail probability

P
[
X̄ ≥ x̄

]
= P

[
X̄ 1 ≥ x̄1 ∩ . . . ∩ X̄ p ≥ x̄p

]
,

1 Integrate density over values of w̄ j from x̄ j to +∞.
2 Swap integration re τ and w̄ .
3 Get

1

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

x̄ iτi ])
dτ1 · · · dτp
τ1 · · · τp

.

1 ci > 0 for all i

3 When K is exactly quadratic, get Gaussian tail probabilities, exactly.

1 Write Φ̄(z) = P
[
Z 1 ≥ z1 ∩ . . . ∩ Z p ≥ zp

]
for Zi independent

standard normals.
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c1−i∞ · · ·

∫ cp+i∞
cp−i∞

2 c = (c1, . . . , cp) in the interior of the domain of K .
2 To find the tail probability

P
[
X̄ ≥ x̄

]
= P

[
X̄ 1 ≥ x̄1 ∩ . . . ∩ X̄ p ≥ x̄p

]
,

1 Integrate density over values of w̄ j from x̄ j to +∞.
2 Swap integration re τ and w̄ .
3 Get

1

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

x̄ iτi ])
dτ1 · · · dτp
τ1 · · · τp

.

1 ci > 0 for all i

3 When K is exactly quadratic, get Gaussian tail probabilities, exactly.
1 Write Φ̄(z) = P

[
Z 1 ≥ z1 ∩ . . . ∩ Z p ≥ zp

]
for Zi independent

standard normals.
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Univariate Overview

Follows approach of Daniels (1987)

All approaches require ordinate to be at or above expectation.

Suppose a method for producing tail probability approximations
GZ (z) satisfies G−Z (−z) = 1− GZ (z).

Then GZ (z) works for tail probabilities for the entire range of z ,
requirments to be at or over the expectation notwithstanding.

Call such an approximation reflexive.
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Univariate Methods: Robinson (1982) approach
1 Recall P

[
X̄ ≥ x̄

]
= 1

2πi

∮
exp(n[K (τ)− x̄τ ]) dτ

τ .

2 Let τ̂ satisfy K ′(τ̂) = x̄1.

3 Expand K (τ)− τ x̄ about τ̂ :

K (τ̂)− τ̂ x̄+K ′′(τ̂)(τ− τ̂)2/2+K ′′′(τ̂)(τ̂− τ̂)3/6+K ′′′′(τ ?)(τ̂− τ̂)4/24.

4 Set c1 = τ̂ .

5 Exponentiate cubic and quartic terms.

6 Integrate term-wise.

7 Then P
[
X̄ 1 ≥ x̄1

]
= exp(n[ẑ2 − ω̂2])

[
Φ̄(

√
nẑ)

(
1− n ρ̂3

6

)
+ ϕ(

√
nẑ)

(
ρ̂3(nẑ2−1)

6
√
n

+O(1/n)
)]

.

1 ẑ = τ̂
√
K ′′(τ̂)

2 ω̂ = sign(τ̂)
√
2(τ̂ x̄ − K (τ̂)

3 ρ̂3 = K ′′′(τ̂)K ′′(τ̂)−3/2.

8 Not reflexive.
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nẑ)

(
1− n ρ̂3

6

)
+ ϕ(

√
nẑ)
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nẑ)

(
1− n ρ̂3

6

)
+ ϕ(

√
nẑ)
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Univariate Methods: Lugannani and Rice (1980) approach

1 Recall P
[
X̄ ≥ x̄

]
= 1

2πi

∮
exp(n[K (τ)− x̄τ ]) dτ

τ .

2 Re-parameterize the inversion integral in terms of ω satisfying
(ω − ω̂)2/2 = K (τ)− τx − K (τ̂) + τ̂x .

3 Integral is 1
(2πi)

∮
exp(n[ω2/2− ω̂ω])λdω

ω .

1 λ = ω
τ

dτ
dω .

4 Tail probability approximation is Φ̄(ω̂) + ϕ(ω̂)(1/ω̂ − 1/ẑ)/
√
n.

1 Reflexive: Holds without regards to τ̂ > 0.
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Methods in Multiple Dimensions
1 The tail probability P

[
X̄ ≥ x̄

]
is

1

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

x̄ iτi ])
dτ1 · · · dτp
τ1 · · · τp

.

2 Kolassa (2003) works analogously as with Robinson:

1 Let τ̂ satisfy K k(τ̂1, . . . , τ̂p) = x̄k for k = 1, . . . , p.
2 Expand K (τ)−

∑
j τj x̄

j about τ̂ = (τ̂1, . . . , τ̂p) to get:

K (τ̂ )−
∑
j

τ̂j x̄
j +

∑
j,k

K jk(τ̂ )(τj − τ̂j)(τk − τ̂k)/2

+
∑
j,k,ℓ

K jkℓ(τ̂ )(τj − τ̂j)(τk − τ̂k)(τℓ − τ̂ℓ)/6

+
∑

j,k,ℓ,m

K jkℓm(τ ?)(τj − τ̂j)(τk − τ̂k)(τℓ − τ̂ℓ)(τm − τ̂m)/24.

3 Expand exp of cubic and quartic terms.
4 Integral of resulting quartic term is O(1/n).
5 Integrate terms up to cubic term-wise.
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Downsides of existing approximation

1 Lots of terms

2 Terms are not particularly interpretable.

1 (Multivariate) normal tail probability is multiplied by an exponential
factor.

3 You are stuck with τ̂j > 0
4 Not reflexive (with definition extended beyond univariate).

1 Get around this using Boole’s Law
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Lugannani and Rice Analog:

1 Wang (1990)

2 New parameterization
∑

j ω̂
2
j /2 = K (τ̂ )−

∑
j τ̂j x̄

j ,∑
j(ωj − ω̂j)

2/2 = K (τ )−
∑

j τj x̄
j − (K (τ̂ )−

∑
j τ̂j x̄

j)

1 ωj depends only on τ1, . . . , τj
2 ω̂j depends only on x̄ j , . . . ,

3 Integral is

1

(2πi)p

∮
exp(n

∑
j

ω2
j −

p∑
i=1

ω̂jωj)λ
dω1 · · · dωp

ω1 · · ·ωp
.

1 λ =
ω1···ωp

τ1···τp
dτ1···dτp
dω1···dωp

.

1 In one dimension, zeros in denominator of λ correspond to zeros in the
numerator.

2 This fails for p > 1.
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Re-parameterize to fix lack of alignment of zeros

1 Re-parameterize to ξj = ωj −
∑

k<j ωkζ
k
j (ω1, . . . , ωj−1) so that ξj = 0

if and only if τj = 0.

1 Ex. ξ1 = ω1, ξ2 = ω2 − ω1ζ
1
2 (ω1) for ζ

2
1 = ω2(τ1, 0)/ω1.

2 Adjustment also makes
{X̄ 1 ≥ x̄1 ∩ . . . , X̄ p ≥ x̄p} ≈ {Ξ̂1 ≥ ξ̂1 ∩ . . . , Ξ̂p ≥ ξ̂p}.

3 Adjustment makes singularities in λ removable.
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Adjustment induces sample space rotation for Ω̂j
1 using ζ jk(Ω̂).
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Correlated gamma example, x = (4, 5)
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New approximation is simpler

1 P
[
X 1 ≥ x1 ∩ . . . ∩ X p ≥ xp

]
≈

Φ̄(
√
nξ̂;Σ) +

∑p
j=1 Φ̄(

√
nξ̂−j ;Σj)ϕ(

√
nξj)(1/ξj − 1/(τ̂j/σj)) + C .

1 Σ is generated by transformation from ω to ξ.
2 σj is a standard error for τ̂j .

2 In order to make λ have removable singularities,

1 exponent in inversion integral is no longer exactly quadratic.
2 C adjusts for this.

3 Avoids requirement that τ̂j > 0.
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2 C adjusts for this.
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Example

1 p = 2,

2 X1 = Z1 + Z2, X2 = Z1 + Z3, Zj independent exponentials.

3 n = 1!
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Relative Error: Normal on raw scale
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Relative Error: Normal on SRLLR scale
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Relative Error: SRLLR scale, adjust for marginal
non-normality
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Relative Error: SRLLR scale, all adjustments
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Work in various stages of completion

1 Addressing removable singularities in C .

2 p > 2.

3 r∗ version placing O(1/
√
n) corrections into argument of Φ̄.

4 Extension to lattice variables

5 Extension to conditional distributions.
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