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 @ Applied Probability Trust 1980

 SADDLE POINT APPROXIMATION FOR THE
 DISTRIBUTION OF THE SUM OF
 INDEPENDENT RANDOM VARIABLES

 ROBERT LUGANNANI* AND

 STEPHEN RICE,* University of California, San Diego

 Abstract

 In the present paper a uniform asymptotic series is derived for the probabil-
 ity distribution of the sum of a large number of independent random variables.
 In contrast to the usual Edgeworth-type series, the uniform series gives good
 accuracy throughout its entire domain. Our derivation uses the fact that the
 major components of the distribution are determined by a saddle point and a
 singularity at the origin. The analogous series for the probability density, due
 to Daniels, depends only on the saddle point. Two illustrative examples are
 presented that show excellent agreement with the exact distributions.

 SADDLE POINT APPROXIMATION; SUM OF INDEPENDENT RANDOM VARIABLES;

 UNIFORM ASYMPTOTIC SERIES

 1. Introduction

 The problem of calculating the probability QN(Y) that the sum

 (1) Y= v1+ 2+' " + VN
 of N independent, identically distributed, random variables will exceed y has
 been extensively studied. In technical applications, where numerical values are
 of prime importance, a number of methods of determining QN(y) have been
 used. A common one is to use the fast Fourier transform which works well

 when QN(Y) is not too small or when N is not too large. Another is to evaluate
 numerically the integral

 ON(Y) = e iuy [g(u)]0 du/(iu),

 where the characteristic function g(u) is the Fourier transform of the probabil-

 ity density pi(v) of the typical vi in (1), and the path of integration is indented
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 476 ROBERT LUGANNANI AND STEPHEN RICE

 downwards at the origin. This method is capable of high accuracy but the
 integral often converges slowly and a detailed study of the asymptotic behavior
 of g(u) may be required.
 Here we present an asymptotic series for QN(y) that we have found useful in

 calculations associated with signal detection problems (see the remarks made
 by Olver on the philosophy of using asymptotic series for numerical calcula-
 tions [6], p. 519). Our series takes into account, in the manner of uniform
 asymptotic series, the mutual effect of the pole of the integrand at u = 0 and
 the 'principal saddle point' uo on the imaginary u-axis. Although uo does not
 exist for all densities pj(v), it does exist in many cases of practical interest. The
 question of existence has been studied by Daniels [5].
 The saddle point uo has been used in a number of investigations. It appears,

 in effect, in the study of large deviations. See Petrov [7], Chapter 8 where work
 by Cramer, Saulis and others is described. Daniels [5] has given an asymptotic
 series for the probability density pN(Y) of (1) based on uo, whose integration
 provides an approach alternative to ours (cf. Part (d) of Section 3). Roberts [9]
 has used uo to deal with communication problems and it appears implicitly in

 the Chernoff bound [4].
 The series for QN(y) is described in Section 2. In Section 3 several remarks

 are made about the series and the existence of uo is discussed briefly. Section 4
 gives sufficient conditions for our series to be truly asymptotic. Estimation of
 the error is discussed in Section 5 and illustrated by examples in Sections 6 and

 7. In Section 6 an example in which pl(v) is an exponential density is discussed
 and in Section 7 the uniform density is examined. Finally, in Section 8 the
 results are used to compare values of QN(y) obtained from our series with
 those obtained from formulas given by Cramer and Saulis.

 2. The asymptotic series for QN(y)

 The integral for QN(y) can be written as

 (2) QN(Y) f1 e Nr(iu)-iur) du/(iu),

 where exp [4(iu)] = g(u) and r = y/N. Our main result is the asymptotic series

 (3) QN(y) - - erfc (/- fo) + I (An - Bn),
 n=O

 (4) fo= N=b(iuo) - iuoy,

 2 erfc (x)= {-? exp (-t2) dt = (2i)- exp (-t2/2) dt, 2
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 Saddle point approximation 477

 where An is given below by (9) for n = 0, 1, 2, and B, is given by (8). The
 series (3) is derived in the appendix. In (4) uo is the principal saddle point of
 exp [N4(iu) - iuy] mentioned in the introduction. If this saddle point exists it
 lies on the imaginary u-axis and is the root of

 d4(iu)
 (5) d u)ir = du

 which becomes zero when y = y = EY.
 Equation (3) is a special case of a class of 'uniform asymptotic series' for
 integrals containing a large parameter (Bleistein [2], van der Waerden [11],
 and Rice [8]). The large parameter is N and the uniformity is with respect to r.

 In calculating A, and B, it is convenient to set to= iuo where to is the
 appropriate real root of

 d
 (6) d 4(t)- r = 0. dt

 It turns out that to is positive when y > ?, negative when y < 9, and zero when
 y = 9. In terms of to (4) becomes

 (7) fo = No4(to) - toy,

 where it can be shown that fo5 0 with equality only when to = 0. The sign of

 /-fo is taken to be the same as that of to.
 The term B, is the nth term in the asymptotic series for 1 erfc ( -fo),

 (8) B = A(-rTfo)-?fo"(A) exp (fo),
 where (a)o = 1 and (a), = a(a + 1) - - - (a + n - 1) when n > 0. The term An is
 the nth term in the asymptotic series obtained using the classical saddle point

 method to expand the integral (2) for OQ(y) about uo. As (y - )/N increases,
 the distance between uo and the pole at u = 0 increases, and the classical
 asymptotic series QN(y)- Y A, becomes increasingly accurate. The presence of
 the complementary error function and the terms B, increase the accuracy of
 (3) for small values of (y - ?)/N.

 The first three values of A, are

 AO = g4[2irN]-? exp (fo),

 A1 = -3AoN-1[A 2 + 103 + 1(502 -204)],

 (9) A2= 15AoN-2[4 + 83+12(7 -2 4)

 + 4$ (4203 - 280304 + 405)
 + (23104- 2520604+ 560305 + 280- 8 06)],
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 478 ROBERT LUGANNANI AND STEPHEN RICE

 where

 1("n = [(d/dt)"n(t)]to = [i-"(d/du)"4(iu)]0,
 (10) On = ('"-/(n![4,(2)]2),

 .L = 1/(to0[(2)]?).

 Here 6(2) is positive and &"n) can be interpreted as the nth cumulant of the
 'associated' density (see Daniels [5], pages 639 and 640)

 l(v)= e"op,(v)/g(uo),

 (11) g(uo) = e f opl(v) dv.
 The characteristic function for p1(v),

 (12) Ee'x" = g(u0 + x)/g(uo),
 will be used in Section 4.

 3. Remarks concerning the asymptotic series for QN(y)

 (a) General values of n. A, can be calculated for general values of n by using
 a recurrence relation for the coefficients in the classical asymptotic series. Thus,
 from Equation (103) of [8], (changing n to j)

 (13) Aj,= AoN-' I)2- dm,n(-2)m+'(1)rm+j, n=O m=O

 where di,. is computed step by step from

 1 n-m+1
 (14) dm+l,n+l= 1 kOk+2dm,n-k+l, O0-m-sn n+l k=1

 starting from doo= 1 and don =0 for n>0. For m=O and n--1 we get
 din = On+2 and for m = n, d, 3 = O"/n!. It is often convenient to use ()m+j =
 F(m + j+ )/7r in (13).

 Daniels' series [5] for the probability density pN(y)=-(d/dy)QN(y) is

 (15) PN(y) - [2N4(2)- iexp (fo) 1 -3 (502- 204) +

 Equation (15) can be written as pN(y) - Ai where

 Ai o = [2irN4(2)]- exp (fo)
 (16) 2j

 A) = AoN-' 4 d,2j(-2)m+i(?)m+. m=l
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 Saddle point approximation 479

 and dmn,2 is given by (14). Replacing Ao by Ao and setting p =0 in the
 expression (13) for At gives Ai. For example, A, and A2 can be obtained from
 (9) by setting . = 0 in A1 and A2.
 (b) The case y = . When y = 9, to is zero, and A, and Bn are infinite, but the

 limit of A, - B, remains finite as y -- . In this case a classical saddle point
 analysis gives

 QN(Y9) I+(2rN)-[-03+ N-I( 3-150304+305)

 (17) -15N-23 05 -2310 04 + 63030,+ 63020

 -140405 - 140306+ 207)+ - " *].
 It can be verified that the terms in (17) agree with corresponding ones in the
 Edgeworth series ([1], No. 26.2.48) for the case y = y.

 (c) Another form of (3). The form (3) of the asymptotic series for QN(Y) is
 convenient for calculations when N is fixed and y varies. A different form,
 useful in analyzing the errors, can be obtained by introducing C, defined by

 (18) A - B = C,N--1 exp (Ny0)F(n +)/1r,
 where y,0= y(uo) = fo/N and

 (19) y(u)= 4(iu) - iur.

 Then (3) becomes

 (20) QN(y)~- erfc (Z--N)o + -eNo o CFr(n +1)N " r n=O

 The structure of A ,-Bn shows that C, does not depend explicitly on N
 although there is an implicit dependence via r.

 (d) Integration of the Daniels series. An interesting question arises regarding
 the accuracy of our asymptotic series for QN(Y) compared with that of the

 series obtained by integrating Daniels' series (15) for PN(y). It appears difficult
 to give an answer in the general case because of the complexity of the
 integration. However, some insight can be obtained by examining the exponen-
 tial distribution discussed later in Section 6. From the results given there it can
 be shown that the Daniels series is

 PN(Y) PN ex(y)[N!/INe- N / ] (21--+1 2N 288N +
 where PN x(Y) is the exact density yN-le-Y/(N-1)!, y >0. When we integrate
 and take the first two terms, for example, we get

 (A(2) = Qex[N!/N"e-N"/1 N(1 -1)
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 480 ROBERT LUGANNANI AND STEPHEN RICE

 where Qex is the exact value (38) of QN(y). QA(2) is to be compared with our

 QA (2) = 1 erfc (/-fo) + (A0- Bo) + (A, - B1)

 given by (45). The 'relative error' W of QA(2) is plotted in Figure 1 for the
 case N= 5. For N= 5 the relative error of QA(2) can be shown to be
 = -0-00016 when y > 5. Comparison with Figure 1 shows that 8 and W are
 of the same order of magnitude in this particular case.

 This example suggests the conjecture that integration of Daniels' series and
 our asymptotic series for QN(y) both give approximations to QN(y) that are in
 error by the same order of magnitude.

 (e) Existence of uo. We conclude this section with some remarks regarding
 the existence of uo that are based on Daniels' work [5]. Let pl(v) be zero

 outside of a = v = b where a or b may be infinite. It can be shown that uo exists
 for every value of y/N between a and b if the integral

 fbet"vpl(v) dv
 exists for all real values of t. Examples are:

 (i) Finite a and b.

 (ii) a=-oo, b=oo and p1(v)=A exp(- vl1+e) where e>0 and A is a constant.

 When the integral does not exist for all values of t, the question becomes
 more complicated:

 (iii) For a = 0, b = oo, p1(v) = A exp (-vl-e) and 0 < E < 1, uo exists when
 0 - y ---, but not when y > 9.

 (iv) When a =0, b = oo, pl(v) = Ava"-(1+v)-e- and a >0, uo exists for
 the entire range 0- y -oo if Pf3 a+1. When 3> a+1, uo exists only if
 0 - y/N 5 1/(P - a - 1). In both cases uo runs from ioo to -i as y runs over the
 range for which uo exists.

 (v) When pl(v) = ? exp (- v ) there are two saddle points on the imaginary
 axis. As y runs from -oo to +oo, the principal saddle point uo runs from +i to
 --1.

 4. Sufficient conditions for the series to be asymptotic

 Here sufficient conditions are given for the series (3) to be asymptotic in 1/N
 when r = yIN is fixed. We consider only the case y > in detail. The analysis
 for the case y < 9 is very similar and will not be repeated. For y > 9, to is
 positive and u = -ito lies on the negative imaginary u-axis.

 Suppose that uo has been determined for some fixed value of r, and let P
 denote the straight line path Im (u - uo)= 0 joining uo+oo and passing through
 uo. Let the characteristic function g(u) of p1(v) satisfy the conditions:
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 Saddle point approximation 481

 (i) g(u) is analytic throughout a strip -to-- e Im (u) Ee where e is some
 positive constant.

 (ii) Positive constants a, co and cl exist such that jg(u)l<co/lu " when
 lul >c on the path P.
 These conditions allow us to displace the path of integration in the integral

 (2) for Q,(y) down to P. After making this displacement, the expression (4) for
 fo, and the relation g(u)= exp [4(iu)] are used to rewrite (2) as

 (21) Q(Y)= exp o) Re exp {N[k(iuo + ix)- 4(iuo)- ixr]} dx/(iuo + ix), IT

 where x = u - uo. In (21)

 (22) exp [4(iuo + ix)- 4(iuo)] = g(u0 + x)/g(uo),

 where, from (12), the right-hand side of (22) is the characteristic function
 E exp (ivx) of the associated density p1(v). Since x is real in (21), g(uo+
 x)/g(uo) 5 1 with equality only at x = 0 because ^1(v) has no lattice component
 (as a consequence of (ii)). Therefore in (21)

 Re [4(iuo + ix) - 0(iuo) - ixr] - 0

 with equality only at x = 0. Furthermore, Condition (i) shows that (iuo + ix) -
 (iuo) - ixr can be expanded in a power series in x that converges in the
 neighborhood of x = 0.
 The preceding discussion and the fact that the contribution to QN(y) of the

 region around uo is E An (as already mentioned in connection with (9)) shows
 that Conditions (i) and (ii) are sufficient to guarantee that

 (23) QN(y) - An n=O

 as N---oo (see Olver [6], Chapter 4, Section 6). Subtracting the known
 asymptotic series

 (24) 4 erfc (/-fo) B, n=O

 completes the proof that (3) is indeed an asymptotic series for QN(y) when
 y > 9 and r = y/N is fixed.

 5. Error analysis

 Let the conditions of Section 4 be satisfied and rewrite (2) as

 1 e+ioNY dU/(iU),
 (25) QN(y) = Re- 1 e(

 =d

This content downloaded from 
������������128.6.45.205 on Sat, 23 Sep 2023 17:49:01 +00:00������������ 

All use subject to https://about.jstor.org/terms



 482 ROBERT LUGANNANI AND STEPHEN RICE

 where Iy(u) = 4(iu)- iur. Let the right-hand branch of the steepest descent path

 of exp [y(u)] from uo end at the sink u = so where y(so) = -oo. Then

 (26) QN(Y) = I(uo, so)+ I(so, 00+ iO),

 where I(u1, u2) denotes the integral in (25) with limits u1, u2.
 The sink so occurs at a zero of the characteristic function g(u), but it may

 shift from one zero to another as r = y/N changes. The path of steepest descent
 from uo is given by Im [y(uo) - '(u)]= 0. If the path cannot be determined
 easily by analysis it can be traced step by step by starting at uo + A and using

 (27) u1+1 = u1 - Iy'(u) A/,y'(u),

 where A is the step length and y'(u)= dy(u)/du.
 It is convenient to regard the right-hand side of (3) as the asymptotic

 expansion of I(uo, so) and I(so,o + iO) as an exponentially small correction
 term. This point of view is helpful in explaining the fact that an asymptotic
 series may sometimes appear to be more accurate than it actually is (Olver [6],
 p. 95).

 Let m- 1 and define the partial sum QA(m) by

 m-1

 (28) QA(m) A- erfc (V-fo)+ I (A, - B,). n=0

 Then the error in QA(m) is

 (29) QA (m) - QN(y) = [QA(m) - I(uo, so)]+ [-I(so, oo + iO)]
 EP, + ES,

 where the principal error EP,, and the exponentially small error ES are
 defined by the quantities within the brackets:

 1 -so- )du/(iu), EPm A QA(m)- Re feNYU"' du/(iu),

 (30) 1 R r+io ES - Re - eNY(u) du/(iu).

 ES depends only on N. It can be zero in some cases and greater than EP,, in
 others. A bound for REPmI can be obtained by modifying Olver's error bound
 ([6], p. 89) for asymptotic series so as to take erfc (V-fo) into account. If
 (Am - B,) is not zero it can be shown that

 (31) IEP, I- [N/(N - o',)m" + IAm, - Bm ,
 where c, is the supremum of a complicated function of m, r and u along the
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 Saddle point approximation 483

 steepest path from uo to so:

 orM= sup [ I'ln IF,(7)/(C~ 7m-i)l], E(0,00)

 (32) 7= Yo- Y(u),

 F.(7) = ?(-'or0)-1(1 - 7/o)-1-Re (I dC) +IC
 Here C, is defined by (18) and yo = y(uo).

 6. Example--The exponential distribution

 (a) Asymptotic series. The characteristic function for the one-sided density
 p1(v) = e-v, v > 0 is

 (33) g(u) =o e'""~ dv
 = 1/(1 - iu)

 and

 (34) 4(iu) = In g(u) = - In (1 - iu).

 The saddle point equation (6) gives uo= -ito where to = 1- r-x with r = y/N.
 The quantities needed to calculate A, and B, are

 (35) fo = N(ln r - r + 1), O')= (n- 1)! r".
 On = 1/n, = 1/(r1),

 and (8) and (9) give

 Ao = ,.(27rN)- efo Bo= =(-rfo)- efo,
 (36) Ai= AoN-'(- A2_i -A2), B1= B1o/(2fo),

 A2 -2= AoN (3 4+ 5-L3a2- _ +1 +__LB+), B2= 3B1/(2fo).
 When y =  = N, r is 1, ~ is infinite, and it is necessary to use the Edgeworth

 series

 S1 1 1 1 25+..
 2Q (Y) +(2N)- 3 N 540 N2 6048

 The exact expression for OQN(y) is
 N-1

 (38) QO(y)= e-y C y"/n!. n--o
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 484 ROBERT LUGANNANI AND STEPHEN RICE

 (b) Error analysis. An examination of the path of steepest descent of
 exp [Ny(u)], where y(u)= -In (1- iu)- iur, from uo shows that the sink so
 occurs at so = i/rr-ioo, and consequently the exponentially small error ES is
 zero. To illustrate the bound (31) for EP,, consider the case r = y/N = 2 and
 m = 1. Numerical evaluation of (32) at points along the path between uo and so

 shows that the supremum occurs at r = 6-94. It has the value cr = 0-085 and
 (31) becomes

 (39) IEP1l [N/(N- 0-085)] IAl - B11.
 Calculations for N= 5 and y = rN = 10 show that

 Q5(10) = 002925 . -,
 EP1 = QA(1)- Q5(10) = -2-18(-5),

 A1- B1= -2-58(-5).

 Therefore (39) gives IEP1 5 2-65(-5) which is slightly larger than IEP1I=
 2-18(-5).

 7. Example--The uniform distribution

 The characteristic function corresponding to px(v)= for -1 <v <1 is g(u)= sin u/u, and 4(iu)= In g(u)= In (sin u/u). In order to calculate (3) we need the
 values of

 (40) 4(t) = In (sinh tit)

 and its derivatives at the real root to of

 (41) cosh t- t-1- r = 0.

 Equation (41) can be solved by starting with to 1/(1- r) and using the
 Newton-Raphson method. Differentiation of (40) gives

 (d/dt)24(t) = - csch2 t + t-2

 (d/dt)34(t) = (2 csch3 t) cosh t- 2t-3

 and so on. For t real we also have

 (d/dt)"$(t) = (-)"-l(n- 1)! 2 i Re (t+iTrl)-"

 which is useful when n is large and the recursion relation (13) is used to
 calculate A,. For the error calculations the exact expression

 (42) QN(y)= j1 i (-)k(N)(Ny2k)N
 was used. Here K is the largest integer in (N- y)/2.
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 Saddle point approximation 485

 A trial calculation was made using N=4 and y = 32. In this case the
 smallest term in (3) is A3 - B3 = -2-8(-6) and the error made in stopping with
 this term is QA(4)-Q4(3-2)= 4-9(-6), i.e.,

 (43) EP4+ ES = 4.9(-6).

 This is small compared to the exact value Q4(3-2)= 1066-7(-6).

 (a) The error ES. For the uniform distribution, the function y(u) appearing
 in the definition (30) of ES is y(u)=ln (sin u/u)-iur. When the path of
 steepest descent from uo is calculated by using y'(u) = cot u - u-1- ir in the

 step-by-step formula (27) it is found that so is one of the zeros, say l1r, of
 sin u/u. If r is between 0 and a number slightly larger than 0-7, I is 1. For
 r=0-8, I is 2, and for r=0-9, I is 5. From (30) and r= y/N,

 (44) ES = 11C001 sin u)" sin uYdu.
 T u U

 For N=4, y = 3-2 we get r= 0-8, 1= 2 and the value of ES calculated from

 (44) is -2.1(-6). This is an appreciable fraction of the total error 4-9(-6)
 stated above for our partial sum QA(4). Incidentally, when l=0 in (44) the
 integral is equal to QN(y).

 8. Comparison with other approximations

 Here we compare our first two partial sums

 QA (1) = erfc ( - fo)+ (Ao- Bo),

 QA(2) = QA(1)+(Ai-Bj),

 with other approximations to QN(y). The comparison is based on the relative
 error defined by

 (46) = (QapQex)/Qex,
 = [(1- Oap)- (1-ex)]/(1- x, y < y,

 where Qap is the approximation and Qex is the exact value QN(y).
 Figure 1 shows 1I1 for approximations to QO(y) when the individual density

 is p,(v) = exp (-v), v > 0 (Section 6). The sign of W is indicated by the + or -
 on the curve. A portion of QA(2) around y = 9 = 5 has been omitted to reduce
 the clutter. The 'Edge2' curve is calculated from an Edgeworth series ([1], No.

 26.2.48) in which the last term depends on the cumulants K2 = C2 = 1, K3 = 2,
 K4 = 6 of v and the third and fifth derivatives of exp (-x2/2) where

 (47) x = (y- -)/(a2NN),
 =(y- 5)/2.236, N= 5.
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 486 ROBERT LUGANNANI AND STEPHEN RICE
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 Figure 1
 Relative error of various approximations to Q5(y) when pI(v) = exp (-v), v >0.

 For y > the 'Cramer' curve is calculated from the approximation

 (48) QN(y)) [1- F(x)] exp [fo +?x2]
 obtained by deleting the 'order of' term in the equation for QN(y) presented in

 [7], p. 219. Here 1 -4(x) = erfc (x/\/2) and x is given by (47). A similar result
 holds when y < 9.

 In (48) we have made use of the fact that Cramer's function h(z) is related to
 our fo by

 (49) (x3[/IN)h (x/ N) = fo + 1x2.
 The 'Saulis' curve for y > is calculated in much the same way as the

 'Cramer' curve by using an expression given by Petrov ([7], p. 249) which
 represents the first two terms in a general series given by Saulis [10].

 Figure 2 shows I8W for approximations to Q5(y) when p,(y)= , Ivl<l1, the
 uniform distribution (Section 7). The Edge2 curve is calculated from the same
 general formulas as for the exponential distribution but now the cumulants are

 K2 a= 3 K - =0, K4=- and x = y/(o- N)= y N/. It turns out that, because K1 = 0, the two-term Saulis formula reduces to Cramer's result.

 It is seen that QA(1) and QA(2) do quite well over the entire range of y.
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 Relative error of various approximations to Q,(y) when p,(v)= ?, lj < 1.

 Appendix. Uniform asymptotic series for integrals

 The integral (2) for QN(y) is a special case (with a change of notation) of the
 integral

 (50) J= t-g(t)exh(t) dt,

 where x is large and positive. Methods associated with the names of Bleistein
 and Ursell for expanding (50) in a 'uniform asymptotic series' have been
 discussed in [8].

 (a) General comments. First assume that the term exp [xh(t)] in (50) has 11
 simple saddle points (where the first derivative of h(t) vanishes but the second
 does not) and that A is not a positive integer. The saddle points and the origin
 lie within a relatively small 'critical' region in the t-plane through which the
 path L' passes. The functions g(t) and h(t) are analytic throughout the critical
 region, g(0) 0, h(0)= 0 and t = 0 is not a saddle point.

 In the critical region h(t) behaves like a polynomial of degree x + 1. Let v be
 a new variable such that F(v)= h(t) where F(v) is a polynomial of degree g + 1
 in v, and v is nearly proportional to t in the critical region. The choice of F(t) is

 15
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 488 ROBERT LUGANNANI AND STEPHEN RICE

 discussed in [8]. This change of variable carries (50) into

 (51) J= fl vx-f(v)e x(v dv,

 where L in the v-plane corresponds to L' in the t-plane. Let tl, t2, - , t, be
 the saddle points in the t-plane and vi, v2, . * *, v, the corresponding ones in the
 v-plane. Deforming L into paths of steepest descent and considering the
 separate contributions of the saddle points leads to an asymptotic expansion of
 the form

 (52) J~ I V +(x)(po+0Pux-_ + p21x-2 +' ), 1=0

 (53) V(x) = L vl+X-eF(v) dv,
 where V1(x) is regarded as a tabulated or easily computed function. It turns out
 that p,, does not depend on L' or L, and by choosing suitable paths we can get
 a set of equations that can be solved for the p,,'s.

 (b) The one-saddle-point case. For illustration consider the case 1 = 1. A
 treatment of this case which differs somewhat from the following one is given

 in Appendix F of [8], and entirely different treatments are given by Bleistein in
 Sections 6 and 7 of [2] and by van der Waerden [11]. See also the excellent
 discussion of uniform asymptotic expansions given in Chapter 9 of Bleistein
 and Handelsman [3]. We seek an expansion of the form (52) with fL = 1 when

 Vo(x) and Vl(x) are given by (53) in which F(v) is a second-degree polyno- mial. A convenient choice is

 (54) F(v) = v2 - 2v v.

 Let L' be the path of steepest descent that has tl as its highest point. A classical saddle-point expansion about tj gives

 (= LtX-1g(t)e'h(t dt

 n-O

 where the ai's can be calculated from the derivatives of g(t) and h(t) at tx
 (see, for example, (103) of [8]). Similarly, from (52) and (53), J, can also be
 expressed as

 (56) 31~ " [Vl(x)]x(Poe + plx-' +' "), 1=0
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 S[VW(x)]= v +X-lex (u) dv
 (57)

 - exp [xF(vi)] 1 f3mx ,2 m=O

 where L, is the path that has v, as its highest point.
 Putting (57) in (56), equating coefficients of x-'-" in (55) to those in (56),

 and using

 (58) 1310 = 31oo00
 gives a set of relations, the nth of which is

 PnO E oIn 1 "-1

 (59) Pnl= a10 1 (l,O,n-kPkO+l,l,n-kPk 1),
 V)1 1110 31o k=0

 where the summation is omitted when n is 0.

 Another set of relations can be obtained by treating the singularity at the
 origin in somewhat the same way as the saddle point. If the singularity is a

 branch point we take L' and Lo to be loops enclosing the branch cuts running
 out from the origins. If the singularity is a pole we take L' and Lo to be small
 circles around the origins. In any case

 (60) J= t-g(t)exh(t)e dt aonx-"-
 L0 n=O

 (61) [V,(x)]o= vl+X-leXF( dv~ 1 01mx-m--x
 Lo m =0

 Equating the two asymptotic series for Jo leads to

 (62) P , 0 1 n-1 (62)oPnO I (00,O,n-kPkO+190,1,n-kPk1)-
 9000 0000 k=O

 Equations (59) and (62) can be used to calculate pno and Pn, step by step,
 starting with Poo = aoo/l3ooo from (62).

 (c) Application to QN(y). For QN(y) we consider the special case in which

 A =0, g(t)= 1, pi = 1, ta is real, and L' runs from -ioo to +ioo with an
 indentation to the right at t = 0 (see Section 9 of [8] and Bleistein [2]). When
 F(v) is defined by (54), (53) gives

 (63) Vo(x) = inr erfc (vlxi), VI(x) = i(Tr/x)? exp (-xvi).
 If L'. and Lo are taken to be small circles about the origin,

 Jo= 2nri, [Vo(x)]o = 2ni, ['Vl(x)]0 = 0,
 and consequently all of the ao0, P3oom, 01,m are zero except aoo = 2mnri and
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 490 ROBERT LUGANNANI AND STEPHEN RICE

 3ooo= 27ri. The recurrence relation (62) then gives

 (64) Poo = 1, P,, = 0, n! 1.

 The an,,'s are defined by

 (65) t-Iex t dt- exh() alnx2 -2,
 -L n=0

 where L'1 runs upward through t1. Taking L1 to run from -ioo to +ioo through
 v1 makes [V,(x)], = V,(x), 1= 0, 1. Noting that the asymptotic series for Vl(x)
 consists of only the leading term shows that 11,im in (57) is 0 except for

 110 = i7Tr. Similarly, the asymptotic series for Vo(x) leads to

 (66) 3 10m = ir(--)m(1)ml)2m-1, m = 0, 1, 2 - -.
 Note that 110 = v1310oo as it should according to (58). The recurrence relation
 (59) then gives

 (67) Pn1= (aln - 11on)/3110o
 Inserting the values of pno and Pn1 in the series (52) leads to

 (68) t-lexh('t dt- i-r erfc (vx ) + exp (-xv1) (ain - 19on)x1-n L' n=O

 Since h(ti)= F(vi)= -v2 this series has essentially the same form as the series
 (3) for QN(y).
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