J. Appl. Prob. 24, 875-887 (1987)
Printed in Israel
© Applied Probability Trust 1987

SADDLEPOINT EXPANSIONS FOR
CONDITIONAL DISTRIBUTIONS

IB M. SKOVGAARD,* Royal Veterinary and Agricultural University, Copenhagen

Abstract

A saddlepoint expansion is given for conditional probabilities of the form
P{Y=y| X =x) where (X, Y) is an average of n independent bivariate
random vectors. A more general version, corresponding to the conditioning
on a p — l-dimensional linear function of a p-dimensional variable is also
included. A separate formula is given for the lattice case. The expansion is a
generalization of the Lugannani and Rice (1980) formula, which reappears if
X and Y are independent. As an example an approximation to the hypergeo-
metric distribution is derived.

CONDITIONAL PROBABILITY; HYPERGEOMETRIC DISTRIBUTION;, LATTICE
VARIABLE; TAIL PROBABILITY,; UNIFORM SADDLEPOINT EXPANSION

1. Introduction

The saddlepoint method used to drive asymptotic approximations to in-
tegrals of a certain type is known to give remarkably good approximations. In
Daniels (1954) it was shown that this technique was applicable to the problem
of approximating densities of sums of independent random variables. In fact,
to apply the resulting approximation, it is necessary to know the cumulant
generating function for the statistic, the density of which is to be approxi-
mated, whereas it is immaterial in this sense whether it is a sum of indepen-
dent random variables. However, in the case of an average, X say, of n
independent replications, it is known that the relative error to the density of X
is O(n~') as n tends to oo, uniformly for X in a bounded set. For comparison
the Edgeworth expansions typically keep a relative error of order O(n—*?)
uniformly only within sets for which X/+/n grow slowly. In this sense the
saddlepoint expansions are large-deviation expansions. Similar expansions
were derived by a different method in Esscher (1932) for distribution func-
tions, except that the expansion was in powers of n~ 2 By employing a
technique outlined in Bleistein (1966), Lugannani and Rice (1980) derived
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saddlepoint expansions for distribution functions of a one-dimensiona] statis.
tic. A review of this and related methods is given in Daniels (1987).

For a conditional density it is straightforward to obtain a large-deviatmn
expansion, simply by approximating the numerator and denominator Separg.
tely by a saddlepoint expansion. This is the so-called double saddlepoip
approximation, see Barndorff-Nielsen and Cox (1979). It is casy to see that thjg
approximation keeps the same properties in terms of the relative errq,
uniformly within sets of large deviations as do the single saddlepoint expan.-
sions. It is the purpose of the bresent paper to derive a saddlepoint expansiop
for the conditional distribution function of one coordinate of a random vector
given the others. A solution to this problem is simple if the conditiong]
cumulant generating function is tractable for further calculations, but this may
not always be the case. However, this possibility should be kept in mind ag a
preferable method whenever feasible, because the expansion derived below is
based on a saddlepoint expansion of a multivariate integral, which may be lesg
accurate than for one-dimensional Iintegrals. Also the possibility of combining
the two methods is worth considering, i.e. to calculate the conditional cumy.
lant generating function given some of the coordinates directly, and then apply
the formula given below to the conditional probability given the remaining
conditioning coordinates. The calculation of the expansion for the conditional
distribution function requires knowledge of the cumulant generating function
for the distribution for the entire vector random variable under study, and the
solution of two saddlepoint equations, one for this vector random variable and
one for the vector of conditioning coordinates. The expression is given in
Section 2 for the expansion of P{¥ = p | X = %} where (X, Y) is the average of
n independent replications of bivariate random vectors, and for the p-dimen-
sional case where we condition on a linear function of dimension p—1. We
- stick to the case of independent replications to clarify the orders of terms,
although the approximation may be used for other cases as well. Formally this
is done merely by taking n = |, We only state the first-order expansion; further
terms may be obtained as described in Bleistein (1966), and they will be in
orders of integer powers of 5 ! relative to the main term uniformly in large
deviation sets. Section 3 contains an outline of the proof based on inversion of
characteristic functions. A brief sketch of another proof, which is somewhat
simpler, is also given, because the method may be of some general interest.
This consists of a saddlepoint expansion for the integral of Daniels’ saddle-
point approximation to the density, and involves a technique from Bleistein
(1966) for a saddlepoint near an endpoint of integration. The two methods
lead to the same expansion, just as for unconditional probabilities where they
both lead to the Lugannani and Rice expansion. However, the second method
holds for the continuous case only, whereas the first one generalizes to the
lattice case also, by modifications as in Daniels (1987), as is shown in Section
4. The second method of proof may be compared to the expansion obtained by
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applying the method of Laplace to the integral of the conditional saddlepoint
© density approximation. This method yields an expansion in powers of n ™12,
and for the unconditional case it was shown by Robinson (1982) that it has an
asymptotic behaviour similar to the expansion in Esscher (1932). For further
discussion of these methods, see Daniels (1987). Finally, in Section 5 we apply
the method to an example, namely the hypergeometric distribution, for which
the approximation turns out to give an excellent agreement with the exact
values. Since it can hardly be considered a problem to obtain exact values for
the hypergeometric distributions, except possibly for magnitudes for which the
normal approximation gives satisfactory values, this distribution is included
merely as an example. More important applications may be to conditional
tests in exponential family models, or to other statistical problems of con-
ditional inference.

2. The expansion for the conditional distribution

Consider first the bivariate continuous case. Let (X}, Y)),- -+, (X,, Y,) be
independent identically distributed bivariate random variables with density
fix, v) at (x, ) and cumulant generating function x given by

2. K(s,u)=In ff Jx, p)exp{sx + uy}du ds, S, UEC,

which we shall assume exists in a neighbourhood of (0, 0). Let X =n"'ZX,,

Y=n"'ZY¥, and fix a point (X, y). We want to expand the conditional
probability P{¥ = y | X = %}. Denote the derivatives of « as follows:
. .0 , 9
(s, u) = k(s u), K,(s,u)=—xK(s,u),
as ou
(2.2) ,

9
Kis(s, u)=5;;fc(s,u),

ete., and let & denote the 2 X 2 matrix of second derivatives. We need the
saddlepoint, §, say, corresponding to X =X, defined by the saddlepoint
€quation

(2.3) k(S 0) =%, SER

and the bivariate saddlepoint, (S, 17) say, corresponding to (X, ¥) = (%, ¥),
defined by

(2.4) kS ) =X, kG, 0=y, S aER

The approximation now becomes

!
|
]
|
i
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P{Yzy|X=x)

~ 1 — (v nw) + (v W ){[K; (S0, 0)]"/(+/ ni [K(S, 1) |V?) — (v nw) -1,
(2.5)

where @ and ¢ are the standard normaj distribution and density functiong
respectively, [Kk(S, 17)| means the determinant of % (5, i) and '

(2.6) W = sign(i){2[$x + 4y — x(s, 7)] — 2[S6% — K (S,, 0)1) 12,

The quantity \/nw is the signed square root of minus twice the log likelihoog
ratio statistic, based on the observation (X, ¥)=(x, p), for the hypothesis
4 =0 1n the generated exponential family with densities f(x, y)exp{sx + uy)
parametrized by (s, u). The error of approximation (2.5) is O(n ~!) relative 1o
the main term as » —> o, uniformly for (%, V)EK, where X is some fixed

(%(s, u), k,(s, u)) for which K(s, 1) exists.

If X;and Y, are independent the approximation reduces to the one obtained
by Lugannani and Rice (1980).

The generalization of (2.5) to conditional probabilities of the form
P{X,zx,|(X, -, X)) =(%,- -, X,-1)} is quite trivial as well as its proof,
Stated in somewhat more generality, although trivially reduced to the case
mentioned above, the multivariate version takes the following form, which
may be useful for applications, Let X,,---, X, be independent identically
distributed random vectors in R?,let Abeap x (p — 1) matrix of rank p—1
and b €R’ a vector which is linearly independent of the columns of 4. With
X=n""SX,and ¥ = b"¥ we get the approximation analogues to (2.5),

P{Yzy|4'X=a)
~ L= @) + (v b | A R(G)4 1 (v/ iz [R(D)"|(4, b)|) — (V)1
.7

where k is the p X p matrix of second derivatives of the cumulant generating
function, (4, b) is the P X p matrix that equals 4 with appended as the last
column, and the saddlepoints 7, — ASy and 7 = A5 + b, both in R? , are given
by the equations

(2.8) A'R(AS) = 4, SHERFL
where
. 0
1) =—x(1),
k(1) % x(1)

and

(2.9) A'k(D)=d, bi(i)=y,
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which is equivalent to #(7) = X, where x is the unique point with 4’% = 4,
b’x = y. Finally W is

(2.10) W = sign(i){2[x — k(D)] - 2[5od — K(i;)]} 2.

If, in particular the columns of (4, b) are orthonormal, the determinant
{(4, b)] is 1, and the approximation is recognized as a generalization of (2.5).

The above expressions are all for the case of continuous variables. We return
to the lattice case in Section 4.

As in the Lugannani and Rice formula the singularity at # = 0 correspond-
ing to w = 0 is removable, such that the expressions (2.5) and (2.7) are analytic
throughout their domain and should be replaced by their limiting value at
4 =0, which in the general form corresponding to (2.7) is

P(Y Z b'ie(A$y) |A'X = )
~ -;- - <51T;> " (DO RY)2 + L tr{A(4RA) T A TV ()] W(virv) 12y,
2.11)

where the derivatives i and x® are evaluated at lo = AS,, v ER? is the vector
b~ A(A'KA) "' 4'kb, while k3(v?) is the three-fold product IZZKRvvve,
where (v,) and «{ are the coordinates of v and k¥, respectively, and finally
k¥(v) is the p X p matrix with (7, /)th coordinate Zx@v,. If 4°X and b’ X are
independent the expression reduces to b — $A:(2mn) =12, where A, is the standar-
dized third cumulant of b’X;, in agreement with the Lugannani and Rice
formula. The expression (2.11) is identical to the one obtained by the mixed
Edgeworth saddlepoint approximation at this particular value, see Barndorff-
Nielsen and Cox (1979); just as the Lugannani and Rice formula reduces to the
Edgeworth expansion when evaluated at the mean.

Itis often convenient for applications to restate the expression (2.7)in terms
of the line of support of the conditional distribution. Thus let c €R? be a
1on-zero vector satisfying 4’c = 0. Then, if we let ¥ denote the point in R” such
that 4’8 = g and b/ = Y, the conditional distribution of ¥ is located on
X +rc, r€R, and we may write X = ¥ + Re, where R = (¥ — p)/(b'c). Now
approximation (2.7) becomes

P{RZO|AX =A%) ~ 1 — O(/nw)
+ SRR (I6) "'’ ™ (o)) (v (e DY [R(D) ) — (/i) ! ),

¥here the sign of w should be redefined to equal that of (¢’f), to take into
'ccount the possible change of ‘direction’ if b'c < 0. The saddlepoint equation
2.8) for 1, is in this setting more conveniently stated as the solution to
k(f)) = A% with the restriction ¢’ly =0, while the saddlepoint 7 from (2.9) is

e e s prmo——
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simply given by i(f) = x. The limit of (2.12) at ¢’ = 0 is identical to (2.11),
except that v should be replaced by (k(z)) ~'c.

3. Conditions and proofs

We shall prove the expansion for the bivariate case for which the method ig
more transparent and, except for notation, practically identical to the one for
the multivariate case. The following three conditions are required for the
validity of the proof.

Conditions.

(I) Some positive power of the characteristic function for (X., Y}) is integr-
able.

(IT) The cumulant generating function x for (X;, Y)) exists in a neighbour-
hood of (0, 0). '

(ITI) The variance matrix (0, 0) is non-singular.

The last condition obviously causes no loss of generality, because we may
restrict attention to a subspace if it does not hold.

In the proof below we shall outline the method but not pay much attention to
the error term or to the possibility of deriving higher order expansions. That
the error is of the form described in Section 2 follows from the methods being
used, for which we refer to Daniels (1954), Bleistein (1966) and, in particular,
Olver (1974), Chapters 3-4.

Proof. The inversion formula for the density /of (X, Y)is
2 io joo
3. flx )= <5’;—> f f exp{n[r(s, u) — sx — uyl}ds du
1 ~ i —iw
from which we obtain the integral, Q(y IJE) say, given by

00 | 2) = L “ e, vy

2 ct+io ioo d
= <__n > f f exp{nlr(s, u) —sx — uﬂ]}ds—z-{ ,
2mi c—iw J —im nu

where ¢ > 0 indicates a transformation of the path of integration to avoid the
singularity at « = 0. In the case ¢ <0 we should subtract a certain quantity
from the left-hand side, but for simplicity we stick to the case ¢ >0 in the
sequel. For the integral in s in (3.2) for fixed u we now use a standard
saddlepoint approximation, exactly as for the usual approximation to densities
as in Daniels (1954). The saddlepoint, $, say, 1s defined by the equation

(3.2)

(3.3) K(S,u)y=2x, §,ER,

and the approximation to (3.2) becomes
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R o i 1/2‘1— ct+ix ) . »—1/2@
(34) Q()' IX) <27l'> 27Zij::~ioo exp{nh(u))(sz(Sua L()) y >
where
(3.5) h(u) = k($,, u) — 5§ — uy.

By differentiation of (3.3) with respect to u we see that ds,/du =
~ (K(S,, u)) 'Ry, (S,, 1), and hence that the first two derivatives of / are

(36) h(u)zku(§u> u)—ﬁv
3.7 R(U) = R (S 1) = (R (S )R (S, 10).

To approximate (3.4) we use another saddlepoint expansion, modified as
described in Bleistein (1966) to deal with the singularity at « = 0, and, in fact,
quite similar to the one used to obtain the Lugannani and Rice formula; see
Daniels (1986). The saddlepoint # €R is obtained by equating (3.6) to zero,
which leads to the equations (2.4). We introduce the new variable w by the
equations

(3.8) w —w)? = h(u) — hw),
(3.9) Wt = h(0) — h(@), sign(w) = sign(a),

such that w = 0 when u = 0, and w = W corresponds to = 7. We now choose
¢ =14 1n (3.4), assume i > 0 to avoid technicalities, and rewrite (3.4) as

310 00 [0~ (55) " explnn@) 5 [T enp - mz} o2,

2, .

where
du w
(3.11 =" (e (¢ ~172
) §O0) === [R5, 1))

s analytic with a removable singularity at w = 0. In fact, we have
(3.12) (0) = {Ky(5%, 0} 712 g() = =" i(s, )|~ 172,

where we have derived the value of dw/du at u =1 by differentiating (3.8)

; twice with respect to «. which gives

€ dw o fdw\? .

d (3'13) (W—W)w—i—(a) =h(u),
$

and the calculation is finished by insertion of (3.7) and taking u =4,
W=, Now, following Bleistein (1966), the integral in (3.10) is approxi-
Mated by the integral obtained by replacing g(w) with the linear function
£(0) + Wi ™! (g(1W) — g(0)), which agrees with g at the two ‘critical points’
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w = () and w == . Bleistein showed by a partial integration that the remainder
then is an integral of the same form, but with a factor n~!. Thus (3.10) is

approximated by

12 1
00 )~ (5”;) (0)exp(nh(0) - exp { - w}

X f\wfm exp ][g(w = W)z} (W™ + W (g()/g(0) — D}aw
(314) n\ 12
B <E> {Ka(Sr 0)) ™ exp{ = n(SH¥ = K(S, 0)))

X1 = O/ nw) + ¢(+/ nw)(v )~ (g(w)/g(0) — 1)),

where the final expression is noticed to be valid also when @ < 0, because to the
order considered the same quantity should then be subtracted from this ag
from Q¥ | X). The factor in front of the square brackets in the last expression
1s exactly the first-order saddlepoint approximation to the marginal density of
X at . Hence the result follows by insertion.

A second method of proof starts from the first-order saddlepoint approxima-
tion to the bivariate density

(3‘15) f()f, )7) '\’En?; lk(fya ﬂy)'_l/ze}(p{ - n[S}X + Lzy}; - K(fy’ ay)]}a

where (5, ;) is the bivariate saddlepoint corresponding to (%, ). To obtain an
approximation to the integral Q(p | x) of fix,y) from ¥ to «, we use a
saddlepoint approximation to the integral of the right side of (3.15), modified
as described in Bleistein (1966), Section 5 or Temme (1982), to take into
account the endpoint of integration which may be close to the saddlepoint.
This method appears a bit easier than the one given in the proof above, but it
does not easily generalize to the lattice case as does the other method by slight
modifications to be discussed in Section 4. To obtain higher-order terms, in the
continuous case, by the second method based on integration of (3.15), we have
to include higher-order terms in the expansion of (X, y) as well as in the
expansion of the integral. For such expansions it is probably easier to use the
result in Temme (1982), which is adapted exactly to integrals of this type.

4. The lattice case

With modifications quite analogous to those described in Daniels (1987) for
the Lugannani and Rice formula, the proof given in Section 3 carries over to
the case when Y, is a lattice random variable. The conditioning variable X, may
be continuous or lattice, but for the moment consider the bivariate case
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. corresponding to Formula (2.5), except that we assume that 72 is a minimal
~ Jjattice for (X,, Y)). Let n¥ and ny be integers, then Formula (2.5) may be
" replaced by

P{Yzy|X=3)~1-d(/nw)

+ AV [K (S, 0]/(v/n(1 — exp( — @) | K(S, d) %) — (v/nw) '
4.1)

where the quantities w, §, and (s, i7) are still as givenin (2.3), (2.4) and (2.6). It
may be preferable, for reasons discussed in Daniels (1987) to introduce a
continuity correction and hence define

(42) J;z};_ %n—l:

and the corresponding bivariate saddlepoint (s, i) by Equations (2.4) with y
replaced by y. Furthermore W is a redefinition of W in (2.6) with §, i and y
replaced by §, i and y, respectively, whereas s, is unchanged. With this
continuity correction, Formula (4.1) is replaced by

P{Yzp|X=3)~1—&(/nw)

+ o0 [Rs (S, 0] /(v n 2 sinh(3i) | k(5 )172) — (v/mb) 1.
(4.3)

The expressions (4.1) and (4.3) are unchanged for the case when X, is
continuous, but Y still lattice. The asymptotic properties of the approxima-
tions (4.1) and (4.3) are the same as for the continuous case, i.e. the relative
error is still O(n ~') uniformly for (%, ¥) in a compact set. Also the conditions
for validity, given in Section 3, are still the same except that Condition I is
replaced by the condition that the lattice considered is a minimal lattice for the
distribution in question. If there is a continuous component, such as X; when
AXi is continuous and Y, lattice, this must still fulfil Condition 1.

Concerning the proof the only change, except for minor trivial changes in the
inversion formula, stems from the replacement in (3.2) of the integral from y
o oc by a sum, where ny runs from ny to oc. This summation results in the
factor (1 — exp( — #)) "' instead of (nu)~! on the right side of (3.2), and this
change corresponds exactly to the change from the approximation in (2.5) to
the one in (4.1). Details concerning the continuity correction are found in
Daniels (1987). A further advantage of the continuity correction is that it takes
us ‘away from the boundary’ of the support, where the saddlepoint is unde-
fined, except when the desired probability is trivially equal to 1.

Let us now turn to the general formulation where X is a p-dimensional
random vector, and we consider the conditional distribution of ¥ = p’.X given
A4'X as in Formula (2.7). We assume that the conditional distribution of ¥
given 4°X = d is a lattice distribution and that b has been scaled such that n¥
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has minimal lattice y, + Z, where y, is some constant that may dependon g.[f
¥ is a lattice point in this conditional distribution of Y, the saddlepoint
approximation corresponding to (4.3) now becomes

P(Yzyp|aX=a)~1-0(nw)

+ p(v/ ) | AR (I)A |/ n2 sinh(q)| R4, b)) — (v nw)™'}
(4.4)

with notation as in Formula (2.7), except for the continuity correction
y=y—4n"" and corresponding changes in the definitions (2.9) and (2.10)
leading to f and W in place of ¢ and W, while # is still given by the relation
[ = A$ + bii. Whether 4’X is lattice or continuous or a mixture of the two is
immaterial for the approximation (4.4). The setup considered here trivially
covers the case when X, € Z? and we conditionona(p — 1)-dimensional linear
function of X, in which case the remaining component will be either degener-
ate or lattice. The limit of the expression in (4.4) as 7 —~0 is identical to the
expression (2.11). This is not so for the uncorrected version corresponding to
4.1).

As for the continuous case the analogue of version (2.12) of the formula may
be useful. Thus, let ¢ ER? satisfy A’c =0, and let us further require that
b’c = 1, such that n.X may be written as nX = nx -+ nZc, with Z as minimal
lattice for nZ = n(Y — ¥). The continuity correction included in (4.4) becomes
% =% — $n~'c, and the two saddlepoints are given by the equations k() =%
and Ak(i,) = A% with the restriction ¢’fy=0. Then Formula (4.4) takes the
form

P{Z=z0|AX =A%) ~1 - D(Vnw)

+ (v i) | R V(' (Tp)e) (v n2 sinh(be' D | R(1) ') — (Vr#) 7'},
(4.5)

where W is the continuity corrected form of (2.10), 1.e.

(4.6) W = sign(c’D{2[5% — k(D] — 2[ipx — k(L)]}'

The corresponding restatement of the uncorrected version corresponding to
(4.1) is apparent from the above expressions.

5. Example: The hypergeometric distribution

The hypergeometric distribution is a one-dimensional distribution with
distribution function

G Hoato= 3 ()N /() mmanon =)

where k =r, n and r, n = N and all numbers are non-negative integers. An
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attempt to apply the Lugannani and Rice formula leads to a complicated
equation involving the hypergeometric function. The distribution may, how-
ever, be represented as a conditional distribution constructed from four
independent Poisson random variables, and hence we may apply the result in
Section 4, more specifically we shall use the continuity corrected version (4.5).

Let (X,), i,j=1,2,be four independent Poisson random variables with
EX;=L Considered as a two by two table the marginal totals are X, =
X, + X, and X, = X, + Xy, while X.=ZZX; is the total. The conditional
distribution of X,, given the marginal totals is of the form (5.1) with N = X,,
n = X,.and r = X,;. Thus we consider this conditional distribution, or equiva-
lently the conditional distribution of the vector X = (Xy1, X1z, Xa1, X2) given
the marginal totals.

Fix a point (%;) and let %, X, X. denote the corresponding margins, and
consider the conditional probability of {X, = %} given these. The con-
ditiona! distribution of X is concentrated on the set {X + z¢; €7), where cis
the vector (1, — 1, — 1,1Y, and the set is a minimal lattice for the distribution.
Notice that in the notation we have chosen, the number of replications from
the previous sections is n = 1. The continuity correction replaces X =
(Ryy, X120 Xa1s X22) DY the vector X = % — t¢. The cumulant generating function
and its first two derivatives are

K (t) = Z ()'U - 1)’ }'ij = exp(tij)7

(5.2) fe(t) = (A, A Aans And)'s

K(t) = diag(}‘lls 1\23 /121’ AZZ):
vyhere t = (t,1, L Loy, t22). Thus the saddlepoint f, cf. (4.5), has coordinates
f; = In £, say, where 4; = X;. The other saddlepoint 7, with coordinates In 4;,
say, must satisfy ¢’t; =0 which is equivalent to Ajdn/(Aipdn) =1, and it is
easily seen that the solution is
(5.3) Ay = XXyl X
which in statistical jargon is ‘the expected value’ of X, in the model of
independence between rows and columns. It is now a matter of insertion to
obtain the expression corresponding to (4.5) for which we note that

L (fp) |2 = (TIR,)(IL%, )/ X2
‘K([)ll/z - ( H xfj)l/z ,

¢’f = In(%; Xp/ (X12%21))
(5.4) ) C\m
('R~ Nlp)e) " = ( z &f‘)
i

- 1/2
W = sign(c’t) j2 SR InX; — 2 X In X — ¥ %, In %, + X In X. ,
] ij ij - v ’l
7

ij i
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which, inserted in (4.3), give the approximation

P{X“ = f“ I /Y1.= xl., X2.= )Zz., Xl == X‘.I}

~ 1 —®O) + ¢() {(————f“&'x“x’{ )”2 (2 sinh(Je’r)) "' + wﬂ} '

Xa X131 X 2% X,
(5.5)

The approximation is only undefined when one of the marginal totals is 0 ip
which case the probability is-1. The quantity % is the signed square root of
minus twice the log likelihood ratio statistic for the test of independence in the
2 X 2 table, except that it has been calculated with a continuity correction,

TaBLE 1
Hypergeometric distribution. Approximation (5.5) to P{X,, Z x,, | x,., x,., x.;} compared to the
exact value, for four independent Poisson variables (X;;) with the same mean

X1y Xy Exact Approximation Relative error
X5 X33 probability (5.5) (%)
85 5
75 35 1.505 x 107¢ 1.501 x 107°¢ - 0.3
14 6
8 12 0.05548 0.05541 - 0.1
5 3
1 9 0.03167 0.03127 - 1.3
5
i 5 0.04004 0.03929 - 1.9
6 0
0 6 1.082 x 1073 0.976 x 1073 —-9.9

Some numerical examples of the approximation (4.5) to
P{X, =z x; I X, X5, X, } are given in Table 1. It is seen that for these examples
the relative error never exceeds 10%. Because the example is merely included
to give an impression of the quality of the approximation, it is not compared to
alternative approximations. An extensive study of various kinds of normal,
binomial and Poisson approximations to the hypergeometric distribution, i
given in Molenaar (1970). If approximations are needed, however, it is clearly
an advantage to have a single approximation that works well over the major
range of parameters and distributions.
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