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SUMMARY

Asymptotic approximations for the tail probabilities of certain statistics with complex
moment generating functions are obtained by the usual methods of large deviation
theory. It is pointed out that this approximation should be adequate over the entire range
but of particular use for extreme tails. Approximations to the significance levels for one
and two sample permutation tests are obtained and these tests are inverted to obtain
approximate confidence intervals. These methods are applied to some numerical
examples and the results are compared with the exact values and with approximations
obtained from Edgeworth expansions.
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1. INTRODUCTION

THERE are computational difficulties inherent in the use of permutation tests unless good
approximations are available for tail probabilities. Edgeworth expansions have been obtained
by Albers, Bickel and Van Zwet (1976), Bickel and Van Zwet (1978) and Robinson (1978), and
these give good approximations in most cases. However, it might be expected that saddlepoint
methods, or large deviation results, might give better approximations, especially in the tails,
and it is there that the approximations are most important.

Saddlepoint approximations have been considered by Daniels (1954), Blackwell and
Hodges (1959) and, more recently, by Barndorfi-Nielsen and Cox (1979). These authors
considered saddlepoint approximations for densities by expanding the complex moment
generating function in a Taylor series about a saddlepoint of that function. Bahadur and
Ranga Rao (1960) and Petrov (1965) considered related approximations for tail probabilities.
All these papers deal only with sums of independent, identically distributed random variables.
In Section 2, we will consider how these methods may be used to obtain approximations for
tail probabilities in a slightly more general situation, when we can obtain a normal
approximation for an exponentially shifted distribution. Further, if one more term of an
Edgeworth expansion is available, we show how to obtain a second saddlepoint approxi-
mation with a smaller relative error. It is pointed out that this approximation is equivalent to
the numerically integrated density approximations of Daniels (1954).

We will describe how these methods may be used to give approximations for the
significance levels of permutation tests in the one and two sample problems although the
statistics in these cases are not sums of independent and identically distributed random
variables. It will also be shown that these approximations can readily be obtained numerically
and that then the tests can be inverted numerically to give approximate confidence intervals.
Finally, we will consider some examples from the literature and compare the approximations
obtained by these methods with Edgeworth approximations and with exact values.

Proofs of validity of the expansions by obtaining inequalities on error terms are quite
complicated but do not involve any new techniques, so these are only outlined here with
references to related work.

© 1982 Royal Statistical Society 0035-9246/82/44091$2.00
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2. THE SADDLEPOINT APPROXIMATION
Let T, be a statistic with distribution function F,. For any fixed value u, let

— oo

V() = [Q,w)] f T dE),

where

Q,(u) = J e dF,(y),
is assumed to exist in the range O <u<B,<o0, be an exponentially shifted distribution
function. If ¥,(x) can be uniformly approximated by G,(x) = ®(c, !(x —m,)), where ® denotes
the distribution function of a standard normal variate and m, = m,(u), 62 = ¢2(u) are the mean

and variance of V,, then we can use this approximation to obtain approximations for 1 — F,(x,)
and F,(—x,), for any x,>0. For

1—Fy(x,) = 0,(w) f "o avy)

*n

= (2n03) "% Q,(u) Jmexp(— uy —(y—m,)*/207)dy

*n

+0,(u) f e dV,(y)—G,(y)

:A +A2

As shown, for example, in Petrov (1965), we can choose u such that m,(u) = x,, whenever x,, is
such that 1 —F,(x,)>0, then we obtain

Ay = Q,(w) exp (—um,+3u’ 07) (1 — D(ua,). 1)

We will call this the first saddlepoint approximation.
Now if

Supx | I/;l(x) - Gn(x) | < Rm

then using integration by parts we get

| A2 = Qu(u)| exp (—um,) (V,(m,)— G,(m,))

j V.0 =G, (y)ue *dy

<2Q,u)exp(—um,)R,, )

where again u has been chosen so that m,(u) = x,.

We need a result of the type of a Berry—Esseen inequality, to ensure that R, is small enough
and this will be shown to be the case in the examples considered here. Generally, we need to
show that R, is O(n™?). Then by noting that

log Q,(u)—um, <0

and, in particular, is large and negative when x, is large, we see that the saddlepoint
approximation should be as good as a normal approximation throughout the range and
should be much better in the extreme tails.
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It is worthwhile pointing out the relation between this approximation and the results of
Cramér (1938) and of Bahadur and Ranga Rao (1960) and Petrov (1965) for sums of
independent and identically distributed random variables. In the Cramér case it is shown that
for x,<e./n, for some £>0,

uo, = x,(1+o(1)), 3)

3
_ 1,2 2 _ Xn Xn
log Q(u) —um, +3u’ o;, ———\/n i,,(—“\/n), 4

where 4,(¢) is a convergent power series with coefficients depending on the moments. This result
is concerned with the relative error of the normal approximation, rather than with obtaining
an alternative approximation. The results of Bahadur and Ranga Rao and of Petrov are
concerned with the case x, large and they use the further approximation

exp (bu’ 07) (1 - ®(uo,) = (21) *(ua,)” (1 +o(1)).

It is noted that this approximation is not adequate for the small sample approximations
considered here since uo, is not large enough.

If V,(x) can be uniformly approximated by an Edgeworth series, then a more accurate result
may be obtained by including terms from this, thus increasing the relative accuracy over the
whole range. We will consider the inclusion of terms of order n~*. Suppose

G(x) = ©(y)+3K1, P(¥) — K3, Hy(y) (), Q)

where ¢(x) = @'(x), H,(x)D(x) = ¢"(x) and we write y = (x—m,)/o,. Here k,, and k5, are
usually of order n~* and will be defined in the particular cases later. In the case of sums of i.i.d.
random variables, x,, = 0 and k3, is the standardized third moment of V,. Then

e o] 0

e " dG,(y)+ Q,(u) J e " d(V(y)— Gu(y)

*n

1 _Fn(xn) = Qn(u)\[

*n

= Bl + B2. (6)
Now if we choose u such that m,(u) = x,, whenever 1 — F,(x,)>0, then integration in B, gives

By = A[1—3K,, Wi(uo,)+ K3, Ws(ua,)], (7
where ‘

$(v)
W,(v) = -
1(v) 1— ()

and

@ -1D90)_ .

1—-®(v) '
The proof of this result is given in Appendix 1. We will call B, the second saddlepoint
approximation. If

Wi(v) =

sup, | V,(x) — G,(x) | <R},
then as in (2), we have
| B, |<2Q,(u) exp (—um,) R,.
If, for example, we can show that R, = O(n~!), then B, = B, O(n" ), so the relative error of the

approximation B, is of order n™!. In the case of sums of i.i.d. random variables, it is sufficient
that the variables possess fourth moments and that Cramér’s condition (Feller, 1971, p. 541)
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holds. Saulis (1969) has obtained an expansion involving k3, when discussing extensions of the
results given at (3) and (4).

In Appendix 1 it is also shown that if a saddlepoint approximation is available for the
density f,(y), corresponding to F,(y), then the integral of this density for y>x,, may be
approximated by B; with a relative error of O(n~?'). This is to be expected since both
approximations have relative errors of O(n '), but it seems worthwhile to show explicitly how
to obtain the relationship between these approximations, considered by Daniels (1954) and
Barndorff-Nielsen and Cox (1979), and those given here. However, it should be noted that in
the case of the permutation tests considered in Sections 3 and 4, ¥,(x) does not have a density,
so the local limit theorem could only be used formally. This formal approximation has been
suggested, in the case of a one sample permutation test, by Daniels (1955) and in the case of a
two sample permutation test, by Daniels (1958).

3. THE ONE-SAMPLE CASE
Suppose that we observe the random variables X ..., X,. We will consider either the usual
model
(1) Xy,..., X, are iid. with a distribution function F(x —6), where F(y) is symmetric;
or a randomization model
(2) Xy,.., X, are differences of pairs of observations from a randomized trial where the
treatment effect is additive; so a model for X; is

Xi = 0+Y:Un

where Y, ..., Y, are ‘plot errors’ and have some relatively arbitrary distribution, or may
be considered as fixed values, and U,,..., U, take values 1 or —1 with probabilities 1.
Of course, the second model includes the first as a special case. We will comment later
on the conditions to be imposed on the distribution of Y,... Y,

-
In either case, we are interested in the hypothesis H: § = 6. The appropriate permutation
test in this case is conditional on |a,|,...,,|a,|, where

a;=(X;— 00)/[2;‘()(1' - 90)2]%'
The test statistic is
T, =Y Vilal,

where V, are independent random variables taking values 1 and — 1 with probabilities 1. The
observed value is t, = X, q, and the significance level is P(T,>t,), where P indicates the
conditional distribution given |a, |,...,|a,|. If we wish a two sided test then | T} | is the test
statistic.

In this case the moment generating function is

0.(2) = exp [Yx KQ2za)],
where
K(x) = log(pe®™+qe™ ),

where p+q =1, and, in this section, p =4. If we put z=u+iv and consider a Taylor
expansion of log Q,(u+iv) about v = 0, we obtain in a standard fashion,

0.(z) = exp [} K(2ua,) +ivm, — 3> 621 (1+ R),
where
m, = m,(u) = ZZk a, K'(2uay),
on = op(u) = 4Zk a; K"Quay),
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and where it can be shown that, if we take B to be a positive constant which may be different at
each occurrence,

|R|<Bo, *|v|*exp (§v* 07) Y| @ | K" (Quay) ©)

for |v|<B(Z;|a,|?)"!. Then using the usual Esseen inequality (Feller, 1971, p. 538), we can
obtain the result

IR, = sup, | V,(x)— G,(x) | < BY.|ac|’.

The detailed proofs of these results are similar to, but simpler than, those obtained by
Robinson (1977) and discussed in the next section.

Now we can apply the methods of Section 2, to obtain a saddlepoint approximation for
P(T,>t,). First we need to solve the equation

my(u) = t, ©)

for u. This must be done numerically, but since m,(u) is an increasing function this is easily done
by an iterative Gauss—Newton method. Then, we can calculate o,(u) and substitute in (1) to
obtain the approximation A4,.

Under the conditions given in (2.15) and (2.16) of Albers, Bickel and Van Zwet (1976), an
Edgeworth expansion (5) exists with x,, = 0 and

Kan = 2k ai K" (2ua)/[Y, a K" (2ua)]>?.

This can be shown by expanding log Q,(z) about z = u, as above, and taking one further term
in the expansion to obtain

0.(2) = exp [ K(Quay) +ivm, —3v* 621 (1 + iv)* Y, ai K""(Qua,) + R,
where it can be shown by the methods of Robinson (1977, 1978) that
|R'|<Ba, *|v|*exp (3v° 67) Y ai,
for |v|<B(Z;|a,|*>)”'. This approximation can be extended to the range
B(Z,|a, )" ' <v<B(Z,a;) "', using the condition (2.16) of Albers, Bickel and Van Zwet (1976).

Then, since Q,(u+iv)/Q,(u) is the characteristic function of V,(x), we can show that this is
approximated by

9u(v) = exp [ivm, —3v* 631 (1 +(iv)* Y ai K" Quay)).
Now from the usual Esseen inequality (Feller (1971) p. 538) we can show that
sup, | V,(x)— G,(x) | < B} a.

After solving (9), we can calculate k3, and hence the second saddlepoint approximation by
substituting in (7).

4. THE Two-SAMPLE CASE

Suppose that we observe the random variables X4,..., X,, and X, {,..., X;n+, Consider
either the usual model
1) Xy,...X,,and X, 1,..., X,n 4 are independent and identically distributed with distri-
bution functions F(x—6,) and F(x—6,), respectively;
or a randomization model
(2) X4,...,X,, are observed on m experimental units chosen randomly from m +n and given
one treatment and X,,,..., X,, 4+, are the observations on the other units which are
given another treatment; it is assumed that the treatment effects are additive; so a
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model for these random variables is
Xi=ZRi+919 i=1,...,m,
Xj+m=ZRj+m+02’ j= 1,...,",

where Z,,...,Z, ., have some relatively arbitrary distribution and (R,,...,R,,,,) is a
random vector taking each of the (n+m)! permutations of (1,...,n+m) with equal
probability.
In either case, we are interested in the hypothesis H: 6, —6, = §,. The appropriate
permutation test in this case is conditional on ay,...,ay, where N = n+m and

a = (L — Y)Y (Y- 7))’
for

Y,

i—0g, i=1,...m,

X
X; i=m+1,..,N.

b

The test statistic is

Ty=wyi)m, as,

where wy = Npq/(N—1) and (S,,...,Sy) is a random vector, independent of all preceding
random variables, taking each permutation of (1,..., N) with equal probability. The observed
value is ty = wy*Z™ , a; and the significance level is P(Ty>ty), where P indicates the
conditional distribution given a,,...,ay. Again, if a two-sided test is required, | Ty | is the test
statistic.

It has been shown in Robinson (1977) that if Q y(u +iv) is the complex moment generating
function of Ty, then

On(u+iv) = (Npg) ™' Y Ki) " *exp [D ok Ki+ivmy—30> 631 (1 +R)

where
my = W;%Zk a K,
on = wy [y xai Ki — Qe Ki)* /Y K

and K,, K}, K} are K(x),K'(x),K"(x) at x = ua, wy * +a(u), where a(u) is the solution of the
equation

YxKi=0, (10)
for each u, and where, for by = max,|a,|, |v|<Bby?!,
| R|<Bby(|v|*+ B)exp (30° 7).
Now using the Esseen inequality again it is shown in Robinson (1977) that
sup, | Vx(x) — Gn(x) | < Bby.

By using the methods of Hoglund (1978) this inequality could be improved to one with
BZX,|a,|? on the right-hand side.

Now the methods of Section 2 may be applied to give the saddlepoint approximation for
P(Ty>ty). It is necessary to solve simultaneously the equations

for u and «(u). This must be done numerically, but since for each u, £, K; is an increasing
function of o and my(u) is an increasing function of u, this can be done iteratively. Then we
calculate on(u) and substitute in (1) to obtain the approximation.
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It will be shown in Appendix 2 that taking an extra term in the expansion used in Robinson
(1977) leads to the approximation

Onu+iv) = (Zk K;/Npq)~*exp [Zk Ky +ivmy —30* o3,
x (1 —4ivoy Kk y+%iv)} 03 k35 + R),

where

ONKiN = Zk ay KZ’/ZI; K% _(Zk Ky (Zk ay K;)/(Zk K;c')z, (12)
oxkan = Y Ki =3 ai Ki' Hy+3Y ko, Ky Hf — H, (13)
where

H, = Zk ay K;:/Zk Kis
and K} is K"(x) at x = ua, wy* +o(u) for u and « obtained as in (10), and where it can be
shown by the methods of Robinson (1977, 1978), that

|R'|< Bexp (* 03) Y af

for |v|<B(Z,|a,|*)~!. The approximation can be extended to | v| < B(Z,a}) !, as in Section 2,
then using the Esseen inequality we can show that

sup, | Vy(x) — Gn(x) | < B}, ai.

After solving (11), we can calculate x,y and x;y and hence the second saddlepoint
approximation by substituting in (7).

It is necessary to remark on the conditions under which X,|qa,|® or Z,af will be small
enough with high enough probability. If Z,, ..., Z, are i.i.d. with finite third moment and non-
zero variance, then X, | g, |* and X, a; will certainly be of order N ™% and N~ ! with probability
less than one by a quantity of order N~ * and N ~'. Further, the conditions for Edgeworth
expansions to exist will require some sort of continuity properties on the distributions of
Z,,...,Z,. Albers, Bickel and Van Zwet (1976, Section 5) discuss these in the case of identically
distributed random variables. However, weaker conditions will ensure these results but it is not
appropriate to discuss these here. Some discussion appears in John (1981).

5. CONFIDENCE INTERVALS

To find a confidence interval with coefficient 1 —«, we consider the one sided test for the
hypothesis concerning particular values of 6, or §, and find the significance level of this test. If
the significance level is greater than «/2, then that value is in the confidence interval. So a
confidence interval could be found by obtaining significance levels for a “grid” of values of 0,
or d,. However, a more satisfactory computing procedure is given by the iterative algorithm

O;41 = 0;+ [0 —s(0)] [(s(0;)—s(0; - )0, —0;- )],
where s(6,) is the significance level for a test of the hypothesis 6 = 6,. Since s(f) is monotone for

0<60<max,|a,|, this process converges, and the convergence is rapid if appropriate starting
points are taken.

6. NUMERICAL RESULTS
Before considering particular examples, we will consider a continuity correction which
leads to some improvement in the approximation for small samples. First, we notice that at
x = Zi|a| in the one sample case and for x = wy* X, ¢, where ¢;>...>c¢,,,,, are the
ordered values of a,, ..., a,, +,, in the two sample case, the approximating probabilities are zero,
while the true probabilities are 2" and (mnt ")_1, respectively. However, at x = 0, both the
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approximations and the true values are 3. Jumps of size 27" or (" F™) ™! occur at various
points in the exact distribution but the approximating distribution is continuous. Thus, if x is a
point where a jump may occur and P, is the approximation, then a better approximation is
given by

P4+27" "1y xM—t2 L
where M = %, | a;|, in the one sample case. A similar result holds in the two sample case.

TABLE 1
Examples of significance levels and confidence intervals for one-sample problems

Data: Difference in sleep gained. Bickel and Doksum (1977, p. 215)
1-2,24,1-3, 1-3, 00, 1-0, 1-8, 0-8, 4-6, 1-4

First Second
Exact saddlepoint saddlepoint Edgeworth
Significance level 0-004 0-002 0-002 0-004
Confidence intervals
0-989 0-65, 295 0-65, 298 0-63, 3-04 0-60, 2-87
0976 0-73,273 0-75, 265 0-73, 2:69 0-66, 2-61
0-949 0-85, 245 0-86, 2:45 0-84, 248 0-76, 244

Data: Difference in plant height. Fisher (1935, Section 21)
—67, —48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75

First Second
Exact saddlepoint saddlepoint Edgeworth
Significance level 0052 0-048 0-052 0-054
Confidence intervals
0990 —9-4,470 —9-0, 468 —9-5,472 —84,477
0975 —40,436 —37,433 —42,437 —35,44:3
0950 —02,410 02, 40-5 —03,411 02,414
TABLE 2

Examples of significance levels and confidence intervals for two sample problems

Hours of pain relief due to drugs. Lehmann (1975, p. 37)
A 68 31 58 45 33 47 42 49
B 44 25 28 21 66 00 48 23

First Second
Exact saddlepoint saddlepoint Edgeworth
Significance level 0-102 0-089 0-101 0-098
Confidence intervals
0-991 —1-00, 397 —0-96, 3-88 —1-04, 395 —093, 3-87
0975 —062, 3-53 —0-57, 3-50 —0-64, 3:56 —0-57, 351
0-950 —0-30, 3-26 —0-27,322 —0-33, 328 —029, 323

Effect of analgesia for two classes. Lehmann (1975, p. 92)
Class1 179 133 106 76 57 56 54 33 31 09
Class11 77 50 17 00 -30 -31 -—105

First Second
Exact saddlepoint saddlepoint Edgeworth
Significance level 0012 0010 0011 0-014
Confidence intervals
0-990 —0-10, 16:13 0-06, 15-96 —015, 1619 —002, 1576
0-975 0-92, 14-68 1-18, 14-51 0-98, 14-72 1:07, 14-44

0-950 1-88, 13-52 2:07, 13-46 1-86, 13-64 1-95, 13-45
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In Tables 1 and 2, confidence intervals and significance levels are given for data sets which
have been used in the literature to illustrate non-parametric methods. These are compared to
exact values obtained for the permutation tests and to values obtained using an Edgeworth
approximation with three terms. These values have been obtained by John (1981). The first
saddlepoint approximation and the three term Edgeworth approximation are of about the
same accuracy and the second saddlepoint approximation appears to be slightly better. The
error in all these approximations is very close to the order of error caused by the discontinuity
of the exact test. The approximations were also compared for one and two sample Wilcoxon
tests and similar results were apparent in these cases. All three approximations are of a suitable
accuracy for practical application.
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APPENDIX 1
Using (5) and (6) we have

B, = Q,u) : exp (—uay —um,) () (1 —3x1, H1(y) + 83, Ha(y)) dy

(xp—=my)/ay,

o)

¢(2) [1 — 3K 1,z —uoy)

usy

= Q,(u)exp (—um, +3u” o7) f

+iK5,((z— uc,)® —3(z—ua,))] dz.
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Now

f "26(2)dz = $la)
fwzz ¢(2)dz = ap(a)+ 1 —D(a),

wa @(z)dz = (a® +2) P(a).

So integrating the above result gives
B, = Q,(u)exp (—um,+3u® 67) (1 - ®uc,)) [1 —3x,, Wy(uo,) + 5k, Ws(ua,)]

where W, and W; are defined in Section 3.
We will now indicate how this result can be obtained formally from a local limit theorem as
advocated by Daniels (1955). Suppose there is a saddlepoint approximation for the density

f(x) = F,(x) given by
exp (Ly(u(x)) — xu(x))

W == g (00
where L,(u) = log Q,(u) and u(x) is defined implicitly as the solution of the equation
Ly(u(x)) = x.
Then
w(x) Ly(u(x)) =
and
u () Ly(u(x)) + [u'(x)]* L' (u(x)) = O.
If
" (4)
g = O™ G = O

as in the case when we consider sums of independent, identically distributed, continuous
random variables, then we have

L,(u(y)) — yu(y) = L,(u(x,)) — x, u(x,)) — (y — x,) u(x,,)
=3y —x,)? 4 (x,) —§(y —x,)* w'(x,) + O(n ™),
Ly (N1 * = [Ly(x,))] ~*[1 —3K3,(y —x,)/0,+ 0~ 1)],
where o7 = L;(u(x,)). Using these results in the integral of f,(y) gives

1~ Fyfx,) = rfn(y) dy
_ exp(Lu(x,) —x, u(x
o2
X (1+ Syl —x,)%/03 + 0(n ™)
% (1= 3K (y— X)o7, + O(n™ ) dy.
— B,(1+0(n"Y).

"”f exp (= (v — %) tu—Hy—x)2/a2) (1 +0(n 1)
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APPENDIX 2
It is shown in Robinson (1977) that the complex moment generating function of Ty is

n

On(u+iv) = (2nBNm)"1J exp {Y . K((u+iv) a, wy * +a+i6)} db, (14)

where
Bym = <Z> pr(1—pt "
If E is the integrand, then
E=exp{Y Ki+i0), Ki+ivwy*), a, K;

302 Y K —Oowy* Yo Ki — o wy ' Tea? K

x [1+L4303 Y Ky +302owy ¥ Y a, Ky + 3002 wy ' D ag K

+0 wy 2 Y ai Ki')+ R].
If we choose « to satisfy (10), then the exponent in E is

N Ko+ ivmy —3v? o3 — 30 +owy * Y a, Ki/Y  Ki)? D u K.

So integrating in (14) formally, we obtain

exp )i K+ ivmy —30v? 63})
2n)* By Ki)*
where k,y and K3y are defined by (12) and (13).

Onu+iv) = [1—3ivoy Kk y+Liv)? oy ks + R,



