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 The Annals of Statistics
 2003, Vol. 31, No. 1, 274-286

 MULTIVARIATE SADDLEPOINT TAIL PROBABILITY

 APPROXIMATIONS1

 BY JOHN E. KOLASSA

 Rutgers University

 This paper presents a saddlepoint approximation to the cumulative
 distribution function of a random vector. The proposed approximation has
 accuracy comparable to that of existing expansions valid in two dimensions,
 and may be applied to random vectors of arbitrary length, subject only to
 the requirement that the distribution approximated either have a density or be

 confined to a lattice, and have a cumulant generating function. The result is
 derived by directly inverting the multivariate moment generating function.
 The result is applied to sufficient statistics from a regression model with
 exponential errors, and compared to an existing method in two dimensions.
 The result is also applied to multivariate inference from a data set arising
 from a case-control study of endometrial cancer.

 1. Introduction. This paper will develop saddlepoint approximations to
 multivariate tail probabilities for random vectors. The probabilities approximated
 are of form P[T > t], for a random vector T, with vector inequalities understood
 to hold termwise. These approximations will apply to random vectors whose
 joint distributions have multivariate moment generating functions, and will be
 used for inference about parameters in a generalized linear model, specifically
 in the presence of order restriction. These approximations might also be used to
 perform approximate conditional inference of the sort suggested by Pierce and
 Peters (1999); this application of the current result is still in progress. These
 approximations will be generated by approximating multivariate complex integrals
 expressing conditional probabilities in terms of the cumulant generating function
 of the underlying distribution. Use of this approximation requires that T have a
 tractable cumulant generating function; any sufficient statistic vector associated
 with the canonical parameterization of a generalized linear model satisfies this
 requirement.

 Suppose that a random vector T of length d has a density and a cumulant
 generating function X (r). The next section will demonstrate that

 (1) P[T > t] = c+iK exp(X(J )- TTt*) dr
 - c -iK (27ri)d =--d-- I- j r )

 Received June 2001; revised February 2002.

 1Supported in part by NSF Grant DMS 00-92-659.
 AMS 2000 subject classifications. Primary 62E20; secondary 60E99.
 Key words and phrases. Conditional probability, hypergeometric distribution, lattice variable, tail

 probability.

 274

This content downloaded from 
������������128.6.45.205 on Sat, 23 Sep 2023 17:41:50 +00:00������������ 

All use subject to https://about.jstor.org/terms



 MULTIVARIATE SADDLEPOINT APPROXIMATIONS 275

 for any vector c of positive real numbers in the domain of X, K = oc, t* = t,
 and p(r) = r, and that a similar relationship holds when T is supported on a
 lattice. Here f ... dr represents the multiple complex integral with respect to the
 components of r. This paper will present an asymptotic approximation to the right-
 hand side of (1).

 Daniels (1954) presents approximations to densities; these approximations are

 derived by approximating integrals of the form (1) without the factor H-I= p(tj)

 in the denominator. The quantity Hj=1 p(rj) in the denominator of (1) presents
 a difficulty, in that as t moves so that one or more components of c approach
 zero, standard integral expansions of (1) become inaccurate. Authors including
 Skovgaard (1987) and Lugannani and Rice (1980) approached approximation
 of similar integrals in which only one factor of the form p (j) appears in the
 denominator of the integrand. In the language of complex variables [Bak and
 Newman (1982)], this factor represents a simple pole of the otherwise analytic
 integrand, and the authors remove its effect by subtracting off a function with an
 identical simple pole at the same location whose integral may be calculated exactly
 as an evaluation of a standard normal CDF.

 In the general case, with multiple factors in the denominator, no such
 simplification exists, because the resulting poles are not simple. Instead, a quantity
 will be isolated which will be shown to equal a multivariate normal CDF to relative
 error of O (1/n). The remainder of the integral will be shown to have an expansion
 as products of normal densities and multivariate normal CDFs.

 When T takes values on a unit lattice, (1) also holds, with p(r) = 2 sinh(r/2)
 and t corrected for continuity. Technical details in approximating (1) in this case
 will be the same as in the continuous case.

 Section 2 derives integral expressions for the probabilities of interest. Section 3
 presents a Taylor expansion of the integrand, an argument demonstrating that
 truncation of the series after a few terms incurs an error of size no larger than
 O(1/n), a termwise integration of the remainder, and a recursive representation
 for the terms that arise. The resulting approximation is a generalization of
 the univariate series of Robinson (1982). Section 4 explores the possibility
 of generalizing the expansion of Lugannani and Rice (1980) beyond the two-
 dimensional result of Wang (1990). Section 5 presents examples of the use of the
 series derived in Section 3, and in two dimensions compares the results with those
 of Wang (1990).

 2. Inversion integrals. In this section I justify the integral relation (1), and
 reparameterize the integral into a form that facilitates asymptotic expansion. The
 proof is included primarily because it motivates an important regularity condition
 on the approximation derived in later sections.

 LEMMA. Suppose that T1, ..., Td has a cumulant generating function X,K
 and is either continuous [i.e., T has a bounded density, in which case p(r) is set
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 276 J. E. KOLASSA

 to r, K = oc, and t = t*] or confined to an integer lattice [in which case p(r) is
 set to 2 sinh(r/2), K = 7r, and t = t* + ?1]. Choose c > 0 in the domain of X.
 Then relation (1) holds.

 PROOF. When T has a density, standard Fourier inversion techniques imply
 that for K = co,

 /c+iK

 fT(t) =] (2ri)-d exp(XK(r) - rjt ) dr fc-iK

 and

 fC+ f>t exp(X, (r) - rjuj) I du dT
 = 1 L' I exp(X (r))I exp(-cju ) dud c-i c u>t

 = exp(X (T)) [fdexp(-c juJ) du]

 Here and below, a product containing the same index as a subscript and as a
 superscript denotes summation over that index. Furthermore, superscripts on t
 indicate component rather than power, and superscripts on functions denote
 differentiation with respect to the corresponding component of the argument.
 The first factor above is finite since T has a density, and the second is

 exp(cjtj)/ Hd=l cj. By Fubini's theorem, the result follows by interchanging
 the order of integration with respect to t and with respect to r, as long as all

 components of c are positive. When T is confined to an integer lattice, K = 7r and
 the integration with respect to u is replaced by summation. D

 The requirement that c > 0, needed to justify Fubini's theorem, is important;
 because of this requirement, tail probabilities associated with t for which one or
 more of the components of - are negative must be calculated by applying the
 approximation to random vectors with some of their components negated, and
 differencing.

 Consider the special case of the normal distribution. Let IM(t; 1) be the upper

 comer probability for a random variable with a multivariate normal distribution,
 with mean 0 and variance 1. From (1),

 1 fc1+ioo pcd+iXoD d

 (2) 9?t, ).= .2.i- exp(rj Eijkrk/2 - rjtj) dr H rj,
 for any positive vector c.
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 MULTIVARIATE SADDLEPOINT APPROXIMATIONS 277

 3. Integral expansion. Suppose that T is the mean of n independent
 random vectors, each with cumulant generating function X. Then T has as
 its cumulant generating function nX(r/n). Choose a compact subset C of
 the range of X'. Let c = suptce ~IjXjk (^)^k. Existence of a bounded density
 corresponding to the cumulant generating function XK(r) - trjt - X (T) + - rjtj
 implies integrability of I exp(XK(T) - rjtj - XK(i) + 1jtJ)I; see Kolassa [(1997),
 Theorem 2.4.2] for the univariate case. Hence one might choose F > 0 so that

 supt~e, e -ITT(t)ll>e I exp(X(r) - rjtJ)I < exp(-c); here II" II is the sup norm, and r(t) is the solution to K'(i) = t. Below the dependence of i on t is not generally
 made explicit.

 Hence, using (1),

 IT+ie exp(n[X(T) - Tt ])

 (3) P[T > t] f-iexp(nKr) - rtJ]) dr + exp(nL[XK() - rjtJ])E1, -it (2i)d jI IP(t 1j)

 with I EIl < exp(-nc) for some c > 0. Expand K about ?, to obtain

 P[T > t] = exp(n[XK() - ^jtJ])

 X f+iS exp(n[(rj - -)Xjk(i)(tk - T k)/2])
 -is (2ri)d d=1 Pj)

 x1+ Xn klm ()(Tk - k)(l r- l) (m - m)
 n jkl

 + Xjklm (rt)( j - j)(rk - Tk)

 x (ir - il)(Tm - m)
 n2

 (4)

 x (Tk - 'k)(vl - 1)

 x (trm - Zm)(Tp - p)(Tq - q)] d + El

 = exp(n[XK() - Fjtj + ~ jk)k()k/2])

 X [ i+iE exp(n[rtjXKjk(-)rk/2 - TjXjk()k])
 Li-is (2i)d =1p T1

 x 1?+ klm Z()(Tk - k)(Tl - ZI(m - m) d

 + exp(-njXKjk(i)fk/2)E2/n],
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 278 J. E. KOLASSA

 for rt between i and r, and

 E2 =J +ie exp(n[(rj - 1j)XIjk()(rk - Fk)/2])
 E2 i-i (2Jri)d 1d_ p(j)

 ? [Xjklm (rt)(rj - j)(Tk - Tk)(Tl - /)(rm - m)

 + nl jkl ( mpq t )( j - j)(Tk - Tk) 72

 x (ri - Zl)(Tm - ,m)(Tp - Tp)(Tq - eq)]dr+ El.

 Consider one of the terms constituting Xjklm(rt)(Tj -- j)(Tk - "k)(Tl - Ti) X

 (rm - "m), without including the leading factor n. Let 8 denote the set of unique

 superscripts of Xjklm (-t). Let
 d

 g(T) = Xjklmr(T) f(Tr - 2r) H Tr/H P(Tr) rcE rESC r=1

 Let 3R be the duplicated superscripts of Xjklm (t). For example, if the su-
 perscripts are 1, 2, 2 and 3, then 8 = {1,2,3}, and R = (2), and if the

 superscripts are 1, 1, 1 and 2, then 4 = {1, 2}, and - = (1, 1). Let G =

 suPt(91(T))Ee,6(tr)[-,e]d Ig()l < o00. Choose V such that X"(T) - V is positive definite for all t(T) e . Then the error term is bounded by

 fT+ie exp(n[(rj - j) Vik(-Tk - ~)/2]) G H (Tr - Tr)/ HI rrdT.
 i-ie (27ri)d rER rE-

 If V is diagonal, the above integral may be factored into d univariate integrals.
 Integrals with respect to components with indices in Sc are bounded; this may be
 verified by noting that the integral is equal to the ratio of a normal tail probability
 to a normal density and using standard results involving Mills' ratio or by noting

 that fJijiE dTi/Ti = fe i dTi /(i - + 2). The latter integral may be bounded by
 dividing the range of integration into bins of length Ifii starting at zero. The

 maximum of the integrand in a bin of form (klri I, (k + 1)I@i l] is Iti 1/[(1 + k2 ]i2,
 and the contribution to the integral from this bin is /2/[(1 - k2) 21]. The negative
 portion of the range of integration behaves symmetrically, and so the entire integral

 is bounded by 2 EjkO 1/(1 + k2), a finite constant independent of i . Each of the
 remaining integrals contributes a factor of 1/ I/, plus an additional factor of 1/ n
 for each time the index appears in Re. There are four of these factors. Hence the
 term is of size 1/n2. Taking into account the leading n, the sum of terms of this sort
 contributes an error of size 1/n. The terms with six superscripts on X are handled

 similarly. This term absorbs exp(n [ j Xijk(i)k/2])E , which has absolute value
 less than exp(-nc/2), by our choice of r. Hence E2 is uniformly of size O(1/n).
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 MULTIVARIATE SADDLEPOINT APPROXIMATIONS 279

 Nonerror terms in expression (4) will be integrated termwise. For r, m E 3d
 and for 1 a positive definite matrix, let

 fT+i'o exp(rj yjjk Tk/2 - Trjsjktk) d

 I(, r, m, t, T) =] IHIc' (r1 - T)ml] dr. '-ioo (27ri)d I=
 Here 6jk is 1 if j = k and zero otherwise. Temporarily restrict attention to the case

 when TI,...., Td has a continuous distribution, and hence p(r) = r. Let s be the
 vector such that sj = -1 for all j. Let

 Q(t) = exp(nL[X(T) - fjtj + ^j JCjk(T)k/2])
 x [I(n "(T), s, 0, nX"(T)T, T)

 + Xjkl(T)I(n X"(T), s, ej + ek + el, nX"T'(i), ")/1'],
 where ej is the vector with every component 0 except for component j, which is 1.
 Then

 (5) P[T > t] = Q(t) + exp(n[X(i) - jtJ])E2(t)/n for sup IE2(t)l < oo.
 t~e

 Saddlepoint approximations to densities typically yield an error term that is
 relative; that is, the ratio of the true density to the approximation may be expressed
 as one plus a negative power of the sample size times a term that is uniformly
 bounded as n increases and t varies, at least within a compact set such as C. Many
 authors, including Routledge and Tsao (1995), describe such results. Achieving a
 uniform relative bound on tail probability approximations is more difficult, even in
 one dimension. These approximations are typically of form a(t, n)M(V nv(t)) +

 b(t, n)n(,/-nv(t)), for functions a, b and v; see, for example, Robinson (1982),
 Daniels (1987) and Kolassa (1998). The error term typically has a bound of form

 n-aCn(1/-v(t)), for some constant C. Unfortunately, O'(,/-nv(t))/n(/,Vv(t))
 -* 0 as n -- o, and so uniformity of the relative error fails. The error bound
 in Q (t) is of this form; the error is uniformly exponentially small, but not strictly
 speaking both relative and uniform.

 Evaluation of Q(t) requires evaluation of I (1, r, m, t, ^) for r a vector of
 integers no smaller than -1. For any r, me 3d, and j {1, .... d},

 (6) (,rm,t,) I(,r+ej,m-ejt,)- Ir,m-ej,t,').
 This recursion may be continued until for each j, mj = 0. Alternatively, one might

 expand each of the factors (uj - fj)mj using the binomial theorem and integrate
 termwise. Manipulating (2),

 (7) I(C, r, 0, t, )-= - (-1)rj+ i(t, E). j=1 (dtj)rj +1
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 280 J. E. KOLASSA

 The integrals I (1, r, 0, t, i) will be evaluated by expressing them in closed
 form when r takes on only values in {-1,0}, and by providing a recursive
 representation for other values of r. For A, S C 3 = {1, ..., d}, and for vector t
 of length d and d x d matrix 1, let tA be the components of t with indices in A,

 let 1:A the elements of 1 with row and column indices in A, if any, and 1:'A the
 elements of I with row indices in A and column indices in 2, if any. Let X A,,
 be the corresponding entries in I-1. Let A = {1jrj = 0}.
 Differentiation of the d dimensional normal tail probability with respect to

 components whose indices are in A yields the marginal density for components
 in A times the conditional tail probability of components in Ac conditional on
 those in A, all evaluated at t, and hence

 I(3, r, 0, t, i) = n(ta9, qC)?IY (ta + (1c)-1EAc~A, t , >c) (8)
 for rj E (0, -1 } V j, A= {j rj = 0}.

 If r E 3d such that rt E (-1, 0) Vl and rj = rk = 0, then

 I(I, r+ ej , 0, t, )
 d

 = - dI(, r, 0, t, i)
 dtj

 (9)
 = [(~1)-tA] 1j I ( r, r, t, i)

 + 3 I (I, r + el, 0, t, i)[(IAc)- <Ec,{j}]1,
 lEAc

 I(,r+ej +ek, O, t, t)
 d

 = -- I (,r + ej, O, t, )
 (10) dtk

 = [(A)- tA]jj I (1, r + ek, 0, t, ?) - ()j kI (X, r, 0, t, i)

 + L I(, r+ em + ek, 0, t, ~)[(XAc)-l ZAc,(ml]j
 mEAc

 and

 I(, r + ej + ek + el, O, t, i)
 d

 = --I( ( ,r + ej + ek, O, t, ')
 dtl

 (11) = (i ) -I (1, r + ek, O, , 9)

 - [(Z4)-t< ] I (I, r + ek + el, O, t, i) + ( A)(1 X, r el, O, t, i)

 - L I(, r + em + ek + el, O, t, f)[(nc)-lc4,({m}]j. mE >C
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 MULTIVARIATE SADDLEPOINT APPROXIMATIONS 281

 Hence (6) and (8)-(11) allow for the recursive calculation of the quantities in Q (t).
 Expanding X about 0 rather than i causes (4) to be replaced by

 +iO exp(n[-cjXjk(o)tk/2 - tjjkik]) klm
 Q* (t) = d [1 + njklm (O) ktl m] dr J-i0 (2w i)d jd1P(j)

 + O(1/n),
 (12)

 = I (nX " (0), s, 0, nt,0)

 1 jKkl (0)

 + Xjkl I(nX"(0), s + e+ek+e el, 0, nt, 0)-+ O(1/n) . 6VH

 Here without loss of generality I take X (0) = 0. Expansion (12) is the well-known
 Edgeworth expansion for Q*, and is valid even when XK(r) exists only for pure
 imaginary arguments. It is also valid when T is confined to a unit lattice and

 tl,...., td is evaluated at continuity corrected points [Kolassa (1989)]. In this case p(r) = 2 sinh(r/2), and linear terms generated by expanding r/p(r) are zero. The
 counterpart of Q (t) when n (TI, ..., Td) are supported on a unit lattice is

 Q(t) = exp(n[X(i) - ZjtJ])

 x exp(njXjk(-)^k/2)

 [x +if exp(n[ rj jk(-)lTk/2 - r Tjk()(k]))
 S 7-ioo (27r i)d =1 P (r/

 d 1 cosh(, t/2) -

 x +I j= 2 sinh(f j/2) (j

 x [1 + nXklm (r)(rk - k)(tl - 1)(tm - m)]dr

 (13) = exp(n[X(i^) - - jt])
 d

 S2 sinh( /2 /2

 Sexp(nXijkjkT()/2)I(nX"(),s, s0, nX"(T^) , "T)

 Sj [2 2csih( J/2) I
 + !Xjkl( ()(nJ" (), s, ej + ek + el, n )( , )/-
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 282 J. E. KOLASSA

 The argument justifying (5) was general enough to justify (5) in this case as well.

 Note that 1/f - cosh(f/2)/2 sinh(if/2) evaluated at f = 0 is zero.
 Approximation Q(t) holds only when all components of i are positive. Ap-

 proximations for other t may be calculated recursively. Specifically, suppose that
 a vector with a negative subscript denotes that vector with the indicated compo-
 nent omitted, and suppose that t corresponds to a multivariate saddlepoint i with

 Zj < 0. Then let u = (t, ..., tj_1,-tj, tj+l, ... td) and define U analogously.
 Then P[T > t] = P[T_j > tj] - P[U > u], and the saddlepoints associated with u
 have one fewer negative entry than does i, and Q (t) may be applied to U and Tj.
 The vector i might be interpreted as the maximum likelihood estimator for C

 when t is embedded in the exponential family with density fT(t)exp(rTt -
 X(T)). Lugannani and Rice (1980), Skovgaard (1987) and Wang (1990) have
 developed approximations built around modifications of signed roots of likelihood
 ratio statistics when d < 2; the next section will review the two-dimensional

 version for comparison with Q (t) and argue why this approach is infeasible for
 higher dimensions.

 4. Uniformization. Lugannani and Rice (1980) present an approximation
 to P[T > t] in the case d = 1, by reparameterizing the integrand of (1) to make
 the argument to the exponent exactly quadratic. The resulting integral has a
 simple pole in its integrand, which is removed by a technique known in the
 applied mathematics literature on saddlepoint approximation as uniformization.
 This resulted in a particularly simple approximation. The approximation avoids
 the leading exponential factor in Q (t) and hence is valid regardless of the signs of
 components of i. This section explores the possibility of extending this argument
 to higher dimensions, introduces the related expansion of Wang (1990), and
 explains why extensions to d > 2 will not be presented.
 When d > 1, one might attempt to develop an expansion for P[T > t] by

 defining functions w such that

 (14) (w_- w)T(w_- w) = X -(r) - rTt - _X() + ^ Tt
 and changing variables in (3) to find

 P[T > t] = (27ri)d +- exp(n(wTw/2 - ^Tw))g(w) dw
 (15) 1 W-8W

 + O(exp(-cn))

 for g(w) = det / I 1j= p (pj). The parameterization (14) is specified uniquely
 by requiring that wj not depend on Tk if k > j, and by requiring that wj be an
 increasing function of rj. Kolassa (1997) proved that r (w) is analytic in w at iv.
 One might approximate (15) by expanding g(w) as a power series, and

 applying (2) termwise to eliminate the effect of poles. Unfortunately, the resulting
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 MULTIVARIATE SADDLEPOINT APPROXIMATIONS 283

 series has terms in components of w of unbounded negative order, making
 termwise inversion impossible. In the literature on multiple complex variables,

 h(w) is in general not regular in w2, ... , Wd, because the value of wj making

 rj = 0 may depend on w I, ..., wj-1; furthermore, this problem generally can not be repaired using a linear transformation of w. If one defines wi (w) to satisfy

 (16) ri (l, ..., wi-l, ii (w)) = 0,
 and approximates w-j as approximately linear in w when d < 2, one obtains the
 approximation

 P[T > t] = - (9/-AwV, AAT)
 d

 + T-(V[-j - (-j("nNnW
 (17) j=1

 + O(1/n),

 where the generic element of matrix A is

 (twi - oi( W))/ Ij, if > j, Aij = 1, if i - j,
 0, if i < j,

 and ai are the diagonal elements of T, for Y the lower triangular matrix such

 that YTT = X"(f). Lugannani and Rice (1980) derived this approximation
 when d = 1, and Wang (1990) derived this approximation for d = 2, using a
 different method of proof. He included an additional term of order O(1/n),
 and demonstrated that the error term is of the same order. Call the resulting
 approximation W(t). Tedious calculation shows that this approximation is valid
 to O(1/n) for d = 2, but the method of proof fails for d > 2. Table 1 describes
 the association between notation used by Wang (1990) and the notation in this
 manuscript.

 TABLE I

 Symbols used in Wang's paper

 Notation of Wang (1990) Notation of the present manuscript

 vo0 l1
 (uo, t0)

 w(-vo)-= Wulu=O w2
 w(O) = Wuo w2 - w2
 xl I+2

 Y1 (&i - bt2)//1 -b2
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 284 J. E. KOLASSA

 5. Examples. Wang (1990) considers a distribution of T- = ZTX

 for X' independent vectors of independent unit exponentials and ZT = ( 1). In this case, XK(r) = -=1 log(1 - zjr), for zj row j of Z. Figure 1 presents
 a comparison of the behavior of W(t) and Q(t). Both of these approximations
 require solution to the saddlepoint equations; these solutions are obtained using
 the Newton-Raphson method. Figure 1 presents (I W(t) - P[T > t] )/( Q(t) -
 P[T > t] I + I W (t) - P[T > t] I), for the distribution of the sum of ten independent
 copies of T. In both cases, P[T > t] is estimated using one million Monte Carlo
 samples. Calculations are performed in FORTRAN, using the IMSL subroutines
 for matrix manipulation and random number generation. I applied a mild loess
 smoother to the Monte Carlo approximation, and then plotted contours of the ratio
 of the absolute value of error in Q(t) to the sum of the absolute errors of W(t)
 and Q(t). Neither Q(t) nor W(t) is clearly superior in this example.

 Stokes, Davis and Koch (1995) present data on 63 case-control pairs of women
 with endometrial cancer. They seek to explain the occurrence of endometrial
 cancer on various explanatory variables, among them the presence of three risk
 factors, gall bladder disease, hypertension and nonestrogen drug use. They model

 20 -

 - 0.8

 02-

 16 - 0. 6

 14

 12 0

 10-

 10 12 14 16 18 20

 T,

 FIG. 1. Contours of the ratio of the absolute value of error in Q(t) to the sum of the absolute

 errors of W (t) and Q (t). Example of correlated F variables. Calculations are for lower quadrant
 probabilities, generated by applying Q(t) to -T.
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 MULTIVARIATE SADDLEPOINT APPROXIMATIONS 285

 TABLE 2

 Differences between cases and controls for endometrial cancer data

 Gall bladder disease -1 -1 -1 0 0 0 0 0 0 1 0 1 1 1 1 1

 Hypertension -1 0 1 - -1 0 0 1 1 -I -1 0 0 0 1 1
 Nonestrogen drug use 0 -1 0 -1 0 0 1 0 1 0 1 -1 0 1 0 1
 Number of pairs 1 1 1 2 6 14 10 12 4 3 1 1 4 1 1 1

 the probability of endometrial cancer rj using logistic regression: nj = exp(0o +

 310i Wij)/(1 + exp(00 + > 1 Oi Wij)), where Wlj, W2j and W3j are indicators
 for gall bladder disease, hypertension and nonestrogen drug use in individual j,
 respectively. Their data were obtained from a case-control study, and hence
 the independent variable is case-control status and the dependent variables are
 presence of the risk factors. Stokes, Davis and Koch (1995) note that the likelihood
 for these data is equivalent to that of a logistic regression arising from a prospective

 study, in which the units of observation are the matched pairs, the explanatory
 variables are those of the case member minus those of the control member, and the

 response variable may be taken to be unity. Table 2 contains the number of pairs

 with each configuration of differences of the three explanatory variables. Let zj be
 the row vector formed by the top three entries in column j of Table 2, let mj be the

 bottom entry in column j, and let Z be the matrix whose rows are zj. Let T = ZT 1,
 for 1 a column vector with as many entries as there are columns in Table 2, whose

 entries are all 1. Then XK(r) = Ej mj[log(1 + exp(zj)) - log(2)]. Again, the
 saddlepoint i is computed using the Newton-Raphson method.

 None of these risk factors is likely to have a protective effect, and so the
 alternative hypothesis to 0 - 0 is O > 0 V j and Oj > 0 for some j. This test
 will be performed by comparing the minimum p-value arising from the three
 univariate one-sided conditional tests to its null distribution. The three univariate

 one-sided p-values are 0.0175, 0.1885 and 0.0133. The observed critical region is

 {t I P[Tj > tj] 0.0133 for some j} and, applying (17) for d = 1, is approximated
 by T = {t I T1 > 10 or T2 > 10 or T3 > 13}. Using Boole's law, P [T] = 0.01709.
 By comparison, 10,000,000 independent draws from the distribution of T yields
 the 95% confidence interval P [T] e (0.01702, 0.01718).

 Acknowledgments. The author thanks Larry Shepp, Richard Gundy, Ovidiu
 Costin, Yodit Seifu, two anonymous referees, and an anonymous Associate Editor
 for helpful suggestions.
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