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Motivation Example

© Hao and Kolassa (2016) analyze a a crossover study

@ Studies US military subject to physical trauma

@ Measures efficacy of canine therapy on PTSD, vs standard therapy.

@ Performance was evaluated on both therapies for subject J: XJ’ =1if
canine therapy superior for subject j with ordering i € {1,2}.
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@ Hao and Kolassa (2016) analyze a a crossover study
@ Studies US military subject to physical trauma
@ Measures efficacy of canine therapy on PTSD, vs standard therapy.
@ Performance was evaluated on both therapies for subject J: XJ’ =1if
canine therapy superior for subject j with ordering i € {1,2}.
@ Hypotheses:
@ Null hypothesis is that there is no systematic difference in therapies,
regardless of ordering.
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Motivation Example

@ Hao and Kolassa (2016) analyze a a crossover study
@ Studies US military subject to physical trauma
@ Measures efficacy of canine therapy on PTSD, vs standard therapy.
@ Performance was evaluated on both therapies for subject J: XJ’ =1if
canine therapy superior for subject j with ordering i € {1,2}.

@ Hypotheses:
@ Null hypothesis is that there is no systematic difference in therapies,

regardless of ordering.
@ Alternative hypothesis is that canine therapy is superior for at least one

of the ordering.
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Motivation Example

@ Hao and Kolassa (2016) analyze a a crossover study
@ Studies US military subject to physical trauma
@ Measures efficacy of canine therapy on PTSD, vs standard therapy.
@ Performance was evaluated on both therapies for subject J: XJ’ =1if
canine therapy superior for subject j with ordering i € {1,2}.
@ Hypotheses:
@ Null hypothesis is that there is no systematic difference in therapies,
regardless of ordering.
@ Alternative hypothesis is that canine therapy is superior for at least one
of the ordering.

@ p-value is given by P [X! > %1, X2 > %2].

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 2/19



Notation

© Random vector X; = (X
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Notation

© Random vector X; = (X}!,..., X”) has a continuous distribution,

@ Moment generating function

M(r,...,7) =E [exp(T;lX,-1 + -4 TpXip)] ,
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Notation

© Random vector X; = (X}!,..., X”) has a continuous distribution,

@ Moment generating function

M(r,...,7) =E [exp(nX,-1 + -4 TpXip)] ,

@ finite for |7;] < € for all i < p and some € > 0.
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Notation

© Random vector X; = (X}!,..., X”) has a continuous distribution,

@ Moment generating function

M(ry,...,7) =E [eXP(TIXil +-+7pXP)]

@ finite for |7;| < € for all i < p and some € > 0.

© Let the cumulant generating function be
K(ri,...,7p) = log(M(71,...,7p)).
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Notation

© Random vector X; = (X}!,..., X”) has a continuous distribution,

@ Moment generating function

M(ry,...,7) =E [eXP(TIXil +-+7pXP)]

@ finite for |7;| < € for all i < p and some € > 0.

© Let the cumulant generating function be
K(ri,...,7p) = log(M(71,...,7p)).
Q Let 7 satisfy KX(rq,...,7p) = X< for k=1,...,p.
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Notation

© Random vector X; = (X}!,..., X”) has a continuous distribution,

@ Moment generating function

M(Tl> .. -7TP) =E [exp(TIXil et TPXIP)] ’

@ finite for |7;| < € for all i < p and some € > 0.
© Let the cumulant generating function be
K(ri,...,7p) = log(M(71,...,7p)).
Q Let 7 satisfy KX(rq,...,7p) = X< for k=1,...,p.
Q Let X=>T",Xi/n
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Objective: Approximate joint tail probabilities for X

@ of n independent and identically distributed random vectors
(Xt ..., XP).
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Objective: Approximate joint tail probabilities for X

@ of n independent and identically distributed random vectors

(Xt ..., XP).
@ Use existence of higher moments to obtain better performance than
CLT.
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Objective: Approximate joint tail probabilities for X

@ of n independent and identically distributed random vectors

(Xt ..., XP).
@ Use existence of higher moments to obtain better performance than
CLT.

® Gives Edgeworth series.

© Use existence of cumulant generating function to obtain better
relative error behavior than Edgeworth series.
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Objective: Approximate joint tail probabilities for X

@ of n independent and identically distributed random vectors

(Xt ..., XP).
@ Use existence of higher moments to obtain better performance than
CLT.

@ Gives Edgeworth series.

© Use existence of cumulant generating function to obtain better
relative error behavior than Edgeworth series.

@ Measure theoretical error behavior in terms of inverse powers of \/n.
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Inversion Integrals:

@ Density f,(x},...,xP) is

nP p y
erxp(n[K(n, ey Tp) — Zx 7i]) dm1 - - d7p
i=1
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Inversion Integrals:

@ Density f,(x},...,xP) is

# f exp(n[K (1, ... 7) —

(1] f fccll—kl’;f e fcc:j—i::

'Mb

Il
—
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Inversion Integrals:

@ Density f,(x},...,xP) is

P
—(2::.),, fexp(n[K(n,..., Zf( 7i]) dm - - d7p

c+ico cpFioco
o f c—ioo T fcp—ioo
c=

® c=(cy,...,Cp) in the interior of the domain of K.
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Inversion Integrals:

@ Density f,(x},...,xP) is
nP -~
W%exp(n[K T]_,..., ZX []) dT]_ d

c+ico cptico
o f fcl ico T fc:—ioo
® c=(cy,...,Cp) in the interior of the domain of K.

@ The tail probability P [X > x| =P [)_(1 >xln. m)_(P > =] is
1 N -dTp
W%exp(n[K Tlyevoy T ;x 7)) —7',,'
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Inversion Integrals:
@ Density f,(x},...,xP) is

p
#%exp(n[K Tlyeon,y T Z)‘( 7i]) dm1 - - d7p

c+ico cptico
o f fcl ico T fc:—ioo
® c=(cy,...,Cp) in the interior of the domain of K.

@ The tail probability P [X > x| =P [)_(1 >xln. m)_(P > =] is
1 N -dTp
W%exp(n[K Tlyevoy T ;x 7)) —7',,'

@ c;>0foralli
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Inversion Integrals:

@ Density f,(x},...,xP) is
nP P _
o § 2RI = 3

(1] f fccll-t’;f e fczpjii)o;
® c=(cy,...,Cp) in the interior of the domain of K.
@ The tail probability P [)_( > )'(] =P [)_<1 >xIn...NnXP> >'<p] is
1 P - d7p
W%GXP(H[K(TL..., ZX ,] —7'p

@ c;>0foralli
© When K is exactly quadratic, get Gaussian tail probabilities, exactly.
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Inversion Integrals:

@ Density f,(x},...,xP) is
nP P _
W%exp(n[K(Tl,..., Z:X 7i]) dm1 - - d7p

c+ioo cptico
o f fcl joo fcp—ioo
® c=(cy,...,Cp) in the interior of the domain of K.

@ The tail probability P [)_( > )'(] =P [)?1 >x1n. m)_(P > ;p] is
1 P - d7p
W%exp(n[K(n,..., ;x 7)) 7.%'
@ c;>0foralli
© When K is exactly quadratic, get Gaussian tail probabilities, exactly.

@ Write CTD(z) =P [Zl >zZln...nzrP> ZP} for Z; independent
standard normals.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

Q@ Expand K(7) — 7x about 7:

K(?)—2x+K"(#)(1—7)2 )24+ K" (?)(7 = 7)3 /6 4+ K" (7°) (£ —7)* ) 24.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

Q@ Expand K(7) — 7x about 7:
K(#) =2+ K"(F)(r—%)? 24+ K" (£)(F %) 6+ K" (T7)(? —7)* /24.

Q Set ¢ =T.
© Exponentiate cubic and quartic terms.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

Q@ Expand K(7) — 7x about 7:
K(#) =2+ K"(F)(r—%)? 24+ K" (£)(F %) 6+ K" (T7)(? —7)* /24.

Q Set ¢ =T.
© Exponentiate cubic and quartic terms.

@ Integrate term-wise.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

Q@ Expand K(7) — 7x about 7:
K(7) =22+ K"(F)(1—7)2 2+ K" (?)(F =)} 6+ K" (77)(F —7)* ) 24.
Q Set ¢ =T.
© Exponentiate cubic and quartic terms.
@ Integrate term-wise.

© Then P [)_(1 > )?1] is approximately
T b p3(n22—
exp(n[22 ~ 22)) [B(v/n2) (1 0 ) + o(vA2) GI0]
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One Dimensional Methods: Hao and Kolassa (2016)
approach
Q@ Expand K(7) — 7x about 7:
K(F)—2x+K"(F)(T—%)?/2+ K" (#)(?—%)* /6 + K" (17)(# —%)*/24.
Q Setc =7.
© Exponentiate cubic and quartic terms.
@ Integrate term-wise.

© Then P [)_(1 > )?1] is approximately
T b p3(n22—
exp(n[22 — &7)) [d)(\/ﬁf) (1 . n%) + ¢(ﬁ2)p(6_ﬁl>] .
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One Dimensional Methods: Hao and Kolassa (2016)
approach

Q@ Expand K(7) — 7x about 7:
K(?)—2x+K"(#)(1—7)2 )24+ K" (?)(7 = 7)3 /6 4+ K" (7°) (£ —7)* ) 24.

Q Set ¢ =T.

© Exponentiate cubic and quartic terms.
@ Integrate term-wise.

Q Then P [)_(1 > )?1] is approximately

exp(nf2? —22)) [B(vn2) (1 - ) +o(va2) G0

0 Z=7K'"%)
0 & =sign(7)/2(7x — K(7)
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One Dimensional Methods: Hao and Kolassa (2016)
approach

Q@ Expand K(7) — 7x about 7:
K(?)—2x+K"(#)(1—7)2 )24+ K" (?)(7 = 7)3 /6 4+ K" (7°) (£ —7)* ) 24.

Q Set ¢ =T.

© Exponentiate cubic and quartic terms.
@ Integrate term-wise.

Q Then P [)_(1 > )?1] is approximately

exp(nlz? — 2%)) [(v/n2) (1 - n ) + o(v/n2) G2

0 =+ /K'(%)
0 & =sign(7)/2(7x — K(7)
Q ps= K///(,?_)K//(,]f:)—3/2_
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One Dimensional Methods: Hao and Kolassa (2016)
approach

© Re-parameterize the inversion integral in terms of w satisfying
(w—@)%/2=K(T) — 7x — K(%) + #x.
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One Dimensional Methods: Hao and Kolassa (2016)
approach
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@ Integral is ﬁ § exp(n[w?/2 — dw])A %,
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One Dimensional Methods: Hao and Kolassa (2016)
approach

© Re-parameterize the inversion integral in terms of w satisfying
(w —(2))2/2 = K(r) —™x — K(7) + 7x.
@ Integral is ﬁ § exp(n[w?/2 — dw])A %,
o A=« dr

T dw”

© Tail probability approximation is ®(&) + ¢(&)(1/& —1/2)/+/n.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

© Re-parameterize the inversion integral in terms of w satisfying
(w—@)%/2=K(T) — 7x — K(%) + #x.

@ Integral is ﬁ § exp(n[w?/2 — dw])A %,
I

© Tail probability approximation is ®(&) + ¢(&)(1/& —1/2)/+/n.
@ Holds without regards to 7 > 0.
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Methods in Multiple Dimensions
© The tail probability P [X > x] is

1 a dry---dr
_ v AN e o)
(2ri)P ?{exp(n[K(ﬁ, .y Tp) ;—1 x'7i]) P .
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Methods in Multiple Dimensions
© The tail probability P [X > x] is

1 a dry---dr
_ v AN e o)
(2ri)P ?{exp(n[K(ﬁ, .y Tp) ;—1 x'7i]) P .

@ Hao and Kolassa (2016) works analogously as with Robinson:
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Methods in Multiple Dimensions
© The tail probability P [X > x] is

1 a dry---dr
_ v AN e o)
(2ri)P fexp(n[K(Tl, s Tp) ;—1 x'7i]) P .

@ Hao and Kolassa (2016) works analogously as with Robinson:
© Expand K(7) — 3, 7;%/ about # = (f1,...,7,) to get:

K(#) =Y 5%+ K (15— 3)(mk — %) /2
j jik

+ D KMEN T = ) (e = R (76— 70) /6
Jik,l

+ Z Kjk@m(,r?)(,rj _ 7’?.)(7-’( — fk)(T[ — %Z)(Tm - %m)/24
ik l,m
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Methods in Multiple Dimensions
© The tail probability P [X > X] is

1 7{ (n[K( )_i—i 1) drn---drp
(27”_)p exp T3 Tp i:1x7', P .

@ Hao and Kolassa (2016) works analogously as with Robinson:
© Expand K(7) — 3, 7;%/ about # = (f1,...,7,) to get:

K(#) =Y 5%+ K (15— 3)(mk — %) /2
j jik

+ ) KME) (7 = 5) (e — 71 (e — 1) /6
Jikl

=+ Z Kjkém(,r?)(Tj — rf—J-)(’rk — ?k)(T[ - 7I>Z)(Tm - 7,lm)/24'
ik l,m

@ Expand exp of cubic and quartic terms.
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Methods in Multiple Dimensions
© The tail probability P [X > X] is

1 7{ (n[K( )_i—i 1) drn---drp
(27”_)p exp T3 Tp i:1x7', P .

@ Hao and Kolassa (2016) works analogously as with Robinson:
© Expand K(7) — 3, 7;%/ about # = (f1,...,7,) to get:

K(#) =Y 5%+ K (15— 3)(mk — %) /2
j jik

+ ) KME) (7 = 5) (e — 71 (e — 1) /6
Jikl

=+ Z Kjkém(,r?)(Tj — 7A'j)(’7—k — ?k)(T[ - ?Z)(Tm - 7,2171)/24
ik l,m

@ Expand exp of cubic and quartic terms.
© Integral of resulting quartic term is O(1/n).
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Methods in Multiple Dimensions
© The tail probability P [X > X] is

1 7{ (n[K( ) — i ~ 1) drn---drp
(27”_)p exp T3 Tp i:1x7', P .

@ Hao and Kolassa (2016) works analogously as with Robinson:
© Expand K(7) — 3, 7;%/ about # = (f1,...,7,) to get:

K(#) =Y 5%+ K (15— 3)(mk — %) /2
j jik

+ ) KME) (7 = 5) (e — 71 (e — 1) /6
Jikl

+ Z Kjkém(T?)(Tj — 7A'j)(7'k — 7)) (10 — Te)(Tm — Tm) /24.
Jyk,l,m

@ Expand exp of cubic and quartic terms.
© Integral of resulting quartic term is O(1/n).
O Integrate terms up to cubic term-wise.
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Downsides of existing approximation

@ Lots of terms

=] & = E DA
Kolassa and Lee Bivariate Tail Probability Approximations



Downsides of existing approximation

Q Lots of terms
© Terms are not particularly interpretable.
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Q Lots of terms
© Terms are not particularly interpretable.

@ (Multivariate) normal tail probability is multiplied by an exponential
factor.
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Downsides of existing approximation

Q Lots of terms
© Terms are not particularly interpretable.

@ (Multivariate) normal tail probability is multiplied by an exponential
factor.

© You are stuck with 7; >0
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Downsides of existing approximation

Q Lots of terms
© Terms are not particularly interpretable.

@ (Multivariate) normal tail probability is multiplied by an exponential
factor.

© You are stuck with 7; >0
@ Get around this using Boole's Law

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 9/19



Lugannani and Rice Analog

. . ~D . A\ A
@ New parameterization . @7 /2 = K(F) —>_; %,

Yoj(wi— @) /2=K(r) = 37 — (K(F) = X5, %)
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Lugannani and Rice Analog

© New parameterization Z 2/2 = K(+) — ZJ.
>i(wj —@)?/2=K(T) - ZJTJ—(K(f') > %)

@ Integral is

<P

P
R dwy - - - dwp
(27”)’3?{ xP(nZw gijj))\ —wran )
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Lugannani and Rice Analog

© New parameterization Z 2/2 = K(+) — ZJ.
>i(wj —@)?/2=K(T) - ZJTJ—(K(f') > %)

@ Integral is

<P

P
R dwy - - - dwp
(27”)13?{ xP(nZw gijj))\ —wl---wp )

o A\ = wiwp d71---dTp
T TeTp dwiedwy
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Lugannani and Rice Analog

© New parameterization 2/2 =K(%)— > 7
>oi(wj — @) /2 =K(T) - ZJTJ—(K(7A') 257

@ Integral is

o A\ = wiwp d71---dTp
T TeTp dwiedwy

p
A dwy - - -
(27rl)P?{ xp(nZw §Wij))\ o1

dwp

@ In one dimension, zeros in denominator of A correspond to zeros in the

numerator.

Kolassa and Lee Bivariate Tail Probability Approximations

21 December 2023

10/19



Lugannani and Rice Analog

© New parameterization Z 2/2 = K(+) — ZJ.
>i(wj —@)?/2=K(T) - Z,TJ—(K(ﬂ > )
@ Integral is

<P

P
R dwy -+ - dwp
(27”)13?{ xP(nZw gijj))\ —mep )

o A\ = wiwp d71---dTp
T TeTp dwiedwy

@ In one dimension, zeros in denominator of A correspond to zeros in the
numerator.
@ This fails for p > 1.
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Re-parameterize to fix lack of alignment of zeros

© Re-parameterize to & = wj — 22, wk(f (w1, - - -, wj-1) s0 that & = 0
if and only if 7; = 0.
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Re-parameterize to fix lack of alignment of zeros

© Re-parameterize to & = wj — 22, wk(f (w1, - - -, wj-1) s0 that & = 0
if and only if 7; = 0.

0 Ex. & =wi, & =wr —wiG(w1) for (¢ = wa(m1,0)/ws.
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Re-parameterize to fix lack of alignment of zeros

Q Re-parameterize to {; = wj — >, ; wkg‘(wl, ... wj—1) so that {; =0
if and only if 7; = 0.
© Ex. & =wi, & =wr —wiG(wi) for ¢ = wy(m1,0)/wr.
@ Adjustment also makes . A A .
X1>xtn.  XP>xPa{Z1 >N, =P > EP).
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Re-parameterize to fix lack of alignment of zeros

© Re-parameterize to & = wj — 22, wk(f (w1, - - -, wj-1) s0 that & = 0
if and only if 7; = 0.
@ Ex. & =wi, & =wy —wi(wr) for (= wa(m,0)/wi.
@ Adjustment also makes
(X'>xIn... XP>xPya {E1 >£n... 2P > éP).
©® Adjustment makes singularities in A removable.
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Adjustment induces sample space rotation for Qj
Q using C{((Q)

2.5+

SRLLR 2

1.5+

\
-1 -0.5 0 0.5 1 15 2

SRLLR 1
Correlated gamma example, x = (4,5)
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Adjustment induces sample space rotation for Qj
Q using C{((Q)

2.5+

SRLLR 2

1.5+

\ \ \ \
-1 -0.5 0 0.5 1 15 2

SRLLR 1
Correlated gamma example, x = (4,5)
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Adjustment induces sample space rotation for Qj
Q using C{((ﬁ)

2.5+

SRLLR 2

1.5+

------ Best

\ \ \ \
-1 -0.5 0 0.5 1 15 2

SRLLR 1
Correlated gamma example, x = (4,5)
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New approximation is simpler

QO P[XI>xINn...NXP>xP| ~

®(V/né; £) + 30 S(Vn€ji 2))e(Vng) (1/¢ — 1/(%/07)) + C.
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New approximation is simpler

QO P[XI>xINn...NXP>xP| ~

P
®(Vné; £) + 30 S(Vn€ji 2))é(Vng) (1/¢ — 1/(%/07)) + C.

@ X is generated by transformation from w to &.
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New approximation is simpler

QO P[XI>xINn...NXP>xP| ~

P

O(v/n€; 2) + 30, S(v/néji £)(v/n&)(1/€ — 1/(%5/0))) + C.
@ X is generated by transformation from w to &.
@ o; is a standard error for 7.
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New approximation is simpler

QO P[XI>xINn...NXP>xP| ~

b€ X) + 37, (Vg 2))e(Vng)(1/ = 1/(%/0))) + C.
@ X is generated by transformation from w to &.
@ o; is a standard error for 7.

@ In order to make A\ have removable singularities,
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New approximation is simpler

(1] P[Xlleﬁ...ﬂXPpr] ~

S(Vn&; ) + 57 O(Vn€ji 2))d(v/n&))(1/§ — 1/(5/0))) + C.
@ X is generated by transformation from w to &.
@ o; is a standard error for 7.

@ In order to make A\ have removable singularities,
@ exponent in inversion integral is no longer exactly quadratic.
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New approximation is simpler

QO P[XI>xINn...NXP>xP| ~

b€ X) + 37, (Vg 2))e(Vng)(1/ = 1/(%/0))) + C.
@ X is generated by transformation from w to &.
@ o; is a standard error for 7.

@ In order to make A\ have removable singularities,

@ exponent in inversion integral is no longer exactly quadratic.
@ C adjusts for this.
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New approximation is simpler

(1] P[Xlleﬁ...ﬂXPpr] ~

S(Vn&; ) + 57 O(Vn€ji 2))d(v/n&))(1/§ — 1/(5/0))) + C.
@ X is generated by transformation from w to &.
@ o; is a standard error for 7.

@ In order to make A\ have removable singularities,

@ exponent in inversion integral is no longer exactly quadratic.
@ C adjusts for this.

© Avoids requirement that 7; > 0.
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Example

Qp=2

=] & = E DA
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Example

Qp=2

Q@ X1 =24+ 24, Xo = Z1 + 23, Z; independent exponentials.
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Example

Qp=2

Q@ n=1I

Q@ X1 =24+ 24, Xo = Z1 + 23, Z; independent exponentials.

=] & = E DA
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Relative Error: Normal on raw scale

-0.8
clt
=] 5 = E DAy
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Relative Error: Normal on SRLLR scale
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Relative Error: SRLLR scale, adjust for marginal
non-normality

35 40 45
rawir
=] 5 = DAy
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Relative Error: SRLLR scale, all adjustments

Kolassa and Lee

Bivariate Tail Probability Approximations

DA




Work in various stages of completion

© Addressing removable singularities in C.
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Work in various stages of completion

© Addressing removable singularities in C.
Q p>2
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Work in various stages of completion

© Addressing removable singularities in C.
Q@ p>2
@ r* version placing O(1/4/n) corrections into argument of ®.
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Work in various stages of completion

© Addressing removable singularities in C.

Q@ p>2

@ r* version placing O(1/4/n) corrections into argument of ®.
@ Extension to lattice variables
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Work in various stages of completion

© Addressing removable singularities in C.

Q@ p>2

@ r* version placing O(1/4/n) corrections into argument of ®.
@ Extension to lattice variables

© Extension to conditional distributions.
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