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Motivation Example

1 Hao and Kolassa (2016) analyze a a crossover study

1 Studies US military subject to physical trauma
2 Measures efficacy of canine therapy on PTSD, vs standard therapy.
3 Performance was evaluated on both therapies for subject j : X i

j = 1 if
canine therapy superior for subject j with ordering i ∈ {1, 2}.

2 Hypotheses:

1 Null hypothesis is that there is no systematic difference in therapies,
regardless of ordering.

2 Alternative hypothesis is that canine therapy is superior for at least one
of the ordering.

3 p-value is given by P
[
X̄ 1 ≥ x̄1, X̄ 2 ≥ x̄2

]
.
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Notation

1 Random vector Xi = (X 1
i , . . . ,X

p
i ) has a continuous distribution,

2 Moment generating function

M(τ1, . . . , τp) = E
[
exp(τ1X

1
i + · · ·+ τpX

p
i )
]
,

1 finite for |τi | < ϵ for all i ≤ p and some ϵ > 0.

3 Let the cumulant generating function be
K (τ1, . . . , τp) = log(M(τ1, . . . , τp)).

4 Let τ̂j satisfy K k(τ1, . . . , τp) = x̄k for k = 1, . . . , p.

5 Let X̄ =
∑n

i=1 Xi/n
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Objective: Approximate joint tail probabilities for X̄

1 of n independent and identically distributed random vectors
(X 1

i , . . . ,X
p
i ).

2 Use existence of higher moments to obtain better performance than
CLT.

1 Gives Edgeworth series.

3 Use existence of cumulant generating function to obtain better
relative error behavior than Edgeworth series.

1 Measure theoretical error behavior in terms of inverse powers of
√
n.
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Inversion Integrals:

1 Density fn(x̄
1, . . . , x̄p) is

np

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

x̄ iτi ]) dτ1 · · · dτp

1
∮
=

∫ c1+i∞
c1−i∞ · · ·

∫ cp+i∞
cp−i∞

2 c = (c1, . . . , cp) in the interior of the domain of K .

2 The tail probability P
[
X̄ ≥ x̄

]
= P

[
X̄ 1 ≥ x̄1 ∩ . . . ∩ X̄ p ≥ x̄p

]
is

1

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

x̄ iτi ])
dτ1 · · · dτp
τ1 · · · τp

.

1 ci > 0 for all i

3 When K is exactly quadratic, get Gaussian tail probabilities, exactly.

1 Write Φ̄(z) = P
[
Z 1 ≥ z1 ∩ . . . ∩ Z p ≥ zp

]
for Zi independent

standard normals.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

1 Expand K (τ)− τ x̄ about τ̂ :

K (τ̂)− τ̂ x̄+K ′′(τ̂)(τ− τ̂)2/2+K ′′′(τ̂)(τ̂− τ̂)3/6+K ′′′′(τ ?)(τ̂− τ̂)4/24.

2 Set c1 = τ̂ .

3 Exponentiate cubic and quartic terms.

4 Integrate term-wise.

5 Then P
[
X̄ 1 ≥ x̄1

]
is approximately

exp(n[ẑ2 − ω̂2])
[
Φ̄(

√
nẑ)

(
1− n ρ̂3

6

)
+ ϕ(

√
nẑ) ρ̂

3(nẑ2−1)
6
√
n

]
.

1 ẑ = τ̂
√
K ′′(τ̂)

2 ω̂ = sign(τ̂)
√
2(τ̂ x̄ − K (τ̂)

3 ρ̂3 = K ′′′(τ̂)K ′′(τ̂)−3/2.
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1 ẑ = τ̂
√
K ′′(τ̂)

2 ω̂ = sign(τ̂)
√
2(τ̂ x̄ − K (τ̂)

3 ρ̂3 = K ′′′(τ̂)K ′′(τ̂)−3/2.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 6 / 19



One Dimensional Methods: Hao and Kolassa (2016)
approach

1 Expand K (τ)− τ x̄ about τ̂ :

K (τ̂)− τ̂ x̄+K ′′(τ̂)(τ− τ̂)2/2+K ′′′(τ̂)(τ̂− τ̂)3/6+K ′′′′(τ ?)(τ̂− τ̂)4/24.

2 Set c1 = τ̂ .

3 Exponentiate cubic and quartic terms.

4 Integrate term-wise.

5 Then P
[
X̄ 1 ≥ x̄1

]
is approximately
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2 ω̂ = sign(τ̂)
√

2(τ̂ x̄ − K (τ̂)
3 ρ̂3 = K ′′′(τ̂)K ′′(τ̂)−3/2.
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3(nẑ2−1)
6
√
n

]
.
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One Dimensional Methods: Hao and Kolassa (2016)
approach

1 Re-parameterize the inversion integral in terms of ω satisfying
(ω − ω̂)2/2 = K (τ)− τx − K (τ̂) + τ̂x .

2 Integral is 1
(2πi)

∮
exp(n[ω2/2− ω̂ω])λdω

ω .

1 λ = ω
τ

dτ
dω .

3 Tail probability approximation is Φ̄(ω̂) + ϕ(ω̂)(1/ω̂ − 1/ẑ)/
√
n.

1 Holds without regards to τ̂ > 0.
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Methods in Multiple Dimensions

1 The tail probability P
[
X̄ ≥ x̄

]
is

1

(2πi)p

∮
exp(n[K (τ1, . . . , τp)−

p∑
i=1

x̄ iτi ])
dτ1 · · · dτp
τ1 · · · τp

.

2 Hao and Kolassa (2016) works analogously as with Robinson:

1 Expand K (τ)−
∑

j τj x̄
j about τ̂ = (τ̂1, . . . , τ̂p) to get:

K (τ̂ )−
∑
j

τ̂j x̄
j +

∑
j,k

K jk(τ̂ )(τj − τ̂j)(τk − τ̂k)/2

+
∑
j,k,ℓ

K jkℓ(τ̂ )(τj − τ̂j)(τk − τ̂k)(τℓ − τ̂ℓ)/6

+
∑

j,k,ℓ,m

K jkℓm(τ ?)(τj − τ̂j)(τk − τ̂k)(τℓ − τ̂ℓ)(τm − τ̂m)/24.

2 Expand exp of cubic and quartic terms.
3 Integral of resulting quartic term is O(1/n).
4 Integrate terms up to cubic term-wise.
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Downsides of existing approximation

1 Lots of terms

2 Terms are not particularly interpretable.

1 (Multivariate) normal tail probability is multiplied by an exponential
factor.

3 You are stuck with τ̂j > 0

1 Get around this using Boole’s Law
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Lugannani and Rice Analog

1 New parameterization
∑

j ω̂
2
j /2 = K (τ̂ )−

∑
j τ̂j ,∑

j(ωj − ω̂j)
2/2 = K (τ )−

∑
j τj − (K (τ̂ )−

∑
j τ̂j)

2 Integral is

1

(2πi)p

∮
exp(n

∑
j

ω2
j −

p∑
i=1

ω̂jωj)λ
dω1 · · · dωp

ω1 · · ·ωp
.

1 λ =
ω1···ωp

τ1···τp
dτ1···dτp
dω1···dωp

.

1 In one dimension, zeros in denominator of λ correspond to zeros in the
numerator.

2 This fails for p > 1.
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Re-parameterize to fix lack of alignment of zeros

1 Re-parameterize to ξj = ωj −
∑

k<j ωkζ
k
j (ω1, . . . , ωj−1) so that ξj = 0

if and only if τj = 0.

1 Ex. ξ1 = ω1, ξ2 = ω2 − ω1ζ
1
2 (ω1) for ζ

2
1 = ω2(τ1, 0)/ω1.

2 Adjustment also makes
{X̄ 1 ≥ x̄1 ∩ . . . , X̄ p ≥ x̄p} ≈ {Ξ̂1 ≥ ξ̂1 ∩ . . . , Ξ̂p ≥ ξ̂p}.

3 Adjustment makes singularities in λ removable.
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Adjustment induces sample space rotation for Ω̂j
1 using ζ jk(Ω̂).
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Correlated gamma example, x = (4, 5)
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New approximation is simpler

1 P
[
X 1 ≥ x1 ∩ . . . ∩ X p ≥ xp

]
≈

Φ̄(
√
nξ̂;Σ) +

∑p
j=1 Φ̄(

√
nξ̂−j ;Σj)ϕ(

√
nξj)(1/ξj − 1/(τ̂j/σj)) + C .

1 Σ is generated by transformation from ω to ξ.
2 σj is a standard error for τ̂j .

2 In order to make λ have removable singularities,

1 exponent in inversion integral is no longer exactly quadratic.
2 C adjusts for this.

3 Avoids requirement that τ̂j > 0.
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Example

1 p = 2,

2 X1 = Z1 + Z2, X2 = Z1 + Z3, Zj independent exponentials.

3 n = 1!

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 14 / 19



Example

1 p = 2,

2 X1 = Z1 + Z2, X2 = Z1 + Z3, Zj independent exponentials.

3 n = 1!

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 14 / 19



Example

1 p = 2,

2 X1 = Z1 + Z2, X2 = Z1 + Z3, Zj independent exponentials.

3 n = 1!

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 14 / 19



Relative Error: Normal on raw scale
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Relative Error: Normal on SRLLR scale
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Relative Error: SRLLR scale, adjust for marginal
non-normality

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

2.0 2.5 3.0 3.5 4.0 4.5

2.0

2.5

3.0

3.5

4.0

4.5

rawlr

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 17 / 19



Relative Error: SRLLR scale, all adjustments
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Work in various stages of completion

1 Addressing removable singularities in C .

2 p > 2.

3 r∗ version placing O(1/
√
n) corrections into argument of Φ̄.

4 Extension to lattice variables

5 Extension to conditional distributions.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 19 / 19



Work in various stages of completion

1 Addressing removable singularities in C .

2 p > 2.

3 r∗ version placing O(1/
√
n) corrections into argument of Φ̄.

4 Extension to lattice variables

5 Extension to conditional distributions.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 19 / 19



Work in various stages of completion

1 Addressing removable singularities in C .

2 p > 2.

3 r∗ version placing O(1/
√
n) corrections into argument of Φ̄.

4 Extension to lattice variables

5 Extension to conditional distributions.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 19 / 19



Work in various stages of completion

1 Addressing removable singularities in C .

2 p > 2.

3 r∗ version placing O(1/
√
n) corrections into argument of Φ̄.

4 Extension to lattice variables

5 Extension to conditional distributions.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 19 / 19



Work in various stages of completion

1 Addressing removable singularities in C .

2 p > 2.

3 r∗ version placing O(1/
√
n) corrections into argument of Φ̄.

4 Extension to lattice variables

5 Extension to conditional distributions.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 19 / 19



Hao, Y. and Kolassa, J. (2016). Multiple hypotheses in the analysis of a
crossover trial. Statistics in Biosciences, 8(2):253–263. Funding
Information: The second author was supported by Grant NSF DMS
0906569. Publisher Copyright: © 2016, International Chinese Statistical
Association.

Kolassa, J. (2003). Multivariate saddlepoint tail probability
approximations. Annals of Statistics, 31:274–286.

Lugannani, R. and Rice, S. (1980). Saddle point approximation for the
distribution of the sum of independent random variables. Advances in
Applied Probability, 12:475–490.

Robinson, J. (1982). Saddlepoint approximations for permutation tests
and confidence intervals. Journal of the Royal Statistical Society Series
B, 44:91–101.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 20 / 19



Hao, Y. and Kolassa, J. (2016). Multiple hypotheses in the analysis of a
crossover trial. Statistics in Biosciences, 8(2):253–263. Funding
Information: The second author was supported by Grant NSF DMS
0906569. Publisher Copyright: © 2016, International Chinese Statistical
Association.

Kolassa, J. (2003). Multivariate saddlepoint tail probability
approximations. Annals of Statistics, 31:274–286.

Lugannani, R. and Rice, S. (1980). Saddle point approximation for the
distribution of the sum of independent random variables. Advances in
Applied Probability, 12:475–490.

Robinson, J. (1982). Saddlepoint approximations for permutation tests
and confidence intervals. Journal of the Royal Statistical Society Series
B, 44:91–101.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 20 / 19



Hao, Y. and Kolassa, J. (2016). Multiple hypotheses in the analysis of a
crossover trial. Statistics in Biosciences, 8(2):253–263. Funding
Information: The second author was supported by Grant NSF DMS
0906569. Publisher Copyright: © 2016, International Chinese Statistical
Association.

Kolassa, J. (2003). Multivariate saddlepoint tail probability
approximations. Annals of Statistics, 31:274–286.

Lugannani, R. and Rice, S. (1980). Saddle point approximation for the
distribution of the sum of independent random variables. Advances in
Applied Probability, 12:475–490.

Robinson, J. (1982). Saddlepoint approximations for permutation tests
and confidence intervals. Journal of the Royal Statistical Society Series
B, 44:91–101.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 20 / 19



Hao, Y. and Kolassa, J. (2016). Multiple hypotheses in the analysis of a
crossover trial. Statistics in Biosciences, 8(2):253–263. Funding
Information: The second author was supported by Grant NSF DMS
0906569. Publisher Copyright: © 2016, International Chinese Statistical
Association.

Kolassa, J. (2003). Multivariate saddlepoint tail probability
approximations. Annals of Statistics, 31:274–286.

Lugannani, R. and Rice, S. (1980). Saddle point approximation for the
distribution of the sum of independent random variables. Advances in
Applied Probability, 12:475–490.

Robinson, J. (1982). Saddlepoint approximations for permutation tests
and confidence intervals. Journal of the Royal Statistical Society Series
B, 44:91–101.

Kolassa and Lee Bivariate Tail Probability Approximations 21 December 2023 20 / 19


	References

