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Abstract  
 
This paper at tempts to introduce readers w ith the c oncept  and 
methodology of  bootstrap in Stat ist ics, which is p l aced under a larger 
umbrel la of  resampl ing.   Major  port ion of  the discu ssions should be 
accessib le to any one who has had a couple of  col le ge level  appl ied 
stat is t ics courses.  Towards the end, we at tempt to  provide gl impses of  
the vast  l i terature publ ished on the topic,  which s hould be helpfu l  to 
someone aspir ing to go into the depth of  the method ology.   A sect ion is  
dedicated to i l lustrate real data examples.   A tech nical  appendix is 
inc luded, which contains a short  proof  of  “bootst ra p Centra l  L imit  
Theorem” for  the means.  I t  should inspire a mathem at ical  minded reader 
to study further.   We th ink the selected set  of  ref erences cover the greater 
part  of  the developments on this subject  matter .  
 
 
 
 

1. Introduct ion and the Idea 
 

 B. Efron introduced a statistical method, which is called Bootstrap, published in 1979 

(Efron 1979). It spread like brush fire in statistical sciences within a couple of decades.  Now if 

one conducts a “Google search” for the above title, an astounding 1.86 million records will be 

mentioned; scanning through even a fraction of these records is a daunting task. We attempt first 

to explain the idea behind the method and the purpose of it at a rather rudimentary level. The 

primary task of a statistician is to summarize a sample based study and generalize the finding to 

the parent population in a scientific manner. A technical term for a sample summary number is 

(sample) statistic. Some basic sample statistics are, for instance, sample mean, sample median, 

sample standard deviation etc. Of course, a summary statistic like the sample mean will fluctuate 

from sample to sample and a statistician would like to know the magnitude of these fluctuations 

around the corresponding population parameter in an overall sense. This is then used in 

assessing Margin of Errors. The entire picture of all possible values of a sample statistics 

presented in the form of a probability distribution is called a sampling distribution. There is a 
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plenty of theoretical knowledge of sampling distributions, which can be found in any text books of 

mathematical statistics. A general intuitive method applicable to just about any kind of sample 

statistic that keeps the user away from the technical tedium has got its own special appeal.  

Bootstrap is such a method. 

 To understand bootstrap, suppose it were possible to draw repeated samples (of the 

same size) from the population of interest, a large number of times.  Then, one would get a fairly 

good idea about the sampling distribution of a particular statistic from the collection of its values 

arising from these repeated samples.  But, that does not make sense as it would be too 

expensive and defeat the purpose of a sample study. The purpose of a sample study is to gather 

information cheaply in a timely fashion.  The idea behind bootstrap is to use the data of a sample 

study at hand as a “surrogate population”, for the purpose of approximating the sampling 

distribution of a statistic; i.e. to resample (with replacement) from the sample data at hand and 

create a large number of “phantom samples” known as bootstrap samples. The sample summary 

is then computed on each of the bootstrap samples (usually a few thousand). A histogram of the 

set of these computed values is referred to as bootstrap distribution of the statistic. 

 In bootstrap’s most elementary application, one produces a large number of “copies” of a 

sample statistic, computed from these phantom bootstrap samples. Then, a small percentage, 

say 100( / 2)%α  (usually 0.05α = ), is trimmed off from the lower as well as from the upper end of 

these numbers.  The range of remaining 100(1 )%α−  values is given out as the confidence limits 

of the corresponding unknown population summary number of interest, with level of confidence 

for this range to include the unknown equal to100(1 )%α−  approximately. The above method is 

referred to as bootstrap percentile method.  We shall return to it later in the article. 

2. The Theoretical Support 

 Let us develop some mathematical notations for convenience.  Suppose population 

parameter θ  is some type of population summary number which is a target of the sample study; 

say for example, the household median income of a chosen community.  A random sample of 

size n  yields the data 1 2( , ,..., )nX X X . Suppose, the corresponding sample statistic computed 
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from this data set is θ̂  (sample median in the case of the example).  For most types of sample 

statistics (with plentiful exceptions), the sampling distribution of θ̂  for large n ( 30n ≥  is generally 

accepted as large sample size), is bell shaped with center θ  and standard deviation ( /a n ), 

where the positive number a  depends on the population and the type of statistic θ̂ .  This 

phenomenon is the celebrated Central Limit Theorem (CLT). Often, there are serious technical 

complexities in approximating the required standard deviation from the data.  Such is the case 

when θ
�

 is sample median or sample correlation. Then bootstrap offers a bypass. Let ˆ
Bθ  stand for 

a random quantity which represents the same statistic computed on a bootstrap sample drawn 

out of 1 2( , ,..., )nX X X .   What can we say about the sampling distribution of Bθ
�

(w.r.t. all possible 

bootstrap samples), while the original sample 1 2( , ,..., )nX X X  is held fixed?  The first two articles 

dealing with the theory of bootstrap – Bickel and Freedman (1981) and Singh (1981) provided 

large sample answers for “usual” set of statistics.  In limit, as ( n → ∞ ), the sampling distribution 

of Bθ
�

is also bell shaped with θ
�

 as the center and the same standard deviation ( /a n ).  Thus, 

bootstrap distribution of Bθ θ−
� �

approximates (fairly well) the sampling distribution ofθ θ−
�

.  Note 

that, as we go from one bootstrap sample to another, only θ
�

B in the expression Bθ θ−
� �

 changes 

as θ
�

 is computed on the original data 1 2( , ,..., )nX X X .  This is the bootstrap Central Limit 

Theorem.  In the technical appendix at the end of this article (for mathematical minded readers) 

we include a proof of bootstrap CLT for the mean from Singh (1981), which possesses 

exceptional elegance.   

Furthermore, it has been found that if the limiting sampling distribution of a statistical 

function does not involve population unknowns, bootstrap distribution offers a better 

approximation to the sampling distribution than the CLT.  Such is the case when the statistical 

function is of the form ( ) /B SEθ θ−
� �

 where SE stands for true or sample estimate of the standard 

error ofθ
�

, in which case the limiting sampling distribution is usually standard normal.  This 

phenomenon is referred to as the second order correction by bootstrap.  A caution is warranted in 
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designing bootstrap, for second order correction. For illustration, letθ µ= , the population mean, 

and Xθ =
�

, the sample mean; σ = population standard deviation, s= sample standard deviation 

computed from original data and sB is the sample standard deviation computed on a bootstrap 

sample.  Then, the sampling distribution of ( /X SEµ− ) , with /SE nσ= , will be approximated by 

the bootstrap distribution of �( /BX X SE− ) , with BX  = bootstrap sample mean and � /SE s n= .  

Similarly, the sampling distribution of �( /X SEµ− ) , with � /SE s n= , will be approximated by the 

bootstrap distribution of ( /B BX X SE− ) ,  with /B BSE s n= .  The earliest results on second order 

correction were reported in Singh (1981) and Babu and Singh (1983).  In the subsequent years, a 

flood of large sample results on bootstrap with substantially higher depth, followed.  A name 

among the researchers in this area that stands out is Peter Hall of Australian National University. 

3.  Primary Applications of Bootstrap 

 3.1  Approximating Standard Error of a Sample Esti mate: 

 Let us suppose, information is sought about a population parameter θ.  Suppose θ̂  is a 

sample estimator of θ  based on a random sample of size n , i.e. θ̂  is a function of the data 

1 2( , ,..., )nX X X .   In order to estimate standard error of θ̂ , as the sample varies over the class of all 

possible samples, one has the following simple bootstrap approach: 

 Compute * * *
1 2( , ,..., )Nθ θ θ , using the same computing formula as the one used for θ̂ , but now 

base it on N  different bootstrap samples (each of size n ).  Here N  is the number of bootstrap 

replications.  A crude recommendation for the size N could be 2N n=  (in our judgment), unless 

2n is too large.  In that case, it could be reduced to an acceptable size, say logen n .  One 

defines * 2 1/ 2

1

ˆ ˆ( ) [(1/ ) ( ) ]
N

B i
i

SE Nθ θ θ
=

= −∑  following the philosophy of bootstrap:  replace the 

population by the empirical population.  
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 An older resampling technique used for this purpose is Jackknife, though bootstrap is 

more widely applicable. The famous example where Jackknife fails while bootstrap is still useful is 

that of θ̂  = the sample median.  

3.2   Bias correction by bootstrap: 

 The mean of sampling distribution of θ̂  often differs fromθ , usually by an amount = /c n  

for large n .  In statistical language, one writes 

ˆ ˆ( ) ( ) (1/ )Bias E O nθ θ θ= − ≈  . 

 A bootstrap based approximation to this bias is 

    �*

1

1 ˆ ˆ( )B

N

i
i

Bias
N

θ θ θ
=

− =∑  (say),  

Where *
iθ are bootstrap copies of θ̂ , as defined in the earlier subsection.  Clearly, this 

construction is also based on the standard bootstrap thinking:  replace the population by the 

empirical population of the sample. The bootstrap bias corrected estimator is �ˆ ˆ ˆ( )Bc Biasθ θ θ= − . It 

needs to be pointed out that the older resampling technique called Jackknife is more popular with 

statisticians, for the purpose of bias estimation.   

3.3   Bootstrap Confidence Intervals: 

 Confidence intervals for a given population parameter θ  are sample based range [ 1θ̂ , 

2θ̂ ] given out for the unknown number θ .  The range possesses the property that θ would lie 

within its bounds with a high (specified) probability.  The latter is referred to as confidence level.  

Of course this probability is with respect to all possible samples, each sample giving rise to a 

confidence interval which thus depends on the chance mechanism involved in drawing the 

samples.  The standard two levels of confidence are 95% and 99%.  We limit ourselves to the 

level 95% for our discussion here. Traditional confidence intervals rely on the knowledge of 

sampling distribution of θ̂ , exact or asymptotic as n → ∞ .  Here are some standard brands of 

confidence intervals constructed using bootstrap. 

Bootstrap Percentile Method:   



 6 

 This method was singled out to be mentioned in the introduction itself, because of its 

popularity which is primarily due to its simplicity and natural appeal.  Suppose one settles for 

1000 bootstrap replications of θ̂ , denoted by * * *
1 2 1000( , ,..., )θ θ θ .  After ranking from bottom to top, let 

us denote these bootstrap values as * * *
(1) (2) (1000)( , ,..., )θ θ θ .  Then the bootstrap percentile confidence 

interval at 95% level of confidence would be * *
(50) (950)[ , ]θ θ .  Turning to the theoretical aspects of this 

method, it should be pointed out that the method requires the symmetry of the sampling 

distribution of θ̂  aroundθ .  As a matter of fact, the method approximates the sampling distribution 

of θ̂ θ−  by the bootstrap distribution of ˆ ˆ
Bθ θ− , and NOT ˆ ˆ

Bθ θ− as the bootstrap thinking would 

dictate.  Interested readers may check out Hall (1988). 

Centered Bootstrap Percentile Method : 

 Suppose the sampling distribution of θ̂ θ−  is approximated by the bootstrap distribution of 

ˆ ˆ
Bθ θ− , which is what the bootstrap prescribes.  Denote 100s-th percentile of ˆ

Bθ  (in bootstrap 

replications) by sB .  Then, the statement that θ̂ θ−  lies within the range .025
ˆB θ− , .975

ˆB θ− would 

carry a probability .95≈ .  But, this statement easily translates to the statement thatθ  lies within 

the range .975 .025
ˆ ˆ(2 ,2 )B Bθ θ− − .  The latter range is what is known as centered bootstrap 

percentile confidence interval (at coverage level 95%).  In terms of 1000 bootstrap replications 

*
.025 (25)B θ=  and *

.975 (975)B θ= . If ˆ ˆ
Bθ θ−  is replaced by ˆ ˆ

Bθ θ−  in this construction, the outcome is the 

earlier bootstrap percentile confidence interval. 

Bootstrap-t Methods:  

 As it was mentioned in section 2, bootstrapping a statistical function of the form 

( ) /T SEθ θ= −
�

 where SE is a sample estimate of the standard error ofθ
�

, brings extra accuracy.  

This additional accuracy is due to so called one-term Edgeworth correction by the bootstrap. The 

reader could find essential details in Hall (1992).  The basic example of T  is the standard t -

statistics (from which the name bootstrap- t  is derived): ( ) /( / )t X s nµ= − , which is a special 

case with θ µ=  (the population mean), ˆ Xθ =  (the sample mean) and s standing for the sample 
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standard deviation.  The bootstrap counterpart of such a function T  is ˆ( ) /B B BT SEθ θ= −
�

 

where BSE  is exactly like SE  but computed on a bootstrap sample. Denote the 100s-th bootstrap 

percentile of BT  by sb  and consider the statement: T  lies within [ .025b , .975b ]. After the substitution 

( ) /T SEθ θ= −
�

, the above statement translates to ‘θ  lies within .975 .025
ˆ ˆ(  ,   )SE b SE bθ θ− − ’ .  This 

range for θ  is called bootstrap-t based confidence interval for θ  at coverage level 95%.  Such an 

interval is known to have “second order accuracy” in coverage error at both ends of the interval.   

We end the section with a remark that B. Efron proposed correction to the rudimentary 

percentile method to bring in extra accuracy.  These corrections are known as Efron’s “bias-

correction” and “accelerated bias-correction”. The details could be found in Efron and Tibishirani 

(1993). The bootstrap-t automatically takes care of such corrections, although the bootstrapper 

needs to look for a formula for SE which is avoided in the percentile method.   

4. Some Real Data Example 

Example 1. (Bivariate Data)   In our first example, the data are from the article “Evaluating BOD 

POD(R) for assessing body fat in collegiate football players” published in Medicine and Science in 

Sports and Exercise (1999), page 1350-56 (as presented in PROBABILITY AND STATISTICS for 

Engineering and Science by J. L. Devore p 553).  We study correlation between the BOD and 

HW measurements; see the data at the end of this section. Here, BOD is BOD POD, a whole 

body air-displacement plethysmograph, and HW refers to hydrostatic weighing. The sample size 

is modest, but reasonable for bootstrap methods.  The box plots in Figure 1 (a) suggest lack of 

normality.  The bootstrap histogram in Figure 1 (c) is asymmetric (skewed to the left).  For this 

reason, the centered bootstrap percentile confidence interval appears more appropriate.  

According to our bootstrap analysis, the two measurements have at least a correlation of 0.78 in 

the population.   

 



 8 

 
  (a) Box plots            (b) Scatter plot     (c) Histogram 
 
 
Figure 1. Boxplots of BOD and HW in (a) suggest somewhat non-normal data. Scatter plot in (b) 
indicates they are highly correlated. Bootstrap inference on the correlation between BOD and HW 
is presented in (c), which shows the Bootstrap distribution (in histogram) of correlation. IN 
particular, sample correlation of BOD and HW is 0.8678753, which corresponds to the dotted 
vertical line in (c).  The SE of the correlation is 0.0411610281 with an estimated bias of 
0.0002804083.  The 95% confidence interval of the correlation by the bootstrap percentile 
method is (0.7221611596, 0.9489691691) and the 95% confidence interval by the centered 
bootstrap percentile method is (0.7867814879, 1.0135894974).       
 
 

Example2. (Skewed Univariate Data)  In the second example, the data are taken from an article 

by R.W. Oppenhein (Ani. Beh. 1968 vol. 16, p. 276-280).  The data represent the effect of 

illumination on the rate of beak-clapping among chick-embryos (presented in NONPARAMETRIC 

STATISTICAL METHODS by M. Hollander and D.A. Wolfe, p. 42); See the end of the section.  

The boxplot suggests lack of normality of the population. We have carried out bootstrap analysis 

on the median and on the mean.  A noteworthy finding is the lack of symmetry of bootstrap-t 

histogram, which differs from limiting normal curve.  The 95% level confidence intervals arising 

from our analysis for both mean and the median (centered bootstrap percentile method) cover the 

range [10, 30], roughly speaking.  This range represents overall rise in the mean number of beak-

clapping per minute due to illumination.   
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Figure 2. Boxplot of the measurement is presented in (a). Bootstrap distributions of the sample 
mean, sample median and t* statistic are plotted in (b)-(d), respectively. The dotted lines in (b) 
and (c) correspond respectively to the sample mean and sample median. Based the bootstrap 
distributions, the 95% confidence interval for the population median by the bootstrap percentile 
method is (4.700000, 24.700000), by the centered boostrap percentile is (10.500000, 30.500000). 
The 95% confidence interval for the population mean by the percentile bootstrap method is 
(10.0960000, 28.1200000), by the centered bootstrap method is (9.4880000, 27.5120000). The 
Bootstrap-t 95% CI for the population mean is (12.94131, 30.81469). Note that the bootstrap t on 
the mean show skewed histogram of the t-distribution.  
 

 
Data for Example 1:  
 
BOD  
2.5  4.0  4.1  6.2  7.1  7.0  8.3  9.2  9.3 12.0 12.2 12.6 14.2 14.4 15.1 15.2 16.3 17.1 17.9 17.9  
HW 
8.0  6.2  9.2  6.4  8.6 12.2  7.2 12.0 14.9 12.1 15.3 14.8 14.3 16.3 17.9 19.5 17.5 14.3 18.3 16.2 
 
Data for Example 2 :  
 
-8.5 -4.6 -1.8 -0.8 1.9  3.9   4.7 7.1  7.5  8.5 14.8 16.7 17.6 19.7 20.6 21.9 23.8 24.7 24.7 25.0 
40.7 46.9 48.3 52.8 54.0   
 
5. Engineering A Fitting Bootstrap 
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 A sizable amount of journal literature on the topic is directed towards proposal and study 

of bootstrap schemes which will produce decent results in various statistical situations.  The set 

up that has been the basis of forgoing discussion is basic and there are many types of departures 

from it.  To find an example, one has to look no further than just the case of “sampling without 

replacement” used in drawing the original sample. If one carries out sampling without 

replacement (n draws) on the original sample 1 2( , ,..., )nX X X , one would end up with just another 

permutation of this sample!  It would be a nice exercise for the reader to come up with a remedy; 

see Bickel and Freedman (1984) for a reference.  How to bootstrap in case of two stage sampling 

or a stratified sampling?  Natural schemes are not hard to think of.  Bootstrapping in case of data 

with regression models has attracted a lot of attention.  There are two schemes which stand out:  

in one of which the covariate(s) and the response variable are resampled together (called paired 

bootstrap), and the other one bootstraps the “residuals” (=response – fitted model value) and 

then reconstructs the bootstrap regression data by plugging in the estimated regression 

parameters (called residual bootstrap).   Paired bootstrap remains valid - in the sense of correct  

outcome in the limit as n → ∞ , even if the error variances in the model are unequal; a property 

which the residual bootstrap lacks.  The shortcoming is compensated by the fact that the latter 

scheme brings additional accuracy in the estimation of standard error.  This is the classic tug of 

war between efficiency and robustness in statistics (see Liu and Singh (1992)).  

A lot harder to bootstrap are the time series data.  Needless to say, time series analysis 

is of critical importance in several disciplines, especially in econometrics.  The sources of difficulty 

are two-fold: (I)  Time series data possess serial dependence i.e. 1TX + has dependence 

on 1,T TX X −  etc; (II)The statistical population changes with time, and that is known as non 

stationarity. It was noted very early on (see Singh (1981) for m-dependent data) that the classical 

bootstrap can not handle dependent data.  A fair amount of research has been dedicated to 

modifying the bootstrap so that it could automatically bring in the dependence structure of the 

original sampling into bootstrap samples.  The scheme of moving–block bootstrap has become 

quite well known (invented in Kunch (1989) and Liu and Singh (1992)).  Potitis and Romano are 

well known authors on the topic, whose contributions have led to significant advancements on the 
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topic of resampling, in general.  In a moving block bootstrap scheme, one draws a block of data 

at a time, instead of one of the iX ’s at a time, in order to preserve the underlying serial 

dependence structure that is present in the sample. There is plenty of ongoing research in the 

area of bootstrap methodology on econometric data.  

6.  The great m out n bootstrap with ( / 0m n → ) 

 Imagine a treatment which will rise to the occasion regardless of lies at the root of illness!  

A statement of this sort could be made about the m  out of n  bootstrap with / 0m n → .  There are 

various types of conditions under which the straightforward bootstrap becomes inconsistent, 

meaning that the bootstrap estimate of sampling distribution and the true sampling distribution do 

not approach to the same limit, as the sample size n  tends to ∞ .  That means, for large samples, 

one is bound to end up with an inaccurate statistical inference.  Luckily, a general remedy exists 

and that is to keep the bootstrap sample size m  much lower than the original size.  

Mathematically speaking, one requires / 0m n → , as n → ∞ . In theory it fixes the problem, 

however for users, it is somewhat troublesome. How to choose m ? An obvious suggestion would 

be settle for a fraction of n , say 20% or so.  It should be pointed out that in good situations, 

where the regular bootstrap is fine, such m  is not advisable as it will result is loss of efficiency.  

Let us try to understand by an example how the m  out of n  bootstrap provides the remedy.  

Suppose, the statistical function of interest is ( ) ( )f X f µ−  for a smooth function f , where X  and 

µ are the sample mean and the population mean, respectively.  Using the Taylor’s expansion (δ–

method) the above expression is approximated by '( )( )f Xµ µ− , with '( )f ⋅  denoting the first 

derivative.  Now suppose, it has been stipulated that for the underlying population '( ) 0f µ = , in 

which case one moves on to the next term in the Taylor’s expansion, which is 2''( )( ) / 2f Xµ µ− .  

Now, if ''( ) 0f µ ≠ , the limiting distribution of { ( ) ( )}n f X f µ−  is the distribution of a constant times 

a 2χ random variable with df 1.   Consider now, the corresponding regular bootstrap statistic 

( ) ( )Bf X f X− , where BX  stands for bootstrap mean.  In the first term of the expansion, one 

encounters '( )f X  which is close to zero ≈ constant times1/ n , but not exactly zero.  This is 
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precisely the source of above mentioned inconsistency.  This leading term after we multiply it 

by n , does not vanish in limit.  Turning to the modified bootstrap with sample size m , with 

( / 0m n → ), the lead term (multiplied with m )  

= '( ) ( )Bm f X m X X−  

which goes to 0 in limit and the next term in the expansion yields the right limit.  Heuristically 

speaking, with a much smaller bootstrap sample size, the empirical population “feels” much 

closer to the true population and that does the trick!  The example is from Babu (1984), in 

essence. See Bickel (2003), for a recent survey on the topic. 

 We close this section with some well known examples of bootstrap failures where “ m  out 

of n ” is a remedy:  Bootstrapping sample minimum or sample maximum which estimate end-

point of a population distribution (Bickel and Freedman (1981)); the case of sample mean when 

the population variance is ∞  (Athreya (1981)); bootstrapping sample eigenvalues when 

population eigenvalues have multiplicity (Eaton and Tyler (1991)); the case of sample median 

when the population density is discontinuous at the population median (Huang, et.al. (1996)). 

Technical Appendix 

 We include here a proof of bootstrap Central Limit Theorem (CLT), taken from Singh 

(1981), which brings together two celebrated theorems from mathematical statistics and 

probability with impressive exactness.  The two theorems we are pointing to are Berry-Esseen 

Bound and Marcinkiewicz-Zigmund Strong Law of Large Numbers (MZ-SLLN).  The classical CLT 

asserts:  If 1 2( , ,...)X X  are i.i.d. random variables with 2
1( )Var Xσ = < ∞ , then as n → ∞ ,  

( )sup | ( ) / ( ) | 0x P n X x xµ σ− ≤ − Φ →  

 with 1

1

n

i
i

X n X−

=

= ∑ , 1( )E Xµ = and ( )Φ • denoting the cdf of standard normal distribution.  Now,  the 

corresponding theorem for bootstrap asserts:  

 Theorem (Bootstrap CLT). Let 1 2( , ,...)X X  be i.i.d random variables with 

2
1( )Var Xσ = < ∞ .  Let BX denote the mean of n  i.i.d draws from 1 2( , ,..., )nX X X .  Then as 

n → ∞ , 
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( )sup | ( ) / ( ) | 0x B B nP n X X s x x− ≤ − Φ → , 

with probability 1,  w.r.t 1 2( , ,...)X X .  Here X  and ns   stand for the mean and SD of 

1 2( , ,..., )nX X X  and BP  denotes bootstrap probability (probability associated with random drawing 

from 1 2( , ,..., )nX X X ).   

 Proof:   According to the Berry-Esseen bound, the left hand side of the above expression 

is bounded by 3

1

( / )(1/ ) | |
n

i
i

K n n X X
=

−∑ , where K is an universal constant.  As is well known, 

2 2
ns σ→ , with probability 1 if 2σ < ∞ . Now, let us note that 3 3 3| | 4(| | | | )i iX X X X− ≤ +  and 

1/ 2 3| | 0n X− → , with probability 1. Thus, it suffices to conclude that 3/ 2 3

1

(1/ ) | | 0
n

i
i

n X
=

→∑ , with 

probability 1.   A part of MZ-SLLN states: If 1 2( , ,...)W W  are i.i.d random variables with 1| |rE W ≤ ∞  

with 0 1r< < , then 1/

1

0
n

r
i

i

n W−

=

→∑ , with probability 1.  Let us apply this with 3| |i iW X=  and 

2 /3r = , since one has the condition 2 / 3(| | )iE W < ∞ , as 2 / 3 2| |i iW X= .  Now, MZ-SLLN exactly fits 

to our situation. The bootstrap CLT for other statistics can be established via linear approximation 

of the statistics when available. 
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