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Adaptive Joint Detection and Decoding in Flat-Fading
Channels via Mixture Kalman Filtering

Rong Chen, Xiaodong Wang, Member, IEEE, and Jun S. Liu

Abstract—A novel adaptive Bayesian receiver for signal detec-
tion and decoding in fading channels with known channel statistics
is developed; it is based on the sequential Monte Carlo method-
ology that recently emerged in the field of statistics. The basic idea
is to treat the transmitted signals as “missing data” and to sequen-
tially impute multiple samples of them based on the observed sig-
nals. The imputed signal sequences, together with their importance
weights, provide a way to approximate the Bayesian estimate of
the transmitted signals and the channel states. Adaptive receiver
algorithms for both uncoded and convolutionally coded systems
are developed. The proposed techniques can easily handle the non-
Gaussian ambient channel noise. It is shown through simulations
that the proposed sequential Monte Carlo receivers achieve near-
bound performance in fading channels for both uncoded and coded
systems, without the use of any training/pilot symbols or decision
feedback. Moreover, the proposed receiver structure exhibits mas-
sive parallelism and is ideally suited for high-speed parallel im-
plementation using the very large scale integration (VLSI) systolic
array technology.

Index Terms—Adaptive decoding, adaptive detection, coded
system, flat-fading channel, mixture Kalman filter, non-Gaussian
noise, sequential Monte Carlo methods.

I. INTRODUCTION

NARROW-BAND mobile communications for voice and
data can be modeled as signaling over frequency-nonse-

lective (flat) Rayleigh fading channels. A considerable amount
of research has recently been devoted to signal detection in
such channels. Specifically, various techniques for the max-
imum-likelihood sequence estimation (MLSE) in flat-fading
channels have been proposed. The optimal solutions under sev-
eral fading models are studied in [11], [21], and [22]. The exact
implementation of these optimal solutions, however, involves
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prohibitively time-consuming high-dimensional filtering. A
number of suboptimal algorithms have thus been proposed,
most of which employ a two-stage receiver structure with a
channel estimation stage followed by a sequence detection
stage. Channel estimation is typically implemented by a
Kalman filter or a linear predictor and is facilitated by per-sur-
vivor processing [30], [32], decision feedback [11], [14], [20],
pilot symbols [3], [7], [16], [29], or a combination of all the
above [13]. Other suboptimal solutions to MLSE in flat-fading
channels include the method based on a combination of hidden
Markov modeling and Kalman filtering [5], [6] and the method
based on the expectation–maximization (EM) algorithm [8].
Furthermore, joint channel estimation and decoding techniques
are developed in [9], [12] for coded systems based on iterative
(turbo) processing.

In this paper, we propose a newadaptivereceiver technique
for signal reception and decoding in flat-fading channels based
on a Bayesian formulation of the problem and the sequential
Monte Carlo methodology that recently emerged in the field
of statistics [19]. The basic idea is to treat the transmitted sig-
nals as “missing data” and to sequentially impute multiple sam-
ples of them based on the current observation. The importance
weight for each of the imputed signal sequences is computed
according to its relative ability in predicting the future obser-
vation. Then the imputed signal sequences, together with their
importance weights, can be used to approximate the Bayesian
estimates of the transmitted signals and the fading coefficients
of the channel. The novel features of such an approach include
the following:

• The algorithm is self-adaptive and no training/pilot sym-
bols or decision feedback are needed.

• The tracking of fading channels and the estimation of data
symbols are naturally integrated.

• The ambient channel noise can be either Gaussian or non-
Gaussian.

• If the system employs channel coding, the coded signal
structure can be easily exploited to substantially improve
the accuracy of both channel and data estimation.

• The resulting receiver structure exhibits massive paral-
lelism and is ideally suited for high-speed parallel imple-
mentation using very large scale integration (VLSI) sys-
tolic array technology.

This paper is organized as follows. In Section II, the com-
munication system under study is described and the Bayesian
formulation of the problem is stated. In Section III, some
background material on Monte Carlo filtering methods for
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Fig. 1. A coded communication system signaling through a flat-fading channel.

sequential Bayesian inference is provided. In Section IV, we
develop an adaptive Bayesian receiver algorithm for concurrent
channel and data estimation in fading Gaussian noise channels
for uncoded systems. In Section V, techniques for delayed
estimation are discussed. In Section VI, we develop adaptive
Bayesian sequential decoding methods for convolutionally
coded systems in fading Gaussian noise channels. In Sec-
tion VII, we discuss adaptive Bayesian receivers for fading
non-Gaussian noise channels. Simulation results are provided
in Section VIII and a brief summary is given in Section IX.
Necessary mathematical proofs are contained in the Appen-
dices A–C.

II. SYSTEM DESCRIPTION

We consider a channel-coded communication system sig-
naling through a flat-fading channel with additive ambient
noise. The block diagram of such a system is shown in Fig. 1.
The input binary information bits are encoded using some
channel code, resulting in a code bit stream . The code
bits are passed to a symbol mapper, yielding complex data
symbols , which take values from a finite alphabet set

. Each symbol is then transmitted through
a flat-fading channel whose input–output relationship is given
by

(1)

where , , , and are the received signal, the fading
channel coefficient, the transmitted symbol, and the ambient ad-
ditive noise at time , respectively. The processes , ,
and are assumed to be mutually independent.

It is assumed that the additive noise is a sequence of in-
dependent and identically distributed (i.i.d.) zero-mean complex
random variables. In this paper we consider two types of noise
distributions. In the first type, assumes a complex Gaussian
distribution

(2)

whereas in the second type, follows a two-term mixture
Gaussian distribution

(3)

where and . Here the term
represents the nominal ambient noise, and the term
represents an impulsive component. The probability that im-
pulses occur is. Note that the overall variance of the noise is

. This model serves as an approximation to the
more fundamental Middleton Class A noise model [26], [27],
[34], and has been used extensively to model physical noise
arising in radio and acoustic channels.

It is further assumed that the channel-fading process is
Rayleigh. That is, the fading coefficients form a complex
Gaussian process that can be modeled by the output of a
lowpass Butterworth filter of order driven by white Gaussian
noise

(4)

where is the back-shift operator

and is a white complex Gaussian noise sequence with unit
variance and independent real and complex components. The
coefficients and , as well as the order of the But-
terworth filter, are chosen so that the transfer function of the
filter matches the power spectral density of the fading process,
which, in turn, is determined by the channel Doppler frequency.
In this paper, we assume that the statistical properties of the
fading process are knowna priori. Consequently, the order and
the coefficients of the Butterworth filter in (4) are known.

We next write system (1) and (4) in the state-space model
form, which is instrumental in developing the adaptive receiver
proposed in this paper. Define

(5)

Denote By (4) we then have

(6)

where

...
...

.. .
...

...

and ...

Because of (5), the fading coefficient sequence can be
written as

where (7)

If the additive noise in (1) is Gaussian, i.e., ,
then we have the following state-space model for the system
defined by (1) and (4):

(8)

(9)
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where in (9) is a white complex Gaussian noise sequence
with unit variance and independent real and imaginary compo-
nents.

On the other hand, if the additive noise in (1) is non-Gaussian
and is modeled by (3), we introduce an indicator random vari-
able ,

if
if

(10)

with and . Because is
an i.i.d. sequence, so is. We then have the state-space signal
model for this case given by

(11)

(12)

We now look at the problem of online estimation of the
symbol and the channel coefficient based on the received
signals up to time, . Consider the simple case when
the ambient channel noise is Gaussian and the symbols are
i.i.d. uniformly a priori, i.e., . Then the problem
becomes one of making Bayesian inference with respect to the
posterior distribution

(13)

For example, an online symbol estimation can be obtained from
the marginal posterior distribution , and an on-
line channel state estimation can be obtained from the marginal
posterior distribution . Although the joint dis-
tribution (13) can be written out explicitly up to a normalizing
constant, the computation of the corresponding marginal distri-
butions involves very-high-dimensional integration and is infea-
sible in practice. Our approach to this problem is the sequential
Monte Carlo filtering technique.

III. SEQUENTIAL MONTE CARLO METHODS

In this section, the general framework of sequential Monte
Carlo methods for updating a dynamic system is described. Of
particular interest is the mixture Kalman filtering technique
described in [4], which will be used for designing adaptive
Bayesian receivers in fading channels.

A. Sequential Monte Carlo Filtering

Consider the following dynamic system modeled in a state-
space form as

state equation
observation equation

(14)

where , , , and are, respectively, the state variable, the
observation, the state noise, and the observation noise at time

. They can be either scalars or vectors. In the communication
system described in the previous section (e.g. (13)), the state
variable corresponds to , representing both the unob-
served symbol and the unknown fading channel at time.

Let and let .
Suppose an online inference of is of interest; that is, at cur-
rent time we wish to make a timely estimate of a function of
the state variable , say , based on the currently avail-
able observation, . With the Bayes theorem, we realize that
the optimal solution to this problem is

In most cases, an exact evaluation of this expectation is analyt-
ically intractable because of the complexity of such a dynamic
system. Monte Carlo methods provide us with a viable alterna-
tive to the required computation. Specifically, if we can draw

random samples from the distribution ,
then we can approximate by

(15)

Very often direct simulation from is not feasible, but
drawing samples from sometrial distribution is easy. In this
case, we can use the idea ofimportance sampling. Suppose a
set of random samples is generated from the trial
distribution . By associating the weight

(16)

to the sample , we can approximate the quantity of interest,
, as

(17)

where . The pair ,
is called aproperly weighted samplewith respect to distribution

. A trivial but important observation is that the
(one of the components of ) is also properly weighted by
the with respect to the marginal distribution .

Another possible estimate of is

(18)

The main reasons for preferring the ratio estimate (17) to the un-
biased estimate (18) in an importance sampling framework are
that a) estimate (17) usually has a smaller mean-squared error
than in (18); and b) the normalizing constants of both the trial
and the target distributions are not required in using (17) (where
these constants are canceled out); in such cases, the weights
are evaluated only up to a multiplicative constant. For example,
the target distribution in a typical dynamic system
(and many Bayesian models) can be evaluated easily up to a nor-
malizing constant (e.g., the likelihood multiplied by a prior dis-
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TABLE I
A SEQUENTIAL MONTE CARLO ALGORITHM FOR PROPAGATING A SET OF PROPERLY WEIGHTED SAMPLES FROM TIME (t � 1) TO

TIME t. NOTE THAT IN MOST APPLICATIONS WE ARE ONLY ABLE TO EVALUATE p(ZZZ jYYY ) / p(ZZZ ; YYY ) UP TO A NORMALIZING

CONSTANT, WHICH IS SUFFICIENT FORUSING (17) IN MONTE CARLO ESTIMATION

tribution), whereas sampling from the distribution directly and
evaluating the normalizing constant analytically are impossible.

To implement Monte Carlo techniques for a dynamic system,
a set of random samples properly weighted with respect to

is needed for any time. Because the state equation in
system (14) possesses a Markovian structure, we can implement
a recursive importance sampling strategy, which is the basis of
all sequential Monte Carlo techniques [19]. Suppose a set of
properly weighted samples (with respect
to ) is given at time . A Monte Carlo filter
(MCF) generates from the set a new one, ,
which is properly weighted at timewith respect to .
The algorithm is described in Table I.

The algorithm is initialized by drawing a set of i.i.d. samples
from . When represents the “null”

information, corresponds to the prior distribution of
. We show in Appendix A that the weighted samples gener-

ated by this algorithm satisfy

(19)

(20)

Hence, by the law of large numbers

as (21)

There are a few important issues regarding the design and
implementation of a sequential MCF, such as the choice of
the trial distribution and the use ofresampling(cf. Sec-
tion IV-B). Specifically, a useful choice of the trial distribution

for the state-space model (14) is of the form

(22)

where in (22) we used the fact that

and

both following directly from the state-space model (14). For this
trial distribution, the importance weight is updated according to

(23)

(24)

where (23) follows from the fact that

and the last equality is due to the conditional independence
property of the state-space model (14). See [19] for the general
sequential MCF framework and a detailed discussion on various
implementation issues.

B. The Mixture Kalman Filter

Many dynamic system models, including the flat-fading
channel models (8), (9) and (11), (12) belong to the class of
conditional dynamic linear models (CDLM) of the form

(25)

where , (here denotes an iden-
tity matrix), and is a random indicator variable. The matrices

, , , and are known given . In this model, the
“state variable” corresponds to .

We observe that for a given trajectory of the indicatorin
a CDLM, the system is both linear and Gaussian, for which the
Kalman filter provides a complete statistical characterization of
the system dynamics. Recently, a novel sequential Monte Carlo
method, the mixture Kalman filter (MKF), was proposed in [4]
for online filtering and prediction of CDLMs; it exploits the con-
ditional Gaussian property and utilizes a marginalization oper-
ation to improve the algorithmic efficiency. Instead of dealing
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TABLE II
MIXTURE KALMAN FILTERING ALGORITHM FOR UPDATING A SET OF PROPERLY WEIGHTED SAMPLES FROM (t � 1) TO t

INITIALIZED BY AN i.i.d. SAMPLE, f� g , DRAWN FROM p(� jyyy ) / p(yyy jxxx ; � )p(xxx ; � )dxxx

with both and , the MKF draws Monte Carlo samples only
in the indicator space and uses a mixture of Gaussian distribu-
tions to approximate the target distribution. Compared with the
generic MCF method described in Section III-A, the MKF is
substantially more efficient (e.g., giving more accurate results
with the same computing resources). However, the MKF often
needs more “brain power” for its proper implementation, as the
required formulas are more complicated. Additionally, the MKF
requires the CDLM structure which may not be applicable to
other problems.

Let and let .
By recursively generating a set of properly weighted random
samples to represent , the MKF ap-
proximates the target distribution by a random mix-
ture of Gaussian distributions , , where

is obtained by implementing a Kalman filter
for the given indicator trajectory . Thus a key step in the
MKF is the production at time of the weighted samples of in-
dicators based on the set of samples,

, at the previous time . The al-
gorithm is given in Table II. The application of this algorithm
to the problem of detection/estimation in fading channels is de-
scribed in the next section where the correctness of the algo-
rithm is also proved. The MKF can be extended to handle the
so-called partial CDLM, where the state variable has a linear
component and a nonlinear component. See [4] for a detailed
treatment of the MKF and the extended MKF.

IV. A DAPTIVE RECEIVER IN FADING GAUSSIAN NOISE

CHANNELS—UNCODED CASE

A. MKF-Based Sequential Monte Carlo Receiver

Consider the flat-fading channel with additive Gaussian
noise, given by (8) and (9). Denote and

. We first consider the case of uncoded
system, where the transmitted symbols are assumed to be
independent, i.e.,

(26)

When no prior information about the symbols is available, the
symbols are assumed to take each possible value inwith equal
probability, i.e., for . We are
interested in estimating the symbol and the channel coeffi-
cient at time based on the observation . The

Bayes solution to this problem requires the posterior distribu-
tion

(27)

Note that with a given , the state-space model (8), (9) becomes
a linear Gaussian system. Hence

(28)

where the mean and covariance matrix can be
obtained by a Kalman filter with the given .

In order to implement the MKF, we need to obtain a
set of Monte Carlo samples of the transmitted symbols

properly weighted with respect to the distri-
bution . Then for any integrable function ,
we can approximate the quantity of interest
as follows:

(29)

(30)

(31)

where , (29) follows from (27), (30) follows
from (28), and in (30), denotes a complex Gaussian
density function with mean and covariance matrix . In par-
ticular, the MMSE channel estimate is given by

(32)

In other words, we can let , implying that

in (30). Moreover, thea posteriorisymbol
probability can be estimated as

(33)
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where is an indicator function such that
if and otherwise. This corresponds to

having and .
Note that a hard decision on the symbolis obtained by

(34)

When -ary phase-shift keying (MPSK) signals are trans-
mitted, i.e.,

for

where , the estimated symbol may have a phase
ambiguity. For instance, for binary phase-shift keying (BPSK)
signals, . It is easily seen from (1) that if both
the symbol sequence and the channel value sequence
are phase-shifted by (resulting in and , respec-
tively), no change is incurred on the observed signal . Al-
ternatively, in the state-space model (8), (9), a phase shift of
on both the symbol sequence and the state sequence
yields the same model for the observations. Hence such a phase
ambiguity necessitates the use of differential encoding and de-
coding.

Hereafter, we let , , and

. By applying the techniques outlined in Sec-
tion III to the flat-fading channel system, we describe a recursive
procedure for generating properly weighted Monte Carlo sam-
ples .

1) Initialization: Each Kalman filter is initialized as
, with , , ,

where is the stationary covariance of and is com-
puted analytically from (6). (The factoris to accommo-
date the initial uncertainty). All importance weights are
initialized as , . Since the data
symbols are assumed to be independent, initial symbols
are not needed.

Based on the state-space model (8), (9), the following
steps are implemented at timeto update each weighted
sample. For ,

2) Compute the one-step predictive update of each Kalman
filter

(35)

(36)

(37)

3) Compute the trial sampling density:For each ,
compute

(38)

where (38) holds because is independent of and
. Furthermore, we observe that

(39)

4) Impute the symbol : Draw from the set with prob-
ability

(40)

Append to and obtain .

5) Compute the importance weight:

(41)

where (41) follows from (38).

6) Compute the one-step filtering update of the Kalman filter
: Based on the imputed symbol and the obser-

vation , complete the Kalman filter update to obtain
, as follows:

(42)

(43)

It is shown in Appendix B that the samples ,
drawn by the above procedure are indeed properly

weighted with respect to provided that ,

are proper at time . The above algorithm
is depicted in Fig. 2. It is seen that at any time, the only
quantities that need to be stored are . At each
time , the dominant computation in this receiver involves the
one-step Kalman filter updates. Since thesamplers operate
independently and in parallel, such a sequential Monte Carlo
receiver is well suited for massively parallel implementation
using the VLSI systolic array technology [17].

B. Resampling Procedures

The importance sampling weight measures the “quality”
of the corresponding imputed signal sequence. A relatively
small weight implies that the sample is drawn far from the main
body of the posterior distribution and has a small contribution
in the final estimation. Such a sample is said to be ineffective.
If there are too many ineffective samples, the Monte Carlo pro-
cedure becomes inefficient. This can be detected by observing
a largecoefficient of variationin the importance weight. Sup-
pose is a sequence of importance weights. Then the
coefficient of variation, is defined as

(44)

where . Note that if the samples are drawn
exactly from the target distribution, then all the weights are



CHEN et al.: ADAPTIVE JOINT DETECTION AND DECODING IN FLAT-FADING CHANNELS 2085

Fig. 2. An adaptive Bayesian receiver in flat-fading Gaussian noise channels based on mixture Kalman filtering.

equal, implying that . It is shown in [15] that the im-
portance weights resulting from a sequential Monte Carlo filter
form a martingale sequence. As more and more data are pro-
cessed, the coefficient of variation of the weights increases; that
is, the number of ineffective samples rapidly increases.

A useful method for reducing ineffective samples and
enhancing effective ones isresampling, which was suggested in
[10], [18] under the MCF setting. Roughly speaking, resampling
allows those “bad” samples (with small importance weights)
to be discarded and those “good” ones (with large importance
weights) to replicate so as to accommodate the dynamic change
of the system. Specifically, let be
the original properly weighted samples at time. A residual
resampling strategy forms a new set of weighted samples

according to the following algorithm

(assume that ):

1) For , retain copies of the sam-
ple . Denote .

2) Obtain i.i.d. draws from the original sample set
, with probabilities proportional to

3) Assign equal weight, i.e., set , for each new
sample.

It is shown in Appendix C that the samples drawn by the above
residual resampling procedure are properly weighted with re-
spect to , provided that is sufficiently large. In prac-
tice, when small to modest is used (we used in our
simulations), the resampling procedure can be seen as trading
off bias against variance. That is, the new samples with their
weights resulting from the resampling procedure are only ap-
proximately proper, which introduces small bias in Monte Carlo
estimation. On the other hand, however, resampling greatly re-
duces Monte Carlo variance for the future samples.

Resampling can be done at any time. However, resampling
also often adds computational burden and decreases “diversi-
ties” of the Monte Carlo filter (i.e., it decreases the number of
distinctive filters and loses information). On the other hand, re-
sampling may also sometimes result in loss of efficiency. It is
thus desirable to give guidance on when to do resampling. A

measure of the efficiency of an importance sampling scheme is
theeffective sample size , defined as

(45)

Heuristically, reflects the equivalent size of a set of i.i.d.
samples for the set of weighted ones. It is suggested in [19]
that resampling should be performed when the effective sample
size becomes small, e.g., . Alternatively, one can con-
duct resampling at every fixed-length time interval (say, every
five steps).

V. DELAYED ESTIMATION

Since the fading process is highly correlated, the future
received signals contain information about current data and
channel state. A delayed estimate is usually more accurate
than the concurrent estimate. This is true for any channel with
memory, such as the intersymbol interference channel, and is
especially prominent when the transmitted symbols are coded,
in which case not only the channel states but also the data
symbols are highly correlated. In delayed estimation, instead of
making inference on instantaneously with the posterior
distribution , we delay this inference to a later
time , , with the distribution .
Here we discuss two methods for delayed estimation: the
delayed-weight method and the delayed-sample method.

A. Delayed-Weight Method

From the recursive procedure described in Section IV-A,
we note by induction that if the set is
properly weighted with respect to , then the set

is properly weighted with respect to
, . Hence, if we focus our attention on

at time and let as in (33), we
obtain a delayed estimate of the symbol

(46)

Since the weights contain information about the sig-
nals , the estimate in (46) is usually more accu-
rate. Note that such a delayed estimation method incurs no addi-
tional computational cost (i.e., CPU time), but it requires some
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extra memory for storing . As will be
seen in Section VIII, for uncoded systems, this simple delayed-
weight method is quite effective for improving the detection per-
formance over the concurrent method. However, for coded sys-
tems, this method is not sufficient for exploiting the constraint
structures of both the channel and the symbols, and we must re-
sort to the delayed-sample method, which is described next.

B. Delayed-Sample Method

An alternative method is to generate both the delayed sam-
ples and the weights based on the signals

, hence making the target distribution at time
. This procedure will provide better Monte Carlo sam-

ples since it utilizes the future information
in generating the current sample of. But the algorithm is also
more demanding both analytically and computationally because
of the need of marginalizing out for .

For each possible “future” symbol sequence at time ,
i.e.,

(a total of possibilities), we keep the value of a-step
Kalman filter , where

with . Denote

The following recursive procedure is implemented.

1) Initialization: Each Kalman filter is initialized as
, with and ,

, where is the stationary covariance of and
is computed analytically from (6). All importance weights
are initialized as , . Since the data
symbols are assumed to be independent, initial symbols
are not needed.

At time , we perform the following up-
dates for to propagate from the sample

, , properly weighted for
, to that for .

2) Compute the one-step predictive update for each of the
Kalman filters: For each , perform

the update on the Kalman filter , ac-

cording to equations (35), (37) to obtain ,

, and . (Here we make it ex-
plicit that these quantities are functions of .)

3) Compute the trial sampling density:For each
compute (47) at the bottom of this page.

4) Impute the symbol : Draw with probability

(48)

Append to and obtain .

5) Compute the importance weight:See (49) and (50), at the
top of the following page, where

6) Compute the one-step filtering update for each of the
Kalman filters:Using the values of and ,

for each perform a one-step filtering update

on the Kalman filter according to (42)
and (43) to obtain

With this and the subset of corre-

sponding to the sample , which has been obtained in
the previous iteration, we form the new filter class .

7) Do resampling as described in Section IV-B whenin
(45) is below a threshold.

The dominant computation of the above delayed-sample
method at each timeinvolves the one-step Kalman
filter updates, which, as before, can be carried out in parallel.
Finally, we note that we can use the delayed-sample method
in conjunction with the delayed-weight method. For example,
using the delayed-sample method, we generate delayed samples
and weights based on the signals .
Then with an additional delay, we can use the following

(47)
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(49)

(50)

delayed-weight method to estimate the symbola posteriori
probability:

(51)

VI. A DAPTIVE RECEIVER IN FADING GAUSSIAN NOISE

CHANNELS—CODED CASE

So far we have considered the problem of detecting uncoded
independent symbols in flat-fading channels. In what follows
we extend the adaptive receiver technique presented in Section
IV and address the problem of sequential decoding of informa-
tion bits in a convolutionally coded system signaling through a
flat-fading channel.

Consider a binary rate convolutional encoder of overall
constraint length . Suppose the encoder starts with an
all-zero state at time . The input to the encoder at timeis
a block of information bits ; the encoder
output at time is a block of code bits .
For simplicity here we assume that BPSK modulation is
employed. Then the transmitted symbols at timeare

, where , .
(That is, if , and if .) Since

is determined by , so is . Hence we
can write

(52)

for some function which is determined by the structure of
the encoder.

Let be the received signals at time
and let be the channel states corre-

sponding to and . Recall that . De-
note also

The Monte Carlo samples recorded at time are
where

contains the mean and covariance matrix of the state vector
channel conditioned on and . That is,

(53)

As before, given the information bit sequence , the corre-
sponding is obtained by a Kalman filter. Our algorithm
is as follows.

1) Initialization: Each Kalman filter is initialized as

, with and ,
where is the stationary covariance of

and is computed analytically from (6). All importance
weights are initialized as , . The
initial are randomly generated from the set ,

.
At time , we implement the following steps to update

each sample, .

2) Compute the -step update of the Kalman filter:For each
possible code vector , compute the
corresponding symbol vector using (52) to obtain

(54)
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Let

and

Perform steps of Kalman filter update, using
and , as follows: for , compute

(55)

(56)

(57)

(58)

(59)

In (54)–(59) it is made explicit that the quantity on the
left side of each equation is a function of the code bit
vector . We therefore obtain ,

and , for each .

3) Compute the trial sampling density:For each
compute (60)–(62) at the bottom of this page,

where (61) follows from the fact that is independent
of and .

4) Impute the code bit vector : Draw from the set
with probability

(63)

Append to and obtain . Pick the updated
Kalman filter values

and

from the results in Step 1), according to the value of the
sample . We obtain .

5) Compute the importance weight:

(64)

where (64) follows from (60).

6) Do resampling as described in Section IV-B whenin
(45) is below a threshold.

Following the same line of proof as in Appendix B, it can
be shown that , drawn by the above
procedure are properly weighted with respect to pro-
vided that the samples , are prop-
erly weighted with respect to . Note that in the
coded case, the phase ambiguity is prevented by the code con-
straint (52), and differential encoding is not needed.

At each time , the major computation involved in the above
adaptive decoding algorithm is the one-step Kalman
filter updates, which can be carried out by processing
units, each computing an -step update. (Note that con-
tains bits of information.) Furthermore, if the delayed-sample
method outlined in Section V-B is employed for delayed estima-
tion, then for a delay of time units, a total of
one-step Kalman filter updates are needed at each time, which
can be distributed among processing units, each
computing an -step update.

VII. A DAPTIVE RECEIVERS IN FADING NON-GAUSSIAN

NOISE CHANNELS

To date, most of the work on signal detection in fading
channels assumes that the additive ambient channel noise has a
Gaussian distribution. In practice, however, the ambient noise
in many mobile communication channels is impulsive, due to
various natural and man-made impulsive sources [1], [2], [24],
[25], [28]. In [33], a technique is developed for signal detection
in fading channels with impulsive noise based on the Masreliez
nonlinear filtering [23] and making use of pilot symbols and
decision feedback. In this section, we develop an adaptive
receiver for flat-fading channels with non-Gaussian ambient
noise, using the mixture Kalman filtering technique.

(60)

(61)

(62)
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As in the case of Gaussian fading channels, we first de-
velop adaptive receivers for uncoded systems. Consider the
state-space system given by (11)–(12). Note that given both the
symbol sequence , and the noise indicator

sequence , this system is linear and Gaussian.
Hence

(65)

where the mean and the covariance matrix
can be obtained by a Kalman filter with given

and . As before, we seek to obtain properly weighted samples
, with respect to the distribution

. These samples are then used to estimate the
transmitted symbols and channel parameters.

1) Initialization: This step is the same as that in the Gaussian
case. Note that no initial values for are needed due to
independence.

At time , the following updates are implemented for
each sample, .

2) Compute the one-step predictive update of the Kalman
filter :

(66)

(67)

(68)

Conditioned on and , the predictive distribution
is then given by

(69)

3) Compute the trial sampling density:For each
, compute (70) at the bottom of this page.

4) Impute the symbol and the noise indicator : Draw
from the set with probability

(71)

Append to and obtain

.

5) Compute the importance weight:

(72)

where (72) follows from (70).

6) Compute the one-step filtering update of the Kalman
filter: Based on the imputed symbol and indicator ,

, and the observation , complete the Kalman filter
update to obtain according to (42) and
(43) with .

7) Do resampling as described in Section IV-B when the
effective sample size in (45) is below a threshold.

The proof that the above algorithm gives the properly weighted
samples is similar to that for the Gaussian fading channels in
Appendix B. The dominant computation involved in the above
algorithm at each timeincludes one-step Kalman filter up-
dates. If the delayed-sample method is employed for delayed
estimation with a delay of time units, then at each time,

one-step Kalman filter updates are needed because
, which can be implemented in parallel.

Moreover, we can also develop the adaptive receiver algo-
rithm for coded systems in non-Gaussian noise flat-fading
channels, similar to the one discussed in Section VI. For a
rate convolutional code, if the delayed-sample method is
used with a delay of time units, then at each timea total
of one-step Kalman filter updates are
needed, which can be distributed among
processors, each computing one-step update. (With a delay
of units, there are possible code vectors, and there
are possible noise indicator vectors.)

VIII. SIMULATION RESULTS

In this section, we provide some computer simulation exam-
ples to demonstrate the performance of the proposed sequential
Monte Carlo receivers in fading channels under various condi-
tions. The fading process is modeled by the output of a Butter-

(70)
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worth filter of order driven by a complex white Gaussian
noise process. The cutoff frequency of this filter is , cor-
responding to a normalized Doppler frequency (with respect to
the symbol rate ) , which is a fast fading scenario.
Specifically, the fading coefficients is modeled by the fol-
lowing ARMA process

(73)

where . The filter coefficients in (73) are chosen
such that . It is assumed that BPSK modulation is
employed, i.e., the transmitted symbols .

In order to demonstrate the high performance of the proposed
adaptive receiver, in the following simulation examples we com-
pare the performance (in terms of bit-error rate (BER)) of the
proposed sequential Monte Carlo receivers with that of the fol-
lowing three receiver schemes.

• Known channel lower bound:In this case, we assume that
the fading coefficients are known to the receiver.
Then by (1), the optimal coherent detection rule is given
by for both the Gaussian noise case
(2) and the non-Gaussian noise case (3).

• Genie-aided lower bound:In this case, we assume that
a genie provides the receiver with an observation of
the modulation-free channel coefficient corrupted by
additive noise with the same variance, i.e., ,
where for the Gaussian noise case and

for the non-Gaussian noise case. In
case of non-Gaussian noise, the genie also provides the
receiver with the noise indicator . The receiver then
uses a Kalman filter to track the fading process based on
the information provided by the genie; i.e., it computes

. The transmitted symbols are then
demodulated according to . It is
clear that such a genie-aided bound is lower-bounded by
the known channel bound. It should also be noted that
the genie is used only for calculating the lower bound.
Our proposed algorithms estimate the channel and the
symbols simultaneously with no help from the genie.

• Differential detector:In this case, no attempt is made to
estimate the fading channel. Instead, the receiver detects
the phase difference in two consecutively transmitted bits
by using the simple rule of differential detection:

.

First we consider the performance of the sequential Monte
Carlo receiver in a fading Gaussian noise channel without
coding. In this case, differential encoding and decoding are
employed to resolve the phase ambiguity. The adaptive receiver
implements the algorithm described in Section IV-A. The
number of Monte Carlo samples drawn at each time was
empirically set as . Simulation results showed that the
performance did not improve much whenwas increased to

, while it degraded notably when was reduced to . The
resampling procedure discussed in Section IV-B was employed

Fig. 3. BER performance of the sequential Monte Carlo receiver in a fading
channel with Gaussian noise and without coding. The delayed-weight method
is used. The BER curves corresponding to delays� = 0, � = 1, and� = 2 are
shown. Also shown in the same figure are the BER curves for the known channel
lower bound, the genie-aided lower bound, and the differential detector.

to maintain the efficiency of the algorithm, in which the effec-
tive sample size threshold is . Thedelayed-weight
method discussed in Section V-A was used to extract further
information from future received signals, which resulted in an
improved performance compared with concurrent estimation.
In each simulation, the sequential Monte Carlo algorithm was
run on 10 000 symbols, (i.e., ). In counting
the symbol detection errors, the first 50 symbols were discarded
to allow the algorithm to reach the steady state. In Fig. 3, the
BER performance versus the signal-to-noise ratio (defined
as ) corresponding to delay values
(concurrent estimate), , and is plotted. In the
same figure, we also plot the known channel lower bound, the
genie-aided lower bound, and the BER curve of the differential
detector. From this figure it is seen that for the uncoded case,
with only a small amount of delay, the performance of the
sequential Monte Carlo receiver can be significantly improved
by the delayed-weight method compared with the concurrent
estimate. Even with the concurrent estimate, the proposed
adaptive receiver does not exhibit an error floor, as does
the differential detector. Moreover, with a delay , the
proposed adaptive receiver essentially achieves the genie-aided
lower bound. We have also implemented the delayed-sample
method for this case and found that it offers little improvement
over the delayed-weight method.

The uncoded BER performance of the proposed adaptive re-
ceiver, together with that of the other three receiver schemes, in
a fading channel with non-Gaussian ambient noise is shown in
Fig. 4. The noise distribution is given by the two-term Gaussian
mixture model (3) with and . As mentioned
earlier in this case for the genie-aided bound, the genie not only
provides the observation of the noise-corrupted modulation-free
channel coefficients, but also the true noise indicator to the
channel estimator. It is seen from this figure that, again, the de-
layed-weight method offers significant improvement over the
concurrent estimate, although in this case the BER curve for
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Fig. 4. BER performance of the sequential Monte Carlo receiver in a fading
channel with non-Gaussian noise and without coding.� = 0:1, � = 100.
The delayed-weight method is used. The BER curves corresponding to delays
� = 0, � = 1, and� = 2 are shown. Also shown in the same figure are the
BER curves for the known channel lower bound, the genie-sided lower bound,
and the differential detector.

is slightly off the genie-aided lower bound. Furthermore,
the proposed adaptive receiver does not have the error floor ex-
hibited by the simple differential detector.

We next show the performance of the proposed sequential
Monte Carlo receiver in a coded system. The information bits
are encoded using a rate constraint length convolutional
code (with generators 23 and 25 in octal notation). The receiver
implements the adaptive decoding algorithm discussed in Sec-
tion VI with a combination of delayed-sample and delayed-
weight method. That is, the information bits samples
are drawn by using the delayed-sample method with delay,
whereas the importance weights are obtained after a
further delay of . The coded BER performance of this adaptive
receiver with different delays, together with that of the known
channel lower bound, the genie-aided lower bound, and the dif-
ferential detector, is plotted in Fig. 5. It is seen that unlike the
uncoded case, for coded systems the delayed-sample method is
very effective in improving the receiver performance. With a
sample delay of and weight delay , the receiver
performance is close to the genie-aided lower bound.

IX. CONCLUSIONS

We have developed a new adaptive Bayesian receiver for
signal detection and decoding in flat-fading channels with
known channel statistics based on the sequential Monte Carlo
methodology. Specifically, we have derived adaptive receiver
algorithms for both uncoded and coded systems, where the
delayed-weight method, the delayed-sample method, and a
combination of both are employed to improve estimation
accuracy. The proposed sequential Monte Carlo receiver
techniques can also handle the non-Gaussian ambient noise.
The computational complexities of the various algorithms
discussed in this paper are summarized in Table III. It is shown
through simulations that the performance of the proposed

sequential Monte Carlo receivers can be remarkably close
to the so-called genie-aided lower bound in fading channels
for both uncoded and coded systems without the use of any
training/pilot symbols or decision feedback. Moreover, the
proposed receiver structure exhibits massive parallelism and
is ideally suited for high-speed parallel implementation using
the VLSI systolic array technology. Future explorations of
sequential Monte Carlo methods include the development of
computationally efficient delayed-sample techniques, which
will find wide applications in channels with strong memory
(e.g., intersymbol interference channels [31]).

APPENDIX A
PROOF OF(19)

Note that

with

(74)

The numerator in (74) is the target distribution, and the denomi-
nator is the sampling distribution from which was generated.
Hence, for any measurable function , we have

(75)

Finally, note that both (19) and (20) are special cases of (75).

APPENDIX B
PROOF THAT (40) AND (41) GIVE PROPERLYWEIGHTED

SAMPLES

To show that the sample given by (40) and (41) is
a properly weighted sample with respect to , we need
to verify that (41) gives the correct weight. Assume that at time

, we have a properly weighted sample with
respect to . That is, assume that is drawn
from some trial distribution , and that importance
weight is given by , with

(76)

By (38) and (40), is drawn from the distribution
. Hence, the sampling distribution for

is given by . Since the target
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(a) (b)

(c)

Fig. 5. BER performance of the sequential Monte Carlo receiver in a fading channel with Gaussian noise for a convolutionally coded system. The convolutional
code has rate1=2 and constraint length five. A combination of delayed-sample (with delay�) and delayed-weight (with delay�) method is used. The BER curves
corresponding to delays� = 1, � = 3, and� = 5 are shown. Also shown in the same figure are the BER curves for the known channel lower bound, the
genie-aided lower bound, and the differential detector.

distribution is , the weight function at time is then
give by

(77)

Hence

This verifies that (41) gives the correct importance weight at
time .

APPENDIX C

In this appendix we verify the correctness of the residual re-
sampling under a general setting. Let be a properly
weighted sample with respect to . Without loss of gen-
erality, we assume that . Let be the
set of samples generated from the residual resampling scheme.
The new set consists of copies of the sample

for , and i.i.d. sam-

ples drawn from set with probability proportional to
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TABLE III
THE COMPUTATIONAL COMPLEXITIES OF THEPROPOSEDSEQUENTIAL MONTE CARLO RECEIVERALGORITHMS UNDER DIFFERENTCONDITIONS IN TERMS OF THE

NUMBER OFONE-STEPKALMAN FILTER UPDATESNEEDED AT EACH TIME t. THE DEGREE OFPARALLELISM REFERS TO THEMAXIMUM NUMBER OFCOMPUTING

UNITS THAT CAN BE EMPLOYED TO IMPLEMENT THE ALGORITHM IN PARALLEL . IT IS ASSUMED THAT THEDELAYED-SAMPLE METHOD IS USED WITH A DELAY

OF� TIME UNITS. THE NUMBER OF SAMPLES DRAWN AT EACH TIME ISm. FOR UNCODED SYSTEM, THE CARDINALITY OF THE SYMBOL ALPHABET IS jAj.
FOR CODED SYSTEM, A CONVOLUTIONAL CODE IS USED. THE NON-GAUSSIAN NOISE IS MODELED BY A TWO-TERM GAUSSIAN MIXTURE

. The weights for the new samples are set
to . Hence

(78)

Furthermore,

as (79)

Here we assume that . Hence

in probability.
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