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Adaptive Joint Detection and Decoding in Flat-Fading
Channels via Mixture Kalman Filtering

Rong Chen, Xiaodong Wandylember, IEEEand Jun S. Liu

Abstract—A novel adaptive Bayesian receiver for signal detec- prohibitively time-consuming high-dimensional filtering. A
tion and decoding in fading channels with known channel statistics number of suboptimal algorithms have thus been proposed,
is developed,; it is based on the sequential Monte Carlo method- most of which employ a two-stage receiver structure with a

ology that recently emerged in the field of statistics. The basic idea h | estimati ¢ foll d b detecti
is to treat the transmitted signals as “missing data” and to sequen- Channel estimalion stage followed by a sequence detection

tially impute multiple samples of them based on the observed sig- Stage. Channel estimation is typically implemented by a
nals. The imputed signal sequences, together with theirimportance Kalman filter or a linear predictor and is facilitated by per-sur-
weights, provide a way to approximate the Bayesian estimate of vjyor processing [30], [32], decision feedback [11], [14], [20],
the transmitted signals and the channel states. Adaptive receiver pilot symbols [3], [7], [16], [29], or a combination of all the
algorithms for both uncoded and convolutionally coded systems PR o . .

are developed. The proposed techniques can easily handle the non-above [13_]' Other suboptimal solutions to MLSI_E |n-flat-fad-|ng
Gaussian ambient channel noise. It is shown through simulations channels include the method based on a combination of hidden
that the proposed sequential Monte Carlo receivers achieve near- Markov modeling and Kalman filtering [5], [6] and the method
bound performance in fading channels for both uncoded and coded phased on the expectation—maximization (EM) algorithm [8].
systems, without the use of any training/pilot symbols or decision g, thermore, joint channel estimation and decoding techniques

feedback. Moreover, the proposed receiver structure exhibits mas- . . .
sive parallelism and is ideally suited for high-speed parallel im- &'€ developed in [9], [12] for coded systems based on iterative

plementation using the very large scale integration (VLSI) systolic (turbo) processing.
array technology. In this paper, we propose a nesaptivereceiver technique

Index Terms—Adaptive decoding, adaptive detection, coded for signal reception and decoding in flat-fading channels based
system, flat-fading channel, mixture Kalman filter, non-Gaussian on a Bayesian formulation of the problem and the sequential
noise, sequential Monte Carlo methods. Monte Carlo methodology that recently emerged in the field
of statistics [19]. The basic idea is to treat the transmitted sig-
nals as “missing data” and to sequentially impute multiple sam-
ples of them based on the current observation. The importance
N ARROW-BAND mobile communications for voice andyeight for each of the imputed signal sequences is computed

data can be modeled as signaling over frequency-nong@cording to its relative ability in predicting the future obser-
lective (flat) Rayleigh fading channels. A considerable amouphtion. Then the imputed signal sequences, together with their
of research has recently been devoted to signal detectionifhortance weights, can be used to approximate the Bayesian
such channels. Specifically, various techniques for the maxstimates of the transmitted signals and the fading coefficients
imum-likelihood sequence estimation (MLSE) in flat-fadingy the channel. The novel features of such an approach include
channels have been proposed. The optimal solutions under $8¥-following:
eral fading models are studied in [11], [21], and [22]. The exact

implementation of these optimal solutions, however, involves * The algorithm is self-adaptive and no training/pilot sym-
bols or decision feedback are needed.
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Fig. 1. A coded communication system signaling through a flat-fading channel.

sequential Bayesian inference is provided. In Section IV, welt is further assumed that the channel-fading process is
develop an adaptive Bayesian receiver algorithm for concurrd®ayleigh. That is, the fading coefficienfs, } form a complex
channel and data estimation in fading Gaussian noise chanri@tsissian process that can be modeled by the output of a
for uncoded systems. In Section V, techniques for delay&mvpass Butterworth filter of order driven by white Gaussian
estimation are discussed. In Section VI, we develop adaptieise
Bayesian sequential decoding methods for convolutionally o(D)
coded systems in fading Gaussian noise channels. In Sec- {on} = ——{u} 4
tion VI, we discuss adaptive Bayesian receivers for fading &(D)
non-Gaussian noise channels. Simulation results are provided . . N
in Section VIII and a brief summary is given in Section lx_vv%ereD Is the back-shift operatab*u, = u.—r
l(;l'ecessary mathematical proofs are contained in the Appen- () A b+ bz
ices A-C.

O(z) 2 02" +...+ 01z + 0,

Il. SYSTEM DESCRIPTION ) ) ) ) ) ]
and{u. } is a white complex Gaussian noise sequence with unit

We consider a channel-coded communication system Sigyriance and independent real and complex components. The
na!ing through a flat-fading channel with gdditive ?‘mb?erﬂoeﬁicients{d)i} and {6;}, as well as the order of the But-
noise. The block diagram of such a system is shown in Fig. throrth filter, are chosen so that the transfer function of the
The input binary information bit$d, } are encoded using Somejjter matches the power spectral density of the fading process,
channel code, resulting in a code bit streqtp}. The code \hich, in turn, is determined by the channel Doppler frequency.
bits are passed to a symbol mapper, yielding complex dafathis paper, we assume that the statistical properties of the
symbols {s, }, which take values from a finite alphabet sefyging process are knowapriori. Consequently, the order and

A ={ay, ..., a4 }. Each symbolis then transmitted throughne coefficients of the Butterworth filter in (4) are known.
a flat-fading channel whose input—output relationship is given\we next write system (1) and (4) in the state-space model
by form, which is instrumental in developing the adaptive receiver
U = s+, t=0,1, ... 1 proposed in this paper. Define
A

wherey,, at, s;, andn, are the received signal, the fading {z:} 20 YD)} = (D)} ={u}. (5
channel coefficient, the transmitted symbol, and the ambient ad- A
ditive noise at timet, respectively. The processés;}, {s,}, Denotex; = [z, ..., z;—11]". By (4) we then have
and{n.} are assumed to be mutually independent. i

Itis assumed that the additive noise, } is a sequence of in- zy=Fx, 1 +gu,  ue SN0, 1) (6)

dependent and identically distributed (i.i.d.) zero-mean comple

random variables. In this paper we consider two types of noide'ere
distributions. In the first typer, assumes a complex Gaussian —p1 —¢o ... —¢. O 1
distribution 1 0o ... 0 0

ne ~ Na(0, o2) @) = _ o R 9=
whereas in the second type; follows a two-term mixture 0 0 ... 1 0 0

Gaussian distribution ) N
Because of (5), the fading coefficient sequedeg} can be

ng ~ (1 — ON(0, 07) + eN.(0, 03) (3) written as

where0 < ¢ < 1 ando3 > o2%. Here the termV.(0, o%) o = h'la,, whereh 2 [60 6y ... 6,]7. @)
represents the nominal ambient noise, and the &%, o3)

represents an impulsive component. The probability that irf-the additive noise in (1) is Gaussian, i.es, ~ N.(0, 02),
pulses occur is. Note that the overall variance of the noise ithen we have the following state-space model for the system
(1 — €)o? + eo3. This model serves as an approximation to théefined by (1) and (4):

more fundamental Middleton Class A noise model [26], [27],

[34], and has been used extensively to model physical noise . =Fz, 1 + gu (8)
arising in radio and acoustic channels. Y = sthH:ct + ovy (9)
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where{w;} in (9) is a white complex Gaussian noise sequeneeThey can be either scalars or vectors. In the communication
with unit variance and independent real and imaginary compeystem described in the previous section (e.g. (13)), the state

nents. variablez, corresponds téz;, s;), representing both the unob-
On the other hand, if the additive noise in (1) is non-Gaussiaerved symbol and the unknown fading channel at time
and is modeled by (3), we introduce an indicator random vari- Let Z,=(zo, 21, ..., 2;) and letY; = (yo, Y1, ---» Ye)-
ablel;,t =0,1, ... Suppose an online inference 2§ is of interest; that is, at cur-
. ) rent timet we wish to make a timely estimate of a function of
I 2 { 1, !f e~ Ne(0, 05) (10) the state variabl&,, sayh(Z,), based on the currently avail-
2, if ny ~ N(0, 03) able observatiorl’,. With the Bayes theorem, we realize that

with P(I, = 1) = c andP(I; = 2) = 1 — ¢. Becausen, is the optimal solution to this problem is

an i.i.d. sequence, so fs. We then have the state-space signal

model for this case given by E{N(Z,)|Y:} = /h(Zt)p(Zt|Yt)dZt-
z =Fz_1 + gue (11) In most cases, an exact evaluation of this expectation is analyt-
ye = sch @, + o,V (12) ically intractable because of the complexity of such a dynamic

system. Monte Carlo methods provide us with a viable alterna-
We now look at the problem of online estimation of theive to the required computauon Specifically, if we can draw
symbols; and the channel coefficient; based on the received,;, random sample$Z } | from the distributionp(Z,|Y),

signals up to time, {y;};_,. Consider the simple case whenrnen we can apprOX|ma'rE{h(Zt)|Yt} by
the ambient channel noise is Gaussian and the symbols are

i.i.d. uniformly a priori, i.e., p(s;) = 1/|.A|]. Then the problem
becomes one of making Bayesian inference with respect to the
posterior distribution

E{h(Z,)|Y )} = Zh (27). (15)

Very often direct simulation fromp(Z,|Y;) is not feasible, but

P(%0; -5 Tty S0, -5 StlYo, -5 Ut) drawing samples from sonteial distribution is easy. In this
i case, we can use the ideaiofportance samplingSuppose a
H p(@512j-1)p(s)p(y;12;, 5;) set of random sample§Z{’”’}7" | is generated from the trial

. distributionq(Z,|Y";). By associating the weight

H < ||%+Z</w1 ill*~ Huj SJhTf'»‘JH ) L) _ P

i (13) b @y

G) - v of i
For example, an online symbol estimation can be obtained fr&ﬂ{[he sampléZ;”’, we can approximate the quantity of interest,

the marginal posterior distributign(s;|yo. .. .. 7:), and an on- £1(Zt)[Y¢}, as

line channel state estimation can be obtained from the marginal

posterior distributions(z;|yo, ..., u). Although the joint dis- E{MZ)|Y,} = Z h( Z(’) ) 17)
tribution (13) can be written out explicitly up to a normalizing

constant, the computation of the corresponding marginal dlstn— m ) ) (j)
butions involves very-high-dimensional integration and is infefNereW: = >_;_, w,”". The pair Z; j=1...,m,
sible in practice. Our approach to this problem is the sequent'%Fa"ed goroperly weighted samplmth respect to distribution

(16)

t=0,1

B PRI

(J))

Monte Carlo filtering technique. p(Z:|Y ). A trivial but important observation is that théj)
(one of the components (Z(J)) is also properly weighted by
[1l. SEQUENTIAL MONTE CARLO METHODS thew,@ with respect to the marginal distributigniz;|Y?).

. . . Anoth ibl i ZN)Y,}i
In this section, the general framework of sequential Monte nother possible estimate &H{h(Z)[Y'} is

Carlo methods for updating a dynamic system is described. Of .1 & O\ )

particular interest is the mixture Kalman filtering technique h= m Zh (Zt )wt . (18)
described in [4], which will be used for designing adaptive i=l1

Bayesian receivers in fading channels. The main reasons for preferring the ratio estimate (17) to the un-

biased estimate (18) in an importance sampling framework are
that a) estimate (17) usually has a smaller mean-squared error
Consider the following dynamic system modeled in a stateran’ in (18); and b) the normalizing constants of both the trial
space form as and the target distributions are not required in using (17) (where
these constants are canceled out); in such cases, the welghts
(14) are evaluated only up to a multiplicative constant. For example,
the target distributiorp(Z:|Y) in a typical dynamic system
wherez,, y,, u;, andv, are, respectively, the state variable, théand many Bayesian models) can be evaluated easily up to a nor-
observation, the state noise, and the observation noise at tmmalizing constant (e.g., the likelihood multiplied by a prior dis-

A. Sequential Monte Carlo Filtering

state equation  z; = fi(z1_1, ur)
observation equation ¥, = g(z:, v;)



2082 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 6, SEPTEMBER 2000

TABLE |
A SEQUENTIAL MONTE CARLO ALGORITHM FOR PROPAGATING A SET OF PROPERLY WEIGHTED SAMPLES FROM TIME (t — 1) TO
TIME t. NOTE THAT IN MOST APPLICATIONS WE ARE ONLY ABLE TO EVALUATE p(Z,|Y,) « p(Z,, Y ,) UP TO A NORMALIZING
CONSTANT, WHICH IS SUFFICIENT FORUSING (17) IN MONTE CARLO ESTIMATION

FORj=1,---,m DO
1. Draw a sample zsj) from a trial distribution q(ztlzg‘i)l,Yt) and let Zgj) = (ng)l,zgj));
2. Compute the importance weight wﬁj) = wfi)l ~p(Z5j)]Y,)/ [p(zﬁi)ﬂyt_l)q(zgf)|z§{’1, Yt)}

END

tribution), whereas sampling from the distribution directly anend

evaluating the normalizing constant analytically are impossible. (2|29, Y1) = p(z:|2))
To implement Monte Carlo techniques for a dynamic syste

a set of random samples properly weighted with respect

p(Z,|Y,) is needed for any time Because the state equation i

rk?gth following directly from the state-space model (14). For this
r{rlal distribution, the importance weight is updated according to

system (14) possesses a Markovian structure, we canimplement ' p ( z§f> ‘ Y t)
a recursive importance sampling strategy, which is the basis of ) =u{?, . : J_
all sequential Monte Carlo techniques [19]. Suppose a set of P (z?_)l Yt_l)p (zgj) z§f_>1, Yt)
properly weighted sampleé(Z?_)l, wt(J_)l) 7, (with respect )
top(Z,_1]Y,—1)) is given at timg¢ — 1). A Monte Carlo filter G P (Zt—l‘ Yt) 23
(MCF) generates from the set a new of&\"’, ng)}}":l, - (Z(j) Y ) (23)
which is properly weighted at timewith respect te(Z;|Y ). PAS ] e
The algorithm is described in Table I. P (yt, Zgﬂ)l, Yt_l) (Y1)
The algorithm is initialized by drawing a set of i.i.d. samples = wt(’_)l . 5
2. 25 from p(zoly,). Wheny, represents the “null” p (th—lv Yt—l) p(Yy)
information, p(zo|y,) corresponds to the prior distribution of %) %)
z0. We show in Appendix A that the weighted samples gener- X Wiy P (yi Zit, Yt_l)
ated by this algorithm satisfy —w? . p (yt z51_>1) (24)
E {h (Zgj)) wt(J)} = E{h(Z)Y ) (19)  where (23) follows from the fact that
E {ng)} =1 (20) p (Zﬁj) Yt) =p (Zﬁ)l‘Yt) p (zﬁj) z7,, Yt)
Hence, by the law of large numbers and the last equality is due to the conditional independence
N i L (Zgj))/m property_ of the state-space model (14_). See_ [19] f_or the general
iZh(Z(”) L1 ws, pUL(Z)Y) gequenual MCF _framework and a detailed discussion on various
Wtj=1 ¢ ¢ W, /m t)| X1, implementation issues.

as m — oco. (21) B. The Mixture Kalman Filter

There are a few important issues regarding the design andMany dynamic system models, including the flat-fading
implementation of a sequential MCF, such as the choice @fannel models (8), (9) and (11), (12) belong to the class of
the trial distributiong(-) and the use ofesampling(cf. Sec- conditional dynamic linear models (CDLM) of the form
tion IV-B). Specifically, a useful choice of the trial distribution

j . T =\ + G
q(zt|Z§J_)1, Y',) for the state-space model (14) is of the form P oA A

) v = H)\tmt + K)\tvt (25)
q (zt zZ9. Y ) .
t—17 < 1t whereu; ~ N.(0, I), v+ ~ N.(0, I) (herel denotes an iden-
—p (z, VAL Y,) tity matrix), and), is a random indicator variable. The matrices
e o Fy,, Gy, Hy,, andK, are known given,. In this model, the
=p (?h 2, 29 Yt—l) “state variable”z, corresponds téx;, \;).
) ) We observe that for a given trajectory of the indicakgtin
p (zt Z, thl)/p (yt zZ, thl) a CDLM, the system is both linear and Gaussian, for which the
) Kalman filter provides a complete statistical characterization of
_ P(Yelze) p (zt o *1) the system dynamics. Recently, a novel sequential Monte Carlo

. (22)
(Y, |z§i)1)

where in (22) we used the fact that

method, the mixture Kalman filter (MKF), was proposed in [4]
for online filtering and prediction of CDLMs; it exploits the con-

, ditional Gaussian property and utilizes a marginalization oper-
p(yt|zt,Z§{)1Yt,1) = p(y,|2:) ation to improve the algorithmic efficiency. Instead of dealing
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TABLE I
MIXTURE KALMAN FILTERING ALGORITHM FOR UPDATING A SET OF PROPERLY WEIGHTED SAMPLES FROM (¢t — 1) TO ¢
INITIALIZED BY AN i.i.d. SAMPLE, {/\(”} , DRAWN FROM p(Ao|y,) o [ p(¥o|®a, Ao)p(2a, Ao)dg

FORj=1,---,m DO

1. Draw a sample /\Sj) from a trial distribution q(A,]AiJ)l,ngj)l, Y.)

2. Run a one-step Kalman filter based on A(J) ngj)l, and y, to obtain ngj);
3. Compute the weight w(]) = wii)l -p(AEJ;)I,)\g:’)IYt)/ [p(Agi)llYt_l) q()\gj)lAEJ)l,ngj)l, Y,)]

END

with bothz, and )\, the MKF draws Monte Carlo samples onlyBayes solution to this problem requires the posterior distribu-

in the indicator space and uses a mixture of Gaussian distriltion .

tions to approximate the target distribution. Compared with the _

generic MCF method described in Section IlI-A, the MKF is Pl sl¥e) = [ p(@:]Se YopSi¥e) dSi.— (27)

substantially more efficient (e.g., giving more accurate resuf¥ote thatwith a giveis;, the state-space model (8), (9) becomes

with the same computing resources). However, the MKF ofténlinear Gaussian system. Hence

needs more “brain power” for its proper implementation, as the p(®e|Sy, Yy) ~ N, (11,(81), Zu(Sh)) (28)

required formulas are more complicated. Additionally, the MKyhere the meag, (S;) and covariance matri&,(S;) can be

requires the CDLM structure which may not be applicable igbtained by a Kalman filter with the gives,.

other problems. In order to implement the MKF, we need to obtain a
LetY, = (yo. ¥y, .-, 9,) and letA; = (Ao, A1, ..., At).  set of Monte Carlo samples of the transmitted symbols

By recurswelgl generatmg a set of properly weighted randomg() ,,(yym ™, properly weighted with respect to the distri-

sampleg (A, wi’)}7; torepresent(A.|Y;), the MKF ap- pution p(8.]Y}). Then for any integrable functioh(z, s;),

proximates the target dlSt”bU“Q’T-'lﬂYt) by a random mix- we can approximate the quantity of interd&fh(z,, s,)|Y;}

ture of Gaussian distributions’; ,lwtf)/\/ (1 59 where  as follows:

k) 2 2 2, 297 is obtained by |mplement|ng aKalman filter £ {h(a:, s;)|Y:}
for the given indicator trajectoryxt Thus a key step in the
MKF is the production at time of the weighted samples of in- h@:, s)p(2e 5ifYe) dzy dsy
dicators{(AY’, k¥, t(’)) , based on the set of samples,

= h(z,, %Sy, Y )p(S,|Y,) dx, dS 29
{(AD mﬁ’)l.wt(’)l)}}":l atthe previous tim¢t — 1). The al- // @1, 50) p@|Se, Vop(SifY) do, dSe (29)

gorithm is given in Table Il. The application of this algorithm )
to the problem of detection/estimation in fading channels is de- — / [/ M@, 51)¢ (2 m(Se), () dz| p(S:[Y) dS

scribed in the next section where the correctness of the algo-
rithm is also proved. The MKF can be extended to handle the (30)
so-called partial CDLM, where the state variable has a linear m

component and a nonlinear component. See [4] for a detailed~ 1 ZS (S(j)) wd (31)
treatment of the MKF and the extended MKF. W, < ¢ ¢

f(gt)

whereW, = Z;”_l w? | (29) follows from (27), (30) follows
from (28), and In (30)¢(+; u, ) denotes a complex Gaussian
density function with meap and covariance matriX. In par-

IV. ADAPTIVE RECEIVER IN FADING GAUSSIAN NOISE
CHANNELS—UNCODED CASE

A. MKF-Based Sequential Monte Carlo Receiver ticular, the MMSE channel estimate is given by
Consider the flat-fading channel with additive Gaussian E{a|Y:} =h" B{z,|Y,}
noise, given by (8) and (9). Deno®, 2 (i, ..., ) and ,
S, 2 (s0, --., st). We first consider the case of uncoded :_hH ZN (J) (]) . (32)
system, where the transmitted symbols are assumed to be
independent, i.e., In other words, we can let(z,, s,) = hz,, implying that

A G H . .
Pls, = a;|8,_1) = P(s, = a;), ce A 26 &(Sy) ;ﬂ ©,(S1)in (_30). Moreover, the posteriorisymbol
(50 = ailSi-1) S “ (26) probability can be estimated as
When no prior information about the symbols is available, the P(s, = a;|Y)

symbols are assumed to take each possible valdenith equal = E{1(s; = a;)|Y:}
probability, i.e.,P(s, = a;) = 3 fori =1, ..., |A]. We are Lo '
interested in estimating the symbel and the channel coeffi- >~ N st =agw?,  i=1,.., 4] (33)

cienta, = hf'z, at timet based on the observatidf,. The Wi =
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wherel(-) is an indicator function such thats, = a;) = 1 where (38) holds becausg is independent of;_; and
if s; = a; and1(s; = a;) = 0 otherwise. This corresponds to Y._.. Furthermore, we observe that
haVingh(ﬁt, St) é 1(8t = CLZ‘) andS(St) é 1(8t = CLZ‘). P (yt St = ay, 55];)17 Yt71> ~ N (aﬂ]t(J)7 fyt(J)) .
Note that a hard decision on the symbpis obtained by (39)
S = arg max Plse = aifY) 4) Impute the symba},: Draw s\’ from the set4 with prob-
0 0 ability
= arg max Z ( = a) wy’. (34) p (ng) _ ai) ~ p5127 a; € A (40)
When M-ary phase shlft keylng (MPSK) signals are trans- Appendsgj) to 5591 and ObtalnS‘gj).
mitted, i.e., . 5) Compute the importance weight:
a; = exp <3%>, fori=0,..., A -1 w? =w?) p( Y ng_)laYt—l)
wherej = +/—1, the estimated symbd, may have a phase —wE’)l p(yt st = a;, Sg’;)l, Yt_l) P(s;=a;)
ambiguity. For instance, for binary phase-shift keying (BPSK) a;cA
signals,s; € {+1, —1}. It is easily seen from (1) that if both e Z p(J) (41)
the symbol sequendg, } and the channel value sequerdeg } =t o=/}
are phase-shifted by (resulting in{—s;} and{—a. }, respec- where (41) follows from (38).

tively), no change is incurred on the observed signa}. Al-

ternatively, in the state-space model (8), (9), a phase shift of (/)1 Based on the imputed Symb@ﬂj) and the obser-

on both the symbol sequenge, } and th? state sequente, } vation 4, complete the Kalman filter update to obtain
yields the same model for the observations. Hence such aphase ;)

6) Compute the one-step filtering update of the Kalman filter

ambiguity necessitates the use of differential encoding and de- "t~ [”51) J ) as follows: o '

coding. | | | F,M (j) (yt - 351%75”) K9n  (42)
Hereafter, we lep!) 2 u,(S9), =) 2 5,89y, and Tt
§J) =M 51), Eﬁj)]. By applying the techniques outlined in Sec- Egj) :ng) — %ng)hh”ng). (43)

tion lll to the flat-fading channel system, we describe a recursive
procedure for eneratmg properly weighted Monte Carlo Sam- 1+ i« shown in Appendix B that the sample{$S(J) ﬁgj),

pIes{(StJ ’ “t ’ wt ) j=t- (’)) 1 drawn by the above procedure are indeed properly
1) Initialization: Each Kalman filter is initialized as$’ = Welghted with respect ta(S,|Y") provided thaf (S, , k¥, |
(1§, ), with u§? = 0,8 =28, j =1, ..., m, wt(J)l) ™ | are proper at timg¢ — 1). The above algorithm
whereE is the stationary covariance af and is com- is dep|cted in Fig. 2. It is seen that at any timethe only
puted analytically from (6). (The factaris to accommo- quantities that need to be stored dre”, w" )}m At each
date the initial uncertainty). All importance weights ar¢imet, the dominant computation in this recelver involvesithe

initialized asw” = 1, j = 1, ..., m. Since the data one- step Kalman filter updates. Since thesamplers operate
symbols are assumed to be independent, initial symbatglependently and in parallel, such a sequential Monte Carlo
are not needed. receiver is well suited for massively parallel implementation

Based on the state-space model (8), (9), the followingsing the VLSI systolic array technology [17].
steps are implemented at tim¢o update each weighted

sample. Foyj = 1, ..., m, B. Resampling Procedures
2) Compute the one- step predictive update of each KalmanThe importance sampling we|gm§’) measures the “quality”
filter mf )1 of the corresponding imputed signal sequeﬁp’é Arelatively
ng) :Fz;gﬂ;)lFH 1 gg" (35) small weight implies that the sample is drawn far from the main

H () ) body of the posterior distribution and has a small contribution
=h"K,”h+o (36) - Lo ; ; ; ;

in the final estimation. Such a sample is said to be ineffective.
=h" Fp,(’ ) (37) If there are too many ineffective samples, the Monte Carlo pro-
cedure becomes inefficient. This can be detected by observing
a Iargecoefficient of variationn the importance weight. Sup-
Uy ) pose{w,’ ™ , is a sequence of importance weights. Then the
=1 <t coefficient of varlatlonp, is defined as

— . §D m » 2
xXp (yh Yi 1, s —'alv St—l) 2—31 (wt(]) - Wt) /m 1o (J) 2
s = ai, S9 yt_l) v =77 — ==Y < - ) (44)
) t j=1
- P (St = aq; S§J—)1’ Yt—l)

3) Compute the trial sampling densitffor eacha; € A,
compute

pgfz éP (st =a;

=P (th

m

W wherew, = > ._, wtj)/m Note that if the samples are drawn
st = a;, Sy, Yt—l) P(s; =a;) (38) exactly from the target distribution, then all the weights are

=p (yt
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Y, compute { p""’ i=l,..., 1Al J:’, draw {sfi) 1,:1 ostimate |P(S=a17,)
P(s=415.), ¥,) L 0 symbol
5 N ) Ny 1
i
compute | [v’} Kaiman | (€72 estimate | /0171 )
P(s=a) ! fiter channel
M doay (x5, o

L — [

Fig. 2. An adaptive Bayesian receiver in flat-fading Gaussian noise channels based on mixture Kalman filtering.

equal, implying that), = 0. It is shown in [15] that the im- measure of the efficiency of an importance sampling scheme is
portance weights resulting from a sequential Monte Carlo filtéhe effective sample size,, defined as

form a martingale sequence. As more and more data are pro-
cessed, the coefficient of variation of the weights increases; that
is, the number of ineffective samples rapidly increases.

A m
my = ——5.
FT 402
A useful method for reducing ineffective samples anla|eur|st|cally, mm, reflects the equivalent size of a set qf ii.d.
: : . ) . . samples for the set afi weighted ones. It is suggested in [19]
enhancing effective onesiissamplingwhich was suggested in : :
. . . that resampling should be performed when the effective sample
[10], [18] under the MCF setting. Roughly speaking, resamplin _ m .
§ze becomes small, e.gn; < 1. Alternatively, one can con-

allows _those bad samplef (W'tt] small mportancg weight uct resampling at every fixed-length time interval (say, every
to be discarded and those “good” ones (with large |mportanﬁ\§e steps)
weights) to replicate so as to accommodate the dynamic change '

of the system. Specifically, lef(SY, kP w{) ., be V. DELAYED ESTIMATION
the original properly weighted samples at timeA residual ’

resampling strategy forms a new set of weighted samples Since the fading process is highly correlated, the future
{(351)7 R§J)7 u“z’t(])) m according to the following algorithm received signals contain |nfor.mat|on. about current data and
hab™™ @) — - channel state. A delayed estimate is usually more accurate
(assume thal ;_, w,” = m): than the concurrent estimate. This is true for any channel with
1) Forj =1, ..., m, retaink; = Lwt(j)J copies of the sam- memo_ryl,I such as thte i?]terst);]mliol inte_r:terdence gh?nnel, ar:jd (ijs
le (89, kY. Denotek, = m — S k.. especially prominent when the transmitted symbols are coded,
ple ( A ﬁt, ,) mn EF? J in which case not only the channel states but also the data
2) Obtg;n K(;?) "'7'3' draws from the original sample setgympois are highly correlated. In delayed estimation, instead of
{(S¢7, #¢"")}jL1, with probabilities proportional to making inference ofi;, s,) instantaneously with the posterior
' distribution p(2,, s:|Y:), we delay this inference to a later
W — k),  j=1,...m time (t + A), A > 0, with the distributionp(z;, s:|Y 1 a).
Here we discuss two methods for delayed estimation: the
delayed-weight method and the delayed-sample method.

(45)

3) Assign equal weight, i.e., se‘tt(j) = 1, for each new
sample. A. Delayed-Weight Method

Itis shown in Appendix C that the samples drawn by the aboveFrom the recursive procedure described in Section IV-A,
residual resampling procedure are properly weighted with igz note by induction that if the se{(ng),wt(j)) ™ is
spect tap(S;|Y:), provided thatn is sufficiently large. In prac- properly weighted with respect tp(S;|Y,), then the set

tl_ce, wh_en small to modesﬁ is used (we useeh = 50 in our {(Sg—)é’wt(f{—)é) m | is properly weighted with respect to
simulations), the resampling procedure can be seen as tra%@gt%wt%), § > 0. Hence, if we focus our attention o8}
off bias against variance. That is, the new samples with th%iftime(t + 8) and leth(z;, s;) = 1(s; = a;) as in (33), we
weights resulting from the resampling procedure are only agptain a delayed estimate of the symbol
proximately proper, which introduces small bias in Monte Carlo .
estimation. On the other hand, however, resampling greatly r, _ ~ 1 @) _ .,
duces Monte Carlo variance for the future sampries.g ) g F(St = ailYi4s) = Wits ; 1 (St o a") Wit

Resampling can be done at any time. However, resampling ’ i—1 LAl (46)
also often adds computational burden and decreases “diversi- , o
ties” of the Monte Carlo filter (i.e., it decreases the number &ince the Weight$wt(f26 *, contain information about the sig-
distinctive filters and loses information). On the other hand, reals(y;1, - - -, y:+s), the estimate in (46) is usually more accu-
sampling may also sometimes result in loss of efficiency. It iate. Note that such a delayed estimation method incurs no addi-

thus desirable to give guidance on when to do resampling.tidnal computational cost (i.e., CPU time), but it requires some
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extra memory for storing{(sgi)l, e, 3526)};?;1. As will be 2) Compute the one-step predictive update for each of the
seen in Section VIII, for uncoded systems, this simple delayed-  |.4|* Kalman filters For eachs!™>~! ¢ A2, perform
weight method is quite effective forimproving the detection per- the update on the Kalman ﬁltez«ifgﬂr)A 1(s§+A 1), ac-
formance over the concurrent method. However, for coded sys-  ¢cording to equations (35), (37) to obtﬁgl) (sita1y,
tems, this method is not sufficient for exploiting the constraint t(i)A(szJ,A b, andm(i)A(SﬁA LY. (Here we make it ex-

structures of both the channel and the symbols, and we must re-

A—1
sort to the delayed-sample method, which is described next. )

plicit that these quantities are functionssht
3) Compute the trial sampling densitffor eacha; € A

B. Delayed-Sample Method compute (47) at the bottom of this page.
An alternative method |s to %;enerate both the delayed sam-4) Impute the symboa,: Draw s;”) with probability
ples and the weight$( st , wt based on the signals o) o)
Y, A, hence making(S;|Y ;1) the target distribution at time P ( = “z) Sy 2et a; € A (48)

(t + A). This procedure will provide better Monte Carlo sam- 0 0 o

ples since it utilizes the future informatid,; 1, . .., Yesn) Appends,”’ to §;”’; and obtainS,”’.

in generating the current samplesgf But the algorithmis also  5) Compute the importance weigl8ee (49) and (50), at the
more demanding both analytically and computationally because  top of the following page, where

of the need of marginalizing out,, ford =1, ..., A.
For each possible “future” symbol sequence at time\ — 1, (yH_T Y\ 1, St )1, “”)
€., ~ N (3 D (+71) g9 (st
N e Seprmdr (81 Thtr \St .
(St St41s ---»St4a-1) €A

6) Compute the one-step filtering update for each of the

(a total of |.4]> possibilities) we keep the value of &a-step |A|2 Kalman filters: Using the values Oigg) andyssa,

)

. t+T . i
Kalman filter {3, (s7)} 25, where for eachs/ T € A perform a one-step filtering update
A ; . i . on the Kalman filters') . (s:+21) according to (42
K/g{i_).,- (S§+ ) = |:l‘l't+7' (Sg )17 3§+ )7 2t+7‘ (S§J)17 S:—i— ):| ) and (43) tO Obta|n t+A71( t ) g ( )
r=0,1,...,A-1
with sb 2 (Say Sat1, ---, Sp). Denote N

2 [p,H_A (S?), S:if) s Biga (ng)v Siif)} .

With this and the subset o{mgﬂr)T(sjﬂ)}f ) corre-

The following recursive procedure is implemented. sponding to the samplé”’, which has been obtained in
the previous iteration, we form the new filter claﬁ(s‘).

7) Do resampling as described in Section IV-B whenin
(45) is below a threshold.

N / A—1
w02 {2 i ()} s e arn ),

=0

1) Initialization: Each Kalman filter is initialized as(f) =
(N(J) E(J)), with N(J) — 0 and E(J) — 22, J —
1, ..., m,whereX is the stationary covariance #f and
iscomputed analytically from (6). Allimportance weights The dominant computation of the above delayed-sample
are initialized amé’) =1,j=1, ..., m.Since the data method at each timeinvolves the(m|.4|*) one-step Kalman
symbols are assumed to be independent, initial symbdilter updates, which, as before, can be carried out in parallel.
are not needed. Finally, we note that we can use the delayed-sample method
At time (¢t + A), we perform the following up- in conjunction with the delayed-weight method. For example,
dates forj = 1, ..., m to propagate from the sampleusing the delayed-sample method, we generate delayed samples
(89, k9 wt(’)l) 7., properly weighted for and weights{(s, wt(’))}}":1 based on the signal¥; .
p(81—1|Y11a_1), to that forp(Si—1|Y 11 a). Then with an additional delay, we can use the following

p§’3 =P (3 = a7|St 1 Yt-i-A) xXp (YH-Aa ng_)p St = ai)
= Z (YH-Aa S; )1a St = G4, SzilA)

t+A
Syt CAS
A

x Y HP (Ut+r Yii1, S0 s =ai, Siﬂ)l’(st =a;)- [[ p(seen)- (47)

_:iIAEAA‘r =0 =0
N (St+ "/,(Jr) ( Hr_71) 77,(2 ( Hr_71))
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p (ng)

Yt-l—A)

2087

p (55’31 Yt+Afl> p (89)
b (59, ¥1.s)
p (5591 Yt-l—A—l)
p (Yt-l—Aa ng_)l)
. P (Yt+A717 Sg@l)

Sgi)l ’ Yt+A )

(49)

Z p (§:+A7 Sgi)lv YH-A)

s heAatt

stHa—lega

> [ﬁp (ym

§:+AEAA‘H 7=0

> p(stt s

Yt-i—A—l)

A
Yt-l—‘r—l’ ng—)l’ §§+T) ' Hp(3t+r)]

7=0

X wt(J—)l ’

5 rrfp (vesr

§;+A,1 cAAs LT=0

A—1
Yt+7717 5517)17 §§+T) ' HP(SHT)]

(50)

7=0

delayed-weight method to estimate the symboposteriori

sponding tob, andd,. Recall thatw,_1_,,

= tht_LnO . De-

probability: note also
A
Lo , D, 2 (dy, ... dy)
P(st = a;|Y11aqs) = Wies Z 1(8§J) = ai)wii)(s, S, A (30 8;)
J:l A Tt 2
. A
i=1,....]A4. (51) Y:=(yo, - s 90)-

The Monte Carlo samples recorded at tinfe — 1) are

{(Dgi)l’ “591,%’ wt(J—)l)}Tzl where

€)) ()

Iit*l,no ll't*l,’ﬂo’

VI. ADAPTIVE RECEIVER IN FADING GAUSSIAN NOISE

CHANNELS—CODED CASE A [ () ]
So far we have considered the problem of detecting uncoded ot

independent symbols in flat-fading channels. In what follow&ontains the mean and covariance matrix of the state vector

we extend the adaptive receiver technique presented in SecBannets:—1, », conditioned oD, andY,_;. That s,
IV and address the problem of sequential decoding of informa- ) ) )
tion bits in a convolutionally coded system signaling through & D, Yt*l) ~Ne (P’t—l:"ﬂ’ Et—l:"ﬂ) - (83)
flat-fading channel. : . . . M

Consider a binary raté;% convolutional encoder of overall As before,(]g)wen _the mf<_3rmat|0h bit seque@é_l, the corre-
constraint lengthkoro. Suppose the encoder starts with afPOndings;—; ,, is obtained by a Kalman filter. Our algorithm

(wtfl, no

all-zero state at time = 0. The input to the encoder at tinigs 1S @S follows.
a block of i_nforr_nati%rll biliidtfz (ddt,;),_ L dté)kg); the ebncoder 1) Initialization: Each Kalman filter is initialized a8} ), =
output at timet is a block of code bité;, = R () () ; @ _ @ _
Forpsimplicity here we assume that B(Ptéll< mostflagi)on is S“E"O’ o, no ) WD phy 5y, = 0 and Sy, = 23,

> ) j=1,...,m, where3 is the stationary covariance of
employed. Then the transmitted symbols at titmare s, = xz, and is computed analytically from (6). All importance
(5.1, St,ng), Wheres,; = 2b; — 1,1 = 1,..., no. weights are initialized a®{’ = 1,5 = 1, ..., m. The

(Thatis,s;,; = 1if b,,; = 1,ands, ; = —1if b, ; = 0.) Since
b, is determined by(d:, d;_1, ..., d;—,,), SO iss;. Hence we
can write

8 = z/}(dtv dt—17 AR dt—ug)
for some functiony(-) which is determined by the structure of
the encoder.

Lety, = (yt,1,...,4t,n,) b€ the received signals at tinte
and letaey, = (o 1, -.., . pn,) be the channel states corre-

(52)

2)

initial D((f) are randomly generated from the $@t 1}%°,
7=1,...,m.

At time ¢, we implement the following steps to update
eachsamplg,j =1, ..., m.
Compute theo-step update of the Kalman filteffor each
possible code vectad; = a; € {0, 1}*°, compute the
corresponding symbol vectef using (52) to obtain

s@) =y (di=aid?. .. .d2,). (54
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Let

and

o
pn@) 2,

Performng steps of Kalman filter update, usimﬁ")(ai)

andy,, as follows: forl = 1, ..., ng, compute

K )(a:) =FsY)_ (a;)F" + gg", (55)
’Yt(Jl)(az) = hHKg?(ai)h + 02, (56)
(@) =h" Fu)_ (a:), (57)
w1(a) =Fu)_ (@)

] R ]

K )(a)h (58)
29 (a;) =K\ )(a:)

B <j>1 K} \(a)hh" K )(a)).  (59)

’YL[(ai)
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5) Compute the importance weight:

ng) :wt@l P (yt Dgi)lv thl)

> p(?/t, d: = a;

a;€{0,1}*0

oy 3ol

a;€{0,1}*0

Dg@lv Yt—l )

= wt;l :
(64)

where (64) follows from (60).

6) Do resampling as described in Section 1V-B whenin
(45) is below a threshold.

Following the same line of proof as in Appendix B, it can
be shown thaf (D}, ;«;gfzm, wt(]))}}":]L drawn by the above
procedure are properly weighted with respeqit®;|Y';) pro-
vided that the sample%(Dg’_)l, ﬁ?_)w, wt(’_)l) 7L, are prop-
erly weighted with respect tp(D;_1|Y:_1). Note that in the
coded case, the phase ambiguity is prevented by the code con-
straint (52), and differential encoding is not needed.

At each timet, the major computation involved in the above
adaptive decoding algorithm is tiye no 2*°) one-step Kalman
éilter updates, which can be carried out by 2*°) processing

In (54)—(59) it is made explicit that the quantity on th
left side of each equation is a function of the code b

vector a;. We therefore obtair{fyt(fl)(ai), nt(fg(ai) o

and[ugfzm (a;), ») (a;)] for eacha; € {0, 1}Fo,

Hnits, each computing any-step update. (Note thak con-
tainsk, bits of information.) Furthermore, if the delayed-sample
method outlined in Section V-B is employed for delayed estima-
£, m0 tion, then for a delay o\ time units, a total ofm ng 2k (A1)
3) Compute the trial sampling densityfor eacha; € one-step Kalman filter updates are needed at eachttimkeich
{0,1}*, compute (60)—(62) at the bottom of this pagesan be distributed amor(@» 2*°(2+1¢) processing units, each
where (61) follows from the fact thal; is independent computing amq-step update.

of D;,_; andY,_;.

4) Impute the code bit vectad,: Draw dgj) from the set

{0, 1}* with probability

P(d) =a) oo, aefo, 1} (63)

Appenddgj) to Dgi)l and obtaianj). Pick the updated

Kalman filter values

u) 2 ud) (d)

and
I O)

t, no t, no

(i)

VII. ADAPTIVE RECEIVERS IN FADING NON-GAUSSIAN
NoISE CHANNELS

To date, most of the work on signal detection in fading
channels assumes that the additive ambient channel noise has a
Gaussian distribution. In practice, however, the ambient noise
in many mobile communication channels is impulsive, due to
various natural and man-made impulsive sources [1], [2], [24],
[25], [28]. In [33], a technique is developed for signal detection
in fading channels with impulsive noise based on the Masreliez
nonlinear filtering [23] and making use of pilot symbols and
decision feedback. In this section, we develop an adaptive

from the results in Step 1), according to the value of theceiver for flat-fading channels with non-Gaussian ambient

sampled”’. We obtainngle0 = [ugleo, ngzm].

noise, using the mixture Kalman filtering technique.

o) 2P (d = a; DY) o (v, Yoo di = ai, DY) xp (yy, di = @i [DP, Yoy ) (60)
—P(d=a;|DP,, Y1 ) p (v | = ai, DY, Yios )
=P, = a)p (v, |8 (@) = (d = @i, d2y, .. dD,)), S, Y i) (61)
xP(dy = a) [ o (v, |70 0@, oo 5P @) Yoot v s ) (62)

=1

-~

N (Sﬂ (a; )nifg (@:), "/Ejl) (a; ))
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As in the case of Gaussian fading channels, we first de-5) Compute the importance weight:
velop adaptive receivers for uncoded systems. Consider the
state-space system g|ven by (11)—(12). Note that given both the w” —w(’ ) . (yt

35917 Igj)lv Yt—l)

symbol sequencé‘t = (so, -.-, st), and the noise indicator ) Z
sequencd, 2 (Io, - .., It), this system is linear and Gaussian. =t (@ 6y e Ax (1,2)
Hence e ’ D )
p (e |(se 1) = (0, 8 S TP Yy )
p(@:|Se, I, Yi) ~ No(y(St, 1), Ze(Se, Ib))  (65) - P((sy, I) = (a, 6);)
where the meang,(S;, I,) and the covariance matrix =w, - > i, (72)
3+(S:, I;) can be obtained by a Kalman filter with giveh (a,8)iCAxX{L, 2}

Tl 1 ey, i seeklo okt popery WeGHEG SIS e (7 olows o (10)
p(S., It|Yt) These samples are then used to estimate theB) Compute the one-step filtering update of the Ka)\lman

transmitted symbols and channel parameters. filter: Based on the imputed symbol and indicats}”,

I(J)) and the observatiog, complete the Kalman filter

update to obtam(“ I (v) E(J)] according to (42) and

(43) with 0 — 30) + o2 .

1) Initialization: This step is the same as that in the Gaussian
case. Note that no initial values fgb&‘ are needed due to

independence. : . .
At time #, the following updates are implemented for 7) Do resampling as described in Section 1V-B when the
each samplg, j = 1, ..., m. effective sample sizé, in (45) is below a threshold.
2) Compute the one-step predictive update of the Kalmdme proof that the above algorithm gives the properly weighted
filter ﬁﬁ’_)l: samples is similar to that for the Gaussian fading channels in
' Appendix B. The dominant computation involved in the above
Kﬁj) zngj)lp” + gg” (66) algorithm at each timeincludesm one-step Kalman filter up-
i dates. If the delayed-sample method is employed for delayed
%(J) :hHng)h 67) Y p ploy Y/

) : estimation with a delay ofA time units, then at each timg
m(]) = h”Fugﬂ)l. (68) (m(2].4])>) one-step Kalman filter updates are needed because
, , |A x {1, 2}| = 2|.4|, which can be implemented in parallel.
Conditioned onS‘?) andI?), the predictive distribution = Moreover, we can also develop the adaptive receiver algo-
is then given by rithm for coded systems in non-Gaussian noise flat-fading
channels, similar to the one discussed in Section VI. For a
( sV 19y ) NN( ) <’),ry,(’)+al(3>) rate 22 convolutional code, if the delayed-sample method is
(69) used with a delay ofA time units, then at each timea total
3) Compute the trial sampling densitor each(a, §); €
A x {1, 2}, compute (70) at the bottom of this page.

of (mng2(ketn0)(A+1)) one-step Kalman filter updates are
4) Impute the symbol and the noise indicatsy, I;): Draw

needed, which can be distributed amofig 2(ko+n0)(2+1))
processors, each computing omgstep update. (With a delay
of A units, there are@* (2+1) possible code vectors, and there

(s, I} from the setd x {1, 2} with probability are2™ (4+1) possible noise indicator vectors.)
P ((ng), It(j)) = (a, 5)71) x pijz, VIIl. SIMULATION RESULTS
(a, 6); € Ax {1, 2}. (71) In this section, we provide some computer simulation exam-

@ G G ) ~ ples to demonstrate the performance of the proposed sequential
Append (s, I,”) to (8,2, I,”;) and obtain Monte Carlo receivers in fading channels under various condi-
(s?), I§’)). tions. The fading process is modeled by the output of a Butter-

P} 2 P ((s1, 1) = (a0, 8); S0, I, Y1)
O(p (y Yf 1, 313 If) — (a/ 6)73 S§J)17 I(J) )

St, If a, 6)73 ng_)la Igj_)la Yt—l) P((Sta If) it (a/a 6)7) (70)

v

N (j)7~(j)+ 2
<5t Y UIt(]>

=Dp (yf
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worth filter of orderr = 3 driven by a complex white Gaussian 1"
noise process. The cutoff frequency of this filtel0i5, cor- &
responding to a normalized Doppler frequency (with respect ‘
the symbol rate}—) faT = 0.05, which is a fast fading scenario.
Specifically, the fading coefficient&y, } is modeled by the fol-
lowing ARMA (3, 3) process

T e e e ek k- — k- - %

=3
®
T

oy — 2.37409v_1 + 1.9293601;_5 — 0.532081;_3
= 1072(0.89409u; + 2.682271;_1 + 2.6822Tus_»
+ 0.894091;_3) (73)

Bit Error Rate (BER)

107

o  §=0
whereu, ~ N.(0, 1). The filter coefficients in (73) are chosen e g:;
such thatVar{c, } = 1. Itis assumed that BPSK modulation is +
employed, i.e., the transmitted symbejsc {+1, —1}. :
In order to demonstrate the high performance of the propos
adaptive receiver, in the following simulation examples we con 1o s 20
pare the performance (in terms of bit-error rate (BER)) of the

proposed sequential Monte Carlo receivers with that of the falig. 3. BER performance of the sequential Monte Carlo receiver in a fading
Iowing three receiver schemes channel with Gaussian noise and without coding. The delayed-weight method
’ is used. The BER curves corresponding to defays0, 6 = 1, andé = 2 are

« Known channel lower boundin this case. we assume thaghown. Also shown in the same figure are the BER curves for the known channel
. . . ’ ' . ower bound, the genie-aided lower bound, and the differential detector.
the fading coefficient{«,;} are known to the receiver.

Then by (1), the optimal coherent detection rule is given o - . . . :
by 4, = sign (R{aty, }) for both the Gaussian noise cas to maintain the efficiency of the algorithm, in which the effec

. : Sive sample size thresholdis; = m/10. Thedelayed-weight
(2) and the non-Gaussian noise case (3). method discussed in Section V-A was used to extract further
Genie-aided lower boundn this case, we assume thainformation from future received signals, which resulted in an
a genie provides the receiver with an observation ahproved performance compared with concurrent estimation.
the modulation-free channel coefficient corrupted bin each simulation, the sequential Monte Carlo algorithm was
additive noise with the same variance, i®.= a; + 7n¢, run on 10000 symbols, (i.et,= 1, ..., 10000). In counting
wheren; ~ N.(0, o) for the Gaussian noise case andhe symbol detection errors, the first 50 symbols were discarded
e ~ N0, ai) for the non-Gaussian noise case. Io allow the algorithm to reach the steady state. In Fig. 3, the
case of non-Gaussian noise, the genie also provides BEeR performance versus the signal-to-noise ratio (defined
receiver with the noise indicataf,. The receiver then as Var{«.}/Var{n,}) corresponding to delay valuégs = 0
uses a Kalman filter to track the fading process based ¢(eoncurrent estimate)y = 1, andé = 2 is plotted. In the
the information provided by the genie; i.e., it computesame figure, we also plot the known channel lower bound, the
& = E{w|Yy, I, }. The transmitted symbols are thergenie-aided lower bound, and the BER curve of the differential
demodulated according t& = sign(R{& y:}). It is detector. From this figure it is seen that for the uncoded case,
clear that such a genie-aided bound is lower-bounded Wth only a small amount of delay, the performance of the
the known channel bound. It should also be noted the¢quential Monte Carlo receiver can be significantly improved
the genie is used only for calculating the lower boundhy the delayed-weight method compared with the concurrent
Our proposed algorithms estimate the channel and tbestimate. Even with the concurrent estimate, the proposed
symbols simultaneously with no help from the genie. adaptive receiver does not exhibit an error floor, as does
. . ] . . the differential detector. Moreover, with a delay= 2, the
« Differential detector:In this case, no attempt is made to : : ; . o
. . . oposed adaptive receiver essentially achieves the genie-aided
estimate the fading channel. Instead, the receiver dete&s bound. We h IS0 imol ted the delaved |
the phase difference in two consecutively transmitted bk o’ Dounad. We have aiso impilemented e delayed-sample
by using the simple rule of differential detectidﬁbt_l _ method for this case_and found that it offers little improvement
sign (R{yr v 1)), over the delayed-weight method. _
& ¢ The uncoded BER performance of the proposed adaptive re-
First we consider the performance of the sequential Monteiver, together with that of the other three receiver schemes, in
Carlo receiver in a fading Gaussian noise channel withoatfading channel with non-Gaussian ambient noise is shown in
coding. In this case, differential encoding and decoding aFég. 4. The noise distribution is given by the two-term Gaussian
employed to resolve the phase ambiguity. The adaptive receiw@xture model (3) withx = 100 ande = 0.1. As mentioned
implements the algorithm described in Section IV-A. Thearlier in this case for the genie-aided bound, the genie not only
number of Monte Carlo samples drawn at each time wasovides the observation of the noise-corrupted modulation-free
empirically set asn = 50. Simulation results showed that thechannel coefficients, but also the true noise indicéfg} to the
performance did not improve much whenwas increased to channel estimator. It is seen from this figure that, again, the de-
100, while it degraded notably when was reduced t@0. The layed-weight method offers significant improvement over the
resampling procedure discussed in Section IV-B was employeahcurrent estimate, although in this case the BER curve for

8=2 el bound b N
genie-aided bound
differential detection

¥ ¥ + 00

25
Ebb/No (dB)
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W T T sequential Monte Carlo receivers can be remarkably close
O N T PO R DI SISO e to the so-called genie-aided lower bound in fading channels
for both uncoded and coded systems without the use of any
training/pilot symbols or decision feedback. Moreover, the
proposed receiver structure exhibits massive parallelism and
is ideally suited for high-speed parallel implementation using
the VLSI systolic array technology. Future explorations of
sequential Monte Carlo methods include the development of
computationally efficient delayed-sample techniques, which
will find wide applications in channels with strong memory

e
7

=)
)
T

Bit error rate (BER)

R P (e.g., intersymbol interference channels [31]).
do 6 =1
.| D a PR . . . B PN
+ + knownchannelbound (...t N TN APPENDIX A
* *  genie-aided bound : .
* «  differential detection o~ PROOF OF(lg)
10 x — : i Note that
10 15 20 25 30 35
Eb/No (dB)
S P(Z,[Y )
t = Wr—1 -
Fig. 4. BER performance of the sequential Monte Carlo receiver in a fading P(Zt—l |Yt—1)Q(zt|Zt—17 Yt)
channel with non-Gaussian noise and without coding= 0.1, x = 100. (With wy = 1)
The delayed-weight method is used. The BER curves corresponding to delays
6 =0,6 = 1,andé = 2 are shown. Also shown in the same figure are the p(Z;|Y ;)
BER curves for the known channel lower bound, the genie-sided lower bound, = H Z Y Z Y
and the differential detector. iy p(Zi-1|Yio1)q(2i|Zi-1,Y3)
Z|Y
6 = 2 is slightly off th ie-aided | bound. Furth N pt( o . 7
= 2 IS Sl (0] € genie-aiaed lower bouna. Furtnermore, 7. .
gntly €9 . p(zolyo) [[ 9(2ilZi-1, Y3)
the proposed adaptive receiver does not have the error floor ex- i=1

hibited by the simple differential detector. e numerator in (74) is the target distribution, and the denomi-

il
We next show f[he performance of the prop.osed sequentidy,r is the sampling distribution from whid} was generated.
Monte Carlo receiver in a coded system. The information b'ﬁence for any measurable functibf), we have

are encoded using a rat¢2 constraint lengtts convolutional

code (with generators 23 and 25 in octal notation). The receiv% {h (Z(j)) w(j)} = [ w2 p(Z|Y+)
implements the adaptive decoding algorithm discussed in Sec- ¢ ¢ t t

tion VI with a combination of delayed-sample and delayed- p(z0|y0)i1;[1‘Y(zi|Zi—1’ Yi)
weight method. That is, the information bits samp{ldg)r Ly ¢

are drawn by using the delayed-sample method with delay | p(zolyo) Hq(zi|zi—17 Y.)| dz,
whereas the importance welgI{Izstré Ty are obtained after a —

further delay ob. The coded BER performance of this adaptive M ZN o2 Y dZ

receiver with different delays, together with that of the known - (2:) p(2:]Y+) dZ,

channel lower bound, the genie-aided lower bound, and the dif- = E{MZ)|Y:}. (75)

ferential detector, is plotted in Fig. 5. It is seen that unlike the
uncoded case, for coded systems the delayed-sample methddnglly, note that both (19) and (20) are special cases of (75).
very effective in improving the receiver performance. With a

. ) ) APPENDIX B
sample delay.oﬁ =5 and we|ght dglayS = 10, the receiver PROOF THAT (40) AND (41) GVE PROPERLY WEIGHTED
performance is close to the genie-aided lower bound. SAMPLES

To show that the samp(egj), wt(j)) given by (40) and (41) is
a properly weighted sample with respecpt®;|Y";), we need

We have developed a new adaptive Bayesian receiver forverify that (41) gives the correct weight. Assume that at time
signal detection and decoding in flat-fading channels witfs — 1), we have a properly weighted sampi&”’, , w, ) with
known channel statistics based on the sequential Monte Cai@pect top(S, ;[Y,_,). That is, assume that”, is drawn
methodology. Specifically, we have derived adaptive receiVgpm some trial distribution(S,_1[Y 1), andthétimportance
algorithms for both uncoded and coded systems, where Wsight is given byw(j) — (S(j) IY,_1), with
delayed-weight method, the delayed-sample method, and a e
combination of both are employed to improve estimation A p(Si—1|Yi1)
accuracy. The proposed sequential Monte Carlo receiver “i-1(SifYi1) = a(8,_1|Y_1)"
techniques can also handle the non-Gaussian ambient noise. '
The computational complexities of the various algorithmBy (38) and (40),351) is drawn from the distribution
discussed in this paper are summarized in Table Ill. It is show(lst|S§{)1, Y,). Hence, the sampling distribution foﬁ‘ﬁj)
through simulations that the performance of the proposedgiven by ¢(S; 1|Y: 1) p(s¢|S:—1, Y+). Since the target

IX. CONCLUSIONS

(76)
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known channel bound
genig-aided bound
differential detection
o A=1,6=0

A=1, 8=5

A=1, 8=10

known channel bound
genie-aided bound
differential detection
A=3, 8=0

A=3, 8=5

DB

Bit Error Rate (BER)
Bit Error Rate (BER)

known channel bound
genie-aided bound
differential detection

L ‘o O A=5, 5=0 L
HEEEE BIE % A=5,3=5
SR “lo o A=5,8=10

Bit Error Rate (BER)

1
Eh/N N {dB)

(©
Fig. 5. BER performance of the sequential Monte Carlo receiver in a fading channel with Gaussian noise for a convolutionally coded system. Tibaalonvolu
code has raté/2 and constraint length five. A combination of delayed-sample (with dalpgnd delayed-weight (with dela) method is used. The BER curves

corresponding to delaydA = 1, A = 3, andA = 5 are shown. Also shown in the same figure are the BER curves for the known channel lower bound, the
genie-aided lower bound, and the differential detector.

distribution isp(S:|Y";), the weight function at time is then Hence

give by | |
we(8:[Y) wt(]) = wt(S§])|Y = wtj) Z p(J)
(St|Yt) a; €A
T (S Y ) p(se]Se-1, Y ) This verifies that (41) gives the correct importance weight at
p(8i1|Yi1)  p(Si-1|Yy) imet.
(Sf 1|Yf 1) p(St—1|Yt—1)
= Wi— (St—1|Yt—1)

p(ytIYt—h St—l)p(Yt—l|St—1)p(St—1)/p(Yt)
p(Yt—1|St—1)p(St—l)/p(Yt—l)
X wt—l(st—1|Yt—1) 'p(yt|Yt—17 St—l)
= wt—l(St—1|Yt—1)
> pludlse = ai, Sim1, Yia)
a;EA
'p(St = ai|St—17 Yt—l)
= wt—l(St—1|Yt—1) : Z Pt,i-

a; €A

APPENDIX C

In this appendix we verify the correctness of the residual re-
sampling under a general setting. l(ef’) wt ) be a properly
weighted sample with respectp()rtm). Without loss of gen-

G) _ ~m
erality, we assume that;", w,”’ = m. Let{z,”}7., be the
set of samples generated from the residual resampling scheme.
The new set consists df; Lwt(])J copies of the sample
x?) forj =1,...,m, andK, = m — E;":l k; i.i.d. sam-

ples drawn from se{xgj )}]’7’:1 with probability proportional to

(77)
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TABLE Il
THE COMPUTATIONAL COMPLEXITIES OF THEPROPOSEDSEQUENTIAL MONTE CARLO RECEIVER ALGORITHMS UNDER DIFFERENT CONDITIONS IN TERMS OF THE
NUMBER OF ONE-STEP KALMAN FILTER UPDATESNEEDED AT EACH TIME ¢. THE DEGREE OFPARALLELISM REFERS TO THEMAXIMUM NUMBER OF COMPUTING
UNITS THAT CAN BE EMPLOYED TO IMPLEMENT THE ALGORITHM IN PARALLEL . IT IS ASSUMED THAT THE DELAYED-SAMPLE METHOD IS USED WITH A DELAY
OF A TIME UNITS. THE NUMBER OF SAMPLES DRAWN AT EACH TIME IS m. FOR UNCODED SYSTEM, THE CARDINALITY OF THE SYMBOL ALPHABET IS |.A|.
FOR CODED SYSTEM, A CONVOLUTIONAL CODE IS USeD. THE NON-GAUSSIAN NOISE IS MODELED BY A TWO-TERM GAUSSIAN MIXTURE

Uncoded system Coded system
Complexity | Deg. of Parallelism Complexity Deg. of Parallelism
Gaussian mA|2 m|A|® m ng 2k (&+1) m 2ko(8+1)
non-Gaussian | m (2|.4])2 m(2A])2 mng 2o tno)(A+1) 1y 9(kotmo)(8+1)

(wt(j) - Lwt(j)J)/K,,. The weights for the new samples are set 13 . .
to 1. Hence = Varq = z:l h (ng)) w?
J=

., %Zh(ﬁsﬁj)) +E{K Vi {h( 0| {a, <J>}j,_1”
~ . < %Var[h(a:t)wt]

—E {E % >oh #) ({7 ) . 9 wf)|)
E

i = g | ( (x§f>))2 (vl

m m m? j=1 KT
1 DY |,y =
= B9 (s > 1 1
LA =t ( ) L J jmm—K 41 < Evar[h(it)wt] to 3
, N [£269, 00 RS <j>))2 , { <j>}
E {h (a:t ) { }j’=1:| E z:l (h (a:t min § 1, w,
Jj=
1 < L Varlh(a o] +
=_F ( (J)) L (J)J +K,.E = G I
m E[(h(xs)) wy] — 0 asm — oo. (79)
' [h(it) { (f)) wt(jr)}m } Here we assume thakr[h(x:)uy] < oco. Hence
3'=1 m
1 (i
=B () ] -
L =t in probability.
m w? L (J)J
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