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Adaptive Bayesian Multiuser Detection for
Synchronous CDMA with Gaussian and Impulsive
Noise

Xiaodong WangMember, IEEEand Rong Chen

Abstract—We consider the problem of simultaneous parameter channel parameters, that is, the multiuser maximume-likelihood
estimation and data restoration in a synchronous CDMA system sequence detector (MLSD) and the multiuser maximam
in the presence of either additive Gaussian or additive impulsive posteriori symbol probability (MAP) detector, were first

white noise with unknown parameters. The impulsive noise is . . - .
modeled by a two-term Gaussian mixture distribution. Bayesian investigated in [46] and [47] (cf. [49]). The analysis of the

inference of all unknown quantities is made from the superim- COmputational complexity and the proof that the optimal mul-
posed and noisy received signals. The Gibbs sampler (a Markov tiuser detection problem is combinatorially hard appeared in
chain Monte Carlo procedure) is employed to calculate the [46] and [48]. When the channel parameters (e.g., the received

Bayesian estimates. The basic idea is to generate ergodic randomy ity des and the noise variance) are unknown, it is of interest
samples from the joint posterior distribution of all unknown and

then to average the appropriate samples to obtain the estimates of to §tudy the problem of _Jo'nt multiuser (?hannel parameter
the unknown quantities. Adaptive Bayesian multiuser detectors estimation and data detection from the received waveform. This
based on the Gibbs sampler are derived for both the Gaussian problem was first treated in [36], where a solution based on the
noise synchronous CDMA channel and the impulsive noise expectation-maximization (EM) algorithm is derived. In [42],

synchronous CDMA channel. A salient feature of the proposed ha hroplem of sequential multiuser amplitude estimation in the

adaptive Bayesian multiuser detectors is that they can incorporate f unk data is studied d h b d
the a priori symbol probabilities, and they produce as output the presence of unknown data IS studied, and an approach base

a posteriori symbol probabilities. (That is, they are “soft-input 0N Stochastic approximation is proposed. In [55], a tree-search
soft-output” algorithms.) Hence, these methods are well suited for algorithm is given for joint data detection and amplitude
iterative processing in a coded system, which allows the adaptive estimation. Other works concerning multiuser detection with
_Bayesmp multiuser detecto_r to refine its processing based on the unknown channel parameters include [14], [23], [24], [33],
information from the decoding stage, and vice versa—a receiver
structure termed adaptive Turbo multiuser detector. [35], and (43]- . . . .

Multiuser Detection with Impulsive Noisefo date, most
of the work on multiuser detection assumes that the channel
ambient noise is Gaussian. However, in many physical chan-
nels where multiuser detection may be applied, such as urban
. INTRODUCTION and indoor radio channels [8], [9], [28], [29], [31], [32] and

HE THEME of this paper is to treat three related probleniéderwater acoustic channels [11], [30], the ambient noise is

in multiuser detection under a general Bayesian framkdown through experimental measurements to be decidedly
work. These problems are non-Gaussian, due to the impulsive nature of the man-made

i) optimal multiuser detection in the presence of unknow?‘le_ctromagnﬁtl(%hlnterferltenci and ? gtre:t dfeal of ntatur_al
channel parameters; noise as well. The results of an early study of error rates in

i) optimal multiuser detection in impulsive ambient noisef:hon'G""fuSSIan CD]lc\/tlﬁ channeli arel foudnd 'nd.[]}];j[?’]’ n W?'Ch |
iii) multiuser detection for coded CDMA systems. € performance ot the conventional and modilied conventiona

. . ) . detectors is shown to depend significantly on the shape of
ZYE:;St provide a perspective on the related works in these thrt%ee ambient noise distribution. In [37], it is observed that the

Optimal Multiuser Detection with Unknown Parame_performance gains afforded by maximum likelihood multiuser
ters-pThe optimal multiuser detection algorithms with I(nowﬁzletection in impulsive noise can be substantial when compared
' with optimum multiuser detection based on a Gaussian noise

assumption. In [52], robust multiuser detection methods for
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Fig. 1. Coded synchronous CDMA communication system.

that perform multiuser symbol detection and decoding eithére influence of the error bursts at the input of the channel
separately or jointly are studied. In [34], [38], and [51], Turbdecoder. The interleaved code bits are then mapped to BPSK
multiuser detection schemes for coded CDMA systems are paymbols, yielding symbol streafx,.(¢) }. Each data symbol is
posed, which iterate between multiuser detection and chantfen modulated by a spreading wavefospnand transmitted
decoding to successively improve the receiver performance.through the channel. The received signal is the superposition of
In this paper, we present novel adaptive Bayesian multiugbe K users’ transmitted signals plus the ambient noise, which
detection techniques for synchronous CDMA communicatioiis given by
with unknown channel parameters in both Gaussian and X
impulsive ambient noise channels. The impulsive noise is_,., _ p p L
modeled by a two-term Gaussian mixture distribution. We () =) Am@antn@,  i=0 M-1 (1)
consider Bayesian inference of all unknown quantities (e.g., b=l
the received amplitudes, the data symbols, and the nolge(1), M is the number of data symbols per user per frame;
parameters) from the received waveforms. A Markov chaifix, 2 (i), ands; denote, respectively, the amplitude, tle
Monte Carlo procedure called the Gibbs sampler is employ&gmbol, and the normalized spreading waveform ofiheuser;

to calculate the Bayesian estimates. The performance of @dn(i) = [no(é) ni(i) --- np_1(:)]" is azero-mean white
proposed adaptive multiuser detectors is demonstrated R@ise vector. The spreading waveform is of the form
simulations. The proposed Bayesian multiuser detectors can 1

naturally exploit the structure of the coded signals. Another s =—=[Br,0 Br,1 - /3k,p_1]T

salient feature of the proposed methods is that being soft-input VP

soft-output demodulation algorithms, they can be used in con- Pr.j € {+1, ~1} @

junction with soft channel decoding algorithm to accomplisfhere p is the spreading factor. It is assumed that the receiver
iterative joint adaptive multiuser detection and decoding—the, s the spreading waveforms of all active users in the system.

so-calledadaptive Turbo multiuser detection _ Define the followinga priori symbol probabilities:
The rest of the paper is organized as follows. In Section II,

the system under study is described. In Section Ill, some k() ép[xk(i) = +1], i=0, -, M—1
background material on the Gibbs sampler is provided. The R 3)
problems of adaptive Bayesian multiuser detection in Gaussian oo
noise and impulsive noise synchronous CDMA channels aye that when no prior information is available, ther(s) =
treated in Sections IV and V, respectively. In Section Vh /2 i.e., all symbols are equally likely.

an adaptive Turbo multiuser detection scheme is presentedy is further assumed that the additive ambient channel
Some discussions, including a decoder-assisted convergepse vector{n(i)} is a sequence of zero-mean independent
assessment scheme and a code-constrained Bayesian multiyggridentically distributed (i.i.d.) random vectors, and it is
detector, are found in Section VII. Simulation results arggependent of the symbol sequendas (¢) K Moreover,
provided in Section VIII. Finally, Section IX contains theihe noise vectom(i) is assumed to consist of i.i.d. samples

conclusions. {n;(i)}i—". In this paper, we consider two types of noise
distributions corresponding to the additive Gaussian noise and
ll. SYSTEM DESCRIPTION the additive impulsive noise, respectively. For the former case,
We consider a coded synchronous CDMA system with€ noisen; () is assumed to have a Gaussian distribution, i.e.,
K users, employing normalized modulation waveforms g 2
s1, S2, -+ -, s and signaling through a channel with additive ny (@) ~ N (0’ o ) “)

white noise. The block diagram of the transmitter end of sucRyghere 2 is the variance of the noise. For the latter case, the

system is shown in Fig. 1. The binary information Hith (n)}  noisen; (i) is assumed to have a two-term Gaussian mixture
for userk are encoded using some channel code (e.g., blogtribution, i.e.,

code, convolutional code, or Turbo code), resulting in a code
bit stream{z(m)}. A code-bit interleaver is used to reduce n;(i) ~ (1 — e N(0, o7) + eN(0, 03) (5)



WANG AND CHEN: ADAPTIVE BAYESIAN MULTIUSER DETECTION FOR SYNCHRONOUS CDMA 2015

with 0 < ¢ < 1 ando? < o3. Here, the term\ (0, o) rep- * Draw sample9((1"+1) fromp(6, | 9§"+1), e 955[1), Y).
resents the nominal ambient noise, and the t&f(0, o3) rep-  Under regularity conditions, in the steady state, the sequence of
resents an impulsive component, withepresenting the prob- sample vectors. -, 8%, 87, §*+1)_ ... s a realization of
ability that an impulse occurs. The total noise variance undghomogeneous Markov chain with the transition kernel from
distribution (5) is given by stated’ to statef given by

0 = (1= c)of +eo3. ©)  K(@#.0)=p(6116y, -, 60, Y) p(62]61, 6, -, 6., Y)

: o046y, - Ba_y Y. 9
DenoteY = {r(0), #(1), ---, 7(M — 1)}. In Sections IV p(lals; -+, ba—1, Y) 9)

and V, we consider the problem of estimating tposteriori s convergence behavior of the Gibbs sampler is investigated
probabilities of the transmitted symbols in [13], [15], [17], [26], [41], and [45], and general conditions
are given for the following two results:

« The distribution of 8" converges geometrically to
7 p(@|Y), asn — oo.

Plap(i) = +1]Y], i=0,-- M—-1, k=1, K

N
based on the received signals and the prior information . 1 Zf (9(70) 28, /f(g)p(9|y) df, asN — o,
{px(%) f;fﬂ;%, without knowing the channel amplitudes N _
{A, £ | and the noise parameters (i.€? for Gaussian noise for any integrable functiorf.
and ¢, o7, and o3 for impulsive noise). Thesa posteriori The Gibbs sampler requires an initial transient period to con-
probabilities are then used by the channel decoder to decage to equilibrium. The initial period of lengthy, is known
the information bits{d;.(n)} shown in Fig. 1, which will be as the “burn-in” period, and the first, samples should always
discussed in Section VI. be discarded. Detecting convergence is usually done in sdme
hocway. Some methods are found in [44].
lll. GIBBS SAMPLER The roots of MCMC methods can be traced back to the well-

known Metropolis algorithm [27], which was initially used to
Over the last decade or so, a large body of methods Nagestigate the equilibrium properties of molecules in a gas. The

emerged based on iterative Monte Carlo techniques that rg; yse of the Metropolis algorithm in a statistical context is

especially u_sefu! in computing B:_:lye5|a_n solutions to estimati@g;nd in [22]. The Gibbs sampler, which is a special case of the
problems with high parameter dimensions. These methods gfgiropolis algorithm, was so termed in the seminal paper [17]
based on the theory of Markov chain limiting behavior and agg, jmage processing. It is brought to statistical prominence by
collectively known asMarkov chain Monte CarldMCMC)  15] where it was observed that many Bayesian computation

techniques [44]. Most of these methods are aimed at estimat{ng |4 be carried out via the Gibbs sampler. For tutorials on the
the entire posterior density and not just finding the maxinumg;pg sampler, see [4] and [12].

posteriori(MAP) estimates of the parameters. One of the most
popular of these methods is known as @Gibbs samplef15],
which is described next.

Letd = [6; --- 64)7 be a vector of unknown parameters,
and letY” be the observed data. Suppose that we are interested i this section, we consider the problem of computing the
finding thea posteriorimarginal distribution of some parameter@ posterioriprobabilities in (7) under the assumption that the
say,6;, conditioned on the observatidn, i.e.,p(f;|Y), 1 < ambient noise distribution is Gaussian. That is, the paf(@f
j < d. Direct evaluation involves integrating out the rest of thi (1) is given by
parameters from the joirat posterioridensity, i.e.,

IV. ADAPTIVE BAYESIAN MULTIUSER DETECTION IN GAUSSIAN
NoISE

. 1 n(i)|?
p(n(i)) = W €xXp <—%> . (10)
p(91|Y) = ///p(0|Y)d91d9171d9J+1d9d
(8) Denote
In most cases, such a direct evaluation is computationally infea- /
sible, especially when the parameter dimensias large. The x(4) 2 [1(8) x2(d) - ax()]"
Gibbs sampler is a Monte Carlo procedure for numerical evalua- i=0,1,---,M—1
tion of the above multidimensional integral. The basic idea is to LA . . .
generate random samples from the joint posterior distribution B(2) = diag(a1 (i), 22(0), -+, 2k (2))
p(@|Y) and then to estimate any marginal distribution using i=0,1,---, M-1
these samples. Given the initial val&® = [6* ... (|7, X2[(0) z(1) - x(M-1)]
this algorithm iterates the following loop: A
(n+1) n) n) Y=[0) 1) - r(M-1)]
» Draw sampled; fromp(6, |65, ---, 6,7, Y). A
(n+1) (n+1) AHln) (n) a= [Al A - AK]T
» Draw sampled; from p(62|6,"", 057, -+, 6,7,
Y). A2 diag(Ar, Ay, -, Ax)

Sé[sl s2 o Skl
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Then, (1) can be written as termednoninformative The rationale for using noninformative
prior distributions is to “let the data speak for themselves,” so
(i) = SAz(i) + n(3) (11) thatinferences are unaffected by information external to current

data [10], [16].
Conjugate Priors: Another consideration in the selection

The problem is solved under a Bayesian framework. First, tﬁé the prior distributions is to simplify computations. To that

unknown quantities, o2, and X are regarded as realizationsend’Conjugate priorsare usually L_Jsed_to _obtr_;un simple analyt-
ical forms for the resulting posterior distributions. The property

of random variables with some prior distributions. The Gibb D e
sampler, which is a Monte Carlo method, is then employed at.the posterlpr d|§tr|put|9n pelongs to thg same dlstrlbu'glon
calculate the maximura posteriori(MAP) estimates of these amily as the pr|or_d|sFr|but_|on IS called_conjugacy. The conju-
UnkNowns. gate fam|ly of qllst_rlbu_nons is mathematically convgnlent in that
the posterior distribution follows a known parametric form [10],
[16]. Finally, to make the Gibbs sampler more computationally
efficient, the priors should also be chosen such that the condi-
Assume that the unknown quantities-> andX are indepen- tional posterior distributions are easy to simulate.
dent of each other and have prior distributigria), p(c2), and For an introductory treatment of the Bayesian philosophy, in-
p(X), respectively. Sincén (i)} is a sequence of indepen-cluding the selection of prior distributions, see [10], [16], and
dent Gaussian vectors, using (10) and (11), the joint posterj@6]. An account of criticism of the Bayesian approach to data
distribution of these unknown quantiti¢s, o2, X) based on analysis can be found in [5] and [40], and a defense of “The

=SB(i)a+ n(i), 1=0,1,---,M—-1. (12)

A. Bayesian Inference

the received signd” takes the form of Bayesian Choice” can be found in [39].
Prior Distributions of the Unknowns¥ollowing the general
p(a’ o?, X | Y) guidelines in Bayesian analysis [10], [16], [25], we choose the
_ p(Y la, o2, X) p(a)p(a2) p(X)/p(Y) conjugate prior distributions for the unknown parametges,

2
M—1 p(0?) andp(X), as follows.

PM/2 - .
1 1 . . For the unknown amplitude vecta; a truncated Gaussian
—C. < ) exp(—ﬁ 3 i) —SA:c(z)||2> b
=0

=l prior distribution is assumed

-pla)p(a®) p(X) (13)
p(a) x N(ao, o)l{a>0 (15)
where C is a normalization constant independent of the un-

of the transmitted symbols can then be calculated from the joR@Sitive and itis zero otherwise. Note that large valuEigtor-
posterior distribution (13) according to responds to the less-informative prior. Note also that although

user amplitudes are assumed to be independent, the hxgrix
is not restricted to be diagonal. For the noise variarfgen in-

Plzp (i) =+1|Y . . D
o (@) = +11Y] verse chi-square prior distribution is assumed

= > pX|Y)
Xz (i) =+1 ]/0)\0 v /2
- ¥ /p (a, 0%, X|Y) dado®.  (14) (o) =\ 2 1\ Y
X:ack(i)=—|—l p o r (@) O'2 p 20'2
2
Clearly, the computation in (14) involve$ * —1 multidimen- ~x"2(v0, Xo), (16)
sional integrals, which is certainly infeasible for any practicgj,
implementations. To avoid the direct evaluation of the Bayesian ), )
estimate (14), we resort to the Gibbs sampler discussed in Sec- ~ 2~ ~X (v0)- 7

tion 1ll. The basic idea is to generate ergodic random samples

{a™, o2 XM = g, no + 1, ---} from the poste- The small value of; corresponds to the less informative priors

rior distribution (13), and then to average(i)™: n = no, (roughly the prior knowledge is worth data points). The value

no+1, - - -} to obtain an approximation of theeposterioriprob- of 19\ reflects the prior belief of the value of. Finally, since

abilities in (14). the symbols{zy. (i)} {1;_% are assumed to be independent, the
prior distributionp(X) can be expressed in terms of the prior

B. Prior Distributions symbol probabilities defined in (3) as

General Considerations: M1 K
Noninformative Priors: In Bayesian analysis, prior distri- X) = D1 — o ()L 18
: ) _ p(X) = 1¢ 1¢
butions are used to incorporate the prior knowledge about the ) H H P L= pn(i)] (18)
unknown parameters. When such prior knowledge is limited,
the prior distributions should be chosen such that they havevaereé;; is the indicator such tha,; = 1 if z;(¢) = +1 and
minimal impact on the posterior distribution. Such priors ar&,; = 0if z(¢) = —1.

=0 k=1
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C. Conditional Posterior Distributions

The following conditional posterior distributions are required
by the Gibbs multiuser detector in Gaussian noise. The deriva-

tions are found in Appendix A.

1) The conditional distribution of the amplitude vectar
giveno?, X andY, is given by

plalo®, X, Y) x N(as, Z.) (a0} (19)
with
A 1 M-—1
stemst 4 = > B(i)RB(), (20)
=0

and
M-—1

2

/ 1
a. 23, <Ealao + =
o
i=0

B(i)STr(i)> (21)

where in (20)R 2 STS.
2) The conditional distribution of the noise varianeg
givena, X andY is given by

9 3 voro + 2
p(O’ |a, X, Y) X <1/0 + PM, o+ P PM) (22)
or
, 2
CAo+ ) 2o+ P) (23)
with
M—1
Az(@)|. (24)

23 Ir() -

3) The conditional probabilities af;. (i) = &1, givena, o2,
X, andY, can be obtained from [whetX;; denotes
the set containing all elements &f except forz; (¢)]

P[xk(L) =+1 | a, 027 in7 Y]
Plew(i) =—1|a, o2 XM,Y]

24, T o
1 — pr(%) { - San{i )]}
k=1, M -1 (25)
whereA
2(6) = [21(8), s w1 (D), 0, 2aega (8), -, ()]

D. Gibbs Multiuser Detector in Gaussian Noise

Using the above conditional posterior distributions, the Gib
sampling implementation of the adaptive Bayesian multius
detector in Gaussian noise proceeds iteratively as follows. Gi

the initial values of the unknown quantiti¢a®, o2, X}
drawn from their prior distributions, and fer =1, 2, - --, we
have the following.

1) Draw a™ from p(a| 02(71_”, X (=D, Y) given by
(19).

2) Draw 02" from p(o?]a™ XD Y) given by
(23).

2017

3) Fori=0,1,---, M —1
For k =1, 2, , K
Draw a:k( )(") from Pl (i) |a(")
Y] given by (25)

2(n) (n)
s in s

where

n) A n
x5 2 {a@®, -,
(n)

’ a:k+1(i)("_1), e a:K(i)("—l)

a(M — 1)<"—1>} .

Jik_l(i)
.’L‘(L + 1)("_1)’ e

Note that to draw samples a@ffrom (15) or (19), the so-called
rejection methodb0] can be used. For instance, after a sample is
drawn fromA (ag, %9) or M(a., X.), check to see if the con-
straint4; > 0,k =1, ---, K is satisfied; if not, the sample is
rejected, and a new sample is drawn from the same distribution.
The procedure continues until a sample is obtained that satisfies
the constraint.

To ensure convergence, the above procedure is usually car-
ried out for(ng + V) iterations, and samples from the lagt
iterations are used to calculate the Bayesian estimates of the un-
known quantities. In particular, thee posteriorisymbol proba-
bilities in (14) are approximated as

nog+N
Plag(i) = +1|Y] = Z 5 (26)
n—n0+l
wheres(" is the indicator such thal = 1if (" = +1 and

57 = 0if (M =
is then given by

—1. An MAP decision on the symbaly (%)

e

2(i) =arg max Plx

(i) =b|Y].
bC{+1, -1} K@) Y]

(27)

Furthermore, if desired, the estimates of the amplitude vector
and the noise varianae’® can also be obtained from the corre-
sponding sample means

no+N

1
Bla|Y}= < > e (28)
n=ng+1
and
1 no+N o
B{o*|Y} =+ > oot (29)
n=ng+1

bIshe posterior variances @f and 42, which reflect the uncer-

Falnty in estimating these quantities on the basi¥ ptan also

ven

be approximated by the sample variances, as

o]
no+N

AL

=ng+1

no+N

Covi{a|Y} = % Z

n=ng+1

1 no+N T
_y

a(")] (30)

2

n=ng+1



2018 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 2000

and The unknown quantities in this case &go?, 73, ¢, I, X). The
N N 9 joint posterior distribution of these unknown quantities based on
Var{o? |Y} = 1 ni [O_gm} 2 1 l "OEJ’: 2 the received signd takes the form of
= 5 .
N n=ng+1 N n=ng+1 p(a'7 O—%v O—gv € Iv X|Y)

(31) xp(Y |a, 07, 03, ¢, I, X) pla)p(o7) p(o3)

Note that the above computations are exact in the limN as— ple)pd t\j)_pl(X)

oo. However, since they involve only a finite number of samples, 1 N AT A (=Ll p
we think of them as approximations but realize that in theory APIT2 ; [r(8) =S A=) A [r(5) — S Az ()]
any order of precision can be achieved given sufficiently large R

M-—1 . M—1 .
sample sizeV. (1 /2370, m) 1\ ST ns i)
The complexity of the above Gibbs multiuser detegier it- o? o3
erationis O(K? + K M), i.e., it has a term that is quadratic .p(a)p(af)p(ag) ple)p(I | €)p(X) (35)

with respect to the number of useis[due to the inversion of wheren, (i) is the number of's in {Io(é), I (i) Lo 1 (D)}
" . . . . . A l 1 0 1 y L1 ? y Ty L1 [ 1
the positive definite symmetric matrix in (20)] and a term that |[s: 1, 2. [Note thatny (i) + na(i) = P.] We next specify the

linear with respect to the symbol block sizé. The total com- conjugate prior distributions of the unknown quantities in (35)
plexity is thenO[(K? + KM )(no + N)]. This is a substan- jugate p . : N quantities '
. i . . . . As in the case of Gaussian noise, the prior distributjafag

tial complexity reduction compared with the direct implemen-

. : - ndp(X) are given, respectively, by (15) and (18). For the noise
tation ?,fhﬁhe Bayesian symbol estimate (14), whose complex@(yiriggce)gﬁ lg— 1,2 inrt)jepend)éntyirgvezse ch(i-S(;uare distribu-
is 02" M), Lo S

tions are assumed, i.e.,

V. ADAPTIVE BAYESIAN MULTIUSER DETECTION INIMPULSIVE  P(07) ~ x~%(11, A1), 1=1,2, withvi Ay < 12X, (36)
NOISE For the impulse probability, a prior of Beta distribution is as-

In the previous section, we assumed that the distribution 4med, i.e.,
the ambient channel noise is Gaussian, as did in most of the(e) _ I(ao + bo) can—1
previous work on multiuser detection. However, in many re-*“/ = T(ag)T'(bo)

alistic communication channels, especially wireless chann@lgyte that the value, /(ao + bo ) reflects the prior knowledge of
the ambient noise is known to be decidedly impulsive, due {ge value ofe. Moreover,(ao + by) reflects the strength of the
impulsive phenomena [8], [9]. In this section, we develop theior pelief, i.e., roughly the prior knowledge is wort, + bo)
Gibbs multiuser detector in impulsive noise. It is assumed thgdta points. Given, the conditional distribution of the indicator
the noise samplen, (i)’ ;;—01 of n(¢) in (1) are independent I,(i) is then

with a common two-term Gaussian mixture pdf, which is given

(1—¢)» 1 ~ Betdao, bo). (37)

Plj(i)=1|d=1-¢, and P[L(i)=2|]=c (38)

by
) = pI] &) =(1 - e (39)
. 1—c¢ n; (%) ) )
ni(1)) = expl| — with
Pl = =5 (=53
A2 A ;
() nd 5
27ra§ 205 =
A M-—1
with 0 < € < 1 ando? < 3. This model serves as an approxi- may = Y na(i) = MP —my.
mation to the more fundamental Middleton Class A noise model i=0

[30], [31], [56] and has been used extensively to model physicgl

. . : . nditional Posterior Distribution
noise arising in radar, acoustic, and mobile radio channels. Conditional Posterior Distributions

The following conditional posterior distributions are required

A. Prior Distributions by the Gibbs multiuser detector in impulsive noise. The deriva-
Define the following indicator random variable to indicate thEons are found in Appendix B.
distribution of the noise sampte;(:) 1) The conditional distribution of the amplitude vector
giveno?, o3, ¢, 1, X, andY is
1, if n;(z) ~ N(0, 07),
IJ(L) — { ’ I TLJ(L) ( ’ 0;) p(a|a%, O%, e, I, X, Y) NN(a*v 2*)I[a>0} (40)
2, if n;(i) ~ N(0, 03), with
i=0---,M—1;5=0,.---,P—1. (33) M1
slay-ly B(i)STA()1SB(i) (41)
Denotel = {;(i)}, 1M, and ’ ;
and

A(D) édiag(ff?o(‘)v Thy " Tl 1(‘)) A = .
‘ ‘ - a. =3 | =5 ag + BH)STAG) ™ r(i) | . (42)
1=0,---, M —1. (34) o “0 ; () () ()
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2) The conditional distribution of the noise variancg
givena, 072, e, I, X, andY is given by [herd = 2 if
I=1,andl =1if 1 =2].

p(aﬂa, 072, e, I, X, Y)

M-1

B ) A + s7

~x7 2 v+ Z ni(i)] % (43)
=0 v + Z (i)
i=0

with

N M—-1P-1 2

i=0 j=0
I=1,2 (44)

In (44), 1{1,(:)=1y is the indicator function such that it is
1if I;(i) = I, and itis 0 ifZ;(i) # I; €] is thejth row of

the spreading waveform matr&, j =0, ---, P — 1.
3) The conditional probability of; (i) = +1, givena, o?,
o3, ¢, I, X;;, andY can be obtained from [wher¥ ;

denotes the set containing all elementsXofexcept for

21 (1)]
P[‘Tk(L) = +1 |a7 O—%v O—%v €, 17 in7 Y]
P[xk(L) =-1 |a7 0—%7 O—gv <, 17 in7 Y]

_ o) -exp{ 24wy A1) [r(i) — SAZ°()] }

1= pi(d)
k=1, K;i=0,---, M—1 (45)
whereA
IQ(L) = [‘Tl(i)v T ‘Tk—l(i)v 0, ‘Tk-l-l(i)v ) .T]((i)]T.

4) The conditional distribution of;(:), givena, %, o3, ,

2019

2) Draw J%W from p(o? | al™, 0%<7171>, =) b,
XD Y given by (43);
Draw ng from p(o? |a™, wa, =) [n=b)
X1 Y given by (43).
3) Fori=0,1,---, M—1
Fork=1,2---, K
Draw zx(1)" from Plz(4)|a™,
ag(”), =1 1) ng), Y] given by
(45)where

)
o,

X3 2 faO®, o ali = DO, a @),
(n) (1) g ()Y,

a(M — 1)<"*1>}.

o1 ()", 2pq1(4)
.’L‘(L + 1)("*1)’ e

4) Fori=0,1,---, M -1
Forj=12--,P—-1
Draw I; (1) from P[I;(4) | a™, U%W , Ugw,
=, 157, X", Y] given by (46),
where

2 {10(0)<n>’ R SN SO AT O R
Ipfl(i - 1)(71)7 IO(L)(H)v T Ij*l(i)(N)v
Ij+1(i)("*1), el [P_l(i)(nfl)7 e
Ip_o(M — 1)<"*1>} .

5)  Drawe(™ from p(e] al™, rff(n> , ag(”) I x () Y)

given by (47).
As in the case of Gaussian noise, thposteriorisymbol prob-
abilities P[xx(i) = +1|Y] are computed using (26). Tte

posteriorimeans and variances of the other unknown quantities
can also be computed similar to (28)—(31).

I;;, X, andY is given by [/ ;; denotes the set containing The complexity of the above Gibbs multiuser detector is

all elements off except forl;(¢)]
P[IJ(L) = 1|a7 O—%v U%v €, Ijiva Y]
P[IJ(L) = 2|a’7 0—%7 O—gv € Iji7 X7 Y]

1—e(03 12 e a3 1
=— <0—%> exp §|:7J(L)—£jA_’L'(L):| 272
G=0, - P=1;i=0, M—1 (46)

5) The conditional distribution of, givena, o3, 03, I, X,
andY is given by

plela, of, 03, 1, X, Y)

M-1 M—1
= Beta <a0 + Z na(4), by + Z 711(L)> . (47)
i=0 i=0

C. Gibbs Multiuser Detector in Impulsive Noise

O[(K? + KM + PM)] per iteration. Note that the direct
implementation of the Bayesian symbol estimate based on (35)
has a computational complexity 6f(2%M+IM),

VI. I TERATIVE JOINT MULTIUSER DETECTION AND
DECODING—ADAPTIVE TURBO MULTIUSER DETECTION

Since the discovery of the powerful Turbo codes [6], [7], con-
siderable attention has been redrawn to iterative (“Turbo”) pro-
cessing techniques. The so-called Turbo principle can be suc-
cessfully applied to many detection/decoding problems such as
serial concatenated decoding, equalization, coded modulation,
multiuser detection, and joint source and channel decoding [21].
In this section, we consider employing iterative joint multiuser
detection and decoding to improve the performance of the adap-
tive Bayesian multiuser detector in a coded CDMA system. Be-
cause it utilizes tha priori symbol probabilities, and it produces

Using the above conditional posterior distributions, thgympol (or bitja posterioriprobabilities, the adaptive Bayesian
Gibbs sampling implementation of the adaptive multiusgftiuser detectors developed in this paper is well suited for it-
detector in impulsive noise proceeds iteratively as followgative processing, which allows the adaptive multiuser detector

; L . (©)
Given |(r)1|t|a(lo)valu(e0)s of the unknown quantitiga'”, o7, 5 refine its processing based on the information from the de-
o3, e, 19, X} drawn from their prior distributions, and coding stage, and vice versa. In [51], a Turbo multiuser receiver

forn =1, 2, ---, we have the following.

1) Drawa from plal a%(nim, ag(”A), ((n=1) pln—1)

X1 ¥) given by (40).

is developed for coded CDMA systems with Gaussian noise,
under the assumption that the received amplitudes and the noise
variance aré&nownto the receiver. In what follows, we develop
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A,[x,(in,l;k,lx,(i)l | hannel Az[b(m)],}\xz[b,(m)] —
A decoder T v
adaptive AI[XZ(’.)],QA-I[XZ(U] | hannel Az[bz(m)]f&\lz[bz(m)] " \
(i) Bayesian +¢/ deinterleaver :Qc oder &)
multiuser
detector
Aslxe(9)] J;M[x,((i)] o hannel Az[b,((m}],}\lebx(m)] o I
+¢/ decoder +V

Fig. 2. lIterative processing for joint Bayesian multiuser detection and decoding—adaptive Turbo multiuser detection.

adaptive Turbo multiuser receivers for both Gaussian and im-Based on the extrinsic information of the code bits

pulsive noise CDMA channels, withnknownamplitudes and {X{[zx(m)]};- 7,1, and the structure of the channel code,
noise parameters. the soft-input soft-output channel decoder computes ghe

The iterative (Turbo) receiver structure is shown in Fig. ZosterioriLLR of each code bit [51], as shown in (50), shown
It consists of two stages: i) the adaptive multiuser detector d®-the bottom of the page. It is seen from (50) that the output
veloped in the previous sections followed by ii) a soft-inpubf the soft-input soft-output channel decoder is the sum of the
soft-output channel decoder. The two stages are separatecbgr information X[z, (m)], and theextrinsic information
deinterleavers and interleavers. As discussed in the previou$z;(m)] delivered by the channel decoder. This extrinsic
sections, the adaptive multiuser detector deliversatmoste- information is the information about the code hbif.(m)
riori symbol probabilitieq Pl () = +1 |Y]}£‘:;ffi;%. Based gleaned from the prior information about the other code bits
on these, we first compute tlagposteriorilog-likelihood ratios  {\{[z1(1)]}1» based on the constraint structure of the code.
of a transmitted 4-1” symbol and a transmitted=1" symbol ~ The soft channel decoder also computesatposterioriLLR
A Plzi(i) = +1]Y] of every information bit, which is used to make decision
Ay [z (@)] = log Plec(i) — ) k=1, K on the decoded bit at the last iteration. After interleaving,
[zx () = —1]Y] Seene _ _
the extrinsic information delivered by the channel decoder

. 0=0, -0, M—1. . (48) {afzr(m) oL, is then used to compute the priori
Using the Bayes' rule, (48) can be written as symbol distributions{px ()}, 1=, defined in (7) from the
(1) = ding LLR’ foll . Si

A [ra ()] = log p[Y|xk(f) +1] +log Plzi(d) = +1] corresponding s as follows. Since
plY (i) = —1] © 7 Pla(i) = —1] NLa(i)] = log Plai(i) = +1]
Mo (0] N[ )] 2 Plz(i) = —1]

(49) after some manipulations, we have

where the second term in (49), which is denoted\Bjs (%) exp(A5 [z (4)])

N A .
represents tha priori LLR of the code bite,,(z), which is com— pr(t) =Pler() = +1] = 7 T exp()\g[xkgi))
puted by the channel decoder in the previous iteration, inter- exp(l)\p[xk(l.)])
leaved, and then fed back to the adaptive Bayesian multiuser = m - -
detector. (The superscripindicates the quantity obtained from exp (=3 X5 [2x()]) + exp (A5 ()
the previous iteration). For the first iteration, assuming equally _ cosh(3 A5 [z ()]) [1 + tanh(é)\ [21(8)])]
likely code bits, i.e., no prior information available, we then o 2 cosh( qr )])
have\[z,(i)] =0,k =1,---, K,i=0,---, M —1. The :l[l—i-tanh(—)\p[ajk( )])] (51)

first term in (49), which is denoted by [z (¢)], represents the

extrinsicinformation delivered by the adaptive Bayesian mulfhe symbol probabilitieg s (i)} r_ {”z . are then fed back to
tiuser detector, based on the received sigialdhe structure the adaptive Bayesian multiuser detector as the prior informa-
of the multiuser signal given by (1), and the prior informatiotion for the next iteration. Note that at the first iteration, the
about all other code bits. The extrinsic informatidnz,(:)], extrinsic information{ Ay [z (¢)]} and{Az[z(¢)]} are statisti-
which is not influenced by the priori information M}z, (i)] cally independent. However, subsequently, since they use the
provided by the channel decoder, is then reverse interleaved aathe information indirectly, they will become increasingly cor-
fed into the channel decoder, as theriori information in the related, and finally, the improvement through the iterations will
next iteration. diminish.

Plax(m) = +1[ {2 (9)]}3277,_; code constrainis ,
Plag(m) = —1 | {N[zx(§)]} 121 —y; code constrainjs Aelm(m)] + Al (m) 0

Aszx(m)] = log
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VIl. DISCUSSIONS where X; denotes the set containing all elementsXgf ex-

. . A . . 0/ A .
A. Decoder-Assisted Convergence Assessment cept for@?(j()), pri(w) = Plu(y) = %] ar?diﬂz%(l) - [a(jjl('?,h
Detecting convergence in the Gibbs sampler is usually dogﬁ'{;éa%g%én’nﬁ’f;;(gé ISIrﬁSu(lgl]ve wlthg\?; erhand, iftne
in somead hocway. Some methods can be found in [44]. One '
of them is to monitor a sequence of weights that measure the

N = 2 2 .
discrepancy between the sampled and the desired distribution Plar(yj) = ula, o1, 03, ¢, I, Xy, Y]

In the application considered here, since the adaptive multiuse®’[zx(j) = —1|a, o, 03, ¢, I, Xy, Y]

detector is followed by a bank of channel decoders, we can as- L

sess convergence by monitoring the number of bit corrections  pg;(w) T . 1
made by the channel decoders. If this number exceeds some = 71—, ‘() rexpq 24wy, Z AGL+D)

=0

predetermined threshold, then we decide that convergence is o

not achieved. In that case, the Gibbs multiuser detector will be
applied again to the same data block. The rationale is that if
the Gibbs sampler has reached convergence, then the symbol . [r(jL +1) — SAz°(GL + 1)]
(and bit) errors after multiuser detection should be relatively
small. On the other hand, if convergence is not reached, then
the code bits generated by the multiuser detector are virtually
random and do not satisfy the constraints imposed by the code
trellises. Hence, the channel decoders will make a large number
of corrections. Note that there is no additional computation@he conditional distributions for sampling the other unknowns
complexity for such a convergence detection. We only needrtemain the same as before. The advantage of sampling a code
compare the signs of the code-bit log-likelihood ratios at theord instead of sampling an individual symbol is that it can sig-
input and the output of the soft channel decoder to determinigicantly improve the accuracy of samples drawn by the Gibbs
the number of corrections made. sampler since only valid code words are drawn. This will be
demonstrated by some simulation examples in the next section.

M
k=1, -+ K: i=0.---. —
7 7 7J 7 7L

1. (53)

B. Code-Constrained Gibbs Multiuser Detectors

Another approach to exploiting the coded signal structure @ Relationship Between the Gibbs Sampler and the EM
adaptive Bayesian multiuser detection is to make use of the cadlgorithm

constraints in the Gibbs sampler. For instance, suppose that th%h . o laorithm h Iso b
user information bits are encoded by sobheck codeof length & expectation-maximization (EM) algorithm has also been

L and that the code bits aret interleaved. Then. one Signa|applied to joint parameter estimation and multiuser detection
frame of M symbols containg = M/L code words, with the [36]. The major advantage of the Gibbs sampling technique

jth code word given by over the EM algorithm is that the Gibbs sampler iglabal
optimization technique. The EM algorithm idacal optimiza-
zx(§) =lzx(GL), 2 (GL+1), -+, z(JL + L — 1)] tion method, and it can easily get trapped by local extrema on
) M the likelihood surface. The EM method performs well if the
3=0,1 I L, k=1,-- K. initial estimates of the channel and symbols are close to their

Let A, be the set of all valid code words for userNow, in true values. On the other hand, the Gibbs sampler is guaran-

the Gibbs sampler, instead of drawing each individual symb_t&ed to converge to the global optimum with any random initial-

2x(4) once a time according to (25) or (45), we draw a COOf%]ation. Of course, the convergence rate crucially depends on
word 2 (4) of L symbols froma; each time. Specifically, let the shape the joint posterior density surface. When the poste-

—1 denote the code word with all entries being”s (this is rior distribution has several modes separated by very low den-
the so-called all-zero code word, and it is always a valid codéy regions (energy gap), then the Gibbs sampler that generates
word for any block code [53]). If the ambient channel noisg@ndom walks” according to the distribution may have diffi-
is Gaussian, then for any code woede X}, the conditional culties crossing such gaps in visiting all modes. If such a gap is

probability of z(j) = w, given the values of the rest of thesevere, then the random walk may get stuck within one mode

unknowns, can be obtained from for a long time before it moves to another mode. Many modifi-
) ) cations of the Gibbs sampler have been developed to combat the
Plar(j) =ula, 0%, Xy, Y] “large energy gap” situation. For example, see [20] and [54].

Plzi(j) = —1la, 02, X4;, Y]

__ Pri(u)
1= pi(w) VIII. SIMULATIONS
94, L-1 A. Simulation Setup
expy —5- 8, [r(GL +1) — SAz)(j L+ 1)]

In this section, we provide a number of simulation examples
u(f) 1 to illustrate the performance of the adaptive Bayesian multiuser

M detectors developed in this paper. We consider a five-uset (
k=1 K j=01-, 7 -1 (52) ' 5) synchronous CDMA channel with processing géin= 10.
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The user-spreading waveform matsSxand the corresponding ' !
correlation matrixR are given, respectively, by 0 A %,(50)=—1 ’ n 0 J %,(100)=+1
-1 -1 1 1-1 1-1 1-1 1 - .
1 1 1 _1 _1 _1 _1 _1 1 1 1 10 20 40 60 80 100 0 ‘20 40 60 80 100
ST=—| 1-1-1 1-1-1-1-1 1-1|, e Me e N
VIO 3 3 1-1-1-1 1 1-1 1 O-S/V R
1 1-1-1-1 1-1-1-1-1
10 _2 _2 4 _2 0 20 40 60 80 100
2
1 -2 10 2 0 2 R AAa
R=8"S= ol 2 2 10 -4 2. 1/.. Agm8
4 0 -4 10 —4 ,
-9 2 2 —4 10 0 20 40 60 80 100
1.5
In all the simulations described in this section, the followin .
noninformative conjugat@rior distributions are used in the ’\ 08
Gibbs sampler. For the case of Gaussian noise 05 0
] 20 40 60 80 100 0.55 0.6 0.65 0.7 0.75

O _ T
p(a ) ./\/(ao, 20)1["(0>>0} = [1 11l 1] Fig. 3. Samples and histograms—Gaussian nol§e= —4 dB, A2 = —2
¥, = 10001 dB, A2 = 0dB, A7 = 2dB, A2 = 4 dB, ando? = —2 dB. The histograms
2(0) s are based on 500 samples collected after the initial 50 iterations.
p(a ) ~x" (v, do) — o =1, Ao =0.1

. . . 1 2
and for the case of impulsive noise , \M M‘ ’x3(100)=+1 \ \I s ﬁ A A|5<75)=1 M
-1 1

p(a(0)> ~N(ao, 20)1{"(0>>0} —a=[1111 1]T 0 20 40 60 80 100
3 = 10001
1 pas Do o,
p(o—%(O)) NX72(V17 )‘1) — V1 = 1, )\1 =0.1 N/ Ayt

0 20 40 60 80 100

p(aé(o)) ~x T, AL — o =1, Ar=1 z
0%=0.46

p(c(o)) ~ Betdao, bo) — Qg — 1, bo = 2.

0 20 40 60 80 100

VAR it
=46

Note that the performance of the Gibbs sampler is insensitive so

the values of the parameters in these priors, as long as the pr

are noninformative. o
In adaptive Turbo multiuser detection, for the first iteratior

the prior symboll probabilitiepy,(¢) é. P[a:@(i) = +1] = 1/2 gf\x e
for all symbols; in the subsequent iterations, the prior symb ,
probabilities are provided by the channel decoder, as given of}
(51) The data block size of each useriis = 256. For each Fig. 4. Samples and histograms—impulsive noi$¢.= —4 dB, A2 = —2
data block, the Gibbs sampling is performed for 100 iterationss, A2 = 0 dB, A2 = 2 dB, A2 = 4 dB,e = 0.1,02 /02 = 100,02 = (1 —

with the first 50 iterations as the “burn-in” period. The decodeg{”f A EI"éO:.tT db. The histograms are based on 500 samples collected after
assisted convergence assessment is employed. Specifically,ehlnI e on ferations.

the number of bit corrections made by the decoder exceeds one : .

third of the total number of bits (i.e}//3), then itis decided that UrmPer of unknown parameters(i& + KM + 1) (ie.,a, X,

. . . . ando?). Remarkably, it is seen that the Gibbs sampler reaches
convergence is not reached, and the Gibbs sampler is applied to o . . . .
) convergence within about 20 iterations. The marginal posterior
the same data block again.

distributions of the unknown parametets, A;, ando? in the
B. Convergence Behavior of the Gibbs Multiuser Detectors steady state can be illustrated by the corresponding histograms,

E le 1: We first illustrate th behavi E/hich are also shown in Fig. 3. The histograms are based on 500
xample 1. Ve Tirst ustrate the convergence behavior o amples collected after the initial 50 iterations.

thg propose_zd adapiive Bayesian multi_user detector in G_auss""_‘ﬁxample 2:We next illustrate the convergence behavior of
noise. In this example, the user amplitudes and the noise V?Jrllbposed adaptive Bayesian multiuser detector in impulsive

ance are given by noise. The user amplitudes are the same as in Example 1.
A? = —4dB, A3 = —2dB, A3 =00dB The noise samples are generated according to the two-term
A2 =2dB A2 — 4dB o2 = _9dB. Gaussian model (5) with the following parameters:

20 40 60 80 100

40 60 80 100 0.09 0.1 0.11 0.12 0.13

In Fig. 3, we plot the first 100 samples drawn by the Gibbs¢ = 0-1, o3 /o1 =100, o S (1—€)of +co; =7dB.
sampler of the parameters(50), z,(100), A1, A5, ands2. The The first 100 samples drawn by the Gibbs sampler of the param-
corresponding true values of these quantities are also showriarse;(100), I5(75), Az, o7, o3, ande are shown in Fig. 4. The

the same figure as the straight lines. Note that in this case, ttresponding true values of these quantities are also shown in
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Fig. 5. Bit error rate performance—convolutional code, Gaussian noise. Ailg. 6. Bit error rate performance—convolutional code, impulsive noise. All
users have the same amplitudes. users have the same amplitude$/o? = 100 ande = 0.1.

the same figure as the straight lines. Note that in this case, A0 (£ /No). The symbol posterior probabilities are computed

number of unknown parameterg & +K M+ PM+3) (i.e.,a, @&ccording to (26) withy = N = 50.

X, 1,052,062 ande). Itis seen that as in the Gaussian noise case,Fig- 5 illustrates the bit error rate performance of the adap-
the Gibbs sampler converges within about 20 samples. The Hi¥e Turbo multiuser detector for User 1 and User 3. The code
tograms of the unknown parametets, 02, 02, ande are also it error rate at the output of the adaptive Bayesian multiuser

shown in Fig. 4, which are based on 500 samples collected afitector is plotted for the first three iterations. The curve cor-
the initial 50 iterations. responding to the first iteration is the uncoded bit error rate

at the output of the adaptive Bayesian multiuser detector. The
C. Performance of the Adaptive Turbo Multiuser Detectors Uncoded and coded bit error rate curves in a single-user addi-
tive white Gaussian noise (AWGN) channel are also shown in
Examples 3 and 4We now illustrate the performance ofthe same figure (as, respectively, are the dash-dotted and the
the adaptive Turbo multiuser detectors discussed in Section Washed lines). It is seen that by incorporating the extrinsic in-
The channel code for each user is a rate that is one halffofmation provided by the channel decoder as the prior symbol
the constraint length-5 convolutional code (with generators 2%obabilities, the proposed adaptive Turbo multiuser detector
35 in octal notation). The interleaver of each user is indepeapproaches the single-user performance in an AWGN channel
dently and randomly generated and fixed for all simulationwithin a few iterations. The bit error rate performance of the
The block size of the information bits is 128. (i.e., the code bédaptive Turbo multiuser detector in impulsive noise is illus-
block size isM = 256.) The code bits are BPSK modulatedirated in Fig. 6, where the code bit error rates at the output of
i.e.,zr € {+1, —1}. All users have the same signal-to-nois¢he adaptive Bayesian multiuser detector for the first three itera-
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Fig. 7. Biterror rate performance—block code, Gaussian noise. All users hdvg. 8. Bit error rate performance—block code, impulsive noise. All users
the same amplitudes. have the same amplitudes; /o7 = 100 ande = 0.1.

tions are shown. The uncoded and coded bit error rate curves @&tion VII. We assume that each user employs the (7, 4) cyclic
single-user additive white impulsive noise (AWIN) channel ar ' '

also shown in the same figure (as the dash-dotted and dasﬁlgc?k code with eight possible codewords [53]:
lines, respectively), where the conventional matched-filter re- (( -1 -1 -1 -1 -1 -1 -1
ceiver is employed for demodulation. Note that at hig/ Ny, 1 -1 1 1 1 -1 -1
the performance of user 3 after the firstiteration is actually better 11 1 -1 -1 1 -1
than the single-user performance. This is because the matched-y, _ -1 1 1 1 -1 -1 1
filter receiver is not the optimal single-user receiver in impulsive 11 -1 -1 1 -1 1
noise. Indeed, wheK = 1, the maximum likelihood detector -1 -1 1 -1 1 1 1
for signal model (1) is given by -1 1 -1 1 1 1 -1
1 -1 -1 1 -1 1 1
#1(7) = sign Z M . The bit error rate_performz?mce o_f thg code-co_nstr_ained Gibps
) multiuser detector in Gaussian noise is shown in Fig. 7. In this
case, the Gibbs sampler draws a codeword fAdat each time,
according to (52). In the same figure, the unconstrained Gibbs
multiuser detector performance before and after decoding is also
plotted. It is seen that by exploiting the code constraints in the
Examples 5 and 6:Finally, we consider the performance ofGibbs sampler, significant performance gain is achieved. The
the code-constrained Gibbs multiuser detectors discussedp@rformance of the code-constrained Gibbs multiuser detector

SN TN TN TN TN TN N N
N’ N N N N N e

\ 7

D. Performance of the Code-Constrained Gibbs Multiuser
Detectors
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in impulsive noise is shown in Fig. 8, and similar performance Derivation of (23):
gain over the unconstrained Gibbs multiuser detector is evident, ,
p(o?|a, X,Y)

IX. CONCLUSIONS :p(a7 0_27 X|Y) p(a7 X|Y) ocp(a,, 0_27 X|Y)
In this paper, we have developed a new adaptive multiuser T
detection scheme that is optimal in the sense that it is based
on the Bayesianinference of all unknown quantities. Such
. . . . PM/2 M-1
an adaptive Bayesian multiuser detector can be efficiently 1 2
implemented using the Gibbs sampler, which is a Markov chain ™~ <_2> Pl 752 Z (%) — SA=(3)]
Monte Carlo procedure for computing Bayesian estimates. We b
have derived the adaptive multiuser detection algorithms for 57
both the Gaussian noise and the impulsive noise synchronous 1\ e/2+ 70Mo
CDMA channel. The proposed adaptive Bayesian multiuser <02> eXP(‘W)

not a function of a2

o

detectors can incorporate thgriori symbol probabilities, and ((o+PM)/2)+1 )
they produce as output the posteriorisymbol probabilities. — <_> exp<_’/0)‘0 +s )
That is, they are “soft-in soft-output” algorithms. Hence, they o? 202
are very well suited for iterative processing in a coded system, s 1o + 52
which allows the adaptive Bayesian multiuser detector to refine ™~ X < —>
its processing based on the information from the deCOdingDerivation of (25):
stage, and vice versa—a receiver structure termextaptive :
Turbo multiuser detectorFurthermore, the channel decoder P[z(i) = +1|a, 0%, X, Y]
facilitates a simple way of assessing the convergence of the
adapti\{e multiuser detector b_y monitoring the number of bit =p(a, o2, X1Y) /p(a, 02, X1 1Y)
corrections made. Moreover, if the user data are encoded by a
short block code, then by exploiting the constraint on the valid not a function of , (7)
code words in the Gibbs sampler, significant improvement on p(a, o, X | Y)
the performance of the adaptive Bayesian multiuser detector M—1
can be obtained. Finally, we notice that the CDMA signal o< p(¢) <__ Z (1) )||2>
model (1) treated here is a rather simple one, namely, it is
real-valued and synchronous. Future extensions to this work 1 )
include generalizations of the techniques proposed here to pi(4) eXP(‘@ llr(2) — SAz(3)]| ) (56)
?sy_nchronous CDMA systems and to systems with multipath Plon(i) = +1|a, 0_27 X, Y]
ading effects.

()=-1la, 02, X1,, Y]

(55)

exp

Pla

Tk
ApPENDIX A = 20 e L o - 546 - 1)
1
Derivation of (19): Pr
- SA () + 1 }
p(a|o®, X,Y) [7(6) — SA (23(0) + 1x) | }
_ (L) 2 T [ofs 0/;
:p(a,, o2, X|Y) p(aQ, X|Y) O(p(a,, o2, X|Y) T 1- pk(t) TPy 2 (5A1%) ["'(L) - SA-'”k(L)]
not a function of @ (L) 2Ak . .
SR =S = T2 P o PO SARG] p 67)
o exp 202 Z llr(é) — SB(i)all ] [1, is K -dimensional vector with all-zero entries except for the

. - kth entry, which is 1.]
-exp[—3 (@ — ao) 5 (a— ao)]

APPENDIX B
M-—1 . . .
1 1 Derivation of (40):
xexpq —5 e |Z5t+ = > B()STSB() L
7 k=0 p(a|0170276717X7Y)
\ =" p(a, 012,02,(: IX|Y) (012,02,(; IX|Y)
M—1 not afur:crtlonofa
—~ 2 2
X aaaaU,C,I,XY
+a [ Sglao+ 5 D0 BOSTr) bl of, oh 1 X|Y)
) ~— x eXP{—% > [T('i)—SB(i)a]TA(i)‘l[r(i)—SB(i)a]}
Z. e, i=0

xexp[-i(a—a.)" T (a—a.)] ~N(a,, Z,). (54) -exp|—3 (a — a0)" 2y a — ao)]
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Plzi (i) = +1| a, a%, a%, €, Xpi, Y]
P[xk(L) = _1|a' 017 027 < szv Y]

M-1
xewy—zal |50+ ), BOSTAGTISBO e _ P2 e[ i) - SA() - 1]
= -A(L)* [r (i) = SA(=(0) = 1)) = [r()) = S A(z(2) + L))"
. A () - SA(() + 1]}
+at |Blao+ ), BOSTAG) “] = (2 e {2ASALYTAG) i) - SAZ)
— ouli
= a. = ) (oA ST AG) (i) — SA2Y(0)]} . (61
x exp[_% (a_a*)Hx*—l(a_a*)] NN((L*, E*) (58) 1 _pk(i) p{ k9K ( ) [ ( ) k( )]} ( )
Derivation of (43): Derivation of (46):
p(ol la, 02, e, I, X, Y) P[L;G) =1|a, o2, 02, ¢, Ii, X, Y]
=pla, 0, 0%, , I,XlY)/p( 0%, e I, X|Y) =pla, of, 03, ¢, I, X|Y)/ (a, va%f I, X|Y)
~ ~~ not a function of I; (%)

not a function of 0'12 2 2 .
xpla, 07, 05, ¢, 1, X|Y) x P[L;(z) =1]|e¢
ocp(a, O'%, O'%, e, I,X|Y) p( » Y1y M2y B £ | ) [J() | ]

1 1 . 12
< 1 ><1/2>Zj.”;1m<i> ~ eXp{ [m(l) —£JTAI('L)} } (62)
x| —= ]
o} :>P[J(L) 1|a, 01,02,6 1, X,Y]
P[J() |a' 0170276 IJHX7Y]
M—1 P—1 5
1 . 12 1—c¢ o 1 . NE
B b > [U('L) - 5?14:6(%)} L= =— />3 'eXP{§ [U('L) - @TA:C('L)}
R =0 i 71
~ 1 1
(-3}
O3 01
1\ /D+ 7oy
) exXpl — L
<012> p< 20?) Derivation of (47):
1\ G/2+/2) 30 i+ i
= <0—?) eXP(‘ﬁ) plela, of, 03, I, X, Y)
Mot =pla, 01,03, ¢, 1, X|Y) (a, 0}, 03,1, X 1Y)
_ — . v + §2 —
~ X 2 v+ Z 7’Ll('L) ; % . (59) ) ) not a function of €
i=0 i+ Z (i) O(p(a,, o1, 05,6, 1, X|Y) x ple)p(I|e)
o @1 — )L DI nz(i)(l _ C)E;‘g‘ n1(3)
L M-1 M-1
Derivation Of (45) ~ Beta <CLO =+ Z ﬂg(i), bo =+ Z 711(L)> . (64)
i=0 i=
P[‘Tk(L) =+1 |a'7 O—%v U%v € 17 in7 Y]
=pla, 07,03, ¢ 1, X|Y) /pla, 07,03, ¢, I, X3;|Y) ACKNOWLEDGMENT
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