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Synchronous CDMA with Gaussian and Impulsive
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Abstract—We consider the problem of simultaneous parameter
estimation and data restoration in a synchronous CDMA system
in the presence of either additive Gaussian or additive impulsive
white noise with unknown parameters. The impulsive noise is
modeled by a two-term Gaussian mixture distribution. Bayesian
inference of all unknown quantities is made from the superim-
posed and noisy received signals. The Gibbs sampler (a Markov
chain Monte Carlo procedure) is employed to calculate the
Bayesian estimates. The basic idea is to generate ergodic random
samples from the joint posterior distribution of all unknown and
then to average the appropriate samples to obtain the estimates of
the unknown quantities. Adaptive Bayesian multiuser detectors
based on the Gibbs sampler are derived for both the Gaussian
noise synchronous CDMA channel and the impulsive noise
synchronous CDMA channel. A salient feature of the proposed
adaptive Bayesian multiuser detectors is that they can incorporate
the a priori symbol probabilities, and they produce as output the
a posteriori symbol probabilities. (That is, they are “soft-input
soft-output” algorithms.) Hence, these methods are well suited for
iterative processing in a coded system, which allows the adaptive
Bayesian multiuser detector to refine its processing based on the
information from the decoding stage, and vice versa—a receiver
structure termed adaptive Turbo multiuser detector.

Index Terms—Adaptive multiuser detection, Bayesian inference,
Gibbs sampler, impulsive noise, iterative processing.

I. INTRODUCTION

T HE THEME of this paper is to treat three related problems
in multiuser detection under a general Bayesian frame-

work. These problems are

i) optimal multiuser detection in the presence of unknown
channel parameters;

ii) optimal multiuser detection in impulsive ambient noise;
iii) multiuser detection for coded CDMA systems.

We first provide a perspective on the related works in these three
areas.

Optimal Multiuser Detection with Unknown Parame-
ters: The optimal multiuser detection algorithms with known
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channel parameters, that is, the multiuser maximum-likelihood
sequence detector (MLSD) and the multiuser maximuma
posteriori symbol probability (MAP) detector, were first
investigated in [46] and [47] (cf. [49]). The analysis of the
computational complexity and the proof that the optimal mul-
tiuser detection problem is combinatorially hard appeared in
[46] and [48]. When the channel parameters (e.g., the received
amplitudes and the noise variance) are unknown, it is of interest
to study the problem of joint multiuser channel parameter
estimation and data detection from the received waveform. This
problem was first treated in [36], where a solution based on the
expectation-maximization (EM) algorithm is derived. In [42],
the problem of sequential multiuser amplitude estimation in the
presence of unknown data is studied, and an approach based
on stochastic approximation is proposed. In [55], a tree-search
algorithm is given for joint data detection and amplitude
estimation. Other works concerning multiuser detection with
unknown channel parameters include [14], [23], [24], [33],
[35], and [43].

Multiuser Detection with Impulsive Noise:To date, most
of the work on multiuser detection assumes that the channel
ambient noise is Gaussian. However, in many physical chan-
nels where multiuser detection may be applied, such as urban
and indoor radio channels [8], [9], [28], [29], [31], [32] and
underwater acoustic channels [11], [30], the ambient noise is
known through experimental measurements to be decidedly
non-Gaussian, due to the impulsive nature of the man-made
electromagnetic interference and a great deal of natural
noise as well. The results of an early study of error rates in
non-Gaussian CDMA channels are found in [1]–[3], in which
the performance of the conventional and modified conventional
detectors is shown to depend significantly on the shape of
the ambient noise distribution. In [37], it is observed that the
performance gains afforded by maximum likelihood multiuser
detection in impulsive noise can be substantial when compared
with optimum multiuser detection based on a Gaussian noise
assumption. In [52], robust multiuser detection methods for
impulsive noise CDMA channels based on the Huber robust
regression technique are proposed.

Multiuser Detection for Coded CDMA:Most CDMA sys-
tems employ error control coding to protect the transmitted data
from being corrupted by the channel. Some recent work has ad-
dressed multiuser detection for coded CDMA systems. In [18],
the optimal decoding scheme for convolutionally coded CDMA
system is studied, which is shown to have a prohibitive com-
putational complexity. In [19], some low-complexity receivers
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Fig. 1. Coded synchronous CDMA communication system.

that perform multiuser symbol detection and decoding either
separately or jointly are studied. In [34], [38], and [51], Turbo
multiuser detection schemes for coded CDMA systems are pro-
posed, which iterate between multiuser detection and channel
decoding to successively improve the receiver performance.

In this paper, we present novel adaptive Bayesian multiuser
detection techniques for synchronous CDMA communications
with unknown channel parameters in both Gaussian and
impulsive ambient noise channels. The impulsive noise is
modeled by a two-term Gaussian mixture distribution. We
consider Bayesian inference of all unknown quantities (e.g.,
the received amplitudes, the data symbols, and the noise
parameters) from the received waveforms. A Markov chain
Monte Carlo procedure called the Gibbs sampler is employed
to calculate the Bayesian estimates. The performance of the
proposed adaptive multiuser detectors is demonstrated via
simulations. The proposed Bayesian multiuser detectors can
naturally exploit the structure of the coded signals. Another
salient feature of the proposed methods is that being soft-input
soft-output demodulation algorithms, they can be used in con-
junction with soft channel decoding algorithm to accomplish
iterative joint adaptive multiuser detection and decoding—the
so-calledadaptive Turbo multiuser detection.

The rest of the paper is organized as follows. In Section II,
the system under study is described. In Section III, some
background material on the Gibbs sampler is provided. The
problems of adaptive Bayesian multiuser detection in Gaussian
noise and impulsive noise synchronous CDMA channels are
treated in Sections IV and V, respectively. In Section VI,
an adaptive Turbo multiuser detection scheme is presented.
Some discussions, including a decoder-assisted convergence
assessment scheme and a code-constrained Bayesian multiuser
detector, are found in Section VII. Simulation results are
provided in Section VIII. Finally, Section IX contains the
conclusions.

II. SYSTEM DESCRIPTION

We consider a coded synchronous CDMA system with
users, employing normalized modulation waveforms

and signaling through a channel with additive
white noise. The block diagram of the transmitter end of such a
system is shown in Fig. 1. The binary information bits
for user are encoded using some channel code (e.g., block
code, convolutional code, or Turbo code), resulting in a code
bit stream . A code-bit interleaver is used to reduce

the influence of the error bursts at the input of the channel
decoder. The interleaved code bits are then mapped to BPSK
symbols, yielding symbol stream . Each data symbol is
then modulated by a spreading waveformand transmitted
through the channel. The received signal is the superposition of
the users’ transmitted signals plus the ambient noise, which
is given by

(1)

In (1), is the number of data symbols per user per frame;
, , and denote, respectively, the amplitude, theth

symbol, and the normalized spreading waveform of theth user;
and is a zero-mean white
noise vector. The spreading waveform is of the form

(2)

where is the spreading factor. It is assumed that the receiver
knows the spreading waveforms of all active users in the system.
Define the followinga priori symbol probabilities:

(3)

Note that when no prior information is available, then
, i.e., all symbols are equally likely.

It is further assumed that the additive ambient channel
noise vector is a sequence of zero-mean independent
and identically distributed (i.i.d.) random vectors, and it is
independent of the symbol sequences . Moreover,
the noise vector is assumed to consist of i.i.d. samples

. In this paper, we consider two types of noise
distributions corresponding to the additive Gaussian noise and
the additive impulsive noise, respectively. For the former case,
the noise is assumed to have a Gaussian distribution, i.e.,

(4)

where is the variance of the noise. For the latter case, the
noise is assumed to have a two-term Gaussian mixture
distribution, i.e.,

(5)
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with and . Here, the term rep-
resents the nominal ambient noise, and the term rep-
resents an impulsive component, withrepresenting the prob-
ability that an impulse occurs. The total noise variance under
distribution (5) is given by

(6)

Denote . In Sections IV
and V, we consider the problem of estimating thea posteriori
probabilities of the transmitted symbols

(7)

based on the received signals and the prior information
, without knowing the channel amplitudes

and the noise parameters (i.e., for Gaussian noise
and , , and for impulsive noise). Thesea posteriori
probabilities are then used by the channel decoder to decode
the information bits shown in Fig. 1, which will be
discussed in Section VI.

III. GIBBS SAMPLER

Over the last decade or so, a large body of methods has
emerged based on iterative Monte Carlo techniques that are
especially useful in computing Bayesian solutions to estimation
problems with high parameter dimensions. These methods are
based on the theory of Markov chain limiting behavior and are
collectively known asMarkov chain Monte Carlo(MCMC)
techniques [44]. Most of these methods are aimed at estimating
the entire posterior density and not just finding the maximuma
posteriori(MAP) estimates of the parameters. One of the most
popular of these methods is known as theGibbs sampler[15],
which is described next.

Let be a vector of unknown parameters,
and let be the observed data. Suppose that we are interested in
finding thea posteriorimarginal distribution of some parameter,
say, , conditioned on the observation, i.e., ,

. Direct evaluation involves integrating out the rest of the
parameters from the jointa posterioridensity, i.e.,

(8)
In most cases, such a direct evaluation is computationally infea-
sible, especially when the parameter dimensionis large. The
Gibbs sampler is a Monte Carlo procedure for numerical evalua-
tion of the above multidimensional integral. The basic idea is to
generate random samples from the joint posterior distribution

and then to estimate any marginal distribution using
these samples. Given the initial values ,
this algorithm iterates the following loop:

• Draw sample from .
• Draw sample from , , , ,

.
...

• Draw sample from .
Under regularity conditions, in the steady state, the sequence of
sample vectors is a realization of
a homogeneous Markov chain with the transition kernel from
state to state given by

(9)

The convergence behavior of the Gibbs sampler is investigated
in [13], [15], [17], [26], [41], and [45], and general conditions
are given for the following two results:

• The distribution of converges geometrically to
, as .

• , as ,

for any integrable function .
The Gibbs sampler requires an initial transient period to con-
verge to equilibrium. The initial period of length is known
as the “burn-in” period, and the first samples should always
be discarded. Detecting convergence is usually done in somead
hocway. Some methods are found in [44].

The roots of MCMC methods can be traced back to the well-
known Metropolis algorithm [27], which was initially used to
investigate the equilibrium properties of molecules in a gas. The
first use of the Metropolis algorithm in a statistical context is
found in [22]. The Gibbs sampler, which is a special case of the
Metropolis algorithm, was so termed in the seminal paper [17]
on image processing. It is brought to statistical prominence by
[15], where it was observed that many Bayesian computation
could be carried out via the Gibbs sampler. For tutorials on the
Gibbs sampler, see [4] and [12].

IV. A DAPTIVE BAYESIAN MULTIUSERDETECTION INGAUSSIAN

NOISE

In this section, we consider the problem of computing the
a posterioriprobabilities in (7) under the assumption that the
ambient noise distribution is Gaussian. That is, the pdf of
in (1) is given by

(10)

Denote
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Then, (1) can be written as

(11)

(12)

The problem is solved under a Bayesian framework. First, the
unknown quantities , , and are regarded as realizations
of random variables with some prior distributions. The Gibbs
sampler, which is a Monte Carlo method, is then employed to
calculate the maximuma posteriori(MAP) estimates of these
unknowns.

A. Bayesian Inference

Assume that the unknown quantities, and are indepen-
dent of each other and have prior distributions , , and

, respectively. Since is a sequence of indepen-
dent Gaussian vectors, using (10) and (11), the joint posterior
distribution of these unknown quantities based on
the received signal takes the form of

(13)

where is a normalization constant independent of the un-
known parameters . Thea posterioriprobabilities (7)
of the transmitted symbols can then be calculated from the joint
posterior distribution (13) according to

(14)

Clearly, the computation in (14) involves multidimen-
sional integrals, which is certainly infeasible for any practical
implementations. To avoid the direct evaluation of the Bayesian
estimate (14), we resort to the Gibbs sampler discussed in Sec-
tion III. The basic idea is to generate ergodic random samples

, , : , from the poste-
rior distribution (13), and then to average : ,

to obtain an approximation of thea posterioriprob-
abilities in (14).

B. Prior Distributions

General Considerations:
Noninformative Priors: In Bayesian analysis, prior distri-

butions are used to incorporate the prior knowledge about the
unknown parameters. When such prior knowledge is limited,
the prior distributions should be chosen such that they have a
minimal impact on the posterior distribution. Such priors are

termednoninformative. The rationale for using noninformative
prior distributions is to “let the data speak for themselves,” so
that inferences are unaffected by information external to current
data [10], [16].

Conjugate Priors: Another consideration in the selection
of the prior distributions is to simplify computations. To that
end,conjugate priorsare usually used to obtain simple analyt-
ical forms for the resulting posterior distributions. The property
that the posterior distribution belongs to the same distribution
family as the prior distribution is called conjugacy. The conju-
gate family of distributions is mathematically convenient in that
the posterior distribution follows a known parametric form [10],
[16]. Finally, to make the Gibbs sampler more computationally
efficient, the priors should also be chosen such that the condi-
tional posterior distributions are easy to simulate.

For an introductory treatment of the Bayesian philosophy, in-
cluding the selection of prior distributions, see [10], [16], and
[25]. An account of criticism of the Bayesian approach to data
analysis can be found in [5] and [40], and a defense of “The
Bayesian Choice” can be found in [39].

Prior Distributions of the Unknowns:Following the general
guidelines in Bayesian analysis [10], [16], [25], we choose the
conjugate prior distributions for the unknown parameters ,

and , as follows.
For the unknown amplitude vector, a truncated Gaussian

prior distribution is assumed

(15)

where is an indicator that is 1 if all elements ofare
positive and it is zero otherwise. Note that large value ofcor-
responds to the less-informative prior. Note also that although
user amplitudes are assumed to be independent, the matrix
is not restricted to be diagonal. For the noise variance, an in-
verse chi-square prior distribution is assumed

(16)

or

(17)

The small value of corresponds to the less informative priors
(roughly the prior knowledge is worth data points). The value
of reflects the prior belief of the value of . Finally, since
the symbols are assumed to be independent, the
prior distribution can be expressed in terms of the prior
symbol probabilities defined in (3) as

(18)

where is the indicator such that if and
if .
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C. Conditional Posterior Distributions

The following conditional posterior distributions are required
by the Gibbs multiuser detector in Gaussian noise. The deriva-
tions are found in Appendix A.

1) The conditional distribution of the amplitude vector,
given , and , is given by

(19)

with

(20)

and

(21)

where in (20) .
2) The conditional distribution of the noise variance

given , and is given by

(22)

or

(23)

with

(24)

3) The conditional probabilities of , given , ,
, and , can be obtained from [where denotes

the set containing all elements of except for ]

(25)

where
.

D. Gibbs Multiuser Detector in Gaussian Noise

Using the above conditional posterior distributions, the Gibbs
sampling implementation of the adaptive Bayesian multiuser
detector in Gaussian noise proceeds iteratively as follows. Given
the initial values of the unknown quantities , ,
drawn from their prior distributions, and for , we
have the following.

1)
(19).

2)
(23).

3)

(25)

Note that to draw samples offrom (15) or (19), the so-called
rejection method[50] can be used. For instance, after a sample is
drawn from or , check to see if the con-
straint , is satisfied; if not, the sample is
rejected, and a new sample is drawn from the same distribution.
The procedure continues until a sample is obtained that satisfies
the constraint.

To ensure convergence, the above procedure is usually car-
ried out for iterations, and samples from the last
iterations are used to calculate the Bayesian estimates of the un-
known quantities. In particular, thea posteriorisymbol proba-
bilities in (14) are approximated as

(26)

where is the indicator such that if and
if . An MAP decision on the symbol

is then given by

(27)

Furthermore, if desired, the estimates of the amplitude vector
and the noise variance can also be obtained from the corre-
sponding sample means

(28)

and

(29)

The posterior variances of and , which reflect the uncer-
tainty in estimating these quantities on the basis of, can also
be approximated by the sample variances, as

(30)
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and

Var

(31)

Note that the above computations are exact in the limit as
. However, since they involve only a finite number of samples,

we think of them as approximations but realize that in theory
any order of precision can be achieved given sufficiently large
sample size .

The complexity of the above Gibbs multiuser detectorper it-
eration is , i.e., it has a term that is quadratic
with respect to the number of users[due to the inversion of
the positive definite symmetric matrix in (20)] and a term that is
linear with respect to the symbol block size. The total com-
plexity is then . This is a substan-
tial complexity reduction compared with the direct implemen-
tation of the Bayesian symbol estimate (14), whose complexity
is .

V. ADAPTIVE BAYESIAN MULTIUSER DETECTION IN IMPULSIVE

NOISE

In the previous section, we assumed that the distribution of
the ambient channel noise is Gaussian, as did in most of the
previous work on multiuser detection. However, in many re-
alistic communication channels, especially wireless channels,
the ambient noise is known to be decidedly impulsive, due to
impulsive phenomena [8], [9]. In this section, we develop the
Gibbs multiuser detector in impulsive noise. It is assumed that
the noise samples of in (1) are independent
with a common two-term Gaussian mixture pdf, which is given
by

(32)

with and . This model serves as an approxi-
mation to the more fundamental Middleton Class A noise model
[30], [31], [56] and has been used extensively to model physical
noise arising in radar, acoustic, and mobile radio channels.

A. Prior Distributions

Define the following indicator random variable to indicate the
distribution of the noise sample

if ,

if ,
(33)

Denote , and

(34)

The unknown quantities in this case are, , , , , . The
joint posterior distribution of these unknown quantities based on
the received signal takes the form of

(35)

where is the number of’s in , , , ,
. [Note that .] We next specify the

conjugate prior distributions of the unknown quantities in (35).
As in the case of Gaussian noise, the prior distributions

and are given, respectively, by (15) and (18). For the noise
variances , , independent inverse chi-square distribu-
tions are assumed, i.e.,

with (36)

For the impulse probability, a prior of Beta distribution is as-
sumed, i.e.,

Beta (37)

Note that the value reflects the prior knowledge of
the value of . Moreover, reflects the strength of the
prior belief, i.e., roughly the prior knowledge is worth
data points. Given, the conditional distribution of the indicator

is then

and (38)

(39)

with

B. Conditional Posterior Distributions

The following conditional posterior distributions are required
by the Gibbs multiuser detector in impulsive noise. The deriva-
tions are found in Appendix B.

1) The conditional distribution of the amplitude vector
given , , , , , and is

(40)

with

(41)

and

(42)
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2) The conditional distribution of the noise variance
given , , , , , and is given by [here if

, and if ].

(43)

with

(44)

In (44), is the indicator function such that it is
1 if , and it is 0 if ; is the th row of
the spreading waveform matrix, .

3) The conditional probability of , given , ,
, , , , and can be obtained from [where

denotes the set containing all elements ofexcept for
]

(45)

where
.

4) The conditional distribution of , given , , , ,
, , and is given by [ denotes the set containing

all elements of except for ]

(46)

5) The conditional distribution of, given , , , , ,
and is given by

(47)

C. Gibbs Multiuser Detector in Impulsive Noise

Using the above conditional posterior distributions, the
Gibbs sampling implementation of the adaptive multiuser
detector in impulsive noise proceeds iteratively as follows.
Given initial values of the unknown quantities , ,

, , , drawn from their prior distributions, and
for , we have the following.

1) , , , ,
, (40).

2) , , , ,
, (43);

, , , ,
, (43).

3)

, ,
, , , ,

(45),

4)

, , ,
, , , (46),

5) , , , , ,
(47).

As in the case of Gaussian noise, thea posteriorisymbol prob-
abilities are computed using (26). Thea
posteriorimeans and variances of the other unknown quantities
can also be computed similar to (28)–(31).

The complexity of the above Gibbs multiuser detector is
per iteration. Note that the direct

implementation of the Bayesian symbol estimate based on (35)
has a computational complexity of .

VI. I TERATIVE JOINT MULTIUSER DETECTION AND

DECODING—ADAPTIVE TURBO MULTIUSER DETECTION

Since the discovery of the powerful Turbo codes [6], [7], con-
siderable attention has been redrawn to iterative (“Turbo”) pro-
cessing techniques. The so-called Turbo principle can be suc-
cessfully applied to many detection/decoding problems such as
serial concatenated decoding, equalization, coded modulation,
multiuser detection, and joint source and channel decoding [21].
In this section, we consider employing iterative joint multiuser
detection and decoding to improve the performance of the adap-
tive Bayesian multiuser detector in a coded CDMA system. Be-
cause it utilizes thea priori symbol probabilities, and it produces
symbol (or bit)a posterioriprobabilities, the adaptive Bayesian
multiuser detectors developed in this paper is well suited for it-
erative processing, which allows the adaptive multiuser detector
to refine its processing based on the information from the de-
coding stage, and vice versa. In [51], a Turbo multiuser receiver
is developed for coded CDMA systems with Gaussian noise,
under the assumption that the received amplitudes and the noise
variance areknownto the receiver. In what follows, we develop
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Fig. 2. Iterative processing for joint Bayesian multiuser detection and decoding—adaptive Turbo multiuser detection.

adaptive Turbo multiuser receivers for both Gaussian and im-
pulsive noise CDMA channels, withunknownamplitudes and
noise parameters.

The iterative (Turbo) receiver structure is shown in Fig. 2.
It consists of two stages: i) the adaptive multiuser detector de-
veloped in the previous sections followed by ii) a soft-input
soft-output channel decoder. The two stages are separated by
deinterleavers and interleavers. As discussed in the previous
sections, the adaptive multiuser detector delivers thea poste-
riori symbol probabilities . Based
on these, we first compute thea posteriorilog-likelihood ratios
of a transmitted “ ” symbol and a transmitted “ ” symbol

(48)

Using the Bayes’ rule, (48) can be written as

(49)

where the second term in (49), which is denoted by ,
represents thea priori LLR of the code bit , which is com-
puted by the channel decoder in the previous iteration, inter-
leaved, and then fed back to the adaptive Bayesian multiuser
detector. (The superscriptindicates the quantity obtained from
the previous iteration). For the first iteration, assuming equally
likely code bits, i.e., no prior information available, we then
have , , . The
first term in (49), which is denoted by , represents the
extrinsic information delivered by the adaptive Bayesian mul-
tiuser detector, based on the received signals, the structure
of the multiuser signal given by (1), and the prior information
about all other code bits. The extrinsic information ,
which is not influenced by thea priori information
provided by the channel decoder, is then reverse interleaved and
fed into the channel decoder, as thea priori information in the
next iteration.

Based on the extrinsic information of the code bits
and the structure of the channel code,

the soft-input soft-output channel decoder computes thea
posterioriLLR of each code bit [51], as shown in (50), shown
at the bottom of the page. It is seen from (50) that the output
of the soft-input soft-output channel decoder is the sum of the
prior information , and theextrinsic information

delivered by the channel decoder. This extrinsic
information is the information about the code bit
gleaned from the prior information about the other code bits

based on the constraint structure of the code.
The soft channel decoder also computes thea posterioriLLR
of every information bit, which is used to make decision
on the decoded bit at the last iteration. After interleaving,
the extrinsic information delivered by the channel decoder

is then used to compute thea priori

symbol distributions defined in (7) from the
corresponding LLR’s as follows. Since

after some manipulations, we have

(51)

The symbol probabilities are then fed back to
the adaptive Bayesian multiuser detector as the prior informa-
tion for the next iteration. Note that at the first iteration, the
extrinsic information and are statisti-
cally independent. However, subsequently, since they use the
same information indirectly, they will become increasingly cor-
related, and finally, the improvement through the iterations will
diminish.

code constraints

code constraints
(50)
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VII. D ISCUSSIONS

A. Decoder-Assisted Convergence Assessment

Detecting convergence in the Gibbs sampler is usually done
in somead hocway. Some methods can be found in [44]. One
of them is to monitor a sequence of weights that measure the
discrepancy between the sampled and the desired distribution.
In the application considered here, since the adaptive multiuser
detector is followed by a bank of channel decoders, we can as-
sess convergence by monitoring the number of bit corrections
made by the channel decoders. If this number exceeds some
predetermined threshold, then we decide that convergence is
not achieved. In that case, the Gibbs multiuser detector will be
applied again to the same data block. The rationale is that if
the Gibbs sampler has reached convergence, then the symbol
(and bit) errors after multiuser detection should be relatively
small. On the other hand, if convergence is not reached, then
the code bits generated by the multiuser detector are virtually
random and do not satisfy the constraints imposed by the code
trellises. Hence, the channel decoders will make a large number
of corrections. Note that there is no additional computational
complexity for such a convergence detection. We only need to
compare the signs of the code-bit log-likelihood ratios at the
input and the output of the soft channel decoder to determine
the number of corrections made.

B. Code-Constrained Gibbs Multiuser Detectors

Another approach to exploiting the coded signal structure in
adaptive Bayesian multiuser detection is to make use of the code
constraints in the Gibbs sampler. For instance, suppose that the
user information bits are encoded by someblock codeof length

and that the code bits arenot interleaved. Then, one signal
frame of symbols contains code words, with the
th code word given by

Let be the set of all valid code words for user. Now, in
the Gibbs sampler, instead of drawing each individual symbol

once a time according to (25) or (45), we draw a code
word of symbols from each time. Specifically, let

denote the code word with all entries being “”s (this is
the so-called all-zero code word, and it is always a valid code
word for any block code [53]). If the ambient channel noise
is Gaussian, then for any code word , the conditional
probability of , given the values of the rest of the
unknowns, can be obtained from

(52)

where denotes the set containing all elements of, ex-

cept for ; ; and ,
, , , , . On the other hand, if the

ambient channel noise is impulsive, we have

(53)

The conditional distributions for sampling the other unknowns
remain the same as before. The advantage of sampling a code
word instead of sampling an individual symbol is that it can sig-
nificantly improve the accuracy of samples drawn by the Gibbs
sampler since only valid code words are drawn. This will be
demonstrated by some simulation examples in the next section.

C. Relationship Between the Gibbs Sampler and the EM
Algorithm

The expectation-maximization (EM) algorithm has also been
applied to joint parameter estimation and multiuser detection
[36]. The major advantage of the Gibbs sampling technique
over the EM algorithm is that the Gibbs sampler is aglobal
optimization technique. The EM algorithm is alocal optimiza-
tion method, and it can easily get trapped by local extrema on
the likelihood surface. The EM method performs well if the
initial estimates of the channel and symbols are close to their
true values. On the other hand, the Gibbs sampler is guaran-
teed to converge to the global optimum with any random initial-
ization. Of course, the convergence rate crucially depends on
the shape the joint posterior density surface. When the poste-
rior distribution has several modes separated by very low den-
sity regions (energy gap), then the Gibbs sampler that generates
“random walks” according to the distribution may have diffi-
culties crossing such gaps in visiting all modes. If such a gap is
severe, then the random walk may get stuck within one mode
for a long time before it moves to another mode. Many modifi-
cations of the Gibbs sampler have been developed to combat the
“large energy gap” situation. For example, see [20] and [54].

VIII. SIMULATIONS

A. Simulation Setup

In this section, we provide a number of simulation examples
to illustrate the performance of the adaptive Bayesian multiuser
detectors developed in this paper. We consider a five-user (
) synchronous CDMA channel with processing gain .



2022 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 2000

The user-spreading waveform matrixand the corresponding
correlation matrix are given, respectively, by

In all the simulations described in this section, the following
noninformative conjugateprior distributions are used in the
Gibbs sampler. For the case of Gaussian noise

and for the case of impulsive noise

Beta

Note that the performance of the Gibbs sampler is insensitive to
the values of the parameters in these priors, as long as the priors
are noninformative.

In adaptive Turbo multiuser detection, for the first iteration,
the prior symbol probabilities
for all symbols; in the subsequent iterations, the prior symbol
probabilities are provided by the channel decoder, as given by
(51). The data block size of each user is . For each
data block, the Gibbs sampling is performed for 100 iterations,
with the first 50 iterations as the “burn-in” period. The decoder-
assisted convergence assessment is employed. Specifically, if
the number of bit corrections made by the decoder exceeds one
third of the total number of bits (i.e., ), then it is decided that
convergence is not reached, and the Gibbs sampler is applied to
the same data block again.

B. Convergence Behavior of the Gibbs Multiuser Detectors

Example 1: We first illustrate the convergence behavior of
the proposed adaptive Bayesian multiuser detector in Gaussian
noise. In this example, the user amplitudes and the noise vari-
ance are given by

dB dB dB

dB dB dB

In Fig. 3, we plot the first 100 samples drawn by the Gibbs
sampler of the parameters , , , , and . The
corresponding true values of these quantities are also shown in
the same figure as the straight lines. Note that in this case, the

Fig. 3. Samples and histograms—Gaussian noise.A = �4 dB,A = �2
dB,A = 0 dB,A = 2 dB,A = 4 dB, and� = �2 dB. The histograms
are based on 500 samples collected after the initial 50 iterations.

Fig. 4. Samples and histograms—impulsive noise.A = �4 dB,A = �2

dB,A = 0 dB,A = 2 dB,A = 4 dB, � = 0:1, � =� = 100,� = (1�
�)� + �� = 7 dB. The histograms are based on 500 samples collected after
the initial 50 iterations.

number of unknown parameters is (i.e., , ,
and ). Remarkably, it is seen that the Gibbs sampler reaches
convergence within about 20 iterations. The marginal posterior
distributions of the unknown parameters, , and in the
steady state can be illustrated by the corresponding histograms,
which are also shown in Fig. 3. The histograms are based on 500
samples collected after the initial 50 iterations.

Example 2: We next illustrate the convergence behavior of
proposed adaptive Bayesian multiuser detector in impulsive
noise. The user amplitudes are the same as in Example 1.
The noise samples are generated according to the two-term
Gaussian model (5) with the following parameters:

dB

The first 100 samples drawn by the Gibbs sampler of the param-
eters , , , , , and are shown in Fig. 4. The
corresponding true values of these quantities are also shown in
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(a)

(b)

Fig. 5. Bit error rate performance—convolutional code, Gaussian noise. All
users have the same amplitudes.

the same figure as the straight lines. Note that in this case, the
number of unknown parameters is (i.e., ,

, , , and ). It is seen that as in the Gaussian noise case,
the Gibbs sampler converges within about 20 samples. The his-
tograms of the unknown parameters, , , and are also
shown in Fig. 4, which are based on 500 samples collected after
the initial 50 iterations.

C. Performance of the Adaptive Turbo Multiuser Detectors

Examples 3 and 4:We now illustrate the performance of
the adaptive Turbo multiuser detectors discussed in Section VI.
The channel code for each user is a rate that is one half of
the constraint length-5 convolutional code (with generators 23,
35 in octal notation). The interleaver of each user is indepen-
dently and randomly generated and fixed for all simulations.
The block size of the information bits is 128. (i.e., the code bit
block size is .) The code bits are BPSK modulated,
i.e., . All users have the same signal-to-noise

(a)

(b)

Fig. 6. Bit error rate performance—convolutional code, impulsive noise. All
users have the same amplitudes.� =� = 100 and� = 0:1.

ratio ( ). The symbol posterior probabilities are computed
according to (26) with .

Fig. 5 illustrates the bit error rate performance of the adap-
tive Turbo multiuser detector for User 1 and User 3. The code
bit error rate at the output of the adaptive Bayesian multiuser
detector is plotted for the first three iterations. The curve cor-
responding to the first iteration is the uncoded bit error rate
at the output of the adaptive Bayesian multiuser detector. The
uncoded and coded bit error rate curves in a single-user addi-
tive white Gaussian noise (AWGN) channel are also shown in
the same figure (as, respectively, are the dash-dotted and the
dashed lines). It is seen that by incorporating the extrinsic in-
formation provided by the channel decoder as the prior symbol
probabilities, the proposed adaptive Turbo multiuser detector
approaches the single-user performance in an AWGN channel
within a few iterations. The bit error rate performance of the
adaptive Turbo multiuser detector in impulsive noise is illus-
trated in Fig. 6, where the code bit error rates at the output of
the adaptive Bayesian multiuser detector for the first three itera-
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(a)

(b)

Fig. 7. Bit error rate performance—block code, Gaussian noise. All users have
the same amplitudes.

tions are shown. The uncoded and coded bit error rate curves in a
single-user additive white impulsive noise (AWIN) channel are
also shown in the same figure (as the dash-dotted and dashed
lines, respectively), where the conventional matched-filter re-
ceiver is employed for demodulation. Note that at high ,
the performance of user 3 after the first iteration is actually better
than the single-user performance. This is because the matched-
filter receiver is not the optimal single-user receiver in impulsive
noise. Indeed, when , the maximum likelihood detector
for signal model (1) is given by

D. Performance of the Code-Constrained Gibbs Multiuser
Detectors

Examples 5 and 6:Finally, we consider the performance of
the code-constrained Gibbs multiuser detectors discussed in

(a)

(b)

Fig. 8. Bit error rate performance—block code, impulsive noise. All users
have the same amplitudes.� =� = 100 and� = 0:1.

Section VII. We assume that each user employs the (7, 4) cyclic
block code with eight possible codewords [53]:

The bit error rate performance of the code-constrained Gibbs
multiuser detector in Gaussian noise is shown in Fig. 7. In this
case, the Gibbs sampler draws a codeword fromat each time,
according to (52). In the same figure, the unconstrained Gibbs
multiuser detector performance before and after decoding is also
plotted. It is seen that by exploiting the code constraints in the
Gibbs sampler, significant performance gain is achieved. The
performance of the code-constrained Gibbs multiuser detector
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in impulsive noise is shown in Fig. 8, and similar performance
gain over the unconstrained Gibbs multiuser detector is evident.

IX. CONCLUSIONS

In this paper, we have developed a new adaptive multiuser
detection scheme that is optimal in the sense that it is based
on the Bayesianinference of all unknown quantities. Such
an adaptive Bayesian multiuser detector can be efficiently
implemented using the Gibbs sampler, which is a Markov chain
Monte Carlo procedure for computing Bayesian estimates. We
have derived the adaptive multiuser detection algorithms for
both the Gaussian noise and the impulsive noise synchronous
CDMA channel. The proposed adaptive Bayesian multiuser
detectors can incorporate thea priori symbol probabilities, and
they produce as output thea posteriori symbol probabilities.
That is, they are “soft-in soft-output” algorithms. Hence, they
are very well suited for iterative processing in a coded system,
which allows the adaptive Bayesian multiuser detector to refine
its processing based on the information from the decoding
stage, and vice versa—a receiver structure termed asadaptive
Turbo multiuser detector.Furthermore, the channel decoder
facilitates a simple way of assessing the convergence of the
adaptive multiuser detector by monitoring the number of bit
corrections made. Moreover, if the user data are encoded by a
short block code, then by exploiting the constraint on the valid
code words in the Gibbs sampler, significant improvement on
the performance of the adaptive Bayesian multiuser detector
can be obtained. Finally, we notice that the CDMA signal
model (1) treated here is a rather simple one, namely, it is
real-valued and synchronous. Future extensions to this work
include generalizations of the techniques proposed here to
asynchronous CDMA systems and to systems with multipath
fading effects.

APPENDIX A

Derivation of (19):

(54)

Derivation of (23):

(55)

Derivation of (25):

(56)

(57)

[ is -dimensional vector with all-zero entries except for the
th entry, which is 1.]

APPENDIX B

Derivation of (40):
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(58)

Derivation of (43):

(59)

Derivation of (45):

(60)

(61)

Derivation of (46):

(62)

(63)

Derivation of (47):

(64)
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