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Blind Turbo Equalization in Gaussian
and Impulsive Noise

Xiaodong Wang, Member, IEEE,and Rong Chen

Abstract—We consider the problem of simultaneous parameter
estimation and restoration of finite-alphabet symbols that are
blurred by an unknown linear intersymbol interference (ISI)
channel and contaminated by additive Gaussian or non-Gaussian
white noise with unknown parameters. Non-Gaussian noise is
found in many wireless channels due to impulsive phenomena of
radio-frequency interference. Bayesian inference of all unknown
quantities is made from the blurred and noisy observations.
The Gibbs sampler, a Markov chain Monte Carlo procedure,
is employed to calculate the Bayesian estimates. The basic idea
is to generate ergodic random samples from the joint posterior
distribution of all unknowns and then to average the appropriate
samples to obtain the estimates of the unknown quantities. Blind
Bayesian equalizers based on the Gibbs sampler are derived for
both Gaussian ISI channel and impulsive ISI channel. A salient
feature of the proposed blind Bayesian equalizers is that they can
incorporate the a priori symbol probabilities, and they produce
as output the a posteriorisymbol probabilities. (That is, they are
“soft-input soft-output” algorithms.) Hence, these methods are
well suited for iterative processing in a coded system, which allows
the blind Bayesian equalizer to refine its processing based on the
information from the decoding stage and vice versa—a receiver
structure termed asblind turbo equalizer.

Index Terms—Bayesian inference, blind equalization, Gibbs
sampler, impulsive noise, iterative processing.

I. INTRODUCTION

I N a band-limited digital communication system, the
transmitted digital symbols are distorted by the base-band

equivalent discrete-time linear finite impulse response (FIR)
channel, causing intersymbol interference (ISI). Blind equal-
ization refers to the reconstruction of transmitted symbols
based on the noise-corrupted channel output without knowing
the underlying FIR channel. The traditional approach to
blind equalization in digital communications is to use a
linear equalizer, i.e., an FIR transversal filter. Two families
of methodologies for blind adaptation of a linear equalizer
are the high-order statistics (HOS)-based techniques, (such
as the Bussgang methods and the polyspectral methods), and
the second-order statistics (SOS)-based techniques, (such as
the cyclostationarity-based methods and the subspace-based
methods). Discussions on these methodologies can be found in
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the articles collected in [15] and the more recent surveys [16],
[43].

Since a linear equalizer may perform poorly in a severe
ISI channel, some recent work has addressed nonlinear blind
equalization techniques. For example, the algorithms in [21],
[25], [26], [40] employ a sequence estimator and a bank of
channel estimators and alternatively optimize with respect
to data and channel. Sequence estimation is performed by a
blind search of a modified trellis and channel estimation is
accomplished by conditioning on survivor sequences in the
trellis and constructing the corresponding maximum likelihood
or minimum mean-square error channel estimate. Similar
iterative methods for joint sequence detection and channel esti-
mation are also found in [17], [27] and it is shown in [27] that
these procedures are based on the expectation-maximization
(EM) algorithm. Symbol-by-symbol maximuma posteriori
probability (MAP)-based blind equalization schemes have also
been considered. For instance, Bayesian blind equalization
techniques are proposed in [22], [26], which combine recursive
channel estimation with the MAP and the Bayesian decision
feedback equalization methods for known channels introduced
in [1]. Another Bayesian blind equalization method is proposed
in [30], which is a Kalman-filter-like updating algorithm for
joint symbol and channel estimation.

To date most of the work on equalization and blind equaliza-
tion assumes that the channel ambient noise is Gaussian. How-
ever, in many physical channels such as urban and indoor radio
channels [5], [6], [34], [35], [37] and underwater acoustic chan-
nels [8], [36], the ambient noise is known through experimental
measurements to be decidedly non-Gaussian, due to the impul-
sive nature of the man-made electromagnetic interference and a
great deal of natural noise as well. (For recent measurement re-
sults of impulsive noise in outdoor/indoor mobile and portable
radio communications, see [5], [6] and the references therein.)
It is widely known that linear signal processing procedures are
ineffective in combating non-Gaussian noise [28]. Hence, non-
linear equalizers are necessary for impulsive ISI channels. A
few recent works addresstraining-basednonlinear equalization
techniques in impulsive channels. For example, in [9], [29] non-
linear equalizers based respectively on the radial basis function
network and the EM algorithm are proposed.

Recently, iterative (“turbo”) processing techniques have
received considerable attention following the discovery of the
powerful turbo codes [3], [4]. The so called turbo-principle can
be successfully applied to many detection/decoding problems
such as serial concatenated decoding, equalization, coded
modulation, multi-user detection and joint source and channel
decoding [24]. Turbo equalization was first proposed in [14],
where it is assumed that the channel coefficients are known. In
[45], a low-complexity turbo multi-user receiver is developed
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Fig. 1. A channel-coded communication system signaling through an intersymbol interference (ISI) channel with additive ambient noise.

for joint equalization and multi-user detection in CDMA
systems, where it is also assumed that the user channels are
known to the receiver.

In this paper, we present novel Bayesian blind equalization
techniques for both Gaussian and impulsive ISI channels. The
abovementioned previous “Bayesian” equalization schemes,
e.g., [22], [26], [30], all make various approximating assump-
tions in deriving the equalizers and, therefore, they are nottrue
Bayesian procedures. We consider Bayesian inference of all
unknown quantities (e.g., channel states, symbol values, noise
parameters) from the ISI-corrupted and noisy observations.
A Markov chain Monte Carlo procedure called the Gibbs
sampler is employed to calculate the Bayesian estimates. The
performance of the proposed blind Bayesian equalizers is
demonstrated via simulations. Another salient feature of the
proposed methods is that being soft-input soft-output demod-
ulation algorithms, they can be used in conjunction with soft
channel decoding algorithm, to accomplish iterative joint blind
equalization and decoding—so-calledblind turbo equalization.

The rest of the paper is organized as follows. In Section II,
the system under study is described. In Section III, some back-
ground material on the Gibbs sampler is provided. The problems
of blind Bayesian equalization of Gaussian and impulsive ISI
channels are treated in Sections IV and V respectively. In Sec-
tion VI, a blind turbo equalization scheme is presented. Some
discussions are found in Section VII. Simulation results are pro-
vided in Section VIII. Finally, Section IX contains the conclu-
sions.

II. SYSTEM DESCRIPTION

We consider a channel-coded communication system
signaling through an intersymbol interference (ISI) channel
with additive ambient noise. The block diagram of the trans-
mitter-end of such a system is shown in Fig. 1. The binary
information bits are encoded using some channel code
(e.g., block code, convolutional code, or turbo code), resulting
in a code bit stream . A code bit interleaver is used to
reduce the influence of the error bursts at the input of the
channel decoder. The interleaved code bits are then
passed to a linear modulator, wherecode bits are mapped
to one symbol. (e.g., PSK modulation or QAM modulation),
yielding complex data symbols . Each data symbol is then
transmitted through an ISI channel. Suppose that a block of

symbols are transmitted. The discrete-time input–output
relationship of the ISI channel is represented by the following
linear finite impulse response (FIR) model

(1)

In (1), , and are, respectively, the received signal, the
transmitted symbol, and ambient noise sample at time; is the
length of the channel memory; is the size of the transmitted
symbol block; are the complex coefficients of the
ISI channel; denotes the conjugate transpose operation; and

, .
It is assumed that the complex symbols are in-

dependent and they are drawn from a finite alphabet set
. Define the following a priori

probabilities of symbol

(2)

Note that when no prior information is available, then
, i.e., all symbols are equally likely.

It is further assumed that the additive ambient channel noise
is a sequence of zero-mean independent and identically

distributed (i.i.d.) complex random variables, and it is indepen-
dent of the symbol sequence . In this paper, we consider
two types of noise distributions corresponding to the additive
Gaussian noise and the additive impulsive noise, respectively.
For the former case, the noise sampleis assumed to have a
complex Gaussian distribution, i.e.,

(3)

where is the noise variance. For the latter case, the noise
sample is assumed to have a two-term Gaussian mixture dis-
tribution, i.e.,

(4)

with and . Here, the term rep-
resents the nominal ambient noise and the term rep-
resents an impulsive component, withrepresenting the proba-
bility that impulses occur. The total noise variance under distri-
bution (4) is given by

(5)

Denote . In Sections IV and V, we
consider the problem of estimating thea posterioriprobabilities
of the transmitted symbols

(6)

based on the received signals and the prior information
, without knowing the channel and the noise

parameters (i.e., for Gaussian noise; , and for
impulsive noise). Thesea posterioriprobabilities are then used
by the channel decoder to decode the information bits
shown in Fig. 1, which will be discussed in Section VI.
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III. T HE GIBBS SAMPLER

Let be a vector of unknown parameters and
let be the observed data. Suppose that we are interested in
finding thea posteriorimarginal distribution of some parameter,
say , conditioned on the observation, i.e., ,

. Direct evaluation involves integrating out the rest of the
parameters from the jointa posterioridensity, i.e.,

(7)

In most cases, such a direct evaluation is computational
infeasible, especially when the parameter dimensionis
large. The Gibbs sampler [18] is a Monte Carlo procedure for
numerical evaluation of the above multidimensional integral.
The basic idea is to generate random samples from the joint
posterior distribution and then to estimate any marginal
distribution using these samples. Given the initial values

, this algorithm iterates the following
loop.

• Draw sample from .
• Draw sample from

...

• Draw sample from .
The convergence behavior of the Gibbs sampler is investigated
in [10], [18], [20], [33], [39], and [42] and general conditions
are given for the following two results:

• the distribution of converges geometrically to ,
as ;

• , as ,
for any integrable function .

The Gibbs sampler requires an initial transient period to con-
verge to equilibrium. The initial period of length is known
as the “burning-in” period and the first samples should al-
ways be discarded.

IV. BLIND BAYESIAN EQUALIZATION IN GAUSSIAN NOISE

In this section, we consider the problem of computing thea
posteriorisymbol probabilities in (6), under the assumption that
the ambient noise distribution is complex Gaussian. That is, the
probability density function (pdf) of in (1) is given by

(8)

Denote . The problem is solved
under a Bayesian framework. First, the unknown quantities,

and are regarded as realizations of random variables with
some prior distributions. The Gibbs sampler, is then employed
to calculate the maximuma posteriori (MAP) estimates of
these unknowns.

A. Bayesian Inference

Assume that the unknown quantities, , and are inde-
pendent of each other and have prior distributions , ,

and , respectively. Since is white and Gaussian,
using (1) and (8), the joint posterior distribution of these un-
known quantities based on the received signal
takes the form

(9)

Thea posterioriprobabilities (6) of the transmitted symbols can
then be calculated from the joint posterior distribution (9) ac-
cording to

(10)

Clearly, the computation in (10) involves multidimen-
sional integrals, which is certainly infeasible for any practical
implementations. To avoid the direct evaluation of the Bayesian
estimate (10), we resort to the Gibbs sampler discussed in Sec-
tion III. The basic idea is to generate ergodic random samples

: from the posterior distribu-
tion (9), and then to average to obtain an
approximation of thea posterioriprobabilities in (10).

B. Prior Distributions

1) General Considerations:
a) Noninformative priors: In Bayesian analysis, prior

distributions are used to incorporate the prior knowledge
about the unknown parameters. When such prior knowledge
is limited, the prior distributions should be chosen such that
they play a minimal role in the posterior distribution. Such
priors are termed asnoninformative. The rationale for using
noninformative prior distributions is to “let the data speak for
themselves,” so that inferences are unaffected by information
external to current data.

b) Conjugate priors: Another consideration in the selec-
tion of the prior distributions is to simplify computations. To
that end,conjugate priorsare usually used to obtain simple an-
alytical forms for the resulting posterior distributions. The prop-
erty that the posterior distribution follows the same parametric
form as the prior distribution is called conjugacy. The conjugate
family of distributions is mathematically convenient in that the
posterior distribution follows a known parametric form. Finally,
to make the Gibbs sampler more computationally efficient, the
priors should also be chosen such that the conditional posterior
distributions are easy to simulate.

For an introductory treatment of the Bayesian philosophy, in-
cluding the selection of prior distributions (see [7], [19], [31]).

2) Prior Distributions of the Unknowns:Following the gen-
eral guidelines in Bayesian analysis [7], [19], [31], we choose
the conjugate prior distributions for the unknown parameters

, and as follows.
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For the unknown channel, a complex Gaussian prior distri-
bution is assumed

(11)

Note that large value of corresponds to less informative
prior. For the noise variance , an inverse chi-square prior dis-
tribution is assumed

(12)

or

(13)

Small value of corresponds to the less informative priors
[roughly the prior knowledge is worth data points]. The
value of reflects the prior belief of the value of . Fi-
nally since the symbols are assumed to be indepen-
dent, the prior distribution can be expressed in terms of
the prior symbol probabilities defined in (2) as

(14)

where is the indicator such that if and
if .

C. Conditional Posterior Distributions

The following conditional posterior distributions are required
by the Gibbs blind equalizer in Gaussian noise. The derivations
are found in Appendix A.

1) The conditional distribution of the channel response
given , and is given by

(15)

with

(16)

and

(17)

(Recall that .)
2) The conditional distribution of the noise variance

given , and is given by

(18)

with

(19)

3) The conditional symbol probabilities given, ,
and can be obtained from [where denotes the set

]

(20)

where .
Note that in the case that the initial symbols
are unknown, they can be included in the analysis. For

, we have

(21)

D. Gibbs Blind Equalizer in Gaussian Noise

Using the above conditional posterior distributions, the Gibbs
sampling implementation of the blind Bayesian equalizer in
Gaussian noise proceeds iteratively as follows. Given the initial
values of the unknown quantities drawn
from their prior distributions and for

1) draw from given by (15);
2) draw from given by (18);
3) for , draw from

given by (20), where

To ensure convergence, the above procedure is usually carried
out for iterations and samples from the last iter-
ations are used to calculate the Bayesian estimates of the un-
known quantities. In particular, the marginala posteriorisymbol
probabilities in (10) are approximated as

(22)
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where is the indicator such that if and

if . Furthermore, if desired, the estimates
of the channel responseand the noise variance can also be
obtained from the corresponding sample means

(23)

and

(24)

Note that the above computations are exact in the limit as
. However, since they involve only a finite number of samples,

we think of them as approximations, but realize that in theory
any order of precision can be achieved given sufficiently large
sample size . The complexity of the above Gibbs blind equal-
izer is , where is the number of iterations in
the Gibbs sampling (in our simulations ). That is, it has
a term which is quadratic with respect to the channel memory
size [due to the inversion of the positive definite symmetric
matrix in (16)], and a term which islinear with respect to the
symbol block size . This is a considerable reduction in com-
putational complexity compared with the direct implementation
of the Bayesian symbol estimate (10)], which is on the order of

.

V. BLIND BAYESIAN EQUALIZATION IN IMPULSIVE NOISE

So far we have assumed that the distribution of the ambient
channel noise is Gaussian, as did in most of the previous work on
equalization. However, in many realistic communication chan-
nels, especially wireless channels, the ambient noise is known
to be decidedly non-Gaussian, due to impulsive phenomena [5],
[6]. In this section, we develop the Gibbs blind equalizer in im-
pulsive noise. It is assumed that the noise samples in
(1) are independent with the common two-term Gaussian mix-
ture pdf, given by

(25)

with and . This model serves as an approxi-
mation to the more fundamental Middleton Class A noise model
[36], [47] and has been used extensively to model physical noise
arising in radar, acoustic, and mobile radio channels.

A. Prior Distributions

Define the following indicator random variable ,
,

if

if .
(26)

Denote . The unknown quantities in
this case are . The joint posterior distribu-

tion of these unknown quantities based on the received signal
takes the form of

(27)

where is number of ones in and . We next
specify the prior distributions of the unknown quantities in (27).

As in the case of Gaussian noise, the prior distributions
and are given respectively by (11) and (14). For the noise
variances , , independent inverse chi-square distribu-
tions are assumed, i.e.,

with

(28)

For the impulse probability, a priori of Beta distribution is
assumed, i.e.,

Beta (29)

Note that the value reflects the prior knowledge of
the value of . Moreover, reflects the strength of the
prior belief, i.e., roughly the prior knowledge is worth
data points. Given, the conditional distribution of the indicator

is then

and (30)

(31)

B. Conditional Posterior Distributions

The following conditional posterior distributions are required
by the Gibbs blind equalizer in impulsive noise. The derivations
are found in Appendix B.

1) The conditional distribution of the channel response
given , , , , and is given by

(32)

with

(33)

and

(34)
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2) The conditional distribution of the noise variance
given , , , , and is given by [here if

, and if ]

(35)

with

(36)

where
the number of s in ;

;
is the indicator function such that if

and if .
3) The conditional symbol probabilities given, , , , ,

and can be obtained from [where denotes
the set ]

(37)

where .
4) The conditional distribution of the indicator, given ,

, , , , , and is obtained from [where
denotes the set ]

(38)

5) The conditional distribution of, given , , , , ,
and is given by

Beta (39)

C. Gibbs Blind Equalizer in Impulsive Noise

Using the above conditional posterior distributions, the Gibbs
sampling implementation of the blind Bayesian equalizer in im-
pulsive noise proceeds iteratively as follows. Given initial values
of the unknown quantities ,
drawn from their prior distributions, and for

1) Draw from ,
given by (32).

2) Draw from ,
given by (36); draw from
, given by (36).

3) For , draw from
given by (37),

where

4) For , draw from
given by (38),

where

5) Draw from ,
given by (39).

As in the case of Gaussian noise, thea posteriorisymbol prob-
abilities are computed using (22). Thea poste-
riori means and variances of the other unknown quantities can
also be computed, similar to (23) and (24).

VI. I TERATIVE JOINT BLIND EQUALIZATION AND

DECODING—BLIND TURBO EQUALIZATION

In this section, we consider employing iterative equalization
and decoding to improve the performance of the blind Bayesian
equalizer. Because they utilize thea priori symbol probabilities,
and they produce symbol (or bit)a posterioriprobabilities, the
blind Bayesian equalizers developed in this paper are well suited
for iterative processing which allows the blind equalizer to re-
fine its processing based on the information from the decoding
stage and vice versa.

The iterative (turbo) receiver structure is shown in Fig. 2. It
consists of two stages: the blind Bayesian equalizer developed
in the previous sections, followed by a soft-input soft-output
channel decoder. The two stages are separated by deinterleavers
and interleavers. As discussed in the previous sections, the blind
Bayesian equalizer delivers thea posteriorisymbol probabili-
ties . Based on these, we first com-
pute thea posteriori log-likelihood ratios (LLRs) of a trans-
mitted “ ” and a transmitted “ ” for the interleavedcode bits

[cf. Fig. 1]. (Recall that code bits are mapped to
one symbol.) Assume that the code bit is mapped to symbol

, where . Then the LLR of this code
bit is given by

(40)
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Fig. 2. Iterative processing for joint blind Bayesian equalization and decoding—blind turbo equalizer.

Using the Bayes’ rule, (40) can be written as

(41)
where the second term in (41), denoted by , represents
the a priori LLR of the code bit , which is computed by
the channel decoder in the previous iteration, interleaved and
then fed back to the blind Bayesian equalizer. (The superscript

indicates the quantity obtained from the previous iteration.)
For the first iteration, assuming equally likely code bits, i.e., no
prior information available, we then have , for

. The first term in (41), denoted by , rep-
resents theextrinsicinformation delivered by the blind Bayesian
equalizer based on the received signals, the structure of the
ISI-distorted signal given by (1), and the prior information about
all other code bits. The extrinsic information , which
is not influenced by thea priori information provided
by the channel decoder, is then reverse interleaved and fed into
the channel decoder as thea priori information in the next iter-
ation.

Based on the extrinsic information of the code bits
, and the structure of the channel code, the

soft-input soft-output channel decoder computes thea poste-
riori LLR of each code bit

decoding

decoding

(42)

It is seen from (42) that the output of the soft-input soft-output
channel decoder is the sum of the prior information ,
and theextrinsic information delivered by the channel
decoder. This extrinsic information is the information about the
code bit gleaned from the prior information about the other
code bits, based on the constraint structure of the
code. The soft channel decoder also computes thea posteriori
LLR of every information bit, which is used to make decision
on the decoded bit at the last iteration. After interleaving,
the extrinsic information delivered by the channel decoder

is then used to compute thea priori symbol
distributions defined in (6). Assume that a block ofbits

, , is mapped to symbol
, for . Denote as the code bit index of

the th bit in the th symbol, where ,

and . The prior symbol probability is then
given by

(43)

The code bit probabilities in (43) can be computed from the
corresponding LLRs as follows. Since

, after some manipulations we have for

(44)

The symbol probabilities are then fed back to the
blind Bayesian equalizer as the prior information for the next it-
eration. Note that at the first iteration, the extrinsic information

and are statistically independent. But subse-
quently since they use the same information indirectly, they will
become more and more correlated and finally the improvement
through the iterations will diminish.

VII. D ISCUSSIONS

1) Shift and Phase Ambiguities:Blind deconvolution
problem, in general, can only be solved up to a time-delay
ambiguity and sometimes also up to a phase ambiguity [2],
[13], [32] if no further restrictions are imposed on the filter
coefficients . In particular, when for
in (1), the time delay of the input signal is essentially
unidentifiable. In fact, in this case, the models

, for are all practically
equivalent to (1). As a result, the posterior distribution can
be an equally weighted mixture of several distributions, each
corresponding to a particular time delay. In this case, estimators
based on the marginal distribution cannot be used. The global
MAP is a possible alternative, but it is difficult to obtain in
high-dimensional cases. Furthermore, if the symbol alphabet
is symmetric about zero, the blind equalizer is also subject to
a phase ambiguity.
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Fig. 3. Samples drawn by the blind Bayesian equalizer in a Gaussian ISI channel.E =N = 2 dB.

The phase ambiguity can be resolved by using differential en-
coding and decoding [38]. The shift ambiguity can be resolved
if we impose constraints on the magnitudes of the channel taps,
as will be discussed next. However, note that the use of differ-
ential encoding/decoding makes the iterative joint equalization
and decoding scheme discussed in Section VI inapplicable. This
can be illustrated by the following simple example. Suppose
that the code bit sequence is “000 000.” In differential encoding,
let the first reference bit be “1.” Then the transmitted differen-
tially encoded bit sequence becomes “1 111 111.” Now suppose
that after channel decoding, the decoded code bit sequence is
“010010,” i.e., decision errors are made on the second and the
fifth bits. Then the differentially encoded bit sequence that is
fed back to the equalizer (serving as the priors for the code bits)
becomes “1 100 011.” That is, all the code bits between the two
mistaken bits are erroneously encoded. Hence, differential en-
coding can not be used in systems where the blind turbo equal-
izer is employed as the receiver.

To resolve the delay and phase ambiguities, we adopt thecon-
strainedGibbs sampler along the lines of [11], [12]. For ex-
ample, we may impose constraints on the phase and amplitude
of a particular coefficient, say , e.g., , and

for some predetermined constants
and . To draw samples of that satisfy this condition, the
so-calledrejection method[44] can be used. For instance, after
a sample is drawn from (15), check to see if the constraint is sat-
isfied; if not, the sample is rejected and a new sample is drawn
from (15); the procedure continues until a sample is obtained
that satisfies the constraint. If a desired sample has not been ob-
tained after a certain number of rejections, it is more appropriate
to shift the s in the last sample until theth coefficient satis-

fies the constraint; the vacancies left at the end can be filled with
zeros. Another plausible restriction on the amplitudes ofs is
to specify the location of the largest one. For example, we may
require that for and some .

2) Initial Synchronization: In order to obtain the above-
mentioned constraints on the channel coefficients, the receiver
must be synchronized with the transmitter first. This can be
accomplished by transmitting a short knowncodedsequence
for sounding the channel. At the synchronization stage, upon
receiving the transmitted sounding signal, the blind Bayesian
equalizer is employed to produce a possibly delayed and phase
shifted version of the transmitted symbol sequence. For each
possible delay and phase shift, the corresponding code bit
sequence is constructed and this sequence is passed through a
Viterbi decoder. Each decoded bit sequence is then compared
against the original sounding sequence. By locating the best
match we can identify the delay and phase ambiguities.

3) Decoder-Assisted Convergence Assessment:Detecting
convergence in the Gibbs sampler is usually done in anad
hoc way. Some methods can be found in [41]. One of them
is to monitor a sequence of weights that measure the discrep-
ancy between the sampled and the desired distribution. In
the application considered here, since the blind equalizer is
followed by a channel decoder, we can assess convergence by
monitoring the number of bit corrections made by the channel
decoder. If this number exceeds some predetermined threshold,
then we decide convergence is not achieved. In that case the
Gibbs blind equalizer will be applied again to the same data
block. The rationale is that if the Gibbs sampler has reached
convergence, then the symbol (and bit) errors after equalization
should be relatively small. On the other hand, if convergence
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Fig. 4. BER performance of the blind turbo equalizer in a Gaussian ISI channel.

is not reached, then the code bits generated by the equalizer
are virtually random and do not satisfy the constraints imposed
by the code trellis. Hence, the channel decoder will make a
large amount of corrections. Note that there is no additional
computational complexity for such a convergence detection: we
only need to compare the signs of the code bit log-likelihood
ratios at the input and the output of the soft channel decoder
and to count the number of corrections made by the decoder.

4) Relationship Between the Gibbs Sampler and the Expec-
tation-Maximization (EM) Algorithm:The expectation-maxi-
mization (EM) algorithm has also been applied to joint channel
estimation and equalization in Gaussian [27] and impulsive ISI
channels [29]. The major advantage of the Gibbs sampler tech-
nique proposed here over the EM algorithm is that the Gibbs
sampler is aglobal optimization technique. The EM algorithm
is a local optimization method and it can easily get trapped by
local extrema in the likelihood surface. The EM method per-
forms well if the initial estimates of the channel and symbols
are close to their true values. On the other hand, the Gibbs sam-
pler is guaranteed to converge to the global optimum with any
random initialization. Of course, the convergence rate crucially
depends on the “energy gap” on the joint posterior density sur-
face. Many modification of the Gibbs sampler have been devel-
oped to combat the “large energy gap” situation. For example,
see [23] and [46].

VIII. SIMULATIONS

In this section, we provide simulation examples to illustrate
the performance of the blind Bayesian equalizers developed in

this paper. We consider a four-tap ISI channel with complex tap
coefficients

(Note that the channel is normalized to have unit norm, i.e.,
.) In order to resolve the delay and phase ambiguities

inherent to the blind equalizer, in the Gibbs sampler, we im-
pose the constraints that for , and

. The channel code is a rate constraint
length-five convolutional code (with generators 23, 35 in octal
notation). The interleaver is generated randomly and fixed for
all simulations. The block size of the information bits is 128
(i.e., ). The code bits are BPSK modulated, i.e.,

. In computing the symbol probabilities, the Gibbs
sampler is iterated 100 runs for each data block, with the first 50
iterations as the “burn-in” period. The symbol posterior proba-
bilities are computed according to (22) with .

In all the simulations described in this section, the following
noninformative conjugateprior distributions are used in the
Gibbs sampler. For the case of Gaussian noise,
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Fig. 5. Samples drawn by the blind Bayesian equalizer in a impulsive ISI channel.E =N = �7 dB.

and for the case of impulsive noise

Beta

In blind turbo equalization, for the first iteration, the prior
symbol probabilities for all symbols;
in the subsequent iterations, the prior symbol probabilities
are provided by the channel decoder, as given by (44). The
decoder-assisted convergence assessment is employed. Specif-
ically, if the number of bit corrections made by the decoder
exceeds one-third of the total number of bits (i.e., ), then
it is decided that convergence is not reached and the Gibbs
sampler is applied to the same data block again.

We first illustrate the performance of the proposed blind
Bayesian equalizer in Gaussian ambient noise. In Fig. 3, the
convergence behavior of the Gibbs blind equalizer is illustrated
for the noise level dB. The first 100 samples drawn by
the Gibbs sampler for the channel taps and the
noise variance are shown. The corresponding true values of
these quantities are also shown in the same figure as the dotted
lines. It is seen that the Gibbs sampler reaches convergence
rapidly (within about 20 iterations). Fig. 4 illustrates the bit
error rate (BER) performance of the blind turbo equalizer
discussed in Section VI. The code BER at the output of the
blind Bayesian equalizer is plotted for the first three iterations.

The curve corresponding to the first iteration is the uncoded
BER at the output of the blind Bayesian equalizer. The uncoded
and coded BER curves in an additive white Gaussian noise
(AWGN) ISI-free channel are also shown in the same figure
(as, respectively, the dashed and solid lines). It is seen that by
incorporating the extrinsic information provided by the channel
decoder as the prior symbol probabilities, the proposed blind
equalizer achieves the performance that is close to the receiver
performance in an ideal AWGN channel in a few iterations.

Next, we illustrate the performance of the blind Bayesian
equalizer in an ISI channel with impulsive ambient noise. The
noise samples are generated according to the two-term Gaussian
model (4) with and . The convergence
behavior of the Gibbs blind equalizer for this case is shown in
Fig. 5 for total noise level dB. The first
100 samples of drawn by the Gibbs sampler for the four channel
taps and the noise parameters are
shown. It is seen that as in the Gaussian noise case, the Gibbs
sampler converges within about 20 samples. The BER perfor-
mance of the blind turbo equalizer in impulsive noise is illus-
trated in Fig. 6, where the code BERs at the blind Bayesian
equalizer for the first three iterations are shown. The uncoded
and coded BER curves in an additive white impulsive noise
(AWnGN) ISI-free channel are also shown in the same figure
(as the dashed and solid lines, respectively). Interestingly, it is
seen that with impulsive ambient noise, the performance of the
blind Bayesian equalizer in an ISI channel is actually better
than the receiver performance in an ISI-free channel. This is not
surprising, since an ISI channel introduces memory to the re-
ceived signal and the channel essentially serves as a trellis code.
When a symbol is hit by a large noise impulse, if the channel
is ISI-free, i.e., all received signals are independent, then this
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Fig. 6. BER performance of the blind turbo equalizer in a impulsive ISI channel.

symbol cannot be recovered; in an ISI channel, however, by ex-
ploiting the channel trellis structure, it is possible to recover this
symbol from the adjacent received signals.

IX. CONCLUSION

In this paper, we have developed a novel blind equalization
scheme which is optimal in the sense that it is based on the
Bayesian inference of all unknown quantities. Such a blind
Bayesian equalizer can be efficiently implemented using
the Gibbs sampler, a Markov chain Monte Carlo procedure
for computing Bayesian estimates. We have derived the blind
Bayesian equalization algorithms for both Gaussian ISI channel
and impulsive ISI channel. The proposed blind Bayesian equal-
izers can incorporate thea priori symbol probabilities, and they
produces as output thea posteriorisymbol probabilities. That
is, they are “soft-input soft-output” algorithms. Hence, these
methods are very well suited for iterative processing in a coded
system, which allows the blind Bayesian equalizer to refine its
processing based on the information from the decoding stage,
and vice versa—a receiver structure termed asblind turbo
equalizer.Furthermore, the channel decoder facilitates a simple
way of assessing the convergence of the blind equalizer by
monitoring the number of bit corrections made by the decoder.
Finally, we have provided simulations examples to demonstrate
the effectiveness of the proposed techniques. It is seen that
in both Gaussian and impulsive noise, the blind Bayesian
equalizers converge rapidly and the detrimental effect of the
ISI channel can be overcome within a few iterations of joint
blind equalization and decoding.

APPENDIX A

Derivation of (15):

(45)
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Derivation of (18):

(46)

Derivation of (20):

where (47)

(48)

APPENDIX B

Derivation of (32):

(49)

Derivation of (36):

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 26, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



1104 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 50, NO. 4, JULY 2001

(50)

Derivation of (37):

(51)

(52)

Derivation of (38):

(53)

(54)

Derivation of (39):

Beta (55)

REFERENCES

[1] K. Abend and B. D. Fritchman, “Statistical detection for communica-
tion channels with intersymbol interference,”Proc. IEEE, vol. 58, pp.
779–785, May 1970.

[2] A. Benveniste, M. Goursat, and G. Ruget, “Robust identification of a
nonminimum phase system: Blind adjustment of a linear equalizer in
data communications,”IEEE Trans. Automat. Contr., vol. AC-25, pp.
385–399, June 1980.

[3] C. Berrou and A. Glavieux, “Near optimum error-correcting coding and
decoding: Turbo codes,”IEEE Trans. Commun., vol. 44, Oct. 1996.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correction coding and decoding: Turbo codes,” inProc. 1993 Int.
Conf. Communications (ICC’93), Geneva, Switzerland, June 1993, pp.
1064–1070.

[5] K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements and
models of radio frequency impulsive noise for indoor wireless commu-
nications,”IEEE J. Select. Areas Commun., vol. 11, pp. 991–1001, Sept.
1993.

[6] T. K. Blankenship, D. M. Krizman, and T. S. Rappaport, “Measure-
ments and simulation of radio frequency impulsive noise in hospitals
and clinics,” inProc. 1997 IEEE Vehicular Technology Conf. (VTC’97),
Phoenix, AZ, May 1997, pp. 1942–1946.

[7] G. E. Box and G. C. Tiao,Bayesian Inference in Statistical Anal-
ysis. Reading, MA: Addison-Wesley, 1973.

[8] P. L. Brockett, M. Hinich, and G. R. Wilson, “Nonlinear and
non-Gaussian ocean noise,”J. Acoust. Soc. Amer., vol. 82, pp.
1286–1399, 1987.

[9] I. Cha and S. A. Saleem, “Non-linear filtering and equalization in non-
Gaussian noise using radial basis function and related networks,” in
Proc. 31st Annu. Asilomar Conf. Signals, Systems, and Computers, Pa-
cific Grove, CA, Nov. 1997, pp. 13–17.

[10] K. S. Chan, “Asymptotic behavior of the Gibbs sampler,”J. Amer. Stat.
Assoc., vol. 88, pp. 320–326, 1993.

[11] R. Chen and T. H. Li, “Blind restoration of linearly degraded discrete
signals by Gibbs sampling,”IEEE Trans. Signal Processing, vol. 10, pp.
2410–2413, Oct. 1995.

[12] R. Chen and J. S. Liu, “Predictive updating methods with applications to
Bayesian classification,”J. Royal Statist. Soc. B, vol. 58, pp. 397–415,
1995.

[13] K. Dogancay and R. A. Kennedy, “Blind detection of equalization errors
in communication systems,”IEEE Trans. Inform. Theory, vol. 43, pp.
469–482, Mar. 1997.

[14] C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and A. Gle-
vieux, “Iterative correction of intersymbol interference: Turbo equaliza-
tion,” Eur. Trans. Telecommun., vol. 6, no. 5, pp. 507–511, Sept.–Oct.
1995.

[15] S. Haykin, Ed.,Blind Deconvolution. Englewood Cliffs, NJ: Prentice-
Hall, 1994.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 26, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



WANG AND CHEN: BLIND TURBO EQUALIZATION IN GAUSSIAN AND IMPULSIVE NOISE 1105

[16] C. R. Johnsonet al., “Blind equalization using the constant modulus
criterion: A review,”Proc. IEEE, vol. 86, pp. 1927–1950, Oct. 1998.

[17] M. Feder and A. Catipovic, “Algorithms for joint channel estimation and
data recovery—Application to equalization in underwater communica-
tions,” IEEE J. Oceanic Eng., vol. 16, pp. 42–55, Jan. 1991.

[18] A. E. Gelfand and A. F. W. Smith, “Sampling-based approaches to cal-
culating marginal densities,”J. Amer. Stat. Assoc., vol. 85, pp. 398–409,
1990.

[19] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,Bayesian Data
Analysis. London, U.K.: Chapman Hall, 1995.

[20] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution, and
the Bayesian restoration of images,”IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.

[21] M. Ghosh and C. L. Weber, “Maximum likelihood blind equalization,”
Opt. Eng., vol. 31, pp. 1224–1228, June 1992.

[22] K. Giridhar, J. J. Shynk, and R. A. Iltis, “Bayesian/decision-feedback
algorithm for blind equalization,”Opt. Eng., vol. 31, pp. 1211–1223,
June 1992.

[23] P. J. Green, “Revisible jump Markov chain Monte Carlo computation
and Bayesian model determination,”Biometrika, vol. 82, pp. 711–732,
1985.

[24] J. Hagenauer, “The Turbo principle: Tutorial introduction and state of the
art,” in Proc. Int. Symp. Turbo Codes and Related Topics, Brest, France,
Sept. 1997, pp. 1–11.

[25] R. A. Iltis, “A Bayesian maximum-likelihood sequence estimation algo-
rithm fora priori unknown channels and symbol timing,”IEEE J. Select.
Areas Commun., vol. 10, pp. 579–588, Apr. 1992.

[26] R. A. Iltis, J. J. Shynk, and K. Giridhar, “Bayesian algorithms for blind
equalization using parallel adaptive filters,”IEEE Trans. Commun., vol.
42, pp. 1017–1032, Mar. 1994.

[27] G. K. Kaleh and R. Vallet, “Joint parameter estimation and symbol detec-
tion for linear or nonlinear unknown channels,”IEEE Trans. Commun.,
vol. 42, pp. 2406–2413, July 1994.

[28] S. A. Kassam and H. V. Poor, “Robust techniques for signal processing:
A survey,”Proc. IEEE, vol. 73, pp. 433–481, Mar. 1985.

[29] R. J. Kozick, R. S. Blum, and B. M. Sadler, “Signal processing in non-
Gaussian noise using mixture distribution and the EM algorithm,” in
Proc. 31st Annu. Asilomar Conf. Signals, Systems, and Computers, Pa-
cific Grove, CA, Nov. 1997, pp. 438–442.

[30] G.-K. Lee, S. B. Gelfand, and M. P. Fitz, “Bayesian techniques for blind
deconvolution,”IEEE Trans. Commun., vol. 44, pp. 826–835, July 1996.

[31] E. L. Lehmann and G. Casella,Theory of Point Estimation, 2 ed. New
York: Springer-Verlag, 1998.

[32] K. S. Lii and M. Rosenblatt, “Deconvolution and estimation of transfer
function phase and coefficients for non-Gaussian linear process,”Ann.
Statistics, vol. 10, pp. 1195–1208, 1982.

[33] J. S. Liu, A. Kong, and W. H. Wong, “Covariance structure of the Gibbs
sampler with applications to the comparisons of estimators and augmen-
tation schemes.,”Biometrika, vol. 81, pp. 27–40, 1994.

[34] D. Middleton, “Man-made noise in urban environments and transporta-
tion systems: Models and measurement,”IEEE Trans. Commun., vol.
COM-21, pp. 1232–1241, Nov. 1973.

[35] , “Statistical-physical models of electromagnetic interference,”
IEEE Trans. Electromagn. Compat., vol. EMC-19, pp. 106–127, 1977.

[36] , “Channel modeling and threshold signal processing in underwater
acoustics: An analytical overview,”IEEE J. Oceanic Eng., vol. OE-12,
pp. 4–28, 1987.

[37] D. Middleton and A. D. Spaulding, “Elements of weak signal detection
in non-Gaussian noise,” inAdvances in Statistical Signal Processing Vol.
2: Signal Detection, H. V. Poor and J. B. Thomas, Eds. Greenwich, CT:
JAI, 1993.

[38] J. G. Proakis,Digital Communications, 3 ed. New York: McGraw-
Hill, 1995.

[39] M. J. Schervish and B. P. Carlin, “On the convergence of successive sub-
stitution sampling,”J. Computat. Graphical Statist., vol. 1, pp. 111–127,
1992.

[40] N. Seshadri, “Joint channel and data estimation using blind trellis
search techniques,”IEEE Trans. Commun., vol. 42, pp. 1000–1016,
Feb./Mar./Apr. 1994.

[41] M. A. Tanner, Tools for Statistics Inference. New York:
Springer-Verlag, 1991.

[42] M. A. Tanner and W. H. Wong, “The calculation of posterior distribution
by data augmentation (with discussion),”J. Amer. Statist. Assoc., vol. 82,
pp. 528–550, 1987.

[43] L. Tong and S. Perreau, “Multichannel blind identification and equal-
ization based on second-order statistics: From subspace to maximum
likelihood methods,”Proc. IEEE, vol. 86, Oct. 1998.

[44] J. von Neumann, “Various techniques used in connection with random
digit,” Nat. Bureau Standards Appl. Math. Ser., vol. 12, pp. 36–38, 1951.

[45] X. Wang and H. V. Poor, “Iterative (Turbo) soft interference cancellation
and decoding for coded CDMA,”IEEE Trans. Commun., vol. 47, July
1999.

[46] W. H. Wong and F. Liang, “Dynamic importance weighting in
Monte Carlo and optimization,”Proc. Nat. Acad. Sci., vol. 94, pp.
14220–14 224, 1997.

[47] S. M. Zabin and H. V. Poor, “Efficient estimation of the class A param-
eters via the EM algorithm,”IEEE Trans. Inform., vol. 37, pp. 60–72,
Jan 1991.

Xiaodong Wang (M’00) received the B.S. degree
in electrical engineering and applied mathematics
(highest honor) from Shanghai Jiao Tong University,
Shanghai, China, in 1992, the M.S. degree in
electrical and computer engineering from Purdue
University, West Lafayette, IN, in 1995, and
the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ, in 1998.

In July 1998, he joined the Department of Elec-
trical Engineering, Texas A&M University, College
Station, as an Assistant Professor. He has worked in

the areas of digital communications, digital signal processing, parallel and dis-
tributed computing, nanoelectronics, and quantum computing. He was with the
AT&T Research Laboratories, Red Bank, NJ, during the summer of 1997. His
research interests fall in the general areas of computing, signal processing, and
communications. Currently, his research interests include multi-user communi-
cations theory and advanced signal processing for wireless communications.

Dr. Wang is a member of the American Association for the Advancement of
Science. He received the 1999 NSF CAREER Award.

Rong Chenreceived the B.S. degree in mathematics
from Peking University, Beijing, China, in 1985
and the M.S. and Ph.D. degrees in statistics from
Carnegie Mellon University, Pittsburgh, PA, in 1987
and 1990, respectively.

From September 1990 to May 1999, he was with
the Department of Statistics, Texas A&M University,
College Station, first as an Assistant Professor and
then as an Associate Professor. He is now a Professor
of statistics in the Department of Information and
Decision Sciences, University of Illinois at Chicago.

His current research interests include nonlinear/nonparametric time series and
Monte Carlo methods for nonlinear non-Gaussian dynamic systems.

Dr. Chen is a member of the American Statistical Association and the Institute
of Mathematical Statistics.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 26, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.


