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Blind Turbo Equalization in Gaussian
and Impulsive Noise

Xiaodong WangMember, IEEEand Rong Chen

Abstract—We consider the problem of simultaneous parameter the articles collected in [15] and the more recent surveys [16],
estimation and restoration of finite-alphabet symbols that are [43].
blurred by an unknown linear intersymbol interference (ISI) Since a linear equalizer may perform poorly in a severe

channel and contaminated by additive Gaussian or non-Gaussian : .
white noise with unknown parameters. Non-Gaussian noise is ISI channel, some recent work has addressed nonlinear blind

found in many wireless channels due to impulsive phenomena of €qualization techniques. For example, the algorithms in [21],
radio-frequency interference. Bayesian inference of all unknown [25], [26], [40] employ a sequence estimator and a bank of
quantities is made from the blurred and noisy observations. channel estimators and alternatively optimize with respect
The Gibbs sampler, a Markov chain Monte Carlo procedure, to data and channel. Sequence estimation is performed by a
is employed to calculate the Bayesian estimates. The basic ideg|ing search of a modified trellis and channel estimation is
is to generate ergodic random samples from the joint posterior accomplished by conditioning on survivor sequences in the

distribution of all unknowns and then to average the appropriate I d . h di - likelinood
samples to obtain the estimates of the unknown quantities. Blind t€!lIS and constructing the corresponding maximum [ikelinoo

Bayesian equalizers based on the Gibbs sampler are derived for OF Minimum mean-square error channel estimate. Similar
both Gaussian ISI channel and impulsive ISI channel. A salient iterative methods for joint sequence detection and channel esti-
feature of the proposed blind Bayesian equalizers is that they can mation are also found in [17], [27] and it is shown in [27] that
incorporate the a priori symbol probabilities, and they produce = these procedures are based on the expectation-maximization
?s output thea posterlliorlsymbol probabilities. (That is, they are (EM) algorithm. Symbol-by-symbol maximura posteriori
soft-input soft-output” algorithms.) Hence, these methods are o : o

well suited for iterative processing in a coded system, which allows probability (MAP)—based_ blind equahzanqn sch_emes hav_e al_so
the blind Bayesian equalizer to refine its processing based on the Peen considered. For instance, Bayesian blind equalization

information from the decoding stage and vice versa—a receiver techniques are proposed in [22], [26], which combine recursive

structure termed asblind turbo equalizer channel estimation with the MAP and the Bayesian decision
Index Terms—Bayesian inference, blind equalization, Gibbs feedback equalization methods for known channels introduced
Sar‘np|er7 |mpu|s|ve noise' iterative processing_ Il’l [1] Another BayeSIan b“nd equa“zatlon methOd |S proposed

in [30], which is a Kalman-filter-like updating algorithm for
joint symbol and channel estimation.
. INTRODUCTION To date most of the work on equalization and blind equaliza-
I N a band-limited digital communication system, thdon assumes that the channel ambient noise is Gaussian. How-

transmitted digital symbols are distorted by the base-baR¥er. in many physical channels such as urban and indoor radio
equivalent discrete-time linear finite impulse response (FIRhannels [5], [6], [34], [35], [37] and underwater acoustic chan-
channel, causing intersymbol interference (1SI). Blind equd?®!s [8], [36], the ambient noise is known through experimental
ization refers to the reconstruction of transmitted symbof@easurements to be decidedly non-Gaussian, due to the impul-

based on the noise-corrupted channel output without knowiﬁgfe nature of the man-made electromagnetic interference and a

the underlying FIR channel. The traditional approach t%?tat dfgal oflngtural noise ast\évell./gFgr recenLTeasgremterglre-

ind equalizaon i dgel commuicatons is o use O PUSIE e [ icalien ol i poren,

linear equalizer, i.e., an FIR transversal filter. Two familieﬁ. : i y : )
is widely known that linear signal processing procedures are

of methodologies for blind adaptation of a linear equahzelzrr] ffective in combating non-Gaussian noise [28]. Hence, non-

aretl;[heBhlgh-order S;[ﬁt'zt'cs ((thﬁS)'b?SEd tteclhn'ql:ﬁs(’j (Slﬁ?l r equalizers are necessary for impulsive ISI channels. A
as the bussgang methods and the polyspectral metho S). recent works addressmining-basechonlinear equalization
the second-order statistics (SOS)-based techniques, (Sucqe@ﬁniquesin impulsive channels. For example, in [9], [29] non-

the cyclostationarity-based methods and the subspace-baggd,, equalizers based respectively on the radial basis function
methods). Discussions on these methodologies can be found iork and the EM algorithm are proposed.

Recently, iterative (“turbo”) processing techniques have
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Fig. 1. A channel-coded communication system signaling through an intersymbol interference (I1SI) channel with additive ambient noise.

for joint equalization and multi-user detection in CDMAIn (1), 4, zz andny are, respectively, the received signal, the
systems, where it is also assumed that the user channelstexesmitted symbol, and ambient noise sample at inggis the
known to the receiver. length of the channel memory{ is the size of the transmitted

In this paper, we present novel Bayesian blind equalizatiggmbol block; {A}}< ' are the complex coefficients of the
techniques for both Gaussian and impulsive ISI channels. Ti8t channel;# denotes the conjugate transpose operation; and
abovementioned previous “Bayesian” equalization schemgsg (n, p, ... ho-1]F. = 2 ek, T, .- zheos]”
e.g., [22], [26], [30], all make various approximating assump- |; ‘is assumed that the complex symbofs;} are in-

tions in deriving the equalizers and, therefore, they ardrmet dependent and they are drawn from a finite alphabet set
Bayesian procedures. We consider Bayesian inference ofﬁfoz (a1, a a4 }. Define the followinga priori

unknown quantities (e.g., channel states, symbol values, n s
parameters) from the ISI-corrupted and noisy observatio?ézsbabm“es of symbo

A Markov chain Monte Carlo procedure called the Gibbgkj EN P(xi, = a), j=1,..., A k=0,..., M—1.
sampler is employed to calculate the Bayesian estimates. Thé )
performance of the proposed blind Bayesian equalizers is
demonstrated via simulations. Another salient feature of th@te that when no prior information is available, theg =
proposed methods is that being soft-input soft-output demop/|A|, i.e., all symbols are equally likely.

ulation algorithms, they can be used in conjunction with soft |t js further assumed that the additive ambient channel noise

channel decoding algorithm, to accomplish iterative joint blingd,,, 1 is a sequence of zero-mean independent and identically

equalization and decoding—so-callekhd turbo equalization  gjstributed (i.i.d.) complex random variables, and it is indepen-
The rest of the paper is organized as follows. In Section Yant of the symbol sequende,}. In this paper, we consider

the system under study is described. In Section Ill, some bagli, tynes of noise distributions corresponding to the additive

channels are treated in Sections IV and V respectively. In S%%'mplex Gaussian distribution. i.e
tion VI, a blind turbo equalization scheme is presented. Some T

discussions are found in Section VII. Simulation results are pro- ni ~ N.(0, o?) 3)

vided in Section VIII. Finally, Section IX contains the conclu- ) ) _ _

sions. wheres? is the noise variance. For the latter case, the noise
samplen; is assumed to have a two-term Gaussian mixture dis-
tribution, i.e.,

[I. SYSTEM DESCRIPTION

ng ~ (1 — ONL(0, o7) + eN(0, 73) (4)
We consider a channel-coded communication system ) ) )
signaling through an intersymbol interference (ISI) channifith 0 < ¢ < lando; > of. Here, the termV.(0, o7) rep-

H H H 2
with additive ambient noise. The block diagram of the tran£€S€Nts the nominal ambient noise and the t&fr{0, o) rep-
mitter-end of such a system is shown in Fig. 1. The binaf§;SENts animpulsive component, withepresenting the proba-

information bits{d,,} are encoded using some channel co jlity that impulses occur. The total noise variance under distri-
(e.g., block code, convolutional code, or turbo code), resultiffyion (4) is given by

in a code bit strean{b;}. A code bit interleaver is used to 0% =(1-€)o? +eol. (5)
reduce the influence of the error bursts at the input of the N
channel decoder. The interleaved code Hiig.;} are then  DenoteY = {yo, y1, ..., ym—1}. In Sections IV and V, we

passed to a linear modulator, whefecode bits are mapped consider the problem of estimating ta@osterioriprobabilities
to one symbol. (e.g., PSK modulation or QAM modulationf the transmitted symbols

yielding complex data symbols:; }. Each data symbol is then _ L o

transmitted through an ISI channel. Suppose that a block ofP(x’“ = a;[¥), g=L . AL E=0,..., M—1

M symbols are transmitted. The discrete-time input—output (6)
r.elatior'ls.hip. of the ISI channel is represented by the foIIowirkgased on the received signals and the prior information
linear finite impulse response (FIR) model {pkj}ﬁli;]\;f;&, without knowing the channdt and the noise
Q-1 parameters (i.e.g? for Gaussian noise¢, o? and o3 for
Y = Z Rizp_i+ny = hH:ck—l-nk, k=0,..., M —1. impulsive noise). Thesa posterioriprobabilities are then used
i=0 by the channel decoder to decode the information pits}

(1) shownin Fig. 1, which will be discussed in Section VI.
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lll. THE GIBBS SAMPLER andp(X), respectively. Sincény. }1—," is white and Gaussian,

sing (1) and (8), the joint posterior distribution of these un-
rilquwn quantities h, o2, X) based on the received signl

Letd = [A; --- 64)7 be avector of unknown parameters ang
takes the form

let Y be the observed data. Suppose that we are intereste
finding thea posteriorimarginal distribution of some parameter,
say 6;, conditioned on the observatid¥i, i.e., p(6;]Y), 1 < p(h, 0% X|Y)
7 < d. Direct evaluation involves integrating out the rest of the 2 2

parameters from the joirt posterioridensity, i.e., o< p (Y[h, 0%, X) p(h)p (o%) p(X)

1 M 1 M-—1 2
p61) = [+ [ atory)des- dosy gy o ~ (U_) exp <—; 3 |~ ] )
) k=0
2
In most cases, such a direct evaluation is computational PP (%) p(X). ©)
infeasible, especially when the parameter dimensibris Thea posterioriprobabilities (6) of the transmitted symbols can
large. The Gibbs sampler [18] is a Monte Carlo procedure fthren be calculated from the joint posterior distribution (9) ac-
numerical evaluation of the above multidimensional integratording to
The bz_;15|c _|de_a is to generate random sa_\mples from the_ JOl@t(xk =a;|Y) = Z p(X[Y)
posterior distributiorp(@|Y’) and then to estimate any marginal

X:zp=a;
distribution using these samples. Given the initial values *
00 — [950) 9((10)]T, this algorithm iterates the following — Z /p (h, 0%, X|Y) dhdo®. (10)
loop. Xz =a,
. (n+1) (n) (n) _ _ -
Draw sample?l(n+l)fromp(91|92 D) ?g) L Y). my  Clearly, the computation in (10) involvést|* ~* multidimen-
« Draw samplef,™" from p(62(6;" """, 65, ..., 65", sional integrals, which is certainly infeasible for any practical

Y) implementations. To avoid the direct evaluation of the Bayesian
estimate (10), we resort to the Gibbs sampler discussed in Sec-
tion 1ll. The basic idea is to generate ergodic random samples

- Draw sampled" Y from p(8)60+Y | . 00D vy (™, 02 X™:n =0, 1, ..} from the posterior distribu-
The convergence behavior of the Gibbs sampler is investigatézh (9), and then to averag{a,(c"): n =20, 1, ...} to obtain an
in [10], [18], [20], [33], [39], and [42] and general conditionsapproximation of thea posterioriprobabilities in (10).
are given for the following two results:

« the distribution 0#™ converges geometrically jg6]Y ), B. Prior Distributions

asn — oo 1) General Considerations:
« (I/N)XN L 102 [ 1(8) p(6]Y) db, asn — oo, a) Noninformative priors:In Bayesian analysis, prior
for any integrable functiorf. distributions are used to incorporate the prior knowledge

The Gibbs sampler requires an initial transient period to copbout the unknown parameters. When such prior knowledge
verge to equi"brium_ The initial period of |engﬂ[b is known is I|m|ted, the priOI’ distributions should be chosen such that

as the “burning_in” period and the f|rﬁ0 Samp|es should al- they play a minimal role in the pOSterior distribution. Such
ways be discarded. priors are termed asoninformative The rationale for using

noninformative prior distributions is to “let the data speak for
IV. BLIND BAYESIAN EQUALIZATION IN GAUSSIAN NOISE themselves,” so that inferences are unaffected by information
: : . ) external to current data.
In this section, we consider the problem of computingdhe 1,y conjugate priors: Another consideration in the selec-
posteriorisymbol probabilities in (6), under the assumption thajyy of the prior distributions is to simplify computations. To
the ambient noise distribution is complex Gaussian. Thatis, they endconjugate priorsare usually used to obtain simple an-

probability density function (pdf) of,. in (1) is given by alytical forms for the resulting posterior distributions. The prop-
|ng|? erty that the posterior distribution follows the same parametric
pln) = oz P <_ o2 ) ’ ®) form as the prior distribution is called conjugacy. The conjugate

A _ family of distributions is mathematically convenient in that the

Denote X = {wo, 1, ..., xm—1}. The problem is solved posterior distribution follows a known parametric form. Finally,

ur;der a Bayesian framework. First, the unknown quantfiies to make the Gibbs sampler more computationally efficient, the
o” andX are regarded as realizations of random variables Wiliiors should also be chosen such that the conditional posterior
some prior distributions. The Gibbs sampler, is then employggktriputions are easy to simulate.

to calculate the maximuna posteriori (MAP) estimates of  For an introductory treatment of the Bayesian philosophy, in-

these unknowns. cluding the selection of prior distributions (see [7], [19], [31]).
) 2) Prior Distributions of the UnknownsFollowing the gen-
A. Bayesian Inference eral guidelines in Bayesian analysis [7], [19], [31], we choose

Assume that the unknown quantitieso?, andX are inde- the conjugate prior distributions for the unknown parameters
pendent of each other and have prior distributip(fs), p(¢?), p(h), p(c?) andp(X) as follows.
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For the unknown channél, a complex Gaussian prior distri-

bution is assumed

p(h) ~ N (ho, o). (11)

1095

3) The conditional symbol probabilities givén 2, Xi—x
andY can be obtained from [wher¥|_,; denotes the set
{wo, .., Th—1, Thgrs ooy w1 )]

P (xk = a;lh, o2, X—w), Y)

Note that large value 0B, corresponds to less informative P (xk = ailh, o, Xy, Y)

prior. For the noise varianeg?, an inverse chi-square prior dis-

tribution is assumed

l/0+1
2y _ (rodo)™ (1 _ Moo
p(a ) () <02> exp< o2
X 2(2v0, Ao) (12)
or
2080 200003, (13)

Small value of(214) corresponds to the less informative priors
[roughly the prior knowledge is wortf21,) data points]. The Note that in the case that the initial symbels,;_1), ...,

value of(219)) reflects the prior belief of the value of. Fi-
nally since the symbol$zy, } 12t
dent, the prior distributiop(X
the prior symbol probabilities defined in (2) as

M-1 |A]

- 11 Iy

k=0 j=1

(14)

wheredy; is the indicator such thaf,; = 1 if zx = a; and

6kj =0if Tk 75 aj.

C. Conditional Posterior Distributions

are assumed to be indepen—(Q — 1), ...,
) can be expressed in terms of

Q-1
> hhwiem | (@) —af)

The following conditional posterior distributions are required

by the Gibbs blind equalizer in Gaussian noise. The derivations

are found in Appendix A.

—2R < hy_p |yt —
m=0
m#l—k
k=0,...,.M—1; 4,j=1,...,|A4 (20)
wherek = min{k + Q — 1, M — 1}.
r—1
are unknown, they can be included in the analysis. Fot
—1, we have
P (xk = a;lh, o2, X—w), Y)
P (z = a;lh, 0%, X4, Y)
p ] ktest
kj 2 2 2
= — .expl —— hi_wl” (la;|” — |a;
o 2 |Vl (el ~lail?)
Q-1
—2R< hy_x |y — Z e Ti—m (a;? —ay;)
t,ji=1,..., A (22)

1) The conditional distribution of the channel respohse D. Gibbs Blind Equalizer in Gaussian Noise

givens?, X andY is given by

pi\njo, A, ~ N My 2ax
hlo®, X,Y) ~No(hy, B (15)
with
A M-1
2*—1 :261 +— Z zkz,’j (16)
g k=0
and
A 1 M-1
h.,2X, <251ho+—2 Z a;kyk) (17)
g k=0
(Recall thatey, = [y, . .., #r—q41]7-)

2) The conditional distribution of the noise varianeg
givenh, X andY is given by

VoAo + S

MﬂmXwa*<m+ML Bt2) as

with

| [/

(19)

M- 2
= Z ‘yk—h $k‘ .
k=0

Using the above conditional posterior distributions, the Gibbs
sampling implementation of the blind Bayesian equalizer in
Gaussian noise proceeds iteratively as follows. Given the initial
values of the unknown quantitiedh®, o2, X} drawn
from their prior distributions and for = 1, 2, ...

1) drawh™ from p(h|o2" ™Y, XD y) given by (15);

2) drawo2"™ from p(a2|h™, X~V Y) given by (18);

3)for k = 0,1,...,M — 1, draw z{” from
Pz A", 2(") XE" Y) given by (20), where

(n L

n) A n n
X2 [0, e

[~k » L1, L &y 1)}

Lar—1

To ensure convergence, the above procedure is usually carried
out for (ng + NNV) iterations and samples from the |astiter-
ations are used to calculate the Bayesian estimates of the un-
known quantities. In particular, the margigbosteriorisymbol
probabilities in (10) are approximated as

no+N

Z 6(")

n=ng+1

P(.’Ek = CLJ|Y (22)
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whereé,(g) is the indicator such thaﬁé’;) =1if xi") = a; and tion of these unknown quantities based on the received signal

87 = 0if «f” # a;. Furthermore, if desired, the estimate$akes the form of
of the channel respondeand the noise variane€’ can also be

obtained from the corresponding sample means p(h, of, 03, ¢, 1, X|Y)
N o<p(Y|h, o}, 05, ¢ 1, X)
I "R
Bibly =g > K" (23) p(Wp (o2) p (o3) p()pUIP(X)
n=ng+1
2
1 ey " x| = —5 exp| — —_—
E{’Y}=—= > a2, (24) ot a3 Pt of,
n=ng+1
~p(h)p (0F) p (03) p(e)p(I])p(X) (27)

Note that the above computations are exact in the limN as—
oo. However, since they involve only a finite number of sample%hereﬂl is number of ones i andn, = M — ny. We next

we think of them as approximations, but realize that in theogpe ity the prior distributions of the unknown quantities in (27).
any order of precision can be achieved given sufficiently large ¢ iy the case of Gaussian noise, the prior distributiaiig

sample sizé;f. The complexity of the above Gibbs blind equaly ., x are given respectively by (11) and (14). For the noise
izer isO((Q” + M)N), wherel is the number of iterations in \ 4 riancegr? i — 1, 2, independent inverse chi-square distribu-
the Gibbs sampling (in our simulatiofé = 100). That s, it has tions are azssumed ™

a term which is quadratic with respect to the channel memory

size@ [due to the inversion of the positive definite symmetric (02) ~ x~2(203, \)
matrix in (16)], and a term which iknear with respect to the ’ o
symbol block sizel. This is a considerable reduction in com-

putational complexity compared with the direct implementation . . o o
of the Bayesian symbol estimate (10)], which is on the order 6P the impulse probability, a priori of Beta distribution is

1=1, 2, Wwith 11 A1 < 109,
(28)

O(JAM). assumed, i.e.,
[(ag + b _ _
V. BLIND BAYESIAN EQUALIZATION IN IMPULSIVE NOISE ple) = 7“(50)“1)0)) 711 — )%~ ~ Betdag, bo). (29)
0 0

So far we have assumed that the distribution of the ambient
channel noise is Gaussian, as did in most of the previous workMsate that the valueo /(a0 + bo) reflects the prior knowledge of
equalization. However, in many realistic communication chathe value ofe. Moreover,(aq + bo) reflects the strength of the
nels, especially wireless channels, the ambient noise is knopnior belief, i.e., roughly the prior knowledge is wori, + bo)
to be decidedly non-Gaussian, due to impulsive phenomena [#jta points. Given, the conditional distribution of the indicator
[6]. In this section, we develop the Gibbs blind equalizer in imé; is then

pulsive noise. It is assumed that the noise sam@b@:}ﬁiﬁl in
(1) are independent with the common two-term Gaussian mix- P(Iry=1le)=1—¢ and P(Iy=2le)=¢ (30)
ture pdf, given by o Pl = (1 — e, (31)
pln) = — p<—|kp>-+——— <—|kP>
v/ T 2 2 2 2
o1 o1 o2 72 B. Conditional Posterior Distributions

(25

The following conditional posterior distributions are required
With 0 < ¢ < 1 ande? < o2. This model serves as an approxi-by the Gibbs blind equalizer in impulsive noise. The derivations

mation to the more fundamental Middleton Class A noise mod®i€ found in Appendix B.
[36], [47] and has been used extensively to model physical noisel) The c02nd|t2|onal distribution of the channel respoise
arising in radar, acoustic, and mobile radio channels. givenoy, o3, ¢, I, X andY is given by

A. Prior Distributions p(hlot, 03,6, 1, X, Y) ~ N.(h,, Z,) (32)

Define the following indicator random variablel,, With
k=0,....,M—1,

M-1
CfL it~ N (0, 07) el (33)
n={" (26) 0 o2
2, if ng ~ AN (0, 03). k=0 " Ix
and
A S N M-l
Denotel = {I, _21, o In-1}. The unknown quantities in h. =3, [ =5 ho + Z — zyh | - (34)
this case aréh, o7, 03, ¢, I, X). The joint posterior distribu- =0 T
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2) The conditional distribution of the noise varianeg 2) Draw o—%(") from p(oﬂh(fﬂ7 O_g("—l)7 eln—1) I(nfl)7
givenh, o, ¢, I, X andY is given by [herei = 2 if X y) given by (36); draws2™ from p(o2|R™,
i=1,andi = 1if i = 2] o2 (=D (=D x (=1 y given by (36).

3) Fork=0,1,..., M -1, draWa:,(C") from Pz |h™,

2 2 ’
oilh, 0%, e, I, X, Y n n n .
p(oilh o7 ) o™, o3, ), 0D, X", Y) given by (37),

i\i + 57

o2 <2[Vi i, v ++ s; ) (35) where
1 n;

. n n n n—1 n—1
with X[(_ZQ = [wg )7 . 372 )17 372-1-1 )v cee 375\471)} .

‘yk —h ‘”k‘ Y=gy, t=12 G6) 4 Fork=01,.. M-1, draw 1™ from P(I;,|h™,
3™, 03" =D 1M XM Y) given by (38),
where where
n; the number ofs inI;
i 1,2, n1 +ny = M; 1 =1, Y 1G]
1{7,=i is the indicator function such thag; —;; = 1if
Iy =1 andl{lkzi} =0if I 75 z.
3) The conditional symbol probabilities givéno?, 03, ¢, I,
X_x andY can be obtained from [wher¥|_,; denotes

v

Ll V)

1>
b

5) Draw & from p(e[a™, 62, 520 1™ x ™) y)
given by (39).
As in the case of Gaussian noise, thposteriorisymbol prob-

the set ey The 41y - e - )
(w0, oo @1y Ty ooy 2ar il abilities P(x;. = a;|Y") are computed using (22). Tleeposte-
P (-Tk = a;lh, 0% 03, ¢ 1, X i, Y) riori means and vari_an_ces of the other unknown quantities can
P (-Tk —ailh, 02, 02, ¢, 1 X u, Y) also be computed, similar to (23) and (24).
' % 1 VI. | TERATIVE JOINT BLIND EQUALIZATION AND
= % cexpS = > = [hcal? (lag* = lail?) DECODING—BLIND TURBO EQUALIZATION
’ b=k Tt In this section, we consider employing iterative equalization
and decoding to improve the performance of the blind Bayesian
equalizer. Because they utilize th@riori symbol probabilities,
2Rl | w— D> Bhaim | (0] —af) and they produce symbol (or bit)posterioriprobabilities, the
nyggk blind Bayesian equalizers developed in this paper are well suited
o for iterative processing which allows the blind equalizer to re-
k=0,....,M—1; 4,j=1,..., |4 (37)  fine its processing based on the information from the decoding

stage and vice versa.
The iterative (turbo) receiver structure is shown in Fig. 2. It
> o . : consists of two stages: the blind Bayesian equalizer developed
gl’ Ui’ e,tﬁ[_kbt)[(’ andl—/r IS ob;amed fror—? [wherdi_i; i the previous sections, followed by a soft-input soft-output
enotes the stlo, ..., -1, L1, - Ivr-1}] channel decoder. The two stages are separated by deinterleavers
P (I =1lh, 02, 02, ¢, I_s3, X, Y) gnd int_erleaver? As gisipusse(;él;the preyious;elctions,éhlg blind
tlaeposteriorisymbol probabili-
P —2ho? 02 eI v XY ayesian equalizer delivers :

(L =2lh, o1, o3, € I, X, Y) ties {P(zy = aﬂY)}Li'l’;AZ:Ol. Based on these, we first com-
11— o3 B 271 1 38 pute thea posteriorilog-likelihood ratios (LLRs) of a trans-
e o2 " eXp ‘y" - x’“‘ 2 2] (38)  mitted “+1” and atransmitted-“ 1" for the interleavedtode bits

N - _ {briy 120 [cf. Fig. 1]. (Recall that code bits are mapped to
5) The conditional distribution of, givenh, o7, o3, I, X, one symbol.) Assume that the codethit; is mapped to symbol

wherek = min{k + Q — 1, M — 1}.
4) The conditional distribution of the indicatd, givenh,

andY is given by Zp(x(iy)» WhereO < w(m(é)) < M. Then the LLR of this code
bit is given b
p(elh, oF, 03 I, X, Y) = Betdao +na, by +n1). (39) oo
Ay (b))
C. Gibbs Blind Equalizer in Impulsive Noise A, P (bﬂ-(i) — _|_1|y)
Using the above conditional posterior distributions, the Gibbs e P (briy = 1Y)
sampling implementation of the blind Bayesian equalizer in im-
pulsive noise proceeds iteratively as follows. Given initial values Z P (xn(w(i)) = aj|Y)
of the unknown quantitiegh©®, 02, 53 © [© x©O) _ Jog ZEM s =05 brp =11 .
drawn from their prior distributions, and far=1, 2, ... Z P (a;n(w(i)) = aj|Y)
1) Draw k™ from p(h|o2™ Y, 027V en-D) | =1, 0SEA T (1) =05, bu(iy=—1
X1 y) given by (32). (40)
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Y=(5J |blindBayes| (Pl Y/} bitur | {APma)j (hitbrw) ] deinter- | (Ri(h)] | channel | {As(b)]

equalizer computer ; leaver decoder
+
{p. 1 {2 (b)) ] {2 (by)}
ki Sifgbmcglz:;b 2T interleaver -

Fig. 2. Iterative processing for joint blind Bayesian equalization and decoding—blind turbo equalizer.

Using the Bayes'’ rule, (40) can be written as and0 < «(k, 1) < LM. The prior symbol probability is then
given by

Ybe = +1 P (brgiy = +1
Py =41 ) P (e = +1)

L—-1
p [Y|bj(i) =-1 p (bWY@) =-1) pei 2 Plax=a) = [[ P(buay=851). (43)
AL(briy) AL (b)) =0

Al (bﬂ.(z)) = 10g

(41)
where the second term in (41), denoted¥yb..(;)), represents The code bit probabilities in (43) can be computed from the
the a priori LLR of the code bitb.(;), which is computed by corresponding LLRs as follows. Sincé(b;) = log(P(b; =
the channel decoder in the previous iteration, interleaved amd)/P(b; = —1)), after some manipulations we have forc
then fed back to the blind Bayesian equalizer. (The superscrptl, —1}
p indicates the quantity obtained from the previous iteration.)

For the first iteration, assuming equally likely code bits, i.e., no exp [B X5 ()]

prior information available, we then havg(b.;) = 0, for P(b; = B) = 1+ exp [BN(0:)]

0 <4 < LM. The first term in (41), denoted by, (b)), rep-

resents thextrinsicinformation delivered by the blind Bayesian . €xp [5 B )\g(bi)]

equalizer based on the received sigriéisthe structure of the ~exp [—1BA5(b:)] +exp [ BX5()]

ISI-distorted signal given by (1), and the prior information about

1 1
all other code bits. The extrinsic information (b.(;), which _ cosh [3 A5(0)] [1+ 4 tanh (5 A5(b:))]

is not influenced by tha priori information\3 (b;) provided 2 cosh [ A5 (b;)]

by the channel decoder, is then reverse interleaved and fed into 1 1\p/p

the channel decoder as thgriori information in the next iter- =3 [140 tanh (3 X5(03))] (44)
ation.

Based on the extrinsic information of the code bit¥he symbol probabilitiepy; }i /" are then fed back to the

{N(B;) ML and the structure of the channel code, thelind Bayesian equalizer as the prior information for the next it-

soft-input soft-output channel decoder computesahgoste- eration. Note that at the first iteration, the extrinsic information
riori LLR of each code bit {A1(b;)} and{2(b;)} are statistically independent. But subse-
guently since they use the same information indirectly, they will
Mo 21 P (b = +1[{ (b)Y EM =1, decoding tbhecomk(]etrkr:or_f[e antq more_ltlzgrre'la.ter:j and finally the improvement
i) = lo rou e iterations will diminish.
: 5 P (b; = —1{ (b} 25715 decoding g

= Xa(b;) + A (by), i=0,...,LM—1. (42) VIl. DISCUSSIONS

1) Shift and Phase AmbiguitieBlind deconvolution
It is seen from (42) that the output of the soft-input soft-outpygroblem, in general, can only be solved up to a time-delay
channel decoder is the sum of the prior informatigf(b;), ambiguity and sometimes also up to a phase ambiguity [2],
and theextrinsicinformation A»(b;) delivered by the channel [13], [32] if no further restrictions are imposed on the filter
decoder. This extrinsic information is the information about theoefficientsh. In particular, wherh; ~ 0fori=g¢, ..., Q@ —1
code bitb; gleaned from the prior information about the othein (1), the time delay of the input signdls;} is essentially
code bits {\Y(b;) }:2; based on the constraint structure of thenidentifiable. In fact, in this case, the models = 3;01
code. The soft channel decoder also computesithesteriori A} _zwy.—; + ng, for = 1, ..., ¢ — 1 are all practically
LLR of every information bit, which is used to make decisiorquivalent to (1). As a result, the posterior distribution can
on the decoded bit at the last iteration. After interleavindgpe an equally weighted mixture of several distributions, each
the extrinsic information delivered by the channel decodeorresponding to a particular time delay. In this case, estimators
{2 (b))} =1 is then used to compute thee priori symbol based on the marginal distribution cannot be used. The global
distributions{p; } defined in (6). Assume that a block bfbits MAP is a possible alternative, but it is difficult to obtain in
(Bj,085,1 --- By, —1), B5,1 € {+1, —1}, is mapped to symbol high-dimensional cases. Furthermore, if the symbol alphabet
a;, forj =1, ..., |A|. Denotes(k, 1) as the code bit index of is symmetric about zero, the blind equalizer is also subject to
thelth bit in thekth symbol, where®d < &k < M,0 <1 < L a phase ambiguity.
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Fig. 3. Samples drawn by the blind Bayesian equalizer in a Gaussian I1SI chabpfal, = 2 dB.

The phase ambiguity can be resolved by using differential dfifes the constraint; the vacancies left at the end can be filled with
coding and decoding [38]. The shift ambiguity can be resolve@ros. Another plausible restriction on the amplitudes;sfis
if we impose constraints on the magnitudes of the channel tafsspecify the location of the largest one. For example, we may
as will be discussed next. However, note that the use of diffeequire thai’;,| > |h;| + n for ¢ # io and some; > 0.
ential encoding/decoding makes the iterative joint equalization2) Initial Synchronization:In order to obtain the above-
and decoding scheme discussed in Section Vlinapplicable. Thientioned constraints on the channel coefficients, the receiver
can be illustrated by the following simple example. Supposeust be synchronized with the transmitter first. This can be
that the code bit sequence is “000 000.” In differential encodingccomplished by transmitting a short knowadedsequence
let the first reference bit be “1.” Then the transmitted differerfor sounding the channel. At the synchronization stage, upon
tially encoded bit sequence becomes “1 111 111.” Now suppaseeiving the transmitted sounding signal, the blind Bayesian
that after channel decoding, the decoded code bit sequencedggalizer is employed to produce a possibly delayed and phase
“010010," i.e., decision errors are made on the second and #isfted version of the transmitted symbol sequence. For each
fifth bits. Then the differentially encoded bit sequence that [®ssible delay and phase shift, the corresponding code bit
fed back to the equalizer (serving as the priors for the code bit®quence is constructed and this sequence is passed through a
becomes “1100011.” That s, all the code bits between the tWiterbi decoder. Each decoded bit sequence is then compared
mistaken bits are erroneously encoded. Hence, differential exgrainst the original sounding sequence. By locating the best
coding can not be used in systems where the blind turbo equaktch we can identify the delay and phase ambiguities.
izer is employed as the receiver. 3) Decoder-Assisted Convergence AssessmBetecting

To resolve the delay and phase ambiguities, we adogtthe convergence in the Gibbs sampler is usually done iradn
strained Gibbs sampler along the lines of [11], [12]. For exhoc way. Some methods can be found in [41]. One of them
ample, we may impose constraints on the phase and amplitisléo monitor a sequence of weights that measure the discrep-
of a particular coefficient, sa¥,,, e.g.,« < Zh;, < 3, and ancy between the sampled and the desired distribution. In
|hi,| > n for some predetermined constants o < 5 < 27 the application considered here, since the blind equalizer is
andn > 0. To draw samples dt that satisfy this condition, the followed by a channel decoder, we can assess convergence by
so-calledrejection method44] can be used. For instance, aftemonitoring the number of bit corrections made by the channel
a sample is drawn from (15), check to see if the constraint is sdiecoder. If this number exceeds some predetermined threshold,
isfied; if not, the sample is rejected and a new sample is dratiten we decide convergence is not achieved. In that case the
from (15); the procedure continues until a sample is obtain@&ibbs blind equalizer will be applied again to the same data
that satisfies the constraint. If a desired sample has not beenlolock. The rationale is that if the Gibbs sampler has reached
tained after a certain number of rejections, it is more appropriatenvergence, then the symbol (and bit) errors after equalization
to shiftthe i;s in the last sample until thgth coefficient satis- should be relatively small. On the other hand, if convergence
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Fig. 4. BER performance of the blind turbo equalizer in a Gaussian ISI channel.

is not reached, then the code bits generated by the equalithés paper. We consider a four-tap ISI channel with complex tap
are virtually random and do not satisfy the constraints imposedefficients

by the code trellis. Hence, the channel decoder will make a

large amount of corrections. Note that there is no additional

computational complexity for such a convergence detection: we  h =[—0.1611 — ;j0.4270, 0.0467 + ;j0.4429

only need to compare the signs of the code bit log-likelihood — 0.6204 + j0.4436, 0.1072 — j0,014()]T,

ratios at the input and the output of the soft channel decoder

and to count the number of corrections made by the decoder.

4) Relationship Between the Gibbs Sampler and the Expéblote that the channel is normalized to have unit norm, i.e.,
tation-Maximization (EM) Algorithm:The expectation-maxi- |k| = 1.) In order to resolve the delay and phase ambiguities
mization (EM) algorithm has also been applied to joint channigherent to the blind equalizer, in the Gibbs sampler, we im-
estimation and equalization in Gaussian [27] and impulsive IBbse the constraints th&is| > |k for I € {1, 2, 4}, and
channels [29]. The major advantage of the Gibbs sampler teety2 < Zhs < #. The channel code is a ralg2 constraint
nique proposed here over the EM algorithm is that the Giblength-five convolutional code (with generators 23, 35 in octal
sampler is alobal optimization technique. The EM algorithmnotation). The interleaver is generated randomly and fixed for
is alocal optimization method and it can easily get trapped bgll simulations. The block size of the information bits is 128
local extrema in the likelihood surface. The EM method pefi.e., M = 256). The code bits are BPSK modulated, i#,,€
forms well if the initial estimates of the channel and symbol§+1, —1}. In computing the symbol probabilities, the Gibbs
are close to their true values. On the other hand, the Gibbs saampler is iterated 100 runs for each data block, with the first 50
pler is guaranteed to converge to the global optimum with aitgrations as the “burn-in” period. The symbol posterior proba-
random initialization. Of course, the convergence rate cruciabjlities are computed according to (22) witlh = N = 50.
depends on the “energy gap” on the joint posterior density sur-|n all the simulations described in this section, the following
face. Many modification of the Gibbs sampler have been dev@loninformative conjugatgrior distributions are used in the
oped to combat the “large energy gap” situation. For examplgibbs sampler. For the case of Gaussian noise,
see [23] and [46].

VIIl. SIMULATIONS p (h<0>) ~N(ho, o) — ho = [0000]", 3o =10001

In this section, we provide simulation examples to illustrate H(0) .
the performance of the blind Bayesian equalizers developedin ¢ ) ~x (s Ao) — =1, A =01
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Fig. 5. Samples drawn by the blind Bayesian equalizer in a impulsive ISI chabngN, = —7 dB.

and for the case of impulsive noise The curve corresponding to the first iteration is the uncoded
BER at the output of the blind Bayesian equalizer. The uncoded
p (h<0)) ~N(ho, o) — ho =[0000]", ¢ = 10001 and coded BER curves in an additive white Gaussian noise
(AWGN) ISI-free channel are also shown in the same figure
( 2(0) 2, M) — =1, A =01 _(as, respe_ctively, the _da_sh_ed and _solid Iine_s). It is seen that by
incorporating the extrinsic information provided by the channel
( 2(0) decoder as the prior symbol probabilities, the proposed blind
equalizer achieves the performance that is close to the receiver
performance in an ideal AWGN channel in a few iterations.
Next, we illustrate the performance of the blind Bayesian
equalizer in an ISI channel with impulsive ambient noise. The
In blind turbo equallzat|on for the first iteration, the priomgise samples are generated according to the two-term Gaussian
symbol probabilitiepy, £ Plaj, = +1] = 1/2 for all symbols; model (4) withe = 0.1 ando3/0? = 100. The convergence
in the subsequent iterations, the prior symbol probabilitigshavior of the Gibbs blind equalizer for this case is shown in
are provided by the channel decoder, as given by (44). Thgy. 5 for total noise levet? 2 (1—¢)o? +¢02 = 7dB. The first
decoder-assisted convergence assessment is employed. SpESifsamples of drawn by the Gibbs sampler for the four channel
ically, if the number of bit corrections made by the decodeaps(h,, ho, h3, hs) and the noise parametes?, o3, ¢) are
exceeds one-third of the total number of bits (i&/3), then shown. It is seen that as in the Gaussian noise case, the Gibbs
it is decided that convergence is not reached and the Gilgampler converges within about 20 samples. The BER perfor-
sampler is applied to the same data block again. mance of the blind turbo equalizer in impulsive noise is illus-
We first illustrate the performance of the proposed blinttated in Fig. 6, where the code BERs at the blind Bayesian
Bayesian equalizer in Gaussian ambient noise. In Fig. 3, tequalizer for the first three iterations are shown. The uncoded
convergence behavior of the Gibbs blind equalizer is illustratacid coded BER curves in an additive white impulsive noise
for the noise levet? = —2 dB. The first 100 samples drawn by(AWnGN) ISI-free channel are also shown in the same figure
the Gibbs sampler for the channel tdps, h2, hs, he) and the (as the dashed and solid lines, respectively). Interestingly, it is
noise variance? are shown. The corresponding true values afeen that with impulsive ambient noise, the performance of the
these quantities are also shown in the same figure as the dotibdd Bayesian equalizer in an ISI channel is actually better
lines. It is seen that the Gibbs sampler reaches convergetitan the receiver performance in an I1SI-free channel. This is not
rapidly (within about 20 iterations). Fig. 4 illustrates the bisurprising, since an ISI channel introduces memory to the re-
error rate (BER) performance of the blind turbo equalizereived signal and the channel essentially serves as a trellis code.
discussed in Section VI. The code BER at the output of thi#hen a symbol is hit by a large noise impulse, if the channel
blind Bayesian equalizer is plotted for the first three iterations 1SI-free, i.e., all received signals are independent, then this

)NX (v, M) — =1 Xx=1

( () NBetdao, bo) — ap =1, bo = 2.
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Fig. 6. BER performance of the blind turbo equalizer in a impulsive ISI channel.

symbol cannot be recovered; in an ISI channel, however, by ex-
ploiting the channel trellis structure, it is possible to recover this
symbol from the adjacent received signals.

APPENDIX A

Derivation of (15):

p (h|02, X, Y)

IX. CONCLUSION

In this paper, we have developed a novel blind equalization
scheme which is optimal in the sense that it is based on the
Bayesian inference of all unknown quantities. Such a blind
Bayesian equalizer can be efficiently implemented using
the Gibbs sampler, a Markov chain Monte Carlo procedure
for computing Bayesian estimates. We have derived the blind
Bayesian equalization algorithms for both Gaussian ISI channel
and impulsive ISI channel. The proposed blind Bayesian equal-
izers can incorporate tteepriori symbol probabilities, and they
produces as output theeposteriorisymbol probabilities. That
is, they are “soft-input soft-output” algorithms. Hence, these
methods are very well suited for iterative processing in a coded
system, which allows the blind Bayesian equalizer to refine its

processing based on the information from the decoding stage,

and vice versa—a receiver structure termedbésd turbo

equalizerFurthermore, the channel decoder facilitates a simple
way of assessing the convergence of the blind equalizer by
monitoring the number of bit corrections made by the decoder.
Finally, we have provided simulations examples to demonstrate

the effectiveness of the proposed techniques. It is seen that

in both Gaussian and impulsive noise, the blind Bayesian
equalizers converge rapidly and the detrimental effect of the
ISI channel can be overcome within a few iterations of joint
blind equalization and decoding.

zp(h, o2, X|Y) p(aQ, X|Y)

not afunctionof b
x p (h, o2, X|Y)
p(Ylh, 0, X) p(h)

M-1

> [ #af]

X exp [— ;
k=0
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x exp | —h? <251+i2 Z zkzkH>h
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k=0
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+2R hH< 1h0+
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M-1
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o exp [—(h — hy) (45)
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Derivation of (18):
p (02|h, X, Y)

=p(h, o*, X|Y) p(h, X|Y)
N—_——

not afunction of o2
xp (h, o2, X|Y)
x p (Y|h, 0%, X) p(c?)
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1\ 00
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Derivation of (20):
P (.’L’k = aj|h, 0'2, X[—H’ Y)

=p(h, o* X|Y) [ p(h, o* X_y|Y)

not a function of & &
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APPENDIX B

Derivation of (32):
p(hloi, 03, ¢, 1, X.Y)

=p(h, o}, 05, ¢ 1, X|y) (01,02,6 I, X|y)

~
not a functionof

o p (h, O’%, rf%, e I, X|Y)
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46 M-1 2
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Derivation of (36):
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P (Ik = 1|h, 0%, 03, ¢, Iy, X, Y)
P (Ik =2lh, 0, 03, ¢, Iy, X, Y)

1—¢ o2 271 1
. _g -exp“yk - hH:I:k‘ <—2 — —2>:| . (54)
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Derivation of (39):
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