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Abstract. In this paper, we study nonparametric estimation and hypothesis testing
procedures for the functional coef®cient AR (FAR) models of the form Xt �
f1(X tÿd)X tÿ1 � � � � � f p(X tÿd)X tÿ p � å t, ®rst proposed by Chen and Tsay (1993). As
a direct generalization of the linear AR model, the FAR model is a rich class of
models that includes many useful parametric nonlinear time series models such as the
threshold AR models of Tong (1983) and exponential AR models of Haggan and Ozaki
(1981). We propose a local linear estimation procedure for estimating the coef®cient
functions and study its asymptotic properties. In addition, we propose two testing
procedures. The ®rst one tests whether all the coef®cient functions are constant, i.e.
whether the process is linear. The second one tests if all the coef®cient functions are
continuous, i.e. if any threshold type of nonlinearity presents in the process. The results
of some simulation studies as well as a real example are presented.

Keywords. Continuity test; linearity test; local linear estimation; nonparametric
estimation; one-sided kernel; threshold model.

1. INTRODUCTION

Nonlinear time series analysis has been one of the major areas of research in
time series for more than two decades now. Many nonlinear parametric models
such as the threshold AR (TAR) model of Tong (1983, 1990), the exponential
AR (EXPAR) model of Haggan and Ozaki (1981) and the smooth transition AR
(STAR) model of Granger and TeraÈsvirta (1993) and TeraÈsvirta (1994) have been
proposed and successfully applied in many important real-life problems. Tong
(1990) and Priestley (1988) provided many foundations of parametric nonlinear
time series analysis. A more recent review of the subject can be found in
Tjùsteim (1994).

It is noted that although in many applications background knowledge can
often shed lights on ®nding an appropriate model, other applications lack such
knowledge and often require trial-and-error type of model selection procedures.
To overcome the subjectivity in model selection, Chen and Tsay (1993)
proposed a class of models referred to as functional coef®cient autoregressive
(FAR) models which assumes the form of

X t � f 1(X tÿd)X tÿ1 � � � � � f p(X tÿd)X tÿ p � å t (1)
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where å t is white noise with ®nite variance ó 2 and is independent of X s for all
s , t. It is a direct extension of the linear AR model, but allows the coef®cients
varying according to a threshold variable X tÿd . They suggested using
nonparametric procedures to determine the functions in the model, hence
allowing `data to speak for themselves' regarding the model to be used. It is
noted that many of the successful parametric nonlinear models belong to the
FAR family. For example, if the functions f i(x) in (1) are step functions
f i(x) � ai � biI(x > c), we have the TAR model. When f i(x) � ai � bie

ÿãx2

, the
model becomes an EXPAR model. STAR and many other models also belong to
this class. Hence, nonparametric determination of the functional forms in model
(1) may provide objective guildlines on choosing an appropriate parametric
model. It also allows researchers to develop new models that are useful in their
applications by specifying a parametric form for the coef®cient functions based
on the nonparametric estimates. In addition, nonparametric estimators can also
be the ®nal solution to the problem on hand.

Nonparametric procedures have been used extensively in time series analysis.
GyoÈr® et al. (1989), Tjùsteim (1994), HaÈrdle et al. (1997) and Hart (1996)
have given selective reviews on this topic. These procedures extend many
nonparametric procedures developed in regression context into time series
analysis.

In this paper, Sections 2±4 concentrate on three aspects of the FAR models.
In Section 2, we propose a local linear estimator for estimating the coef®cient
functions nonparametrically. It is similar to the moving window procedure
proposed by Chen and Tsay (1993), though we use Kernel weight functions. We
systematically study the asymptotic properties of the estimator. Note that this
procedure is slightly different from local polynomial curve estimation
procedures of Cleveland and Devlin (1988), Fan and Gijbels (1996) and
Tsybakov (1986). Here, we are interested in estimating the coef®cient
functions. Hastie and Tibshirani (1993) proposed similar estimation procedures
in regression context for `varying coef®cient models', which is similar to the
FAR model.

In Section 3, we develop a procedure to test if the coef®cient functions are
constant functions. It is basically a linearity test since, when all the coef®cient
functions are constant, the FAR model becomes a linear AR model. There are
many linearity tests available in the literature. For example, Keenan (1985),
Tsay (1986) and Luukkonen et al. (1988) proposed different forms of Lagrange
multiplier type of tests. Chan and Tong (1986) and Tsay (1989) considered
testing threshold type of nonlinearity. Nonparametrically, Hjellvik and
Tjùstheim (1995, 1996) and Hjellvik et al. (1997) developed linearity tests
by comparing nonparametric and linear estimates of E[XtjX tÿk]. Here, we
handle this problem within the FAR model framework.

In Section 4, we develop another testing procedure, to detect if there are any
discontinuous points in the coef®cient functions. This is of interest due to the
fact that all threshold type of models have jump points in the coef®cient
functions. Since the class of threshold models is one of the most important and
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widely used classes of nonlinear time series models, it is certainly important to
be able to detect if there is any threshold type of nonlinearity when one uses
FAR models as a tool for model selection. The test is also of interest when the
nonparametric estimate is treated as a ®nal solution of the problem. Most of the
nonparametric estimators are designed to estimate continuous functions. They
are not consistent at discontinuous points. In ®nite samples, they tend to have
large bias in the neighbourhood of the discontinuous points. Hence, it is
important to detect the existence of jump points, so as to select suitable
nonparametric estimators. The proposed testing procedure is based on
nonparametric estimation of the coef®cient functions with one-sided kernels
and the fact that, at a discontinuous point, estimates with left-side kernels and
right-side kernels are signi®cantly different while, at continuous points, they are
not. The proposed procedure is similar to that of MuÈller (1992) in a regression
setting.

All the simulation studies for the above proposed procedures are presented
within their respective sections. The analysis of a real-life example, the
chickenpox series, is presented in Section 5.

2. NONPARAMETRIC ESTIMATION OF THE FAR MODEL

We begin this section by mentioning that, in practice, the FAR model

X t � f0(X tÿd)� f 1(X tÿd)X tÿ l1
� � � � � f p(X tÿd)X tÿ l p

� å t

is often used. It is slightly more general than the model (1) by allowing skipped
AR lags. In the cases that the threshold lag d is also one of the AR lags, it
creates ambiguity since the model includes both f 0(X tÿd) and f i(X tÿd)X tÿd if
li � d. Hence, one of those terms should be removed. From our experience,
estimation of the model with the f0 term is more stable, particularly when 0 is in
the range of threshold variable X tÿd .

However, for simplicity and clearer presentation, we will only consider model
(1) in the theorems and their proof. The extension to the above more general
model is trivial.

We propose the following local linear estimator to estimate the functions

f(x) � [ f1(x), . . ., f p(x)]9

nonparametrically. Let

f̂(x) � arg min
â

Xn

t� l�1

(X t ÿ X9tâ)2 Kh(X tÿd ÿ x) (2)

where X t � [X tÿ1, . . ., X tÿ p]9 and Kh(u) � hÿ1 K(u=h) where K is a kernel
function, h is the bandwidth and l � maxfd, pg. It is easily seen that

f̂(x) � (X9WxX)ÿ1X9WxY

FAR MODELS: ESTIMATION AND TESTS OF HYPOTHESES 153

# Blackwell Publishers Ltd 2001



where X � [X l�1 : � � � : Xn]9, Y � [X l�1, . . ., X n]9 and Wx is a diagonal matrix
with the diagonal elements being Kh(X tÿd ÿ x) for t � l � 1, . . ., n.

The asymptotic properties of the above estimator can be summarized in the
following theorem. The theorem concerns only the continuous points. We will
study the case of discontinuous coef®cient functions in Section 4.

De®ne ì2 �
�

u2 K(u)du and K2
2 �

�
K2(u)du. Let pi, j,d be the joint

stationary density of the triplet (X tÿi, X tÿ j, X tÿd) and p(x) be the stationary
marginal density of X t.

THEOREM 1. Let x be a continuous point of the coef®cient functions
f1, . . ., f p. Under assumptions A1 to A8 listed in the Appendix, we have

n2=5(f̂(x)ÿ f(x)ÿ â2b(x))!D N p(0, âÿ1ó 2 K2
2Aÿ1(x))

where A(x) � p(x)E[X tX9tjX tÿd � x] and b(x) � ì2Aÿ1(x)B(x) where B(x) is a
vector with ith element beingXp

j�1

�
uv

1

2
f 0j(x) pi, j,d(u, v, x)� f 9j(x) p9i, j,d(u, v, x)

� �
du dv

with f 9j(x) and f 0j(x) being the ®rst and second derivative of f j(x) respectively,
and p9i, j,d being the partial derivative with respect to the third argument.

The proof of the above theorem is given in the Appendix. We note that the
asymptotic result is similar to that of kernel estimation of a response curve. It
can be easily extended to resemble that of local polynomial estimation of a
response curve using the estimator

f̂(x) � arg min
â,ã

Xn

t� l�1

(X t ÿ X9tâÿ X9tã(X tÿd ÿ x))Kh(X tÿd ÿ x)

This estimator should entertain many nice properties of the local polynomial
estimator, though the derivation of the asymptotic distribution becomes more
complicated and tedious. In this paper, we restrict ourselves to the estimator in
(2).

The theorem shows that the estimator has the rate of convergence of one-
dimensional smoothing. As a consequence, estimation of the response surface
E[X tjX t � x] will have the same rate of convergence, hence does not suffer the
curse of dimensionality as that in direct p-dimensional estimation of the
surface. This advantage is due to the special structure of the model, which
serves as a dimension reduction tool. Speci®cally, let x � [x1, . . ., xp]9. The
conditional mean function

m(x) � E[XtjX t � x] � x9f(xd)

can be estimated by m̂(x) � x9f̂ (xd) and we have
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COROLLARY 1. Under the conditions of Theorem 1, we have

n2=5(m̂(x)ÿ m(x)ÿ â2x9b(xd))!D N(0, âÿ1ó 2 K2
2x9Aÿ1(xd)x)

Automatic bandwidth selection procedure is always one of the key in-
gredients in practical implementation of nonparametric procedures. There are
many approaches such as the cross-validation (CV) approach of HaÈrdle and Vieu
(1992) and Cheng and Tong (1992) in time series, the plug-in approach of
Sheather (1983, 1986), Ruppert et al. (1995), Park and Marron (1990) and many
others in regression. It is somewhat dif®cult to use the plug-in approach here
since the bias term involves the partial derivative of a three-dimensional density,
which is not easy to estimate. Hence, we suggest to use the CV pro-
cedure through the response surface estimation. Speci®cally, de®ne

CV(h) �
Xn

i� l�1

X i ÿ
Xp

j�1

f̂
(ÿi)
h, j (X iÿd)X iÿ j

 !2

w(X iÿd)

where f̂
(ÿi)
h, j , j � 1, . . ., p are the leave-one estimator, i.e. the estimator de®ned

in (2) but without the t � i term in the summation. The weight function w has a
compact support.

Consider the following second-order EXPAR model (3),

EXPAR(2): X t � (0:5ÿ 1:1eÿ50X 2
tÿ1 )X tÿ1 � (0:3ÿ 0:5eÿ50X 2

tÿ1 )X tÿ2 � 0:2å t

(3)

Figure 1 shows the estimation results of a simulated series from (3) with
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x

FIGURE 1. Function estimation of a simulated series from model (3): the dots are the estimated
functions; the solid lines are the true functions; and the dashed lines are the pointwise con®dence

band
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å t � N(0, 1) and 400 samples using the optimal CV bandwidth with the quartic
kernel function

K(u) � 0:9375(1ÿ u2)2I(juj < 1)

Since X tÿ1 is both the threshold variable and one of the AR lags, we treat this
model as

X t � f0(X tÿ1)� f1(X tÿ1)X tÿ2

The dots in Figure 1 are the estimated functions, the solid lines are the true
functions, and the dashed lines are the bootstrap 95% pointwise con®dence band.
The detailed description of the bootstrap con®dence band is given in Section 4.

Figure 2 shows the CV curves of ®ve series generated from the above
process. We can see that the procedure is reasonably robust.

3. TESTING LINEARITY IN FAR MODELS

When all the coef®cient functions are constant functions, an FAR model
becomes a linear AR model. In this section, we develop a testing procedure to
determine if the underlying process is linear.

Let f̂(x) be the estimators in (2) and ö̂ � [ö̂1, . . ., ö̂ p] be the Yule±Walker
estimator of a linear AR( p) model. We de®ne statistic T to test linearity:

T � 1

n

Xn

t� l�1

d9td tw(X tÿd) (4)

0.05 0.10 0.15 0.20 0.25
h
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0.5

1.0

1.5

CV

FIGURE 2. CV curves for ®ve simulated series from model (3)
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where

d t � (X9WtX)(f̂(X tÿd)ÿ ö̂)

with Wt being a diagonal matrix with diagonal element being Kh(X iÿd ÿ X tÿd)
for i � l � 1, . . ., n. The weight function w has a compact support, designed to
reduce the boundary effects on the test statistic. Note that, traditionally, one
would use d t � f̂(X tÿd)ÿ ö̂ in (4). The use of d t, in its current form, is purely
for the simplicity and weaker conditions in obtaining the asymptotic distribution
of T. We have the following theorem for the asymptotic distribution of the test
statistic T.

THEOREM 2. Under conditions A2, B1 and B2 listed in the Appendix, and the
null hypothesis that f j(x) � ö j, for j � 1, . . ., p, with all the roots of
zp ÿ ö1z pÿ1 ÿ � � � ÿ ö p � 0 inside the unit circle, we have

nh1=2T!D N(hÿ1=2a0, s2
0)

where

a0 � 2K2
2ó

2 E
Xp

k�1

X 2
tÿk p(X tÿd)w(X tÿd)

" #
and

s2
0 � ó 4

�
K(u)K(v)K(uÿ z)K(vÿ z)du dv dz

�
s4(x) p2(x)w2(x) dx

where

s2(x) � E
Xp

k�1

X tÿk

 !2����X tÿd � x

24 35
THEOREM 3. Under the conditions A1±A4, B1±B2 listed in the Appendix,

and the alternative hypothesis that at least one of the coef®cient functions f j(x)
are not constant, then

T!D N(a1, s2
1=n)

where

a1 � E[(f(X t)ÿ ö)9A(Xt)A(X t)(f(X t)ÿ ö)w(Xt)]

and

s2
1 � Var[(f(X t)ÿ ö)9A(X t)A(X t)(f(X t)ÿ ö)w(X t)]

where

A(x) � p(x)E[X tX9tjX tÿd � x]
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and ö is the coef®cients of the best linear prediction of X t given X tÿ1, . . ., X tÿp.

The theorem shows that as nh!1, T goes to zero in probability under the
null hypothesis. Hence, a large value of the statistic indicates departure from
linearity. It also shows that, under the null hypothesis, nh1=2T is asymptotic
normal with ®nite variance, but the mean goes to in®nity. This type of results
were observed by HaÈrdle and Mammen (1993), Hjellvik et al. (1997) in similar
problems. The proof of the theorems basically follows similar proofs in
Yoshihara (1976) and Hjellvik et al. (1997). First, we obtain the Hoeffding's
decomposition of the test statistic. Then, a martingale central limit theorem is
used on the resulting U-statistic. The proof is tedious, and hence is not
presented here.

Although Theorem 2 can be used to obtain asymptotic level of the test
statistic, it is noted by many researchers, e.g. Skaug and Tjùstheim (1993) and
Hjellvik and Tjùstheim (1995, 1996) that, in ®nite samples, the asymptotic
level does not perform well in most cases. Hence, for practical purposes, we
suggest to use bootstrap procedures. Speci®cally, we ®rst obtain residuals

ê t � Xt ÿ
Xp

i�1

ö̂i X tÿi

where ö̂i, i � 1, . . ., p are the Yule±Walker estimates of a linear AR( p) model
®tted to the data. Then, we create bootstrap versions of the process

X�t �
Xp

i�1

ö̂i X
�
tÿi � e�t

for t � l � 1, . . ., n, where e�t are independently sampled from fê l�1, . . ., êng
with replacement and X�t � Xt for t � 1, . . ., l. Then, a bootstrap value of the
test statistic T� is obtained by replacing X�t in the place of X t in calculating the
test statistic (4). Then the bootstrap null distribution can be obtained.

In Table 1, we present a small scale simulation for checking the performance
of the proposed tests. In addition to model (3), we include ®ve other models:

TABLE I

PERCENTAGE OF REJECTION OF THE LINEARITY TEST

á AR(2) AR(1) EXPAR(2) TAR STAR EXPAR(1)

0.10 10 4 96 100 94 40
0.05 8 4 94 100 90 24
0.01 2 2 84 90 74 10
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AR(2): X t � 0:6X tÿ1 ÿ 0:3X tÿ2 � å t (5)

AR(1): X t � 0:5X tÿ1 � å t (6)

TAR: X t � (0:4ÿ 1:0I(X tÿ1 . 0))X tÿ1

� (ÿ0:8� 1:0I(X tÿ1 . 0))X tÿ2 � å t (7)

STAR: X t � 0:5ÿ 1:1

1� eÿ2X tÿ1

� �
X tÿ1

� 0:3ÿ 0:5

1� eÿ2X tÿ1

� �
X tÿ2 � å t (8)

EXPAR(1): X t � 0:5ÿ 1:1eÿ50X 2
tÿ1 � 0:2å t (9)

For each model, we generated 50 series of size 400. We used 50 bootstrap
replications to obtain the bootstrap null distribution. For each model, we used a
common bandwidth obtained by averaging ®ve CV bandwidths of ®ve simulated
samples. Table 1 presents the percentage of rejection of the null hypothesis under
three different á levels. From the table, we can see that the proposed testing
procedure works reasonably well.

4. TESTING THRESHOLD TYPE OF DISCONTINUITY

First, we de®ne local linear estimates of the coef®cient functions using one-sided
kernels. Let

f�(x) � lim
ä!0�

f(x� ä) and fÿ(x) � lim
ä!0ÿ

f(x� ä)

De®ne

f̂ �(x) � arg min
â

Xn

t� l�1

(X t ÿ X9tâ)2 K�h (X tÿd ÿ x)

and

f̂ÿ(x) � arg min
â

Xn

t� l�1

(X t ÿ X9tâ)2 Kÿh (X tÿd ÿ x)

where

K�h (u) � 2Kh(u)I(u > 0)

and

Kÿh (u) � 2Kh(u)I(u < 0)
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where K is a symmetric kernel function with bounded support and
�

K(u)du � 1.
Let

ì�1 �
�

uK�(u)du and ìÿ1 �
�

uKÿ(u)du

We have the following theorem:

THEOREM 4. Under conditions A1±A4 and C1±C2 listed in the Appendix, we
have

(i) f̂�(x) and f̂ÿ(x) are asymptotically uncorrelated.
(ii)

n1=3(f̂�(x)ÿ f�(x)ÿ âb�(x))!D N(0, âÿ1ó 2 K2
2Aÿ1(x))

and

n1=3(f̂ÿ(x)ÿ fÿ(x)ÿ âbÿ(x))!D N(0, âÿ1ó 2 K2
2Aÿ1(x))

where

A(x) � p(x)E[X tX9tjX tÿd � x]

b�(x) � Aÿ1(x)B�(x)

bÿ(x) � Aÿ1(x)Bÿ(x)

with B�(x) and Bÿ(x) being vectors with ith element being

ì�1
Xp

j�1

f 9(�)

j (x)E[X tÿi X tÿ jjX tÿd � x] and

ìÿ1
Xp

j�1

f 9(ÿ)

j (x)E[X tÿi X tÿ jjX tÿd � x]

respectively, where f 9(�)

j and f 9(ÿ)

j are the left and right derivatives of the
function f j at point x.

The proof of the theorem is similar to that of Theorem 1. A brief discussion
is given in the Appendix. Note that the convergence rate is lower than that of
the two-sided estimator. Similar results were obtained by Cline and Hart (1991)
for density estimation. MuÈller (1992) proposed similar procedures and in-
vestigated their asymptotic properties in a regression setting.

In Figure 3, we present the estimated coef®cient functions using one-sided
and two-sided kernels from a simulated TAR(2) series of (7). The sample size
used is 400. Again, the quartic kernel is used, with bandwidth h � 1:5 for one-
sided kernels and h � 0:75 for the two-sided kernel. We can see that, away
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from the discontinuous point (x � 0), both one-sided and two-sided estimates
work well. Note that, in the TAR case, away from the discontinuous point, the
functions are constant, hence there is no bias in those estimates. Thus there is
not much difference between one-sided and two-sided estimates. Around the
discontinuous point, f̂� is consistent right of the point, f̂ÿ is consistent left of
the point and the two-sided estimate is not consistent. In Figure 4, we plotted

24 22 0 2
Threshold variable
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right
left21.0

20.5

0.0

0.5

f1

two
right
left

21.0

20.5

0.0

0.5
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24 22 0 2
Threshold variable

FIGURE 3. Function estimates using two-sided, left and right sided kernels from a simulated series
of model (7). The solid lines are the true functions
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FIGURE 4. The difference of function estimates using left- and right-side kernels from a simulated
series of model (7)

FAR MODELS: ESTIMATION AND TESTS OF HYPOTHESES 161

# Blackwell Publishers Ltd 2001



f̂ �1 (x)ÿ f̂ ÿ1 (x) and f̂ �2 (x)ÿ f̂ ÿ2 (x). We can see that around the discontinuity
point x � 0, the differences between the two estimated functions are the largest.
Hence, we suggest to use statistic s to test threshold type of nonlinearity:

S � sup
x2D

max
j�1,...,p

j f̂ �j (x)ÿ f̂ÿj (x)j

where D is a compact interval of interest. Since one-sided kernels have severe
boundary effects, in our simulation studies we choose D be the interval between
20 and 80 percentile of the data range, for samples of size of 400.

THEOREM 5. Under conditions A1±A3, C1±C4 and the null hypothesis that
the functions are all continuous, we have

S!P 0

and, if there is a discontinuity point in D , then

S!P max
j�1,:::, p

sup
x2D
j f �j (x)ÿ f ÿj (x)j. 0

The above theorem shows that, under the null hypothesis, the test statistic
goes to zero in probability. Hence, a large value of the statistic indicates
tendency of departing from the null hypothesis. If the null hypothesis is
rejected, the function

max
j�1,:::, p

j f̂ �j (x)ÿ f̂ ÿj (x)j

can be used to estimate the location of the threshold. Note that, in practice, we
have to use a grid in D to calculate the statistic S and the grid must be ®ner
than at least half of the bandwidth to obtain reasonable results.

The asymptotic distribution of the test statistic is very dif®cult to obtain and
may not be useful in practice. So, again, we use bootstrap approaches.
However, there are several dif®culties. Note that, to construct bootstrapped
version of the data under the null hypothesis (that the functions are continuous
in the interval of consideration), we must estimate the coef®cient functions
nonparametrically, e.g. using two-sided kernels as in Section 2. However, it is a
local estimator, and hence cannot be used outside the data range. In addition, it
suffers from the boundary effects. So, if ones tries to construct a bootstrap
version of the time series using

X�t �
Xp

i�1

f̂ i(X�tÿd)X�tÿi � å�t

where å�t is sampled from the residuals

å̂ t � X t ÿ
Xp

i�1

f̂ i(X tÿd)X tÿi
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not only is the residual distribution not correct (due to the boundary effects), but
also the generated threshold variable X�tÿd may be out of the range of reliable
estimate of f i. To overcome these two dif®culties, we convert the problem to a
regression setting. Speci®cally, we ®x the original design matrix using the
original data and bootstrap only the response. This is slightly different from our
time series setting but, under strong mixing condition, the effect will be minimal.
In addition, to reduce the boundary effect, we only bootstrap the observation
with X tÿd within 10 and 90 percentile of the data range. For data outside the
range, we always use the original observation. We also only resample from the
residuals obtained within the same region.

We performed a small-scale simulation to check the performance of the
proposed testing method. In addition to models (5), (3), (8) and (7), we also
tried four more models:

STAR-2: Xt � 0:5ÿ 1:1

1� eX tÿ1

� �
X tÿ1 � 0:3ÿ 0:5

1� eX tÿ1

� �
X tÿ2 � å t (10)

TAR-2: Xt � (0:4ÿ 0:5I(X tÿ1 . 0))X tÿ1

� (ÿ0:8� 0:5I(X tÿ1 . 0))X tÿ2 � å t (11)

TSIN: Xt � (1ÿ 2I(X tÿ1 . 0))cos(0:5ðX tÿ1)X tÿ1

� (ÿ0:5� I(X tÿ1 . 0))cos(ðxtÿ1)xtÿ2 � 0:2å t (12)

TSIN-2: Xt � (0:5ÿ I(X tÿ1 . 0))cos(0:5ðX tÿ1)X tÿ1

� (ÿ0:2� 0:4I(X tÿ1 . 0))cos(ðX tÿ1)X tÿ2 � 0:2å t (13)

Table 2 shows the percentage of rejections of the null hypothesis that the
coef®cient functions are continuous, in 50 simulated samples, each of sample
size 400. The differences between TAR and TAR-2, TSIN and TSIN-2 are the
jump size. We can see that, with smaller jump size (TAR2 and TSIN-2), the
power of the test is smaller, as expected.

TABLE II

PERCENTAGE OF REJECTIONS OF THE CONTINUITY TEST

á AR(2) EXPAR(2) STAR STAR-2 TAR TAR-2 TSIN TSIN-2

0.10 14 6 6 2 96 30 48 40
0.05 6 2 4 2 92 24 38 34
0.01 2 0 2 0 84 12 22 18
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5. THE CHICKENPOX EXAMPLE

In this section, we analyze the monthly record of chickenpox cases in New York
city from January 1928 to June 1972 (Sugihara and May, 1990). Following Chen
and Tsay (1993), we make a log transformation Xt � log(Yt � 743) to stabilize
the variability. The display of the data is shown in Figure 5.

In Chen and Tsay (1993), the threshold lag X tÿ12 is identi®ed. This is a
natural choice since the data demonstrated nonlinear seasonal pattern. Using
CV and post-sample forecast, we identify the AR lags 1, 3, 9, 24 are signi®cant
which resulted in the following FAR model

Xt � f1(X tÿ12)X tÿ1 � f3(X tÿ12)X tÿ3 � f9(X tÿ12)X tÿ9 � f24(X tÿ12)X tÿ24 � å t

(14)

To select the optimal bandwidth, the CV criterion speci®ed in Section 2 is
employed. Figure 6 plots the CV(h) versus the bandwidth h, which shows that
the optimal bandwidth is ĥ � 0:27.

The linearity test proposed in Section 3 is applied to the dataset using the
optimal bandwidth. It rejects the linearity overwhelmingly with bootstrap p-
value less than 0.01. On the other hand, the continuity test in Section 4 fails to
reject the continuity assumption, with p-value at 0.54. Hence, we estimate
model (14) with a two-sided kernel with ĥ � 0:27, using the estimation
procedure in section 2. Figure 7 shows the estimated functions with the
pointwise con®dence band.

To evaluate the performance of this nonparametric model, we compare the

0 100 200 300 400 500
Time

7.0

7.5

8.0

L
og

_c
hi

ck
en

po
x 

nu
m

be
r

FIGURE 5. Log transformed chickenpox series
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out-sample multi-step forecasting performance with the parametric threshold
AR (TAR) model found in Chen and Tsay (1993). Their model assumed dis-
continuity of the coef®cient functions and used three threshold regimes, with
total 16 AR coef®cient and two threshold values. They have shown that their
model is signi®cantly better than the standard linear AR model and the seasonal
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FIGURE 6. Plot of CV versus bandwidth of the chickenpox example
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FIGURE 7. Estimated functions with pointwise con®dence band of the chickenpox example

FAR MODELS: ESTIMATION AND TESTS OF HYPOTHESES 165

# Blackwell Publishers Ltd 2001



AR (SAR) model in multi-step forecasts. Here, we repeat their experiment, using
the ®rst 450 observations to estimate the model and calculating 1±11-step ahead
post-sample forecasting error using the last 70 observations. Table 3 shows the
forecasting performance comparison among the nonparametric functional
coef®cient AR model, the parametric threshold AR (TAR) model and a seasonal
AR model (SAR). The mean squared forecasting error improvement is calculated
as follows:

FAR vs TAR:
MSE(TAR)-MSE(FAR)

MSE(TAR)

FAR vs SAR:
MSE(SAR)-MSE(FAR)

MSE(SAR)

TAR vs SAR:
MSE(SAR)-MSE(TAR)

MSE(SAR)

From Table 3, we can see that in short-term forecasting, the nonparametric
FAR model assuming continuity outperforms the threshold AR model between
6% and 14%, but with limited improvement in the longer-term forecasting.
Note that the TAR model signi®cantly outperforms the seasonal AR in longer-
term forecasting, but underperforms in short-term forecasting. On the other
hand, the FAR model consistently outperforms the seasonal AR model, in both
short-term and longer-term forecasting, except the one-step ahead forecast in
which the difference is minimal. This example demonstrated the ¯exibility and
superiority of this class of models, and the importance of linearity and
continuity tests.

APPENDIX

First we list all the necessary assumptions for the theorems:

A1 The process is geometrically ergodic. A set of suf®cient ergodic conditions for the
FAR model can be found in Chen and Tsay (1993) and Cline and Pu (1995).

TABLE III

MULTI-STEP PREDICTION PERFORMANCE COMPARISON AMONG THE FAR MODEL, THE TAR MODEL

AND THE SEASONAL AR MODEL

lead time 1 2 3 4 5 6 7 8 9 10 11
FAR vs

TAR
0.101 0.142 0.082 0.063 0.066 0.073 0.052 0.026 0.001 0.016 0.031

FAR vs
SAR

ÿ0.027 0.091 0.245 0.392 0.496 0.550 0.579 0.590 0.592 0.609 0.613

TAR vs
SAR

ÿ0.143 0.059 0.177 0.352 0.461 0.515 0.556 0.580 0.592 0.602 0.600
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A2 The kernel function K is a positive, compactly supported bounded function, with�
K(u)du � 1�

uK(u)du � 0

and

jK(x1)ÿ K(x2)j, cjx1 ÿ x2j
for all x1 and x2 in its support.

A3 The density of the stationary distribution exists and is bounded.
A4 The matrix

A(y) � p(y)E[X tX9tjX tÿd � y]

is of full rank. A(y) and Aÿ1(y) are bounded element-wise in a neighbourhood
of x.

A5 Let pi, j,d be the joint density of (X tÿi, X tÿ j, X tÿd). We assume that pi, j,d has
Holder continuous ®rst partial derivative with respect to the third argument.

A6 The second derivative of the coef®cient functions exists and is Holder continuous.
A7 The term �

uv
1

2
f 0j(y) pi, j,d(u, v, y)� f 9j(y) p9i, j,d(u, v, y)

� �
du dv

is bounded in a neighbourhood of x for all 1 < i, j < p.
A8 h � ânÿ1=5 for â. 0.
A9 h � ânÿ1=5 for â. 0.
B1 The joint density of distinct elements of fX t1

, X t2
, X t3

, X t4
, X t5

, X t6
,

X t7
, X t8

, X t9
g is continuous and bounded by a constant independent of ti, for

i � 1, . . ., 9.
B2 As n!1, then h! 0 and

nh(2�4ä)=(1�ä)

log n
!1

C1 f 9(�)

j and f 9(ÿ)

j exist and are Holder continuous in (x, x� ä) and (xÿ ä, x),
respectively.

C2 h � ânÿ1=3 for â. 0.
C3 The matrix

A(y) � p(y)E[X tX9tjX tÿd � y]

is of full rank. A(y) and Aÿ1(y) are bounded uniformly in a compact interval D
of interest.

C4 f 9(�)

j
and f 9(ÿ)

j exist and are Holder continuous in D .

We need the following lemmas.

LEMMA 1 (Liptser and Shirjaev, 1980, Corollary 6)
Denote F k be a ó- ®eld. Let, for every n . 0, the sequence (çnk , F k) be a square

integrable martingale difference, i.e.

E(çnk jF kÿ1) � 0 and E(ç2
nk) ,1, for 1 < k < n

and let
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Xn

i�1

E(ç2
nk) � 1 for any n > n0 > 0

The conditions Xn

k�1

E(ç2
nk jF kÿ1)!P 1 as n!1

Xn

k�1

E(ç2
nk I(jçnk j. åjF kÿ1)!P 0 as n!1

for å. 0, are necessary and suf®cient for convergenceXn

k�1

çnk!D N(0, 1)

LEMMA 2. Let p be the stationary density of X t. Under condition (A1) (geometric
ergodic), we have

nÿ1
Xn

t� l�1

X tÿi X tÿ j Kh(X tÿd ÿ x)ÿ E[X tÿi X tÿ jjX tÿd � x] p(x) � op(1)

and

nÿ1
Xn

t� l�1

E[X tÿi X tÿ j Kh(X tÿd ÿ x)]ÿ E[X tÿi X tÿ jjX tÿd � x] p(x) � o(1)

PROOF. By an ergodic theorem, we have

nÿ1
Xn

t� l�1

X tÿi X tÿ j Kh(X tÿd ÿ x)ÿ E[X tÿi X tÿ j Kh(X tÿd ÿ x)] � op(1)

Let pi, j,d be the joint density of (X tÿi, X tÿ j, X tÿd). We have

E[X tÿi X tÿ j Kh(X tÿd ÿ x)] �
�

uvK(w) pi, j,d(u, v, x� hw) du dv dw

�
�

uv pi, j,d(u, v, x) du dv dw(1� o(1))

� p(x)E[X tÿi X tÿ jjX tÿd � x](1� o(1))

PROOF OF THEOREM 1. Let n� � nÿ l and å � [å t�1, . . ., ån]9. Then

f̂(x)ÿ f(x) � (X9WxX)ÿ1X9Wx[Yÿ åÿ Xf(x)]� (X9WxX)ÿ1X9Wxå � I1 � I2

First, we work with (n�)ÿ1X9WxX. The (i, j)th element of (n�)ÿ1X9WX is

1

n�
Xn

t� l�1

X tÿi X tÿ j Kh(X tÿd ÿ x) � p(x)E[X tÿi X tÿ jjX tÿd � x](1� op(1))

by Lemma 2. Hence

(n�)ÿ1X9WxX � A(x)(1� op(1))

where
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A(x) � p(x)E[X tX9tjX tÿd � x]

Next, the ith element of (n�)ÿ1X9Wx(Yÿ åÿ Xf(x)) is

1

n�
Xn

t� l�1

X tÿi Kh(X tÿd ÿ x)
Xp

j�1

f f j(X tÿd)ÿ f j(x)gX tÿ j

�
Xp

j�1

1

n�
Xn

t� l�1

X tÿi X tÿ j Kh(X tÿd ÿ x)f f j(X tÿd)ÿ f j(x)g

�
Xp

j�1

�
uvK(w)f f j(x� hw)ÿ f j(x)gpi, j,d(u, v, x� hw)du dv dw(1� op(1))

� ì2 h2
Xp

j�1

�
uv

1

2
f 0(x) pi, j,d(u, v, x)� f 9(x) p9i, j,d(u, v, x)

� �
du dv(1� op(1))

� ì2 h2 Bi(x)(1� op(1))

The second equality is the result of the ergodic theorem. Let B(x) � [B1(x), . . ., Bp(x)]9,
then

I1 � ì2 h2Aÿ1(x)B(x)(1� op(1))

Now we work with I2. The ith element of (n�)ÿ1X9Wxå is

ei � (n�)ÿ1
Xn

t� l�1

X tÿi Kh(X tÿd ÿ x)å t

We show that ei is asymptotically normal by checking all the conditions of Lemma 1.
First, since å t is independent of X s for all s , t, we have E(ei) � 0. Standard calculation
yields

s2
i � Var(åi) � 1

n�2
ó 2

Xn

t� l�1

E[X 2
tÿi K

2
h(X tÿd ÿ x)]

� 1

n�h
ó 2 K2

2 E[X 2
tÿijX tÿd � x] p(x)(1� o(1))

where pi,d is the joint density of X tÿi and X tÿd . De®ne

ç t � 1

n�
X tÿi Kh(X tÿd ÿ x)

si

å t

Note that ç t actually depends on i. For brevity, we here work with a ®xed i and suppress
the index i on ç. Let F t be the ó-®eld generated by [X 1, . . ., X t]. Since å t is independent
of X s for all s , t, we have
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E[ç tjF tÿ1] � 0

E[ç2
t ] � E

X 2
tÿi K

2
h(X tÿd ÿ x)

n�2s2
i

å2
t

" #
,1

Xn

t� l�1

E[ç2
t ] �

Xn

t� l�1

E[X 2
tÿi K

2
h(X tÿd ÿ x)å2

t ]

n�2s2
i

� 1

Xn

t� l�1

E[ç2
t jF tÿ1] �

Xn

t� l�1

X 2
tÿi K

2
h(X tÿd ÿ x)ó 2

n�2s2
i

! 1 as n!1

Finally, for any E. 0, we want to showXn

t� l�1

E[ç2
t I(jç tj. E)jF tÿ1] �

Xn

t� l�1

X 2
tÿi K

2
h(X tÿd ÿ x)E(å2

t I(jç tj. E)jF tÿ1)

n�2s2
i (x)

� o(1)

For some constants C1 and C, we have

E[å2
t I(jç tj. E)] < fE(å4

t )E[I(jç tj. E)]g1=2

< C1 P jå tj. n�siE
jX tÿijKh(X tÿd ÿ x)

 !" #1=2

< C1

ó jX tÿijKh(X tÿd ÿ x)

n�siE

Hence,

���� Xn

t� l�1

E[ç2
t I(jç tj. E)jF tÿ1]

���� < C

Xn

t� l�1

jX tÿij3 K3
h(X tÿd ÿ x)ó

n3s3
i E

� op(1)

Then by Lemma 1, we have

1

si

1

n�
Xn

t� l�1

X tÿi Kh(X tÿd ÿ x)å t

" #
!D N(0, 1)

Also, note that

1

n�2
E

Xn

t� l�1

X tÿi Kh(X tÿd ÿ x)å t

 ! Xn

t� l�1

X tÿ j Kh(X tÿd ÿ x)å t

 !" #

� 1

nh� ó
2 K2

2 E[X tÿi X tÿ jjX tÿd � x] p(x)(1� o(1))

By a Cramer±Wold device, it is easy to show that

(n�h)
1

n� X 9Wå

� �
!D N p(0, ó 2 K2

2A(x))
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Hence

(n�h)I2!D N p(0, ó 2 K2
2Aÿ1(x))

Let h � ânÿ1=5, the theorem then follows.

PROOF OF THEOREM 4. The proof is essentially the same as that of Theorem 1 with
slight differences in the bias calculation since

�
uK�(u)du � ì�1 6� 0. The asymptotic

uncorrelation of f̂�(x) and f̂ÿ(x) is due to the fact that the covariance of the ith element
of (n�)ÿ1X9W�

x å and the jth element of (n�)ÿ1X9Wÿ
x å is

1

n�2

Xn

t1� l�1

Xn

t2� l�1

E[X t1ÿi X t2ÿ j K
�
h (X t1ÿd ÿ x)Kÿh (X t2ÿd ÿ x)å t1

å t2
]

Note that for t1 , t2, å t2
is independent of the rest of the terms. Since E(å t2

) � 0, all the
terms with t1 6� t2 are zero. On the other hand, for t1 � t2,

K�h (X t1ÿd ÿ x)Kÿh (X t1ÿd ÿ x) � 0

by de®nition. Hence f̂ �(x) and f̂ ÿ(x) are asymptotically uncorrelated.

PROOF OF THEOREM 5. With the result of theorem 4, it is easy to show, by
construction of ®nite open intervals, that for a compact interval,

sup
x2D
j f̂ �j (x)ÿ f �j (x)j!P 0 and sup

x2D
j f̂ ÿj (x)ÿ f ÿj (x)j!P 0

for all j � 1, . . ., p. Hence

jsup
x2D
j f̂ �j (x)ÿ f̂ ÿj (x)j ÿ sup

x2D
j f �j (x)ÿ f ÿj (x)j j < sup

x2D
j f̂ �j (x)ÿ f �j (x)j � sup

x2D
j f̂ ÿj (x)ÿ f ÿj (x)j

!P 0

Thus,

sup
x2D
j f̂ �j (x)ÿ f̂ ÿj (x)j!P sup

x2D
j f �j (x)ÿ f ÿj (x)j

The theorem then follows.
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