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Voids exist in proteins as packing defects and are often associated with protein functions. We study
the statistical geometry of voids in two-dimensional lattice chain polymers. We define voids as
topological features and develop a simple algorithm for their detection. For short chains, void
geometry is examined by enumerating all conformations. For long chains, the space of void
geometry is explored using sequential Monte Carlo importance sampling and resampling
techniques. We characterize the relationship of geometric properties of voids with chain length,
including probability of void formation, expected number of voids, void size, and wall size of voids.
We formalize the concept of packing density for lattice polymers, and further study the relationship
between packing density and compactness, two parameters frequently used to describe protein
packing. We find that both fully extended and maximally compact polymers have the highest
packing density, but polymers with intermediate compactness have low packing density. To study
the conformational effects of void formation, we characterize the conformational reduction factor of
void formation and found that there are strong end-effect. Voids are more likely to form at the chain
end. The critical exponent of end-effect is twice as large as that of self-contacting loop formation
when existence of voids is not required. We also briefly discuss the sequential Monte Carlo sampling
and resampling techniques used in this study2@?2 American Institute of Physics.
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I. INTRODUCTION nature of voids in simple lattice polymers. Lattice models

have been widely used for studying protein folding, where
Soluble proteins are well-packed, and their packing den: y ying p g

sities may be as high as that of crystalline soficfyet there the.confc.)rmatloqﬂlsépace gf s!mpl|f|ed 'pcl)lymers can b.e ex
are numerous packing defects or voids in protein structures"’}mIned n deta|.. I;)espﬂe |ts. S|.mpI|st|c nature, Igttlcg
whose size distributions are brodd@he volume ¢) and area mod.el has provided |mp9rtant '”?'thslga*ggm proteins, in-
(a) of protein does not scale as~a®2 which would be ~cluding collapse and folding transitions:°~??influence of
expected for models of tight packing. Ratheranda scale ~ Packing on secondary structure formatigri and design-
linearly with each othet.In addition, the scaling of protein ability of lattice structure$?*> However, one drawback is
volume and cluster-raditiss characteristic of random sphere that the lattice model is not well-suited for studying void-
packing. Such scaling behavior indicates that the interior ofelated structural features, such as protein functional sites,
proteins is more like Swiss cheese with many holes thamince it is not easy to model the geometry of voids.
tightly packed jigsaw puzzles. In this article, we first define voids as topological defects
What effects do voids have? Proteins are often very tolang describe a simple algorithm for void detection in the
erant to mutat|0n_§', ~ which may suggest potentially stabi- q_dimensional lattice. We then enumerate exhaustively the
lizing roles _of v0|d§ in prot_ems. VQIdS in prot_eln_s are alsoconformations for alh-polymers up ton=25, and analyze
often associated with protein function. The binding sites of

. ; . . . the relationship of probability of void formation, expected
proteins for substrate catalysis and ligand interactions are potp y P

frequently prominent voids and pockets on proteinPaCkmg dens_|ty, _and cqmpactness, as wel as_ expected wall
structure:° However, the energetic and kinetic effects of interval of void with chain length. To study statistical geom-
maintaining specific voids in proteins are not well under-8try of long chain polymers, we describe a Monte Carlo sam-
stood, and the shape space of voids of folded and unfoldeRling strategy under the framework of Sequential Importance
proteins are largely unknown. Sampling, and introduce the general technique of resam-
In this paper, we examine the details of the statisticapling. The results of simulation of long chain polymers up to
N =200 for several geometric parameters are then presented.
dAuthor to whom correspondence should be addressed. PH@i@355— We further gxplore the Cor_]formatlor? re_qucnon fackorof
1789; Fax:(312)996-5921; electronic mail: jliang@uic.edu void formation, and describe the significant end-effect of
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(b) chain always goes up at the first time it deviates from the
(@) B *roe x-axis. For a chain polymer, two nonbonded mononmrs
+ + + + andn; are intopological contacif they intersect at an edge
'..‘ '..‘ '.E}‘\ that they share. If ;wo monomers share a vert(]ix of a square
’ Foul § \ O:\‘ but not an edge, these two monomers are defined as not in
g contact.
"" "" e When the number of monomaris 8 or more, a polymer
09 +0--0+0 may contain one or more voj[dFig. 1(a)]. We define voids as

topological features of the polymer. The complement space

FIG. 1. Voids of polymers in a square lattice. Unfilled circle represents theZ>— P that is not occupied by the polymér can be parti-

first monomer.(a) A void of size 1 is formed in this 17-metb) The two
monomers encircled shares a vertex but not an edge of a square and are not

in topological contact. The unfilled space contained within the polymer is
regarded as one connected void of size 4.

void formation, as well as the scaling law & and wall
interval of voids. In the final section, we summarize our re-
sults and discuss effective sampling strategy for studying th

conformational space of voids.

Il. LATTICE MODEL AND VOIDS

Lattice polymers are self-avoiding walkSAWS), which
can be obtained from a chain-growth mo#&l?® Specifi-
cally, ann-polymerP on a two-dimensional square lattizé
is formed by monomers; ,i € {1,...N}. The locationx; of a
monomem,; is defined by its coordinates= (g, ,b;), where

72—P=V,UV, -

tioned into disjoint components,

HereV, is the uniqgue component of the complement space
that extends to infinity. We call this theutside The rest of
éhe components that are disjoint or disconnected to each

Other arevoids of the polymer. Because nonbonded mono-
mers intersecting at a vertex are defined as not in contact,
they do not break up the complement space. As an example,

a; and b; are integers. The monomers are connected as a

chain, and the distance between bonded monomeend
Xi+1 is 1. The chain is self-avoiding; # x; for all i #j. We
consider the beginning and the end of a polymer to be di
tinct. Only conformations that are not related by translation,
rotation, and reflection are considered to be distinct. This is

the unfilled space contained within the polymer in Figo)1

is regarded as one connected void of size 4 rather than two
disjoint voids of size 2. This choice is arbitrary, but is con-
sistent with the definition of contact. A simple algorithm for
void detection can be found in the Appendix.

lll. VOID DISTRIBUTION BY EXACT ENUMERATION

. Probability of forming voids and expecte
SA bability of forming void d exp d
number of voids

The number of conformations(n) for ann-polymer up

achieved by following the rule that a chain is always grownto n=25 obtained by exhaustive enumeration is shown in
from the origin, the first step is always to the right, and theTable I. The numbers of conformations for polymers up to

TABLE I. Number of conformations of an-polymer with different number of voids on a square lattice.

n w(n) wo(n) w1(n) wy(N) w3(n) w4(n)
3 2 2 0 0 0 0
4 5 5 0 0 0 0
5 13 13 0 0 0 0
6 36 36 0 0 0 0
7 98 98 0 0 0 0
8 272 270 2 0 0 0
9 740 734 6 0 0 0
10 2034 1993 41 0 0 0
11 5513 5393 120 0 0 0
12 15037 14508 529 0 0 0
13 40617 39078 1536 3 0 0
14 110188 104566 5602 20 0 0
15 296806 280599 16088 119 0 0
16 802075 748335 53149 591 0 0
17 2155667 2002262 151052 2353 0 0
18 5808335 5327888 470386 10051 10 0
19 15582342 14222389 1325590 34287 76 0
20 41889578 37784447 3973361 131298 472 0
21 112212146 100673771 11119456 416239 2680 0
22 301100754 267136710 32479871 1471874 12293 6
23 805570061 710673806 90361878 4479355 54998 24
24 2158326727 1883960171 259195774 14946910 223458 414
25 5768299665 5005591512 717505892 44337381 862748 2132
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N sometimes different wall size¢a) The distribution of the number of ob-
N - K . served different wall sizes for a void depends on the size of the void. Voids
- (c) /‘ o (d) ./' of size 5 have the maximum number of different wall sizgs.The ex-
o & «® @ < ol pected wall size for voids of different size.
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wo o Yol S neighboring two sites of a void must be sharing at least one
. . . ..
= ..T' ’ . s o . . edge of the squares. We exclude voids containing weakly
S 10 15 20 10 15 20 connected sites, where two neighboring sites are connected
N N by only one shared vertd¥ig. 1(b)]. Forv=1, 2, and 3, itis

FIG. 2. Geometric properties of chain polymers by exhaustive enumeratiof€aSy from the geomet_ry of the VOidS_ to see that)
(@) The probability of void formation(b) the expected number of voids =8, 10, and 12, respectively. However, in gené(al) also

contained in a polymefg) the expected void size, arfd) the expected wall depends on the shape of the void. A void of size 4 can have
size of voids. All these parameters increase with chain length. five different shapes. If the void is of the shape of &2
square](4)=12. For the other four shapd¢4)=14.

n=15 are in exact agreement with those reported in Chan For any strongly connect.ed tid' we find that the follow-
and Dill 12 Table | also lists the number of conformations "9 9eneral recurrence refationship i¢v) holds:

wy(n) containingk=1,2,3, or 4 voids. 2, if Agv=3
The probability for a polymer to form one or more voids . B
m, is calculated as W) =l=1)+y 0, i Aov=2,
-1 if Agv=1
_zikzlwk(n)
Ty= w(n) wheredV represents the boundary edges of véidandA sV
) . represents the net gain in the number of boundary edges
The expected number of void for a polymer is introduced by the newly added unoccupied site. Although the
SK wou(n)-k number and explicit shapes of strongly connected voids of
i=1 k( )

n=————. size up to 5 can be found in Ref. 29, there is no general
w(n) . ,
analytical formula known for the number of shapes of a void
As the chain length grows, it is clear that botly andn,  of sizev. This is related to the problem of determining the
increasegFigs. 4a) and 2b)]. number of polyominos or animalgs in percolation theojy
of a given size.
When weakly connected voids are also considered, there
_ o _ are more possible wall sizes for the void. For 22-mer, the
~ The total sizev of voids in a polymer is the sum of the  nmper of different wall sizes observed for a void, strongly
sizes of all voids, namely, the .total nqmper of all unoccupied,, weakly connected, at various size are shown in Fig). 3
squares that are fully contained within the polymer. Let\yigs of size 5 have the largest diversity in wall size. This is
,(n) be the number of conformations afpolymer with ¢ .4 rse due to the fixed chain length. A short chain such as
total void sizev. The expected total void size for the  1a 22_mer has only a small number of ways for forming

B. Void size

n-polymer is large voids. Figure @) shows the average wall size for vari-
_ S,o,N)-v ous void sizes in the 22-mer. The expected or average wall
T en) sizew(n) for a void in ann-polymer can be calculated as

Figure 2c) shows that the expected void sizeincreases

with chain lengthn.

C. Wall size of void

v_v(n)=z W wv,w(n)

> w,(n)

wherev is the void size,w is the wall size of the void,
w, w(n) is the number oih-polymers containing a void of

For a voidV of sizev, what is the required minimum sizev with wall sizew, and w,(n) is the total number of

lengthl (v) for a polymer that can form such a void? Equiva- n-polymers with a void of sizey. Figure Zd) shows that
lently, what is the size of the wall of the polymer containing w(n) increases with chain length. Wall size and void size are
void V? Here we first restrict our discussion to voids formedanalogous to the area and volume of voids in three-
only by strongly connected unoccupied sites, namely, anglimensional space.
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2o [ (a) 2 (b) - packing density 0.92 has the largest numt&v56 75} of
g21 *% g ‘._,..J’;‘o conformations[Fig. 4(b)]. A similar relationship is found
2 A 55 o o among conformations with 2 and 3 voifSig. 4(b)].

x LR} =
g3 \ S™| & & o4
o > 5 & P /+/
E © o 3 |8 4 Fe vas E. Compactness
Q - § g 4 / £ o 2-Voids ) .
g g o 2 3]s ° o Another important parameter that measures the packing
S 10 15 20 06 07 08 09 of the lattice polymer is the number of nonbonded contacts
N Packing Density It is related to theompactnesparametep, defined by Chan
. . 8% S and Dill*? as p=t/t .y, Wheret,,, is the maximum number
2o, (© T - (d) of nonbonded contacts possible for mpolymer. Compact-
[So | Q . . . .
% S ./ .\/’\. N - \ / nessp has been studied extensively in seminal works by
- R S A T e 4 Chan and Dil*2*3! Although p is sometimes correlated
S 8- § g W o 4 / with the compactnesp, these two parameters are distinct.
g g ° oo e & N The relationship between compactness and expected packing
Yo 28 \.T:r./’ v - density for chain polymer of length 14—-22 is shown in Fig.
-l [=] — . .
° 5 10 15 00 02 04 06 08 10 4. For all chain lengths, both maximally compact polymer

Compactness

(p=1) and extended polymep& 0) have maximal packing

density p=1), but polymers with low packing densities
FIG. 4. Packing density and compactness are two useful parameters descrijgye intermediate compactness on average. PolymerSpWith
ing packing of chain polymerga) The expected packing density decreases . .
with chain length.(b) For the 22-mer, the majority of the conformations between 0.4 and 0.6 haVe. |0WeSt packing denglty gnd. there-
with 1-void have a high packing density, namely, the size of the void isfore tend to have larger void size. The explanation is simple.
small. Fewer conformations are found with large voids. The same pattern i&\n extended lattice chain polymer has no voids, it therefore
observed for conformations with 2 and 3 voids) The expected compact- achieves maximal packing density pf= 1. but its compact-
ness fluctuates but in general decreases with chain le@tfihe relation- . . ' o
ship of average packing densityand average compactngs$or the chain nes&‘,p_ is 0. A ”_‘ax"_“a”Y compact p0|ymer Wltb_ 1 also .
polymer of lengthN=14—-22. contains no voids, itp is 1. On the other hand, nonmaxi-
mally compact polymers can have a range of packing densi-
ties.

D. Packing density
An important parameter that describes how effectively!V: OBTAINING VOID STATISTICS FOR LONG CHAIN

atoms fill space is the packing denspy In proteins, it is POLYMERS VIA IMPORTANCE SAMPLING
defined by Richards and co-workers as the amount of the Sequentia| Importance Samp“n@eometrica”y com-

space that is occupied within the van der Waals envelope gflex and interesting features emerge only in polymers of suf-
the molecule, divided by the total volume of space that conficient length, which are not accessible for analysis by ex-
tains the molecul™ It has been widely used by protein haustive enumeration, due to the fact that the number of
chemists as a parameter for characterizing protein folding.possible SAWSs increases exponentially with the chain length.
Following this original definition, the packing densityfor ~ Monte Carlo methods are often used to generate samples
the lattice polymer is from all possible conformations and obtain estimates of fea-
ture statistics using those samples. However, when chain
length becomes large, the direct generation of the SAWSs us-
ing the rejection method.e., generate random walks on the
lattice and only accept those that are self-avoigingm the
uniform distribution of all possible SAWs becomes difficult.
The success rat®, of generating SAWs decreases exponen-
tially, sy~Zy/(4%x3N71). For N=48, sy is only 0.79%
To overcome this attrition problem, a widely used approach
is the Rosenbluth Monte Carlo method of biased sampfing.
The task is to grow one more monomer far-polymer chain
The scaling ofp(n) with the chain lengthn decreases that has been successfully grown from 1 monomer dfter
roughly linearly betweem=7 andn=22[Figure 4a)]. Be- —1 successive steps without self-crossing, ubtln, the
cause it takes at least two additional monomers to increasargeted chain length. In this method, the placement of the
the size of a void by ong(n) decreases only whemis an  (t+1)th monomer is determined by the current conforma-
odd number for short chains. tion of the polymer. If there are; unoccupied neighbors for
Although voids are packing defects, most conformationghe tth monomer, we then randomi{with equal probability
with voids have high packing density, namely, the total sizeset the {+1)th monomer to any one of thg sites. How-
of the voids is small. Among all conformations of the 22-merever, the resulting sample is biased toward more compact
containing one void, the number of conformations increasesonformations and does not follow the uniform distribution.
monotonically with packing density. The lowest packing Hence each sample is assigned a “weight” to adjust for this
density 0.52 has only 11 conformations, whereas the highestias. Any statistic can then be obtained from weighted aver-

p=n/(n+v),

when an-polymer has a total void size of.
The expected packing densify(n) for an n-polymer

can be calculated as
wp(n)
w(n)’

H(n)=% p-

where w(n) is the number of all conformations of-mer,
wp(n) is the number oh-mers with packing density gb.
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age of the samples. In the case of the Rosenbluth chaig. (X;.1|X; %) is the uniform distribution among all

growth method, the weight is computed recursivelyvas
=ntWt_1.

n.(x4,"**,X;) unoccupied neighboring sites of the last mono-
merx;, and the weight function is

Liu and Cheri® provided a general framework of Se-
guential Monte Carlo(SMC) methods which extend the Xe)-
Rosenbluth method to more general setting. Sophisticatedhen there is no unoccupied neighboring sites
but more flexible and effective algorithms can be developedn,(x,,... x)=0), there is no place to place thé+1)th
under this framework. In the context of growing polymer, monomer. In this case, the chain runs into a dead end and we
SMC can be formulated as follows. Lexy(...,x;) be the declare the conformatiotiead with weight assigned to be 0.
position of thet monomers in a chain of length Let |n the case of Rosenbluth method, no resampling is used.
m1(X1),72(X1,X2), .. (X1, X;) be a sequence dhrget Similarly, the k-step look ahead algorithth®® chooses
distributions, withm (X, ... Xn) = mn(Xy,... X,) being the fi- 7. 1(x;,...X+1) being the marginal distribution of
nal objective distribution from which we wish to draw infer- 7%, (x,,....x.,,), the uniform distribution of all SAWs of
ence from. Letg,, 1(X;+1/X1,...%;) be a sequence dfial  |ength t+k. Hence m,, is closer to the final objective
distributions which dictates the growing of the polymer. distribution—the uniform distribution of all SAWs of length

W(Xq,eee Xp s Xgp 1) =W(Xq o X)N1(Xq - -

Then we have: n. Specifically,
Eroced(l]l)re SEAC (n) T 1(Xe, oo Xes 1)
raw xy’, j=1,...m from 9(1_§X1) " 0
Set the incremental weighty’ = 7, (x}’)/g1(x}") _ N
for t=1to n—1 _Xt+22'><t+k Terk(X0r o Xer 1 Xt 200 X4 k)
for j=1to m

/I Sampling for the (t+1)th monomer for the FNK(Xg,ee Xer 1),
jth sample wheren,(xy,... X, 1) is the total number of SAWs of length

Draw positionx)); from g, 1 (X, 1|x{- - -x{1)

t+k “grown” from ( Xq,...X11) [i-e., with the first (+1)
positions at Xq,...X+1)-] In the k-step look-ahead algo-

rithm, the sampling distribution is

/I Compute the incremental weight.

1 O X))

ugl;r)lH Ni(Xq, .-« X ,X)

Mis1(Xq e Xp)

It chooses the next position according to what will hapgen
steps later. Namely, the probability of placing the 1th

ar(X¢ - x() - g (x{ X x{) Gtr 1 (Xes 1=X|Xq, - X) =

wil i —ul; - w

endfor monomer ak is determined by the ratio of the total number
Resampling of SAWSs of lengtht+k grown from ,,...X;,X) and the
endfor total number of SAWSs of the same lengttt k grown from

At the end, the configurations of successfully generate®n® Step earlieng,...,x,). The corresponding weight func-

polymers {(x{,... X))}, and their associated weights 1" IS
{Wﬁ”}}“:l can be used to estimate any properties of the poly- N(Xq e Xes 1)
mers, such as expected void size, compactness, and packing W(X,... X¢,Xt41) = O X 1)
density. That is, the objective inference uy N(Xgs e Xg) - L
=E_[h(X;,...X,)] is estimated with M 1(Xq,5 00 Xe)
S RO x4 - wl) M (Xg, X0
fn= , (1) N(Xq,. 0 Xe)

Em=1W$1J)
Although it has higher computational cost, it usually pro-
for any integrable functiof of interests. duces better inference on the final objective distribution, with

The critical choices that affect the effectiveness of theless “dead” conformations. The standard Rosenbluth algo-
SMC method argl) the approximating target distribution rithm is a 1-step look ahead algorithm.
(X1 X)), (2) the sampling distribution To compare geometric properties estimated from sequen-
Ot+1(Xt11/X1" %), and (3) the resampling scheme. In this tial Monte Carlo method and those obtained by exhaust enu-
study, we are interested in sampling from the uniform distri-meration, we examine the expected number of voids and
bution 7,(x;---x,) of all geometrically feasible conforma- expected void size for polymer of chain length 14—-22. Fig-
tions of lengthn, which we call the final objective distribu- ure 5 shows that sequential Monte Carlo can provide very
tion. It can also be chosen to be the Boltzmann distributioraccurate estimation of these geometric properties of voids.
when energy function such as the HP mot&}3®is intro-  Here 2-step look ahead is used, with Monte Carlo sample
duced. size of 100 000 and no resampling is applied.

The Rosenbluth methdflis a special case of SMC. Its The resampling step is one of the key ingredients of the
target distributionsr,(x;- - -x,) is the uniform distribution of SMC method®**" There are many cases where resampling is
all SAWs of length t. Its sampling distribution beneficial. First, note that it is unavoidable to have some
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The method of pruning and enriching of Grassbeltjsr

E Zi@ ,,/*""/ 3 (b) /«w/ a special case of the residual sampling, wit' =0 for the
£ /a»/m g 5 Ve k chains with zero weightdead conformations o/ =2 for
3° 5 3. o the topk chains with largest weights, and!) =1 for the rest
g% et R fiaustve| 8 S n/.-,/"‘“/ R figausive of the chains. Residual sampling on this setaofs com-
I} w s

pletely deterministic. The resulting sample consists of two
copies of the togk conformationgeach of them having half

FIG. 5. Geometric properties obtained by enumeration and by Monte Carlcg)]c their original weight and one copy of the middis— 2k
sampling are identical for polymers of chain length 9-@2 The expected ~ Chains with their original weight. Thke dead conformations
number of voids, andb) the expected size of voids. Two-step look-ahead gre removed.
sequential Monte Carlo sampling is used, and the sample size is 100 000. In our study of the relationship between compactness
and packing density, we use a more flexible resampling
dead conformations during the growth. These chains need tmethod. Our focus is on the packing density among all con-
be replaced to maintain sufficient Monte Carlo sample sizeformations within certain range of compactness. In this case,
Second, the weight of some chains may become so relativelyur object target distribution is the uniform distribution
small that their contribution in the weighted averdd®. among all possible SAW’s with compactness measure falling
(1)] is negligible. When the variance of the weights is large,within a certain interval, i.e., a truncated distribution. Al-
the effective Monte Carlo sample sibecomes smaft*"**  though compactness changes slowly as the chain grows, to
Third, for a specific functiorh, its value may become t0o grow into a long chain it is possible that the compactness of
small (even zerp for some sampled conformations. In all 5 chain evolve and cover a wide range during growth. Hence
these cases, efficiency can be gained by replacing those cofs choose the uniform distribution of all possible SAWs of
formations with “better” ones. This procedure is called “re- |gngtht as our target distribution at and only select those
sampling.” There are many d|fferegnt ways to do resamplingith the desired compactness at the end for our estimation of
One approach isejection controf*® which regenerates the ne nacking density. In order to have larger number of usable
replacemgnt conformr?ltlpns from scratch. An easier approacghmples(i.e., to achieve better acceptance yatethe end,
is to duplicate the existing angood conformationg’. Spe- we encourage growth of chains with desirable compactness

cifically, through resampling. Specifically,
Procedure RESAMPLING

s . Procedure RESAMPLING (m,d,c;)
/Im: number of original samples.

//{(X(j) X(j)) w™ - original properly weighted /l m: Monte Carlo sample size, d: steps of looking-back.
sam;lJIés e =1 Il c,: targeting compactness.
for j=1to m k«—number of dead conformations.
Set resampling probability gfth conformatione o) Divide m—k samples randomly int& groups.
endfor for groupi=1to k
for *j=1to m Find conformations not picked in previodssteps.

/IPick the best conformation P;, for example
P;«—polymer with mirc—cj
Replace one ok dead conformations witR,
Assign both copies oP; half its original weight.
endfor

Draw * jth sample from original samples
{4, xIMHM | with probabilitiese{a W},
/[Each sample in the newly formed sample is as-
signed a new weight.
/% j-th chain in new sample is a copy of k-th chain in
original sample.
w1 w0 gk
endfor

Here d is used to maintain higher diversity for resampled
conformations.

Most polymers sampled by sequential Monte Carlo with

In the resampling step, them new samples two step look-ahead but no resampling are well-extended
{(X(l*j) ,...,xﬁ*j)}}ll can be obtained either by residual with few \(oids, as shown in Figs.(@ and Gp). In Fig. §(b),
sampling or by simple random sampling. In residual samiN€ majority of the conformations have a higher packing den-
pling, we first obtain the normalized probabilitiz()  Sity. They have small compactness@.5) and large packing
=aW/=a®. Then[ma®] copies of thejth sample are density. There are not enough compact conformations. As a
made deterministically foj=1,...m. For the remainingn  result, a small number of samples are accepted at the end
—3[ma)] samples to be made, we randomly sample fromwhose compactness falls within the desired interval of higher
the origina| set with probab”r[y proportiona| tmn'a(J) than 0.5. By USing the resampling step described above, we
—[mai]. were able to generate more samples near the desired com-

The choice of resampling probability proportionaltf)  pactness value of 0[6-ig. 6(c)]. Figure @c) is a pure histo-
is problem specific. For general functitn such as the end- gram of compactness in the observed samples, without re-
to-end extensiofix,— x4/, it is common to usex=w{").  garding the weight of the samples. Here resampling is
In this case, all the samples in the new set have equal weighapplied at each sequential Monte Carlo growth step. Figure
When the function is irregular, a carefully chosen set:8t  6(d) shows that the resampling technique is also very effec-
will increase the efficiency significantly. tive in shifting the samples to small packing density values,
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FIG. 6. The distribution of configurations of polymers obtained by the se-
guential Monte Carlo method can be adjusted by resamplaxddistogram
of conformations at different compactnesses generated without resampling.
The compactness of the majority of the conformations is less thar(l).5.
Histogram of conformations at different packing density generated without
resampling. The number of conformations with packing density below 0.8 is -
small. (c) After applying the resampling technique favoring compactness of
0.6, the majority of the conformations have compactness between 0.5 and
0.6.(d) Resampling can also be applied to generate conformations with low
packing densities with voids. Sample size of 100 000 is used in all calcula- . . . . i .
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FIG. 7. Geometric properties of lattice polymers of different lengths, esti-
hence improve the inferences. Here resampling favoring |0Wmated by the sequential Monte Carlo method with the 2-step look-ahead and

Ki d L lied h resampling techniqueéa) The probability of void formation increases with
est packing density is applied every 5 growth steps. chain length. Standard deviatior<g.5x 10" %) increases slowly with the

length. The expected number of voi@gandard deviations: 1.6x 1072) (b)
and wall size(standard deviations<0.25 (c) are linearly correlated with
V. VOID DISTRIBUTION OF LONG CHAINS chain length(d) The expected void size increases with chain ler(gtan-
dard deviations<8.3x107%). (e) The expected packing density decreases
We apply the techniques of sequential Monte Carlo withwith chain length(standard deviations: 7.5x 10~4). (f) The expected com-

resampling to study the statistical geometry of voids in longpactness decreases with chain length and reaches an asymptotic value of
chain polymers. Each Monte Carlo simulation starts with a=0-18(standard deviations5.7x10").

sample size of 200000, and we take the averaged values of

20 simulations. Resampling is carried out every 5 steps in the

process of the chain growth. FiguréYshows that the prob-

ability of void formation increases with the chain length. At To explore the relationship of packing densjtyand
chain length 105-110, about half of the conformations conecompactnesg, we use sequential Monte Carlo with 2-step
tain voids. At chain length 200, the standard deviation (8.900k-ahead to sample 200000 conformations, each with an
x10"3) is maximum. The expected number of voiddg.  appropriate weight assigned. This is repeated 20 times, and
7(b)] increases linearly with chain length. Similar linear scal-the weighted average values of the packing density at various
ing behavior is also observed in protefishe expected wall compactness for chains with 60—100 monomers are plotted
size of void and void size also increase with chain length(Fig. 8). The compactness value corresponding to the mini-
[Figs. 7c) and Fig. 7d)]. The expected packing density is mum packing density seems to have shifted from 0.462 for
found to decrease with chain length, which is consistent withthe 22-mer by enumeration to above 0.5 for the 100-mer as
the scaling relationship of void size and chain length showrobtained by sampling. However, the overall patterpaind

in Fig. 7(d). The compactness of chain polymer has been p found by Monte Carlo is very similar to the pattern found
the subject of several studi&s?*! The asymptotic value g by enumeration for polymers withN<22 [Fig. 4(d)]. Data

we found is 0.18, slightly different from that reported in Ref. shown in Figs. 8 and (d) are not redundant. Rather, they
41 (p=0.16), and is within the range of 0.16—0.24 reportedcomplement each other and together provide a full picture of
in Ref. 12. Different resampling strategies are applied wher¢he relationship ofp and p for chain length betweemN
dead conformations are removed and other conformations 14—22 and\=30-100. The lowest packing densiby,

with the targeted property is duplicated. Resampling favor®of these lattice polymers occur at compactnpgss0.525.
conformations with small radius-of-gyration in Figsa# However, an accurate estimation of the value of asymptotic
7(e), and conformations with large weight in Fig(f¥ Pmin @sN— o0 requires simulation of longer chains.
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FIG. 8. The relationship of expected packing density and compactness for

the long chain polymer. These data are estimated by the sequential Monﬁ- . . .
Carlo method using the 2-step look-ahead and a sample size of 2 imilar end effects of void formation are also observed for

% 200 000 with resampling. Resampling is designed to favor compactness 41€ 50-mer sampled by sequential Monte C4Ri. 10b)].
specified values. The expected packing density calculated by averaging froBecause the exact total number of conformations of the 50-
the 20 runs hgs the largest standard deviations for the 100-mer, which ajgar o(50) is unknown, we plot the value & constant,
shown in the figure. where constant is common to all data points at different start-
ing positions and wall intervals. Our interest is hdw
The accuracy of geometric properties of long chain poly-changes its relative values.
mers estimated by Monte Carlo can be assessed by the stan- The end-effect of voids has the same origin as the end-
dard deviation obtained from multiple Monte Carlo runs.  effect of self-contact, which has been extensively studied by
Chan and Dil:*#*31Because of the effect of excluded vol-
VI. END EFFECTS OF VOID FORMATION ume, sterically it is less hindering to form a void at the end

of a polymer. When a void is formed, the conformational
What is the effect of void formation on the size of con- poly

formational space? We consider the conformational reduc-
tion factor of voids. Following Refs. 12, 23, 31, we define

[=]
the conformational reduction factor due to the constraintofa 8 |, @) RN ® o,
void as S o k7 ] A k=11
=g PN BEE o ki1
R(n;i jy= 2L 2 e o ko2
w(n) S | \ﬁ\ﬂ— ) A—O0—O S &2222222222222222200
wherew(n;i,j) is the number of conformations that contains §- ‘ \T—g . ‘ Z Wﬁw ;
a void beginning at monomei)( and ending at monomer 2 4 6 8 5 10 15 20
(j), and w(n) is the total number of conformations of Start Position of Void Start Fosition of Void
n-polymers. R(n;i,j) reflects the restriction of conforma- 2 ©
tional space due to the formation of a void with wall interval 31°a%00 8 oep o
of k=|i—j|. Figure 9a) shows a 24-mer with one void that € | OAOE’%
starts ati=4 andk=19. Unlike self-contacts or self-loops, £ 5| o IR
which was subject of detailed studies by Chan and = 2 ]o L1 N
Dill, 22331 3| conformations analyzed here must contain a ©~ o {25 a4
void. The polymer shown in Fig.(B) with a large loop has ?.)-'3 :;?o ] .

no void, and such polymers do not contribute to the numera- 5 20 25
tor of R. Wall Interval k

Flgur(:j‘ 109) Sh‘?WS the_ reduction f.aCtCR Cal_cmateq by FIG. 10. The end-effect of void formation on conformational reductieh.
enumeration for voids at different starting positions with wall conformational reduction factd® when voids are formed in a 22-chain as
intervals k=7, 9, and 11. There are clearly strong end-examined by enumeratioR depends on the starting position and the wall
effects: The reduction factor of voids of the same wall inter-interval of void. (b) Conformational reduction factd® up to a normalizing

ld d here the void is | tBcdecr rapidl constant when voids are formed in a 50-chain as sampled by sequential
va eper! S onwhere the void Is loca : ecreases rap ; y Monte Carlo(standard deviations<6.2). (c) Scaling of conformational re-
as the void moves from the end of chain towards the middlegyction factorR and the wall intervak at different initiation positiorL. for

Void formation is much more preferred at the end of chain.50-chain(standard deviations:6.4).

-
o
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space of th&k+1 monomers between monomieandj, as the expected number of voids,, the expected void size,
well as the two tails become restricted. When the void isthe expected wall size of voids, packing densityp, and the
formed at the chain end, only one tail is subject to confor-expected compactneps Our results show that for chains of
mational restriction. >105-110 monomers, at least half of the conformations
Void formation is different from self-contact. When contain a void. At about 150 monomers, there will be at least
monomeri andj form self-contact, it may involve the for- one void expected in a polymer. The expected wall size scale
mation of a void, but it is also possible that there will be nolinearly with the chain length, and about 10% of the mono-
unfilled space betweenandj. When a void is formed be- mers participate in the formation of voids. We formalize the
ginning at monomer and ending at monomef, some concept of the packing density for lattice polymers. We
monomers betweenandj will have unsatisfied contact in- found that both the packing density and compactness de-
teractions. Self-contacting loops have been analyzed in prerease with chain length. The asymptotic value of compact-
vious theoretical studié&** which have been confirmed by nessp is estimated to be 0.18.
exhaustive enumeratidi>! An important study of the role We have also characterized the relationship of packing
of loop formation in understanding the disulfide bond anddensity and compactness, which are two parameters that
protein folding can be found in Ref. 44. Compared to non-have been used frequently for studying protein packing. Our
bonded self-contact, the effect of conformational reduction igesults indicate that packing density reaches minimum values
more pronounced for void formation. For the two- petween compactness 0.4—0.6. The effects of voids are stud-
dimensional lattice, the ratios between reduction factors ofed by analyzing the conformational reduction facRrof
self-contact at chain end and mid-chain of a sufficiently longyoid formation. We found that there is a significant end-
polymer are 1.3, 1.4, 1.5, and 1.6 f&=3, 5,7, and 9, effect for void formation; the ratio oR at chain end and at
respectivel?> whereas the ratios for voids at the chain endmidchain may be twice as large as that of Rdactor for
and the symmetric midpoint of thid=22 polymer are 3.4, contact loops, where the formation of voids is not required.

4.0, and 4.4. fok=7, 9, and 11. In this study, we have applied sequential Monte Carlo
We now consider the power-law dependence ofsampling and resamplingMC) techniques to study the sta-
R(N;i,j) on the wall intervalk=|i—j[. In the study by tistical geometry of voids. SMC is essential for exploring the
Chan and Dilf* the scaling exponent of the reduction  geometry of long chain polymers. The origin of SMC can be
factor R and loop lengthk=i—j| for R(N:i,j)~k™" is  traced back to the work of Rosenbluth and Roseniiith,

found to be dependent both &rand the location of the cycle  \yhere the idea of placing the current monomer with prob-
in the chain. The values of for self-contact range from 1.6 apility dictated by the outcome of future steps was first for-
whenk=N to 2.4 when the loop is in the middle of & long mylated. Grassberger was the first to apply the technique of
chain with two long tails. Because void formation involves atresampling by weight to grow the chain polynidindepen-
least 8 monomers, its scaling behavior is less amenable {@ently, Liu and Chen provided the general framework of Se-
exhaust enumeration, and application of Monte Carlo samgyential Monte Carlo, which unifies for the first time the
p_Ilng is essentlgl. Based_on _estlmatlons from Monte Ca”Qechniques of delayed samplitipok-ahead of future steps
simulation of void formation in the 50-mer, the value ®f  gnqg resampling by arbitrary statistical property. Although
depends on the void initiation positiép from the end of the gpmc  has  had many applications in science and
polymer chain.v ranges from 1.40.2 for lo=1 t0 3.0  gpgineering® we report in this paper the first application of
+0.2 forlo=8 [Fig. 10(c)]. Our results show that the scaling g\ c for sampling a variety of rare events in growing poly-
exponent oR with k:|'__1| for void formation is similar o ers specifically, we make concrete novel applications of
that of the self-contacting loop. This scaling exponent alsasyic in sampling rare conformations with the prescribed
depends on the location of the void. The exponer® esti-  \aue of radius of gyration and compactness. Because the
mated from the nonlinear least square regression fit of th@eneral framework of the SMC has not been described be-
data using the Gauss—Newton algorithm as implemented iy e for growing chain polymer, we also provide in this pub-
the GNU package R. A cautionary note is that the estimation..+ion details of the validation of the method.

of standard error ofv is accurate asymptotically only for — geqyential Monte Carlo allows the generation of an in-
large sample§; and therefore maybe overly optimistic in 0Ur eaced number of conformations with a variety of interest-

case, where the number of data points is very small. Af, . characteristics. For example, we can replace dead con-
accurate est!matlon of co_nﬁdgnce interval offor small formations with existing conformations of highest weight, or
sample nonlinear regression is beyond the scope of thléonformations with highest compactness, or with the small-
work. est radius of gyration. Figure 6 provided examples where the
distribution of conformations of polymers obtained by SMC
can be adjusted by resampling. In Fig. 11, we further elabo-
In this work, we have studied the statistical geometry ofrate on the general flexibility of SMC for sampling that tar-
voids as topological features in two-dimensional lattice chairgets on a variety of statistical properties, as well as the im-
polymers. We define voids as unfilled space fully containedhortant fact that SMC maintains properly weighted samples,
within the polymer, and have developed a simple algorithmwhich is essential for any statistical inference.
for its detection. We have explored the relationship of vari-  Figure 11a) shows the histograms of conformations of
ous statistical geometric properties with the chain length ofL00-mer at different packing density generated without resa-
the polymer, including the probability of void formatiar), , mpling. Figure 11c) shows the histograms of conformations

VII. CONCLUSION
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y sample conformation. This is necessary because we need to

28 2 o : b .
£ g7 ," @ £ 81 b ® estimate the expected values of the parameter such as pack-
Eg] &% £ ,\ ing density and void size under the target distribution of all
§ ¥ | Do § = : geometrically feasible conformations. In Fig.(a1 where
5 g 5 ¥ I each of the 100 000 starting conformations is generated by a
§ i ¢ g § 132 .'\ two-step look-ahead without resampling, not every confor-
ol N C L —— mation is generated with the same probability and therefore
" O.ZC::pac(:fessOB " 00 02 C::pac‘ifesso's 10 is assigned a different weight accordingly. Figure(hll
shows the weight-adjusted histogram, which is indicative of
2 % a ©| 23 & (d) the probability density function at different compactness for
271 5% weight £ 3] TH‘ weight the population of all geometrically feasible 100-mers. Figure
g % : B 3 P g 17 L 3 P 11(d) shows that when weights are incorporated and the area
S o ; % S v of the histogram normalized to the final number of surviving
=k i S 5 g - 1 conformations, the weighted distributions of conformations
2 "j N\ E 3 F X using different resampling techniques have excellent agree-
e O P —— ment with the weighted distribution when no resampling is
00 02 04 06 08 1.0 00 02 04 06 08 1.0

Compactness Compactness used[Fig. 11(b)]. All weighted histograms are nor_rr!alized S0
the total area equals to the total number of surviving confor-
FIG. 11. Histograms of conformations of 100-mers generated by sequentighations reaching 100-mer. This example shows that by in-

Monte Carlo with and without resampling at different compactn@dilis- -4 grating weights, the target distributions can be faithfully
togram of conformations at different compactness generated without resam-

pling. (b) Weighted histogram of conformations generated without resam-"€CoOvered even When. the sampling is Very.bia.SEd-

pling, which is proportional to the distribution of all geometrically feasible Although sequential Monte Carlo sampling is very effec-

100-mers.(c) Histograms of conformations at different compactness whentjye the estimation of parameters associated with rare events

resampling is appliedd) The weighted histograms of conformations under . e : . _

different resampling are in excellent agreement with each other and Witk{emam dlfflcu,lt' In Flg. 10 Wh_ere the .cor'1f9'rm'at|onal rgduc

that when no resampling is applied. tion factor R is plotted at various void initiation positions
and wall interval lengths, voids starting at position 1 but with
odd wall intervals ke{11,13. ..,25) are much rarer, and

when resampling by weight and resampling by compactnes% is unlikely that sequential Monte Carlo sampling with lim-

p are used. To resample by weight, dead conformations aljéed sample size can provi(_je a.Iarge enough effective sample
replaced with conformations of the highest weight. To resa-s"f]e fc|)?r ,t\lhe .acwcl?[%te estimation of scaling parameters
mple by compactness, dead conformations are replaced withf elre th(' ’I,tj)dw ' int ted in the statisti f void
conformations of the lowest compactness. Note that the total n this study, we are Interested in tne statistics of vol
number of surviving conformations that reach a chain Iengﬂgeometry, and our ta}rget distribution 'S the umform d|§tr|bu-
of 100 is much higher than without resampling. ResamplingIIOn of all conformatlons .Of Iengtl_m. With the introduction

by compactness generates many more conformations witﬂf an appropriate potential ft{g‘,g“o” and alphabet of mono-
higher compactness. In Figs. (&l and 11d), resampling is mers S_UCh as the HP mod&f***we can study the ther_mo-
applied to every step of the chain growth process. UnIikedynam'CS' kln(_etlcs, and sequence degeneracy of chain poly-
Fig. 6(d), where resampling favors the compactness value ofers when. VO'.dS are .formed n polymers. In these cases, our
p=0.6, resampling in Fig. 1&) favors samples with the target distributions will be chain polymers under the Boltz-
highés:[ value of compactn.e;as Other resampling schemes mann distribution derived from the corresponding potential
are possible, e.g., resampling by radius-of-gyration, by packf-unCt'OnS'
ing density. During resampling, the numberof dead con-
formations at each step of growth is identified and these ar@CKNOWLEDGMENTS

replaced with conformations of interest frdarandomly di- This work is supported by funding from National Sci-

vided groups. These conformations must have not been resgr-« Foundation DMS 9982846. CMS 9980599 DMS

mpled in the previous four steps of the growth process 1073601, DBIO078270, and MCB998008, and American
maintain sample diversity. Both histograms where resamehemical Society/Petroleum Research Fund.

pling is used deviate from that of Fig. (Hl. Resampling by

weight shifts the peak of the conformations to below 0.2, and

resampling by compactness turns the histogram into pi2PPENDIX: VOIDS DETECTION IN

. .. TWO-DIMENSIONAL LATTICE POLYMER
modal. The latter produces a lot more conformations with
compactnesp>0.4. To detect voids in a polymer, we use a simple search

SMC sampling and resampling use biased samples sinaeethod. For arh X | lattice, we start from the lower-left cor-
conformations are generated with a probability differentner. Once we found an unoccupied site we use the
from that of the target distribution. The bias is dictated by thebreadth-first-searctBFS) method to identify all other unoc-
different method of resampling and different choices of thecupied sites that are connected to site These sites are
number of steps of look-ahead in sequential Monte Carlo. Argrouped together and marked as “visited.” Collectively they
essential component of a successful biased Monte Carlepresent one void in the lattice. We continue this process
sampling is the appropriate weight assignment to eachintil all unoccupied sites are marked as visited:
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Algorithm VoOIDDETECTION (lattice, |)
v =0 // Number of voids

for i=1to |
for j=1to |
if site (i,j) is unoccupied and not visited
v—v+1
Mark (i,j) as visited.
BREADTHFIRSTSEARCH(lattice, (i,]))
Update the size o¥oid (i,j)
endif
endfor
endfor
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