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Statistical geometry of packing defects of lattice chain polymer
from enumeration and sequential Monte Carlo method
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Voids exist in proteins as packing defects and are often associated with protein functions. We study
the statistical geometry of voids in two-dimensional lattice chain polymers. We define voids as
topological features and develop a simple algorithm for their detection. For short chains, void
geometry is examined by enumerating all conformations. For long chains, the space of void
geometry is explored using sequential Monte Carlo importance sampling and resampling
techniques. We characterize the relationship of geometric properties of voids with chain length,
including probability of void formation, expected number of voids, void size, and wall size of voids.
We formalize the concept of packing density for lattice polymers, and further study the relationship
between packing density and compactness, two parameters frequently used to describe protein
packing. We find that both fully extended and maximally compact polymers have the highest
packing density, but polymers with intermediate compactness have low packing density. To study
the conformational effects of void formation, we characterize the conformational reduction factor of
void formation and found that there are strong end-effect. Voids are more likely to form at the chain
end. The critical exponent of end-effect is twice as large as that of self-contacting loop formation
when existence of voids is not required. We also briefly discuss the sequential Monte Carlo sampling
and resampling techniques used in this study. ©2002 American Institute of Physics.
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I. INTRODUCTION

Soluble proteins are well-packed, and their packing d
sities may be as high as that of crystalline solids.1–3Yet there
are numerous packing defects or voids in protein structu
whose size distributions are broad.4 The volume (v) and area
(a) of protein does not scale asv'a3/2, which would be
expected for models of tight packing. Rather,v anda scale
linearly with each other.4 In addition, the scaling of protein
volume and cluster-radius5 is characteristic of random sphe
packing. Such scaling behavior indicates that the interio
proteins is more like Swiss cheese with many holes t
tightly packed jigsaw puzzles.4

What effects do voids have? Proteins are often very
erant to mutations,3,6–8 which may suggest potentially stab
lizing roles of voids in proteins. Voids in proteins are al
often associated with protein function. The binding sites
proteins for substrate catalysis and ligand interactions
frequently prominent voids and pockets on prote
structures.9,10 However, the energetic and kinetic effects
maintaining specific voids in proteins are not well und
stood, and the shape space of voids of folded and unfo
proteins are largely unknown.

In this paper, we examine the details of the statisti

a!Author to whom correspondence should be addressed. Phone:~312!355–
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nature of voids in simple lattice polymers. Lattice mode
have been widely used for studying protein folding, whe
the conformational space of simplified polymers can be
amined in detail.11–18 Despite its simplistic nature, lattice
model has provided important insights about proteins,
cluding collapse and folding transitions,17,19–22 influence of
packing on secondary structure formation,12,23 and design-
ability of lattice structures.24,25 However, one drawback is
that the lattice model is not well-suited for studying voi
related structural features, such as protein functional s
since it is not easy to model the geometry of voids.

In this article, we first define voids as topological defec
and describe a simple algorithm for void detection in t
two-dimensional lattice. We then enumerate exhaustively
conformations for alln-polymers up ton525, and analyze
the relationship of probability of void formation, expecte
packing density, and compactness, as well as expected
interval of void with chain length. To study statistical geom
etry of long chain polymers, we describe a Monte Carlo sa
pling strategy under the framework of Sequential Importan
Sampling, and introduce the general technique of res
pling. The results of simulation of long chain polymers up
N5200 for several geometric parameters are then presen
We further explore the conformation reduction factorR of
void formation, and describe the significant end-effect
1 © 2002 American Institute of Physics
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void formation, as well as the scaling law ofR and wall
interval of voids. In the final section, we summarize our
sults and discuss effective sampling strategy for studying
conformational space of voids.

II. LATTICE MODEL AND VOIDS

Lattice polymers are self-avoiding walks~SAWs!, which
can be obtained from a chain-growth model.26–28 Specifi-
cally, ann-polymerP on a two-dimensional square latticeZ2

is formed by monomersni ,i P$1,...,N%. The locationxi of a
monomerni is defined by its coordinatesxi5(ai ,bi), where
ai and bi are integers. The monomers are connected a
chain, and the distance between bonded monomersxi and
xi 11 is 1. The chain is self-avoiding:xiÞxj for all iÞ j . We
consider the beginning and the end of a polymer to be
tinct. Only conformations that are not related by translati
rotation, and reflection are considered to be distinct. Thi
achieved by following the rule that a chain is always gro
from the origin, the first step is always to the right, and t

FIG. 1. Voids of polymers in a square lattice. Unfilled circle represents
first monomer.~a! A void of size 1 is formed in this 17-mer.~b! The two
monomers encircled shares a vertex but not an edge of a square and a
in topological contact. The unfilled space contained within the polyme
regarded as one connected void of size 4.
-
e

a

s-
,
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chain always goes up at the first time it deviates from
x-axis. For a chain polymer, two nonbonded monomersni

andnj are in topological contactif they intersect at an edge
that they share. If two monomers share a vertex of a squ
but not an edge, these two monomers are defined as n
contact.

When the number of monomern is 8 or more, a polymer
may contain one or more void@Fig. 1~a!#. We define voids as
topological features of the polymer. The complement sp
Z22P that is not occupied by the polymerP can be parti-
tioned into disjoint components,

Z22P5V0ø̇V1 ¯ø̇Vk .

Here V0 is the unique component of the complement spa
that extends to infinity. We call this theoutside. The rest of
the components that are disjoint or disconnected to e
other arevoids of the polymer. Because nonbonded mon
mers intersecting at a vertex are defined as not in cont
they do not break up the complement space. As an exam
the unfilled space contained within the polymer in Fig. 1~b!
is regarded as one connected void of size 4 rather than
disjoint voids of size 2. This choice is arbitrary, but is co
sistent with the definition of contact. A simple algorithm fo
void detection can be found in the Appendix.

III. VOID DISTRIBUTION BY EXACT ENUMERATION

A. Probability of forming voids and expected
number of voids

The number of conformationsv(n) for ann-polymer up
to n525 obtained by exhaustive enumeration is shown
Table I. The numbers of conformations for polymers up

e

not
s

4
2

TABLE I. Number of conformations of ann-polymer with different number of voids on a square lattice.

n v(n) v0(n) v1(n) v2(n) v3(n) v4(n)

3 2 2 0 0 0 0
4 5 5 0 0 0 0
5 13 13 0 0 0 0
6 36 36 0 0 0 0
7 98 98 0 0 0 0
8 272 270 2 0 0 0
9 740 734 6 0 0 0

10 2034 1993 41 0 0 0
11 5513 5393 120 0 0 0
12 15037 14508 529 0 0 0
13 40617 39078 1536 3 0 0
14 110188 104566 5602 20 0 0
15 296806 280599 16088 119 0 0
16 802075 748335 53149 591 0 0
17 2155667 2002262 151052 2353 0 0
18 5808335 5327888 470386 10051 10 0
19 15582342 14222389 1325590 34287 76 0
20 41889578 37784447 3973361 131298 472 0
21 112212146 100673771 11119456 416239 2680 0
22 301100754 267136710 32479871 1471874 12293 6
23 805570061 710673806 90361878 4479355 54998 24
24 2158326727 1883960171 259195774 14946910 223458 41
25 5768299665 5005591512 717505892 44337381 862748 213
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n515 are in exact agreement with those reported in C
and Dill.12 Table I also lists the number of conformation
vk(n) containingk51,2,3, or 4 voids.

The probability for a polymer to form one or more void
pv is calculated as

pv5
( i 51

k vk~n!

v~n!
.

The expected number of voidsn̄v for a polymer is

n̄v5
( i 51

k vk~n!•k

v~n!
.

As the chain length grows, it is clear that bothpv and n̄v
increases@Figs. 2~a! and 2~b!#.

B. Void size

The total sizev of voids in a polymer is the sum of th
sizes of all voids, namely, the total number of all unoccup
squares that are fully contained within the polymer. L
vv(n) be the number of conformations ofn-polymer with
total void sizev. The expected total void sizev̄ for the
n-polymer is

v̄5
(vvv~n!•v

v~n!
.

Figure 2~c! shows that the expected void sizev̄ increases
with chain lengthn.

C. Wall size of void

For a voidV of size v, what is the required minimum
lengthl (v) for a polymer that can form such a void? Equiv
lently, what is the size of the wall of the polymer containin
void V? Here we first restrict our discussion to voids form
only by strongly connected unoccupied sites, namely,

FIG. 2. Geometric properties of chain polymers by exhaustive enumera
~a! The probability of void formation,~b! the expected number of void
contained in a polymer,~c! the expected void size, and~d! the expected wall
size of voids. All these parameters increase with chain length.
n

d
t

y

neighboring two sites of a void must be sharing at least
edge of the squares. We exclude voids containing wea
connected sites, where two neighboring sites are conne
by only one shared vertex@Fig. 1~b!#. Forv51, 2, and 3, it is
easy from the geometry of the voids to see thatl (v)
58, 10, and 12, respectively. However, in generall (v) also
depends on the shape of the void. A void of size 4 can h
five different shapes. If the void is of the shape of a 232
square,l (4)512. For the other four shapes,l (4)514.

For any strongly connected void, we find that the follow
ing general recurrence relationship forl (v) holds:

l ~v !5 l ~v21!1H 2, if D]V53

0, if D]V52

21 if D]V51

,

where]V represents the boundary edges of voidV, andD]V
represents the net gain in the number of boundary ed
introduced by the newly added unoccupied site. Although
number and explicit shapes of strongly connected voids
size up to 5 can be found in Ref. 29, there is no gene
analytical formula known for the number of shapes of a vo
of sizev. This is related to the problem of determining th
number of polyominos or animals~as in percolation theory!
of a given size.

When weakly connected voids are also considered, th
are more possible wall sizes for the void. For 22-mer,
number of different wall sizes observed for a void, strong
or weakly connected, at various size are shown in Fig. 3~a!.
Voids of size 5 have the largest diversity in wall size. This
of course due to the fixed chain length. A short chain such
the 22-mer has only a small number of ways for formi
large voids. Figure 3~b! shows the average wall size for var
ous void sizes in the 22-mer. The expected or average
size w̄(n) for a void in ann-polymer can be calculated as

w̄~n!5(
v

w•

vv,w~n!

vv~n!
,

where v is the void size,w is the wall size of the void,
vv,w(n) is the number ofn-polymers containing a void o
size v with wall size w, and vv(n) is the total number of
n-polymers with a void of sizev. Figure 2~d! shows that
w̄(n) increases with chain length. Wall size and void size
analogous to the area and volume of voids in thr
dimensional space.

n.

FIG. 3. Voids of fixed size in 22-mers can have different shapes and
sometimes different wall sizes.~a! The distribution of the number of ob-
served different wall sizes for a void depends on the size of the void. Vo
of size 5 have the maximum number of different wall sizes.~b! The ex-
pected wall size for voids of different size.
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D. Packing density

An important parameter that describes how effectiv
atoms fill space is the packing densityp. In proteins, it is
defined by Richards and co-workers as the amount of
space that is occupied within the van der Waals envelop
the molecule, divided by the total volume of space that c
tains the molecule.3,30 It has been widely used by protei
chemists as a parameter for characterizing protein foldin3

Following this original definition, the packing densityp for
the lattice polymer is

p5n/~n1v !,

when an-polymer has a total void size ofv.
The expected packing densityp̄(n) for an n-polymer

can be calculated as

p̄~n!5(
p

p•
vp~n!

v~n!
,

where v(n) is the number of all conformations ofn-mer,
vp(n) is the number ofn-mers with packing density ofp.
The scaling of p̄(n) with the chain lengthn decreases
roughly linearly betweenn57 andn522 @Figure 4~a!#. Be-
cause it takes at least two additional monomers to incre
the size of a void by one,p̄(n) decreases only whenn is an
odd number for short chains.

Although voids are packing defects, most conformatio
with voids have high packing density, namely, the total s
of the voids is small. Among all conformations of the 22-m
containing one void, the number of conformations increa
monotonically with packing density. The lowest packin
density 0.52 has only 11 conformations, whereas the hig

FIG. 4. Packing density and compactness are two useful parameters de
ing packing of chain polymers.~a! The expected packing density decreas
with chain length.~b! For the 22-mer, the majority of the conformation
with 1-void have a high packing density, namely, the size of the void
small. Fewer conformations are found with large voids. The same patte
observed for conformations with 2 and 3 voids.~c! The expected compact
ness fluctuates but in general decreases with chain length.~d! The relation-
ship of average packing densityp and average compactnessr for the chain
polymer of lengthN514– 22.
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packing density 0.92 has the largest number~6 756 751! of
conformations@Fig. 4~b!#. A similar relationship is found
among conformations with 2 and 3 voids@Fig. 4~b!#.

E. Compactness

Another important parameter that measures the pack
of the lattice polymer is the number of nonbonded contactt.
It is related to thecompactnessparameterr, defined by Chan
and Dill12 asr5t/tmax, wheretmax is the maximum number
of nonbonded contacts possible for ann-polymer. Compact-
nessr has been studied extensively in seminal works
Chan and Dill.12,23,31 Although p is sometimes correlated
with the compactnessr, these two parameters are distinc
The relationship between compactness and expected pac
density for chain polymer of length 14–22 is shown in F
4. For all chain lengths, both maximally compact polym
(r51) and extended polymer (r50) have maximal packing
density (p51), but polymers with low packing densitie
have intermediate compactness on average. Polymers wr
between 0.4 and 0.6 have lowest packing density and th
fore tend to have larger void size. The explanation is simp
An extended lattice chain polymer has no voids, it theref
achieves maximal packing density ofp51, but its compact-
nessr is 0. A maximally compact polymer withr51 also
contains no voids, itsp is 1. On the other hand, nonmax
mally compact polymers can have a range of packing de
ties.

IV. OBTAINING VOID STATISTICS FOR LONG CHAIN
POLYMERS VIA IMPORTANCE SAMPLING

Sequential Importance Sampling: Geometrically com-
plex and interesting features emerge only in polymers of s
ficient length, which are not accessible for analysis by
haustive enumeration, due to the fact that the number
possible SAWs increases exponentially with the chain leng
Monte Carlo methods are often used to generate sam
from all possible conformations and obtain estimates of f
ture statistics using those samples. However, when ch
length becomes large, the direct generation of the SAWs
ing the rejection method~i.e., generate random walks on th
lattice and only accept those that are self-avoiding! from the
uniform distribution of all possible SAWs becomes difficu
The success ratesN of generating SAWs decreases expone
tially, sN'ZN /(433N21). For N548, sN is only 0.79%.32

To overcome this attrition problem, a widely used approa
is the Rosenbluth Monte Carlo method of biased samplin26

The task is to grow one more monomer for at-polymer chain
that has been successfully grown from 1 monomer aftet
21 successive steps without self-crossing, untilt5n, the
targeted chain length. In this method, the placement of
(t11)th monomer is determined by the current conform
tion of the polymer. If there arent unoccupied neighbors fo
the tth monomer, we then randomly~with equal probability!
set the (t11)th monomer to any one of thent sites. How-
ever, the resulting sample is biased toward more comp
conformations and does not follow the uniform distributio
Hence each sample is assigned a ‘‘weight’’ to adjust for t
bias. Any statistic can then be obtained from weighted av

rib-

s
is
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age of the samples. In the case of the Rosenbluth c
growth method, the weight is computed recursively aswt

5ntwt21 .
Liu and Chen33 provided a general framework of Se

quential Monte Carlo~SMC! methods which extend th
Rosenbluth method to more general setting. Sophistica
but more flexible and effective algorithms can be develop
under this framework. In the context of growing polyme
SMC can be formulated as follows. Let (x1 ,...,xt) be the
position of the t monomers in a chain of lengtht. Let
p1(x1),p2(x1 ,x2),...,p t(x1 ,...,xt) be a sequence oftarget
distributions, withp(x1 ,...,xn)5pn(x1 ,...,xn) being the fi-
nal objective distribution from which we wish to draw infe
ence from. Letgt11(xt11ux1 ,...,xt) be a sequence oftrial
distributions which dictates the growing of the polyme
Then we have:

Procedure SMC (n)
Draw x1

( j ) , j 51,...,m from g1(x1)
Set the incremental weightw1

( j )5p1(x1
( j ))/g1(x1

( j ))
for t51 to n21

for j 51 to m
// Sampling for the (t11)th monomer for the
j th sample
Draw positionxt11

( j ) from gt11(xt11ux1
( j )
¯xt

( j ))

// Compute the incremental weight.

ut11
( j ) ←

p t11~x1
( j )
¯xt11

( j ) !

p t~x1
( j )
¯xt

( j )!•gt11~xt11
( j ) ux1

( j )
¯xt

( j )!

wt11
( j ) ←ut11

( j )
•wt

( j )

endfor
Resampling

endfor

At the end, the configurations of successfully genera
polymers $(x1

( j ) , ...,xn
( j ))% j 51

m and their associated weigh
$wn

( j )% j 51
m can be used to estimate any properties of the po

mers, such as expected void size, compactness, and pa
density. That is, the objective inferencemh

5Ep@h(x1 ,...,xn)# is estimated with

m̂h5
( j 51

m h~x1
( j ) ,¯ ,xn

( j )!•wn
( j )

( j 51
m wn

( j ) , ~1!

for any integrable functionh of interests.
The critical choices that affect the effectiveness of

SMC method are~1! the approximating target distributio
p t(x1¯xt), ~2! the sampling distribution
gt11(xt11ux1¯xt), and ~3! the resampling scheme. In th
study, we are interested in sampling from the uniform dis
bution pn(x1¯xn) of all geometrically feasible conforma
tions of lengthn, which we call the final objective distribu
tion. It can also be chosen to be the Boltzmann distribut
when energy function such as the HP model11,34,35 is intro-
duced.

The Rosenbluth method26 is a special case of SMC. It
target distributionsp t(x1¯xt) is the uniform distribution of
all SAWs of length t. Its sampling distribution
in

ed
d

d

-
ing

e

-

n

gt11(xt11ux1¯xt) is the uniform distribution among al
n1(x1 ,¯ ,xt) unoccupied neighboring sites of the last mon
mer xt , and the weight function is

w~x1 ,...,xt ,xt11!5w~x1 ,...,xt!n1~x1 ,...,xt!.

When there is no unoccupied neighboring sit
(n1(x1 ,...,xt)50), there is no place to place the (t11)th
monomer. In this case, the chain runs into a dead end and
declare the conformationdead, with weight assigned to be 0
In the case of Rosenbluth method, no resampling is use

Similarly, the k-step look ahead algorithm32,36 chooses
p t11(x1 ,...,xt11) being the marginal distribution o
p t1k* (x1 ,...,xt1k), the uniform distribution of all SAWs of
length t1k. Hence p t11 is closer to the final objective
distribution—the uniform distribution of all SAWs of lengt
n. Specifically,

p t11~x1 ,...,xt11!

5 (
xt12 ,...,xt1k

p t1k* ~x1 ,...,xt11 ,xt12 ,...,xt1k!

}nk~x1 ,...,xt11!,

wherenk(x1 ,...,xt11) is the total number of SAWs of length
t1k ‘‘grown’’ from ( x1 ,...,xt11) @i.e., with the first (t11)
positions at (x1 ,...,xt11).# In the k-step look-ahead algo
rithm, the sampling distribution is

gt11~xt115xux1 ,..,xt!5
nk~x1 ,...,xt ,x!

nk11~x1 ,...,xt!
.

It chooses the next position according to what will happek
steps later. Namely, the probability of placing thet11th
monomer atx is determined by the ratio of the total numb
of SAWs of lengtht1k grown from (x1 ,...,xt ,x) and the
total number of SAWs of the same lengtht1k grown from
one step earlier (x1 ,...,xt). The corresponding weight func
tion is

w~x1 ,...,xt ,xt11!5
nk~x1 ,...,xt11!

nk~x1 ,...,xt!•
nk~x1 ,...,xt11!

nk11~x1 ,...,xt!

5
nk11~x1 ,...,xt!

nk~x1 ,...,xt!
.

Although it has higher computational cost, it usually pr
duces better inference on the final objective distribution, w
less ‘‘dead’’ conformations. The standard Rosenbluth al
rithm is a 1-step look ahead algorithm.

To compare geometric properties estimated from sequ
tial Monte Carlo method and those obtained by exhaust e
meration, we examine the expected number of voids
expected void size for polymer of chain length 14–22. F
ure 5 shows that sequential Monte Carlo can provide v
accurate estimation of these geometric properties of vo
Here 2-step look ahead is used, with Monte Carlo sam
size of 100 000 and no resampling is applied.

The resampling step is one of the key ingredients of
SMC method.33,37There are many cases where resampling
beneficial. First, note that it is unavoidable to have so



d
iz
ve

e

ll
c
-

ng
e
a

al
m

om

-

ig

wo
f

ess
ing
on-
se,
n
ling
l-
s, to

of
nce
of

n of
ble

ess

ed

ith
ded

en-

s a
end

her
, we
com-

re-
is

ure
ec-
es,

ar

ad
00

3516 J. Chem. Phys., Vol. 117, No. 7, 15 August 2002 Liang, Zhang, and Chen
dead conformations during the growth. These chains nee
be replaced to maintain sufficient Monte Carlo sample s
Second, the weight of some chains may become so relati
small that their contribution in the weighted average@Eq.
~1!# is negligible. When the variance of the weights is larg
the effective Monte Carlo sample sizebecomes small.33,37,38

Third, for a specific functionh, its value may become too
small ~even zero! for some sampled conformations. In a
these cases, efficiency can be gained by replacing those
formations with ‘‘better’’ ones. This procedure is called ‘‘re
sampling.’’ There are many different ways to do resampli
One approach isrejection control,39 which regenerates th
replacement conformations from scratch. An easier appro
is to duplicate the existing andgood conformations33. Spe-
cifically,

Procedure RESAMPLING

//m: number of original samples.
//$(x1

( j ) , ...,xt
( j )),w( j )% j 51

m : original properly weighted
samples
for j 51 to m

Set resampling probability ofj th conformation}a ( j )

endfor
for * j 51 to m

Draw * j th sample from original samples
$(x1

( j ) , ...,xt
( j ))% j 51

m with probabilities}$a ( j )% j 51
m

//Each sample in the newly formed sample is as-
signed a new weight.

//* j -th chain in new sample is a copy of k-th chain in
original sample.
w(* j )←w(k)/a (k)

endfor

In the resampling step, them new samples

$(x1
(* j ) ,...,xt

(* j )% j 51
m can be obtained either by residu

sampling or by simple random sampling. In residual sa
pling, we first obtain the normalized probabilityã ( j )

5a ( j )/(a ( j ). Then @mã ( j )# copies of thej th sample are
made deterministically forj 51,...,m. For the remainingm
2(@mã ( j )# samples to be made, we randomly sample fr
the original set with probability proportional tomã ( j )

2@mã ( j )#.
The choice of resampling probability proportional toa ( j )

is problem specific. For general functionh, such as the end
to-end extensionixn2x1i , it is common to usea ( j )5wt

( j ) .
In this case, all the samples in the new set have equal we
When the function is irregular, a carefully chosen set ofa ( j )

will increase the efficiency significantly.

FIG. 5. Geometric properties obtained by enumeration and by Monte C
sampling are identical for polymers of chain length 9–22.~a! The expected
number of voids, and~b! the expected size of voids. Two-step look-ahe
sequential Monte Carlo sampling is used, and the sample size is 100 0
to
e.
ly

,

on-

.

ch

-

ht.

The method of pruning and enriching of Grassberger40 is
a special case of the residual sampling, witha ( j )50 for the
k chains with zero weight~dead conformations!, a ( j )52 for
the topk chains with largest weights, anda ( j )51 for the rest
of the chains. Residual sampling on this set ofa is com-
pletely deterministic. The resulting sample consists of t
copies of the topk conformations~each of them having hal
of their original weight! and one copy of the middlen22k
chains with their original weight. Thek dead conformations
are removed.

In our study of the relationship between compactn
and packing density, we use a more flexible resampl
method. Our focus is on the packing density among all c
formations within certain range of compactness. In this ca
our object target distribution is the uniform distributio
among all possible SAW’s with compactness measure fal
within a certain interval, i.e., a truncated distribution. A
though compactness changes slowly as the chain grow
grow into a long chain it is possible that the compactness
a chain evolve and cover a wide range during growth. He
we choose the uniform distribution of all possible SAWs
length t as our target distribution att, and only select those
with the desired compactness at the end for our estimatio
the packing density. In order to have larger number of usa
samples~i.e., to achieve better acceptance rate! at the end,
we encourage growth of chains with desirable compactn
through resampling. Specifically,

Procedure RESAMPLING (m,d,ct)
// m: Monte Carlo sample size, d: steps of looking-back.
// ct : targeting compactness.
k←number of dead conformations.
Divide m2k samples randomly intok groups.
for group i 51 to k

Find conformations not picked in previousd steps.
//Pick the best conformation Pj , for example
Pj←polymer with minuc2ctu

Replace one ofk dead conformations withPj

Assign both copies ofPj half its original weight.
endfor

Here d is used to maintain higher diversity for resampl
conformations.

Most polymers sampled by sequential Monte Carlo w
two step look-ahead but no resampling are well-exten
with few voids, as shown in Figs. 6~a! and 6~b!. In Fig. 6~b!,
the majority of the conformations have a higher packing d
sity. They have small compactness (,0.5) and large packing
density. There are not enough compact conformations. A
result, a small number of samples are accepted at the
whose compactness falls within the desired interval of hig
than 0.5. By using the resampling step described above
were able to generate more samples near the desired
pactness value of 0.6@Fig. 6~c!#. Figure 6~c! is a pure histo-
gram of compactness in the observed samples, without
garding the weight of the samples. Here resampling
applied at each sequential Monte Carlo growth step. Fig
6~d! shows that the resampling technique is also very eff
tive in shifting the samples to small packing density valu

lo
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hence improve the inferences. Here resampling favoring l
est packing density is applied every 5 growth steps.

V. VOID DISTRIBUTION OF LONG CHAINS

We apply the techniques of sequential Monte Carlo w
resampling to study the statistical geometry of voids in lo
chain polymers. Each Monte Carlo simulation starts with
sample size of 200 000, and we take the averaged value
20 simulations. Resampling is carried out every 5 steps in
process of the chain growth. Figure 7~a! shows that the prob
ability of void formation increases with the chain length.
chain length 105–110, about half of the conformations c
tain voids. At chain length 200, the standard deviation (
31023) is maximum. The expected number of voids@Fig.
7~b!# increases linearly with chain length. Similar linear sc
ing behavior is also observed in proteins.4 The expected wall
size of void and void size also increase with chain len
@Figs. 7~c! and Fig. 7~d!#. The expected packing density
found to decrease with chain length, which is consistent w
the scaling relationship of void size and chain length sho
in Fig. 7~d!. The compactnessr of chain polymer has bee
the subject of several studies.12,41 The asymptotic value ofr
we found is 0.18, slightly different from that reported in Re
41 (r50.16), and is within the range of 0.16–0.24 report
in Ref. 12. Different resampling strategies are applied wh
dead conformations are removed and other conformat
with the targeted property is duplicated. Resampling fav
conformations with small radius-of-gyration in Figs. 7~a!–
7~e!, and conformations with large weight in Fig. 7~f!.

FIG. 6. The distribution of configurations of polymers obtained by the
quential Monte Carlo method can be adjusted by resampling.~a! Histogram
of conformations at different compactnesses generated without resamp
The compactness of the majority of the conformations is less than 0.5~b!
Histogram of conformations at different packing density generated with
resampling. The number of conformations with packing density below 0.
small. ~c! After applying the resampling technique favoring compactness
0.6, the majority of the conformations have compactness between 0.5
0.6. ~d! Resampling can also be applied to generate conformations with
packing densities with voids. Sample size of 100 000 is used in all calc
tions.
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To explore the relationship of packing densityp and
compactnessr, we use sequential Monte Carlo with 2-ste
look-ahead to sample 200 000 conformations, each with
appropriate weight assigned. This is repeated 20 times,
the weighted average values of the packing density at var
compactness for chains with 60–100 monomers are plo
~Fig. 8!. The compactness value corresponding to the m
mum packing density seems to have shifted from 0.462
the 22-mer by enumeration to above 0.5 for the 100-me
obtained by sampling. However, the overall pattern ofp and
r found by Monte Carlo is very similar to the pattern foun
by enumeration for polymers withN!22 @Fig. 4~d!#. Data
shown in Figs. 8 and 4~d! are not redundant. Rather, the
complement each other and together provide a full picture
the relationship ofr and p for chain length betweenN
514– 22 andN530– 100. The lowest packing densitypmin

of these lattice polymers occur at compactnessr50.525.
However, an accurate estimation of the value of asympt
pmin asN→` requires simulation of longer chains.
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FIG. 7. Geometric properties of lattice polymers of different lengths, e
mated by the sequential Monte Carlo method with the 2-step look-ahead
resampling technique.~a! The probability of void formation increases with
chain length. Standard deviation (<8.531023) increases slowly with the
length. The expected number of voids~standard deviations<1.631022) ~b!
and wall size~standard deviations<0.25! ~c! are linearly correlated with
chain length.~d! The expected void size increases with chain length~stan-
dard deviations<8.331023!. ~e! The expected packing density decreas
with chain length~standard deviations<7.531024!. ~f! The expected com-
pactness decreases with chain length and reaches an asymptotic valur
50.18 ~standard deviations<5.731024!.
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The accuracy of geometric properties of long chain po
mers estimated by Monte Carlo can be assessed by the
dard deviation obtained from multiple Monte Carlo runs.

VI. END EFFECTS OF VOID FORMATION

What is the effect of void formation on the size of co
formational space? We consider the conformational red
tion factor of voids. Following Refs. 12, 23, 31, we defin
the conformational reduction factor due to the constraint o
void as

R~n; i , j !5
v~n; i , j !

v~n!
,

wherev(n; i , j ) is the number of conformations that contai
a void beginning at monomer (i ) and ending at monome
( j ), and v(n) is the total number of conformations o
n-polymers.R(n; i , j ) reflects the restriction of conforma
tional space due to the formation of a void with wall interv
of k5u i 2 j u. Figure 9~a! shows a 24-mer with one void tha
starts ati 54 andk519. Unlike self-contacts or self-loops
which was subject of detailed studies by Chan a
Dill, 12,23,31 all conformations analyzed here must contain
void. The polymer shown in Fig. 9~b! with a large loop has
no void, and such polymers do not contribute to the nume
tor of R.

Figure 10~a! shows the reduction factorR calculated by
enumeration for voids at different starting positions with w
intervals k57, 9, and 11. There are clearly strong en
effects: The reduction factor of voids of the same wall int
val depends on where the void is located.R decreases rapidly
as the void moves from the end of chain towards the mid
Void formation is much more preferred at the end of cha

FIG. 8. The relationship of expected packing density and compactnes
the long chain polymer. These data are estimated by the sequential M
Carlo method using the 2-step look-ahead and a sample size o
3200 000 with resampling. Resampling is designed to favor compactne
specified values. The expected packing density calculated by averaging
the 20 runs has the largest standard deviations for the 100-mer, whic
shown in the figure.
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Similar end effects of void formation are also observed
the 50-mer sampled by sequential Monte Carlo@Fig. 10~b!#.
Because the exact total number of conformations of the
mer v(50) is unknown, we plot the value ofR3constant,
where constant is common to all data points at different st
ing positions and wall intervals. Our interest is howR
changes its relative values.

The end-effect of voids has the same origin as the e
effect of self-contact, which has been extensively studied
Chan and Dill.12,23,31Because of the effect of excluded vo
ume, sterically it is less hindering to form a void at the e
of a polymer. When a void is formed, the conformation

for
nte
20
at
m
re

FIG. 9. The starting position of a void and its wall interval.~a! This 24-mer
has a void that starts ati 54 and ends atj 523. Its wall size isk519. ~b!
This polymer has a contact-loop but contains no void.

FIG. 10. The end-effect of void formation on conformational reduction.~a!
Conformational reduction factorR when voids are formed in a 22-chain a
examined by enumeration.R depends on the starting position and the w
interval of void.~b! Conformational reduction factorR up to a normalizing
constant when voids are formed in a 50-chain as sampled by seque
Monte Carlo~standard deviations<6.2!. ~c! Scaling of conformational re-
duction factorR and the wall intervalk at different initiation positionL for
50-chain~standard deviations<6.4!.
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space of thek11 monomers between monomeri and j , as
well as the two tails become restricted. When the void
formed at the chain end, only one tail is subject to conf
mational restriction.

Void formation is different from self-contact. Whe
monomeri and j form self-contact, it may involve the for
mation of a void, but it is also possible that there will be
unfilled space betweeni and j . When a void is formed be
ginning at monomeri and ending at monomerj , some
monomers betweeni and j will have unsatisfied contact in
teractions. Self-contacting loops have been analyzed in
vious theoretical studies42,43 which have been confirmed b
exhaustive enumeration.23,31 An important study of the role
of loop formation in understanding the disulfide bond a
protein folding can be found in Ref. 44. Compared to no
bonded self-contact, the effect of conformational reductio
more pronounced for void formation. For the tw
dimensional lattice, the ratios between reduction factors
self-contact at chain end and mid-chain of a sufficiently lo
polymer are 1.3, 1.4, 1.5, and 1.6 fork53, 5, 7, and 9,
respectively,23 whereas the ratios for voids at the chain e
and the symmetric midpoint of theN522 polymer are 3.4,
4.0, and 4.4. fork57, 9, and 11.

We now consider the power-law dependence
R(N; i , j ) on the wall intervalk5u i 2 j u. In the study by
Chan and Dill,31 the scaling exponentn of the reduction
factor R and loop lengthk5u i 2 j u for R(N; i , j )'k2n is
found to be dependent both onk and the location of the cycle
in the chain. The values ofn for self-contact range from 1.6
whenk5N to 2.4 when the loop is in the middle of a lon
chain with two long tails. Because void formation involves
least 8 monomers, its scaling behavior is less amenabl
exhaust enumeration, and application of Monte Carlo sa
pling is essential. Based on estimations from Monte Ca
simulation of void formation in the 50-mer, the value ofn
depends on the void initiation positionl 0 from the end of the
polymer chain.n ranges from 1.460.2 for l 051 to 3.0
60.2 for l 058 @Fig. 10~c!#. Our results show that the scalin
exponent ofR with k5u i 2 j u for void formation is similar to
that of the self-contacting loop. This scaling exponent a
depends on the location of the void. The exponentn is esti-
mated from the nonlinear least square regression fit of
data using the Gauss–Newton algorithm as implemente
the GNU package R. A cautionary note is that the estimat
of standard error ofn is accurate asymptotically only fo
large samples,45 and therefore maybe overly optimistic in ou
case, where the number of data points is very small.
accurate estimation of confidence interval ofn for small
sample nonlinear regression is beyond the scope of
work.

VII. CONCLUSION

In this work, we have studied the statistical geometry
voids as topological features in two-dimensional lattice ch
polymers. We define voids as unfilled space fully contain
within the polymer, and have developed a simple algorit
for its detection. We have explored the relationship of va
ous statistical geometric properties with the chain length
the polymer, including the probability of void formationpv ,
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the expected number of voidsn̄v , the expected void sizev̄,
the expected wall size of voidsw̄, packing densityp, and the
expected compactnessr. Our results show that for chains o
.105– 110 monomers, at least half of the conformatio
contain a void. At about 150 monomers, there will be at le
one void expected in a polymer. The expected wall size sc
linearly with the chain length, and about 10% of the mon
mers participate in the formation of voids. We formalize t
concept of the packing density for lattice polymers. W
found that both the packing density and compactness
crease with chain length. The asymptotic value of compa
nessr is estimated to be 0.18.

We have also characterized the relationship of pack
density and compactness, which are two parameters
have been used frequently for studying protein packing. O
results indicate that packing density reaches minimum va
between compactness 0.4–0.6. The effects of voids are s
ied by analyzing the conformational reduction factorR of
void formation. We found that there is a significant en
effect for void formation; the ratio ofR at chain end and a
midchain may be twice as large as that of theR factor for
contact loops, where the formation of voids is not require

In this study, we have applied sequential Monte Ca
sampling and resampling~SMC! techniques to study the sta
tistical geometry of voids. SMC is essential for exploring t
geometry of long chain polymers. The origin of SMC can
traced back to the work of Rosenbluth and Rosenblut26

where the idea of placing the current monomer with pro
ability dictated by the outcome of future steps was first f
mulated. Grassberger was the first to apply the techniqu
resampling by weight to grow the chain polymer.33 Indepen-
dently, Liu and Chen provided the general framework of S
quential Monte Carlo, which unifies for the first time th
techniques of delayed sampling~look-ahead of future steps!
and resampling by arbitrary statistical property. Althou
SMC has had many applications in science a
engineering,46 we report in this paper the first application o
SMC for sampling a variety of rare events in growing pol
mers. Specifically, we make concrete novel applications
SMC in sampling rare conformations with the prescrib
value of radius of gyration and compactness. Because
general framework of the SMC has not been described
fore for growing chain polymer, we also provide in this pu
lication details of the validation of the method.

Sequential Monte Carlo allows the generation of an
creased number of conformations with a variety of intere
ing characteristics. For example, we can replace dead
formations with existing conformations of highest weight,
conformations with highest compactness, or with the sm
est radius of gyration. Figure 6 provided examples where
distribution of conformations of polymers obtained by SM
can be adjusted by resampling. In Fig. 11, we further ela
rate on the general flexibility of SMC for sampling that ta
gets on a variety of statistical properties, as well as the
portant fact that SMC maintains properly weighted samp
which is essential for any statistical inference.

Figure 11~a! shows the histograms of conformations
100-mer at different packing density generated without re
mpling. Figure 11~c! shows the histograms of conformation
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when resampling by weight and resampling by compactn
r are used. To resample by weight, dead conformations
replaced with conformations of the highest weight. To re
mple by compactness, dead conformations are replaced
conformations of the lowest compactness. Note that the t
number of surviving conformations that reach a chain len
of 100 is much higher than without resampling. Resampl
by compactness generates many more conformations
higher compactness. In Figs. 11~c! and 11~d!, resampling is
applied to every step of the chain growth process. Unl
Fig. 6~d!, where resampling favors the compactness value
r50.6, resampling in Fig. 11~c! favors samples with the
highest value of compactnessr. Other resampling scheme
are possible, e.g., resampling by radius-of-gyration, by pa
ing density. During resampling, the numberk of dead con-
formations at each step of growth is identified and these
replaced with conformations of interest fromk randomly di-
vided groups. These conformations must have not been r
mpled in the previous four steps of the growth process
maintain sample diversity. Both histograms where resa
pling is used deviate from that of Fig. 11~a!. Resampling by
weight shifts the peak of the conformations to below 0.2, a
resampling by compactness turns the histogram into
modal. The latter produces a lot more conformations w
compactnessr.0.4.

SMC sampling and resampling use biased samples s
conformations are generated with a probability differe
from that of the target distribution. The bias is dictated by
different method of resampling and different choices of
number of steps of look-ahead in sequential Monte Carlo.
essential component of a successful biased Monte C
sampling is the appropriate weight assignment to e

FIG. 11. Histograms of conformations of 100-mers generated by seque
Monte Carlo with and without resampling at different compactness.~a! His-
togram of conformations at different compactness generated without re
pling. ~b! Weighted histogram of conformations generated without res
pling, which is proportional to the distribution of all geometrically feasib
100-mers.~c! Histograms of conformations at different compactness wh
resampling is applied.~d! The weighted histograms of conformations und
different resampling are in excellent agreement with each other and
that when no resampling is applied.
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sample conformation. This is necessary because we nee
estimate the expected values of the parameter such as p
ing density and void size under the target distribution of
geometrically feasible conformations. In Fig. 11~a!, where
each of the 100 000 starting conformations is generated b
two-step look-ahead without resampling, not every conf
mation is generated with the same probability and theref
is assigned a different weight accordingly. Figure 11~b!
shows the weight-adjusted histogram, which is indicative
the probability density function at different compactness
the population of all geometrically feasible 100-mers. Figu
11~d! shows that when weights are incorporated and the a
of the histogram normalized to the final number of survivi
conformations, the weighted distributions of conformatio
using different resampling techniques have excellent ag
ment with the weighted distribution when no resampling
used@Fig. 11~b!#. All weighted histograms are normalized s
the total area equals to the total number of surviving conf
mations reaching 100-mer. This example shows that by
corporating weights, the target distributions can be faithfu
recovered even when the sampling is very biased.

Although sequential Monte Carlo sampling is very effe
tive, the estimation of parameters associated with rare ev
remain difficult. In Fig. 10 where the conformational redu
tion factor R is plotted at various void initiation position
and wall interval lengths, voids starting at position 1 but w
odd wall intervals (kP$11,13,. . . ,25%) are much rarer, and
it is unlikely that sequential Monte Carlo sampling with lim
ited sample size can provide a large enough effective sam
size for the accurate estimation of scaling parametersn,
whereR(N; i , j )'k2n.

In this study, we are interested in the statistics of vo
geometry, and our target distribution is the uniform distrib
tion of all conformations of lengthn. With the introduction
of an appropriate potential function and alphabet of mo
mers such as the HP model,11,34,35we can study the thermo
dynamics, kinetics, and sequence degeneracy of chain p
mers when voids are formed in polymers. In these cases,
target distributions will be chain polymers under the Bol
mann distribution derived from the corresponding poten
functions.
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APPENDIX: VOIDS DETECTION IN
TWO-DIMENSIONAL LATTICE POLYMER

To detect voids in a polymer, we use a simple sea
method. For anl 3 l lattice, we start from the lower-left cor
ner. Once we found an unoccupied siteu, we use the
breadth-first-search~BFS! method to identify all other unoc
cupied sites that are connected to siteu. These sites are
grouped together and marked as ‘‘visited.’’ Collectively th
represent one void in the lattice. We continue this proc
until all unoccupied sites are marked as visited:
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Algorithm VOIDDETECTION ~lattice, l !
v50 // Number of voids
for i 51 to l

for j 51 to l
if site (i , j ) is unoccupied and not visited

v←v11
Mark (i , j ) as visited.
BREADTHFIRSTSEARCH~lattice, (i , j )!
Update the size ofvoid ( i , j )

endif
endfor

endfor

Details of BFS can be found in algorithm textbooks su
as Ref. 47.
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