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Wavelet-Based Sequential Monte Carlo Blind
Receivers in Fading Channels With Unknown

Channel Statistics
Dong Guo, Xiaodong Wang, Member, IEEE, and Rong Chen

Abstract—Recently, an adaptive Bayesian receiver for blind
detection in flat-fading channels was developed by the present
authors, based on the sequential Monte Carlo methodology. That
work is built on a parametric modeling of the fading process in
the form of a state-space model and assumes the knowledge of
the second-order statistics of the fading channel. In this paper,
we develop a nonparametric approach to the problem of blind
detection in fading channels, without assuming any knowledge of
the channel statistics. The basic idea is to decompose the fading
process using a wavelet basis and to use the sequential Monte
Carlo technique to track both the wavelet coefficients and the
transmitted symbols. A novel resampling-based wavelet shrinkage
technique is proposed to dynamically choose the number of
wavelet coefficients to best fit the fading process. Under such a
framework, blind detectors for both flat-fading channels and
frequency-selective fading channels are developed. Simulation
results are provided to demonstrate the excellent performance of
the proposed blind adaptive receivers.

Index Terms—Adaptive shrinkage, fading channel, resampling,
sequential Monte Carlo, wavelet.

I. INTRODUCTION

S IGNAL detection in fading channels has been a key
problem in communications, and an array of methodolo-

gies have been developed to tackle this problem. Specifically,
the optimal detector for flat-fading channels with known
channel statistics are studied in [19] and [26], which has
a prohibitively high complexity. Suboptimal receivers in
flat-fading channels employ a two-stage structure, with a
channel estimation stage followed by a sequence detection
stage. Channel estimation is typically implemented by a
Kalman filter or a linear predictor and is facilitated by per-sur-
vivor processing [35], decision-feedback [25], pilot symbols
[23], or a combination of the above [21]. Other suboptimal
receivers for flat-fading channels include the method based on
a combination of hidden Markov model and Kalman filtering
[8] and the approach based on the expectation–maximization
(EM) algorithm [17].
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Sequence detection in frequency-selective fading chan-
nels has also received considerable attention recently. In [9]
and [33], several MLSE receiver structures are developed
that are based on the known second-order statistics of the
fading process. When the fading statistics are unknown, they
are usually estimated from the data in a training-assisted
mode or decision-directed mode [11], [34]. Furthermore,
symbol-by-symbol maximum a posteriori (MAP) schemes
for equalizing time-varying fading channels have also been
studied [2], where channel estimation is facilitated by some ad
hoc Kalman-type nonlinear estimators. Another approach to
equalization of frequency-selective fading channels is based on
modeling the time-varying channel impulse response function
by a superposition of deterministic time-varying basis functions
(e.g., complex exponentials) with time-invariant coefficients
[18].

Recently, in [5], a blind adaptive Bayesian receiver is devel-
oped for flat-fading channels. It is based on the powerful se-
quential Monte Carlo (SMC) technique for numerical Bayesian
computation; for SMC methods and its applications in diverse
fields, see [1], [3], [4], [6], [12], [14]–[16], [20], [22], [24],
[31], and references therein. The blind adaptive Bayesian re-
ceiver achieves near-optimum performance without the use of
any training/pilot symbols or decision feedback. The technique
in [5] assumes that the fading channel process follows a linear
dynamic model (i.e., ARMA model) and that the model param-
eters are known to the receiver. However, some practical fading
processes exhibit spectral characteristics that require very-high
order ARMA model to fit. Moreover, in some applications, the
channel fading statistics may not be known to the receiver at all.
Hence, in this paper, we address the problem of blind adaptive
detection in fading channels with unknown channel statistics.

Our approach is to decompose the fading process using a
wavelet basis and then use the SMC technique to estimate both
the wavelet coefficients and the data symbols. Wavelet-based
signal processing enjoys a very strong optimality property for
general inverse problems in that their use can achieve accurate
and parsimonious representation of the signal of interest. Some
recent works have addressed the use of wavelet to model
fading channels [27], [28]. In these methods, the number of
wavelet basis is fixed a priori, and the wavelet coefficients
are obtained by using training symbols and standard adap-
tive algorithms (e.g., LMS, RLS). Our approach is blind in
nature, and moreover, the number of wavelet coefficients are
dynamically chosen during the SMC procedure via resam-
pling. Wavelet-based SMC receivers for both flat-fading and
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frequency-selective fading channels are developed. Note that
the proposed SMC algorithms will work under any orthogonal
decomposition. In this paper, we mainly focus on the wavelet
decomposition because it has a better time-frequency property,
as suggested in [10], [27], and [28], than the Fourier transform,
which means that it usually needs less number of coefficients
than the Fourier transform. Moreover, the low frequency of the
fading process varies slowly with time and, hence, enables the
SMC algorithms to track their dynamics.

The rest of this paper is organized as follows. The wavelet
representations of fading channels are discussed in Section II.
The SMC blind receivers for flat-fading and frequency-selective
fading channels are developed in Sections III and IV, respec-
tively. Simulation results are provided in Section V. Section VI
contains the conclusions.

II. WAVELET MODELLING OF FADING CHANNELS

A. Flat-Fading Channel Model

Consider a discrete-time baseband communication system
signaling through a flat-fading channel with additive white
Gaussian noise. The transmitted data symbols take
values from a finite alphabet set . The
input–output relationship is given by

(1)

where , , and are, respectively, the received signal, the
fading coefficient, and the noise sample at time . It is assumed
that the processes , , and are mutually indepen-
dent and that is a complex Gaussian distribution

(2)

The fading process is assumed to be Rayleigh, that is, is a
zero-mean complex Gaussian process with a Jakes’ autocorre-
lation function given by [32]

(3)

where is the Bessel function of the first kind and zeroth
order, is the maximum Doppler shift, and is the symbol
interval. Note that in [5], it is assumed that the fading process

follows an ARMA model. However, for practical fading
processes, e.g., Jakes’ fading processes, very-high order models

are needed to fit the fading spectrum given by (3). Hence, in
this paper, we drop such a model assumption and treat the gen-
eral fading processes via a nonparametric approach using the
wavelet decomposition.

B. Wavelet Representation of Fading Processes

Suppose a discrete-time signal has a finite length , i.e.,
. In Mallat’s algorithm of multiresolution

analysis, a one-stage FIR filter, say lowpass filter, and down-
sampling by a factor of two can be given in a matrix form [10]
as (4), shown at the bottom of the page, where is the length
of lowpass filter , and the length of is .
The impulse response of the lowpass filter is given by

(5)

where is the generator of the multiresolution wavelet basis.
Specifically, in , we adopt an commonly used periodic
method to mitigate edge effects [10]. Similarly, the detailed
signal of after downsampling is given by

(6)

where is similarly defined as in (4) with replaced
by , which is, in general, given by

(7)

It is easy to show that the following orthogonality condition
holds:

(8)

Hence, we can then write the one-step wavelet decomposition
of as

(9)

where contains the first-level wavelet coefficients. Now,
apply the same decomposition to to obtain

(10)

and (11)

...

...

. . .

. . .
. . .

...

...

(4)
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where . Thus, and have the
same length . Denote

(12)

where contains the second-level wavelet coefficients, which
is composed of the downsampled second-level signal approxi-
mation and two levels of the downsampled detail signals. Re-
peating the above decomposition times and keeping all the
detailed signals and the last level signal approximation, we then
obtain the th-level wavelet coefficients

...
(13)

where we have (14), shown at the bottom of the page. Since
, , then the length of the

th-level wavelet coefficients is given by

(15)

It then follows from (14) that

(16)

where the perfect reconstruction matrix is given by
. Since , is orthogonal,

we have

(17)

Now, consider the fading channel coefficients
, where is the block size of the signal.

By applying the wavelet decomposition (14) on , we get

(18)

Then, the discrete-time fading process can be expressed in
terms of the wavelet coefficients as

(19)

Denote as the th row of . Then, (19) can be written as

(20)

1) Wavelet Shrinkage: As noted in (15), the number of the
wavelet coefficients is a function of the length of the orig-
inal signal , the length of the lowpass (or highpass) filter ,
and the number of the levels of the decomposition . Note that
the wavelet coefficient space is structured, roughly, according to
the location and scale of the functional information contained in
each coefficient. Only a few large coefficients explain most of
the functional form in the signal, whereas the remaining ma-
jority are comparatively small and, therefore, can be discarded.
This is demonstrated by the following numerical example. In
this example, we choose the length of the fading process seg-
ment as , the Daubechies filter with order ,
and the decomposition level . Then, the size of the wavelet
coefficients is . For a given fading process realiza-
tion, we compute the wavelet coefficients and then truncate it
by keeping only the first elements. Hence, the fading process

is approximated by

(21)

The approximation error is then

(22)

In Fig. 1, we plot as a function of the number of wavelet co-
efficients for different values of normalized Doppler shift .
It is seen that in general, for a fixed approximation error, the
slower the fading process is, the fewer wavelet coefficients are
needed to approximate the fading process. For fading processes
with fading rate , with 32 wavelet coefficients,
the approximation error is below 20 dB. For a very fast
fading process, e.g., , more wavelet coefficients are
needed to approximate it well. Similar observations are made
for Daubechies filters with order higher than two. Various
wavelet shrinkage methods exist for choosing the number
of wavelet coefficients, such as the hard shrinkage method,
the visual shrinkage method [13], and the adaptive Bayesian
shrinkage method [7]. In this paper, we propose a sequential
Monte Carlo method for joint adaptive wavelet shrinkage,
wavelet coefficients estimation, and symbol detection.

(14)
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Fig. 1. Average approximation error versus the number of wavelet coefficients
in the wavelet representation of the fading processes. The Daubechies filter with
order 2 is used.

III. SMC BLIND RECEIVER FOR FLAT-FADING CHANNELS

A. Sequential Monte Carlo Methods

Consider the following dynamic system modeled in a state-
space form

state equation

observation equation (23)

where , , , and are, respectively, the state variable, the
observation, the state noise, and the observation noise at time .
Let and . Suppose
an online inference of is of interest; that is, at current time ,
we wish to make a timely estimate of a function of the state vari-
able , say , based on the currently available observation

. With the Bayes theorem, we realize that the optimal solu-
tion to this problem is .
In most cases, an exact evaluation of this expectation is analyt-
ically intractable because of the complexity of such a dynamic
system. Sequential Monte Carlo methods, which are based on
importance sampling, give us viable choices to the required es-
timation. The basic idea of SMC is to draw random samples

from some trial distribution if it is diffi-
cult to draw the samples directly from the target distribution

. By associating the weight

(24)

to the sample , we can approximate the quantity of interest
as

(25)

where . The pair ,
is called a properly weighted sample with respect to the target
distribution .

To implement an online estimation of the posterior density,
a set of random samples properly weighted with respect to

is needed for any time . A Markovian structure of the
state equation allows us to implement a recursive importance
sampling strategy. Suppose a set of properly weighted samples

with respect to are available
at time . Then, a set of a properly weighted samples

with respect to at time are given
by the following procedure [4], [22], [24]. For ,
do the following.

• Draw a sample from a trial distribution
, and let ;

• Compute the importance weight

The algorithm is initialized by drawing a set of i.i.d. samples
from , where represents the “null”

information, and corresponds to the prior distribution
of .

B. Sequential Monte Carlo Receiver

Consider again the wavelet representation (44) of the fading
process. In this subsection, we assume that the first wavelet
coefficients are used to model the fading process. Denote

and . Then, the fading coefficient at
time is approximated by . Hence, the flat-fading
channel model (1) can be rewritten as

(26)

Denote and . We apply
the SMC method to the problem of online estimation of the a
posteriori probability of the symbol based on the received
signals up to time , without knowing the wavelet coefficients

. That is, at time , we need to estimate

(27)

Then, a hard maximum a posteriori (MAP) decision on symbol
is given by

(28)

In order to implement the SMC, we need to obtain a set of Monte
Carlo samples of the transmitted symbols ,
properly weighted with respect to . Then, the a pos-
teriori symbol probability in (27) is approximated by

(29)
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with . Following [4] and [24], an efficient trial
sampling distribution at time is

(30)

For this trial distribution, the importance weight is updated by

(31)

Note that can be computed by

(32)

where

(33)

If we assume a Gaussian prior distribution on the wavelet coef-
ficients, i.e., , then we have

(34)
where

(35)

and (36)

Substituting (34) into (33), we obtain

(37)

with mean and variance given, respectively, by

(38)

and

(39)

Therefore, in (32) can be computed by

(40)

The trial distribution in (30) can be computed as follows:

(41)

Note that the a posteriori covariance and mean of the wavelet
coefficients in (35) and (36) can be updated recursively as fol-
lows. Let and be the quantities computed by (38) and
(39) for the imputed symbol . Using the matrix inversion
lemma, (35) and (36) become

(42)

(43)

with (44)

C. Resampling Procedure

The importance sampling weight measures the “quality”
of the corresponding imputed signal sequence . A relatively
small weight implies that the sample is drawn far from the main
body of the posterior distribution and has a small contribution
in the final estimation. Such a sample is said to be ineffective.
If there are too many ineffective samples, the Monte Carlo pro-
cedure becomes inefficient. To avoid the degeneracy, a useful
resampling procedure, which was suggested in [4] and [24],
may be used. Roughly speaking, resampling is multiplying the
streams with the larger importance weights while eliminating
the ones with small importance weights. A simple resampling
procedure consists of the following two steps.

1) Sample a new set of streams from

, with probability proportional to

the importance weights .

2) Assign equal weight to each stream in ,

, i.e., , .
Resampling can be done at every fixed-length time interval

(say, every five steps), or it can be conducted dynamically. The
effective sample size can be used to monitor the variation of the
importance weights of the sample streams and to decide when
to resample as the system evolves. The effective sample size is
defined as [5]

(45)

where , which is the coefficient of variation, is given by

(46)

with . In dynamic resampling, a resampling
step is performed once the effective sample size is below a
certain threshold.

Heuristically, resampling can provide chances for good
sample streams to amplify themselves and hence “rejuvenate”
the sampler to produce a better result for future states as system
evolves. It can be shown that the samples drawn by the above
resampling procedure are also indeed properly weighted with
respect to , provided that is sufficiently large. In
practice, when small to modest is used (we use in
this paper), the resampling procedure can be seen as a tradeoff
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between the bias and the variance. That is, the new samples
with their weights resulting from the resampling procedure
are only approximately proper, which introduces small bias
in the Monte Carlo estimation. On the other hand, however,
resampling significantly reduces the Monte Carlo variance for
future samples.

D. Resampling-Based Adaptive Wavelet Shrinkage

In the previous subsection, we have discussed the SMC algo-
rithm for wavelet-based adaptive detection in fading channels,
which assumes that the first wavelet coefficients are nonzeros,
where is some fixed number set a priori, whereas the other
wavelet coefficients are shrunk to zeros. However, as illustrated
in Section II-B.3, fading processes with different Doppler values
need a different number of wavelet coefficients to be approxi-
mated. We next propose a method that dynamically chooses the
number of wavelet coefficients during the SMC sampling pro-
cedure.

The basic idea is as follows. At time , associated with each
sample stream , in addition to the symbol stream sample ,
the posterior channel distribution parameters ( , ), and
the importance weight , we also have a quantity , which
indicates the number of the wavelet coefficients used by the th
sample stream at time . Accordingly, the wavelet basis vector
and the wavelet coefficients vector at time become

and

Let and be, respectively, the minimum and maximum
numbers of the wavelet coefficients used in the algorithm. Ini-
tially, is drawn according to some a priori distribution from
the set for each .

Assume that we have properly weighted samples
at time . At

time , we first let and update the samples
to obtain , as described
above. We then check the resampling condition, and if the
effective sample size is below a specified threshold, then
resampling is conducted, and we get a new set of samples

. Hence, in this way,
adaptive wavelet shrinkage is achieved through resampling.
That is, samples employing a proper number of wavelet coeffi-
cients that well fit the received signals are rejuvenated, whereas
those employing an improper number of wavelet coefficients
are eliminated. Moreover, it is evident that the fading process
is effectively modeled by a mixture of wavelet expansions
with different orders, and the mixture distribution dynamically
evolves during the SMC procedure.

Finally, we summarize the wavelet-based SMC blind receiver
algorithm in flat-fading channels as follows.

0) Initialization: For each , do the following.
• Sample uniformly from .
• Set . Set

.

• Set .

The following steps are implemented at time
to update each weighted sample. For ,

do the following.
1) Let . Set .

2) For each , compute , and given,
respectively, by (38)–(40).

3) Draw from with probability

Append to to obtain .
4) Compute the importance weight

5) Suppose in Step 3 that the imputed sample .
Then, let and . Update and

according to (42) and (43).
6) Compute the effective sample size given by (70). If

(in this paper, ), then perform the
following resampling steps to obtain a new set of sample
streams.

a) Sample a new set of streams
from with

probability proportional to the importance weights
.

b) Assign equal weight to each stream in

, i.e., ,
.

Complexity: The dominant computation in the above algo-
rithm consists of the matrix-vector products in (39)
and (43) and the vector out-products in (44), whose com-
putation is determined by the number of wavelet coefficients

in every Markov stream. Therefore, the total computation
mainly includes matrix-vector products and vector
outproducts. Note that the parametric SMC receiver in [5] needs
nearly the same number of matrix-vector and vector-out prod-
ucts.

E. Delayed-Weight Estimation

From the recursive procedure described in Section III-D, we
get the samples at time , , which
are properly weighted with respect to . Hence,
focusing on at time , we obtain a delayed estimation
of the symbol

(47)
with . Since the weights
contain information about the signals , the
estimation in (47) is usually more accurate. Note that such a
delayed estimation method incurs no additional computational
cost (i.e., cpu time), but it requires some extra memory for
storing .
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IV. SMC RECEIVER FOR FREQUENCY-SELECTIVE

FADING CHANNELS

A. Wavelet Model for Frequency-Selective Fading Channel

The discrete-time input-output relationship of a frequency-
selective fading channel is given by [30]

(48)

where , , and are, respectively, the received signal,
the transmitted symbol, and the complex Gaussian noise sample
at time ; is the number of the resolvable paths of the channel;
and is the fading coefficient of the th path at time . It
is assumed that the fading processes of different paths ,

are independent and that they have the
same Doppler value. Following the discussion in Section II-B,
the fading process of the th path can be represented by a wavelet
basis as follows:

(49)

where is the th row of given by (17), and is the wavelet
coefficient vector for the th path. As before, we assume that the
first wavelet coefficients are used to approximate the fading
process. Denoting and , then we
have . Substituting this into (48), we get

(50)

Denote

and define an block diagonal matrix
diag ; then, (50) can be rewritten as

(51)

B. SMC Blind Receiver

As before, if we are to make inference with respect to
, we need to draw samples from the trial distribution

(52)

Assuming a Gaussian prior on the wavelet coefficients, i.e.,
, we have

(53)

with

(54)

(55)

Hence

(56)

with

(57)

and (58)

Denote the quantities and corresponding to the im-
puted sample ; then, and in (55) and (54) can be
recursively calculated as

(59)

(60)

with (61)

Finally, the importance weight is updated according to

(62)

The frequency-selective fading channel exhibits a strong
memory, and the “future” observations contain infor-
mation about the current data symbol . The delayed-weight
method discussed in Section III-E is not sufficient to exploit
the channel memory effects. A more efficient delayed-sample
method proposed in [5] is described next.

C. Delayed-Sample Estimation

In delayed-sample estimation, we generate both the samples
and the weights based on the signals ,
hence making the target distribution at time

. The procedure will provide better Monte Carlo sam-
ples since it utilizes the future observation
in generating the current samples of . The basic idea is to
marginalize out in the sampling procedure.

Following [4], a useful trial distribution in this case is given
by

(63)
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Denote . The trial distribution can be
computed by

(64)

Assuming the imputed sample , the importance
weight is updated according to [5]

(65)
The conditional distribution ,

in (64) are Gaussian

(66)

with

(67)

and

(68)

where . Hence,

in (64) is given by

(69)

The terms and
in (67) and (68) can be computed recursively as follows. Let

and be the quantities com-
puted by (67) and (68); therefore, we have

(70)

and

(71)

with (72)

Hence, for each possible “future” (relative to time )
symbol sequence at time , i.e.,

, we keep the values of -step recursive updates

. Then, the delayed-sample
algorithm with resampling-based adaptive wavelet shrinkage is
summarized as follows.

0) Initialization: For each , do the following.
• Sample uniformly from . Set

, and obtain the corre-

sponding , .
• Sample from with equal probability, and

obtain
• Set . Draw

.

• Set .
• Compute , , and

, , by recursively
using the (69)–(71) for each value at
time .

The following steps are implemented at time
to update each weighted sample. For

, do the following.
1) Let . Set

, and obtain the corresponding ,
.

2) For each and , com-
pute ,

and
according to (67)–(69).

3) Draw from with probability
, where is given by (64).

Append to to obtain .
4) Update according to (65).
5) Suppose, in Step 3, that the imputed sample .

Then, for each value in , update
and

according to (70) and (71), and keep the values
,

, and ,
.

6) Compute the effective sample size given by (70). If
, then perform the resampling described in Sec-

tion III-D.
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12815

Fig. 2. Frame structure for the wavelet-based SMC receivers. The block size
is 128, and the adjacent blocks overlap by 15 symbols.

Complexity: The dominant computation in the above
algorithm involves the matrix-vector products

in (68) and (72) and the
vector-out products in (71), whose computations are
determined by the number of wavelet coefficients in
every Markov stream. Therefore, the total computation mainly
includes matrix-vector products and vector
out-products.

Finally, as noted in [5], we can use the above delayed-sample
method in conjunction with the delayed-weight method. For ex-
ample, using the delayed-sample method, we generate delayed
samples and weights based on observations

. Then, with an additional delay , we can use the fol-
lowing delayed weight method to approximate the a posterior
probability of symbol

V. SIMULATION RESULTS

In this section, we present some simulation examples to
illustrate the performance of the proposed wavelet-based
sequential Monte Carlo receivers in both flat-fading and
frequency-selective fading channels. Of particular interest
is the resampling-based wavelet shrinkage technique, which
dynamically chooses the number of wavelet coefficients to best
fit the fading process. We first outline the simulation setup.

The BPSK modulation is employed in the simulation, i.e., the
transmitted symbols take values from 1. The character-
istics of the fading channels are described in Section II. The
Jakes’ fading process is generated using the frequency spectrum
method [29]. Note that in [5], the fading process is generated ac-
cording to an ARMA process. Such a low-order ARMA model
cannot fit the Jakes’ fading spectrum (3) well. In the decompo-
sition of the fading process, the Daubechies wavelet filter with
order 2 is used to construct the reconstruction matrix given by
(17). Our simulations show that little performance improvement
can be achieved with Daubechies filters of order higher than 2,
whereas with Daubechies filter of order 1 (i.e, Harr wavelet),
the performance degradation is significant. The reason for the
performance degradation when using the Harr wavelet is the
zig-zag approximation error caused by the special structure of
Harr wavelet transform.

The signal frame structure is shown in Fig. 2. Each data block
contains symbols. Adjacent blocks overlap by 15
symbols to allow the SMC filter to reach the steady state. To
speed up the convergence, for each data block, the values of the
mean and the covariance of wavelet coefficients
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Fig. 3. BER performance of the SMC receiver using fixed number (e.g., 4,
8, 15, and 25) of wavelet coefficients and the adaptive wavelet-based SMC
receiver. The channel is flat-fading with f T = 0:005. The delayed-weight
method is used with � = 6.

are initialized as the corresponding values at
the end of the previous block.

The performance of the proposed SMC blind receivers
is compared with that of the receivers with perfect channel
state information (CSI). In flat-fading channels, the receiver
with CSI makes a decision on symbol according to

sign , whereas in frequency-selective fading
channels, the receiver with CSI makes use of the Viterbi
Algorithm to estimate the transmitted symbol sequence [30].
We call the performance of the receiver with CSI the “known
channel bound.”

A. Performance of Wavelet-Based SMC in Flat Fading
Channels

First, we consider the performance of the SMC blind receiver
with different number of wavelet coefficients in a flat-fading
channel with normalized Doppler . The SMC re-
ceiver discussed in Section III is implemented with different
but fixed number of wavelet coefficients. The number of the
Monte Carlo samples drawn at each time is empirically set as

. The resampling procedure is employed in the SMC,
and the threshold of effective sample size is . The
delayed-weight method is used with . The bit error rate
(BER) versus the signal-to-noise ratio is plotted in Fig. 3 for dif-
ferent fixed number of wavelet coefficients. In Fig. 3, we also
draw the BER performance achieved by the resampling-based
wavelet shrinkage method. It is seen that in this case, the best
performance (close to the known channel bound) is achieved
using eight wavelet coefficients. With four wavelet coefficients,
the performance is a bit worse, and the performance is sub-
stantially degraded if the number of wavelet coefficients is very
large (e.g, 15, 25, and 32). The BER performance of the SMC
blind receiver in a flat-fading channel with normalized Doppler

is shown in Fig. 4. It is seen that in this case, when
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Fig. 4. BER performance of the SMC receiver using fixed number (e.g., 4,
8, 15, and 25) of wavelet coefficients and the adaptive wavelet-based SMC
receiver. The channel is flat-fading with f T = 0:01. The delayed-weight
method is used with � = 6.

20 dB, the best number of wavelet coefficients is 15;
otherwise, the best number is 8.

However, simulation results seem to be contrary to what is
shown in Fig. 1, where more coefficients give better channel
fading representation accuracy. The reason for the BER degra-
dation using more wavelet coefficients is roughly summarized
as follows. First, the approximation error in Fig. 1 is achieved
without considering the effects of noise. Since the noise most
often occurs in high frequency, the extra wavelet coefficients
will bring noise into the receiver, which degrade the perfor-
mance of the receiver. Furthermore, to track a larger number of
wavelet coefficients would require a much longer burn-in period
and less accuracy than to track fewer of them.

We next show the performance of the SMC receiver em-
ploying the resampling-based wavelet shrinkage in flat-fading
channels. The possible number of wavelet coefficients for

is chosen from the set . Fig. 5 shows
the histogram of the number of wavelet coefficients associated
with each sample stream at times , , and
for and 10 dB. The result is the average
over 100 simulations. It is seen that the numbers of wavelet
coefficients focus on the range of (5,16) at time and the
range of (7,13) at time and , respectively. Fig. 6
illustrates the BER performance of the adaptive shrinkage
SMC receiver in flat-fading channels with different Doppler
values. It is seen that the proposed blind receiver achieves very
good performance (close to the known channel bound) if the
Doppler is not very high (e.g., ). However, for very
fast fading channels (e.g., ), the performance is
substantially degraded due to the difficulty in tracking the fast
variation of the channel.

Finally, we compare the performance of the wavelet-based
nonparametric SMC receiver with the parametric SMC receiver
proposed in [5]. To employ the parametric SMC receiver, we
need to obtain an ARMA representation of the fading process
based on its second-order statistics. To that end, a least square

5 10 15 20 25 30

5 10 15 20 25 30

5 10 15 20 25 30

0

5

10

15

20

25

0

10

10

20

20

30

30

40

40

Fig. 5. Histogram for the number of the wavelet coefficients associated with
the sample streams at times t = 20 (top), t = 40 (middle), and t = 64 (bottom)
for f T = 0:005 and E =N = 10 dB. The result is the average over 100
simulations.
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Fig. 6. BER performance of the adaptive shrinkage SMC receiver. The channel
is flat fading under different Dopplers. The delayed-weight method is used with
� = 6.

fitting is used to estimate ARMA model parameters (as in [5],
both the AR and MA parts of the model have order 3). The
fading process is generated based on Jakes’s fading model [32].
In Fig. 7, the BER performance is shown for both methods under
different fading coefficients (e.g., or 0.001). It is
seen that in this case, much better performance (nearly 10 dB
better) is achieved using the wavelet-based SMC receiver. More-
over, an error floor is seen at high SNR for the parametric SMC
receiver because of the mismatch between the ARMA model
and real fading process.
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Fig. 7. BER performance of the adaptive shrinkage SMC receiver and the
mixture Kalman filter with statistically approximated ARMA models. The
channel is flat fading under different Dopplers. The delayed-weight method is
used with � = 6.
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Fig. 8. BER performance of the SMC receiver using fixed number (e.g., 4,
8, and 15) of wavelet coefficients under different Dopplers. The channel is
frequency-selective fading with L = 2. The delayed-sample method is used
with � = 2.

B. Performance of Wavelet-Based SMC in Frequency-Selective
Fading Channels

We show the BER performance of the proposed SMC
receiver in frequency-selective fading channels. The number
of paths is . The delayed-sample method is used with

. In Fig. 8, the BER performance is plotted for different
number of wavelet coefficients and different Dopplers. It is
seen that in this case, the best performance is achieved using
four wavelet coefficients whereas a loss of nearly 5 and 10 dB,
respectively, is incurred when eight and 15 wavelet coefficients
are used. The BER performance of the resampling-based adap-
tive wavelet shrinkage SMC receiver with delayed-sample and
delayed-weight estimation is plotted in Fig. 9. As in flat-fading
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Fig. 9. BER performance of the adaptive shrinkage SMC receiver. The channel
is frequency-selective fading with L = 2. The delayed-sample/delayed-weight
methods are used with � = 2 and � = 6.

channels, the SMC blind receiver achieves close-to-bound
performance in channels with moderate fading rates (e.g.,

), whereas the performance degrades substantially
in very fast fading channels (e.g., ). However, it
is seen that the BER performance (see Fig. 8) of the adaptive
receiver is little bit worse (about 0.4 dB) than the BER per-
formance (see Fig. 9) of the receiver using fixed four wavelet
coefficients with very slow fading channels (e.g., 0.002
or 0.005). The reason for this is that the slow fading channels
can be characterized by only a few wavelet coefficients, in
particular, about four wavelet coefficients for channels with
normalized Doppler frequency 0.002 or 0.005. Hence, a
better BER performance shown in Fig. 8 is achieved with four
wavelet coefficients. On the other hand, the resampling-based
adaptive wavelet shrinkage SMC receiver takes a short time to
dynamically choose the suitable number of wavelet coefficients,
which results in a little bit worse BER performance. However,
it is clearly seen that the close-to-bound performance is usually
achieved by the adaptive SMC blind receiver without the prior
information of the channels. In summary, the number of coeffi-
cients requirements is unknown a priori, and the receiver must
be able to estimate it. For this particular example, by varying
the number of coefficients, we found that four coefficients
gives the best performance, and the adaptive shrinkage SMC
receiver achieves a similar performance. However, again, the
order is not known a priori and must be estimated.

VI. CONCLUSIONS

We have developed a new nonparametric Bayesian receiver
technique for blind detection in fading channels with unknown
channel statistics. It is based on the wavelet modeling of the
fading process and the sequential Monte Carlo method for
online Bayesian inference. A novel resampling-based wavelet
shrinkage technique is developed to dynamically choose the
number of the wavelet coefficients to best fit the fading

Authorized licensed use limited to: Rutgers University. Downloaded on March 26, 2009 at 23:41 from IEEE Xplore.  Restrictions apply.



238 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 1, JANUARY 2004

process. Blind adaptive receivers for both flat-fading channels
and frequency-selective fading channels are developed, and
their performance is demonstrated via computer simulations.
It is seen that for moderate fading rate (e.g., ), the
performance of the proposed wavelet based SMC receivers
is close to that of the receiver with perfect channel state in-
formation in both flat-fading and frequency-selective fading
channels. Our simulation results also show that the perfor-
mance of the nonparametric SMC receiver is nearly the same
for higher order Daubechies filter. Nonparametric Bayesian
blind adaptive receivers for very fast fading channels is still
an open problem and will be investigated in the future. Finally,
we note that the proposed nonparametric SMC receiver can
be extended to coded systems in the same way as described
in [5] and [36].
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