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Summary. We consider the problem of multistep-ahead prediction in time series analysis
by using nonparametric smoothing techniques. Forecasting is always one of the main objec-
tives in time series analysis. Research has shown that non-linear time series models have
certain advantages in multistep-ahead forecasting. Traditionally, nonparametric k-step-ahead
least squares prediction for non-linear autoregressive AR(d) models is done by estimating
E.XtCk jXt, . . . ,Xt�dC1/ via nonparametric smoothing of XtCk on .Xt, . . . ,Xt�dC1/ directly. We
propose a multistage nonparametric predictor. We show that the new predictor has smaller
asymptotic mean-squared error than the direct smoother, though the convergence rate is the
same. Hence, the predictor proposed is more efficient. Some simulation results, advice for prac-
tical bandwidth selection and a real data example are provided.

Keywords: Improvement ratio; Local polynomial; Multistage smoothing; Optimal bandwidth;
Sunspot series

1. Introduction

Forecasting is always an important, if not the most important, objective in time series analysis.
It has wide applications in the fields of economics, telecommunication, meteorology, etc. In this
paper we consider multistep-ahead prediction, which is very different from and more difficult
than one-step-ahead prediction, as shown in Tiao and Tsay (1994). For linear models multistep-
ahead prediction is relatively easy to perform. However, linear forecasts converge to the station-
ary mean quickly as the forecasting horizon increases (Box and Jenkins, 1976), but non-linear
models may have long-term non-linear properties such as limit cycles. Recent research in non-
linear time series analysis (e.g. Tong (1990) and Tjøstheim (1994)) has revealed the fact that
non-linear models usually perform better than linear models in multistep-ahead prediction.

With non-linear parametric models, multistep-ahead predictions are usually done by using
iterative integration or multiple-imputation methods. See Jones (1978), Pemberton (1987) and
Tong (1990) for details. Guo et al. (1999) also proposed an iterative integration procedure with-
out noise distribution assumptions. These procedures are based on parametric models. Their
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performance depends heavily on the correctness of the model and the accuracy of the estimated
parameters.

Recently, nonparametric methods have drawn much attention in time series analysis. For
a review, see Tjøstheim (1994), Györfi et al. (1989) and Härdle et al. (1997). This approach
entertains the principle of ‘letting the data speak for themselves’ and avoids the difficulty of
identifying an appropriate parametric model, including the non-linear functions and the error
distributions. The existing nonparametric approaches for least squares multistep-ahead pre-
diction (Robinson, 1983; Auestad and Tjøstheim, 1990; Härdle and Vieu, 1992) estimate the
conditional mean function by using direct smoothing techniques. Consider a time series {Xt}n

t=1
that is described by a general non-linear autoregressive AR(d) model

Xt =f.Yt−1/+σ.Yt−1/"t .1/

with Yt−1 = .Xt−1, . . . , Xt−d/T denoting the predictor variables and f and σ the conditional
mean and standard deviation functions. The noises {"t}n

t=d+1 are independent and identically
distributed (IID) with mean 0 and variance 1, independent of X1, . . . , Xd . The conditional
mean E{Xt+k|Yt = .y1, . . . , yd/} is then the least squares predictor for k-step-ahead prediction.
Auestad and Tjøstheim (1990) and Härdle and Vieu (1992) proposed to use the ordinary
Nadaraya–Watson (NW) estimator

m̂
.Å/
k,h.y/=

n−k∑
t=d

Kh.y −Yt/Xt+k

n−k∑
t=d

Kh.y −Yt/

.2/

where y = .y1, . . . , yd/T denote the conditioning values, K is a kernel function and the notation
Kh.y/=h−d Π1�i�d K.yi=h/. For local linear estimation of vector AR models, see Härdle et al.
(1998).

The direct nonparametric estimator (2) ignores the substantial information about the condi-
tional mean function E.Xt+k|Yt/ that is contained in the intermediate variables Xt+1, . . . , Xt+k−1.
In this paper, we propose a nonparametric multistage predictor which uses such information.
The method is motivated by the following observations.

Consider two-step ahead forecasting under a first-order non-linear AR model Xt =f.Xt−1/+
σ.Xt−1/"t , i.e. setting d =1 and k =2. The least squares two-step prediction of Xt+2 given Xt =x

is the conditional mean

m2.x/=E.Xt+2|Xt =x/=E{f.Xt+1/+σ.Xt+1/"t+2|Xt =x}=E{f.Xt+1/|Xt =x}:

Ideally, if we knew the function f.·/, we would smooth on the pairs .f.Xt+1/, Xt/, t =1, . . . , n−2,
to estimate m2.x/. The direct estimator (2) uses the pairs .Xt+2, Xt/. Since Xt+2 is a noisier rep-
resentative of f.Xt+1/ with Op.1/ error, we can improve the estimation by using a more accurate
representative f̂ Å.Xt+1/, where f̂ Å.·/ is a nonparametric estimator of the function f.·/. Under
regularity conditions, we have f̂ Å.Xt+1/−f.Xt+1/=op.1/. This observation suggests that the
‘two-stage predictor’ which smooths the pairs .f̂ Å.Xt+1/, Xt/ performs as well as smoothing the
pairs .f.Xt+1/, Xt/.

To illustrate the effect of such two-stage smoothing, consider the process

Xt+1 =a sin.bXt/+σ"t+1, .3/

where "t is Gaussian white noise with variance 1 and a=1, b=π=2 and σ =1. We simulated a
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Fig. 1. True function m.x/ D exp.�π2=4/ sin{.π=2/ sin.πx=2/} ( ) for a sample of n D 300 (a D 1):
(a) direct predictor (. . . . . . .) and the pairs {Xt,XtC2}; (b) multistage predictor (. . . . . . .) and the pairs
{Xt, f̂ Å.XtC1/}, where f̂ Å is the first-stage smoother for f .x/Dsin.πx=2/

series of length 300 from this model. Fig. 1(a) shows the scatterplot of .Xt , Xt+2/. The dotted
curve is the estimated mean function E.Xt+2|Xt/ using the direct NW estimator (2) and the full
curve is the true mean function. Fig. 1(b) shows the scatterplot of .Xt , f̂ Å.Xt+1//, where f̂ Å is
obtained by smoothing Xt+2 on Xt+1 (the first-stage smoothing). We can see that the variation
of f̂ Å.Xt+1/ is much smaller than that of Xt+2. Of course the smoothing creates extra bias, but
it can be controlled with a proper bandwidth. The dotted curve is the estimated mean function
by smoothing .Xt , f̂ Å.Xt+1// (the second-stage smoothing) and the full curve is the true mean
function.

Throughout the paper we concentrate on the multistep-ahead prediction problem for the
general non-linear AR(d) model (1). This general model (1) can often be simplified by dropping
out lags that are insignificant, and our procedure can be altered accordingly to take advantage
of the less complicated model. For the exact identification of the lag structure, see Tschernig
and Yang (2000).

Chen (1996a, b) studied similar estimators for regression analysis using NW estimators and
showed that the multistage smoother does improve the estimation of the conditional mean func-
tion. In this paper, we extend the multistage smoothing idea to include multivariate predictors
and local polynomial estimators, as well as time series instead of independent samples. We dem-
onstrate the improvement in mean-squared error of the multistage predictor over that of the
direct predictor in these general settings.

In the example that we gave previously, undersmoothing f̂ Å.·/ extremely yields f̂ Å.Xt+1/≈
Xt+2 and we obtain again the direct smoother (2). Thus, heuristically, direct smoothing may be
considered as a restricted case of two-stage smoothing. By optimizing the amount of smoothing,
we can achieve a smaller error without the restriction. This also offers a large amount of flex-
ibility in multistage smoothing when deciding whether to skip some stages; see our discussion
in Section 4.

We also want to point out that the iterative integration procedures of Jones (1978), Pemberton
(1987), Tong (1990) and Guo et al. (1999) can be extended to nonparametrically estimated
models. It may be interesting to investigate the cumulative effect of error incurred with nonpara-
metrically estimated functions and estimated empirical error distributions.

The paper is organized as follows. In Section 2, we formally introduce the two-stage predictor
and show that it has a smaller mean-squared error than the direct predictor. Results are derived
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for both the NW estimator and the local polynomial estimator. In Section 3, we investigate
implementation issues such as automatic selection of the bandwidth in finite samples and pro-
vide simulation evidence. Section 4 deals with multistage (k > 2) predictors. Results are provided
for the performance of the multistage predictor with various numbers of iterations. To demon-
strate the finite sample properties of the predictor proposed, results from simulation studies are
presented within the sections. Finally, a real data example is provided in Section 5.

2. The two-stage predictor

In this section we consider the problem of predicting Xt+2 based on Xt , Xt−1, . . . for the process
(1). Since it is dth order Markovian, it is seen that the least square two-step prediction is

E.Xt+2|Xt , Xt−1, . . . /=E.Xt+2|Xt , Xt−1, . . . , Xt−d+1/

=E{f.Xt+1, Xt , . . . , Xt−d+2/|Xt , Xt−1, . . . , Xt−d+1}
=E{f.Yt+1/|Yt}:

Thus the prediction problem is reduced to predicting Xt+2, or equivalently f.Yt+1/, from Yt =
.Xt , . . . , Xt−d+1/T. We shall show that under regularity conditions a two-stage predictor using
a pilot estimator f̂ Å.Yt+1/ has smaller mean-squared error than the direct smoother in equa-
tion (2).

To begin with, we define the kernel estimator of the function f as

f̂ h′.z/=

n−2∑
j=d

Kh′.z−Yj/Xj+1

n−2∑
j=d

Kh′.z−Yj/

: .4/

On the basis of this estimator, let

f̂ Å
h′.Yt+1/=w.Yt+1/ f̂h′.Yt+1/+{1−w.Yt+1/}Xt+2,

where w.z/= I.z∈K/ for an arbitrary large compact set K. Alternatively, we can write

f̂ Å
h′.Yt+1/=

{
f̂h′.Yt+1/ if Yt+1 ∈K,
Xt+2 if Yt+1 �∈K:

.5/

The use of weight function w.z/ is to avoid the estimation of f.Yt+1/ for large Yt+1-values, since
the smoothing estimator converges uniformly with optimal rate only on compact ranges. Such
a technique of screening off extreme observations has been commonly used in the literature;
see, for example, Tschernig and Yang (2000).

Then the two-stage predictor is defined as

m̂.y/= m̂2.y/= m̂2;h,h′.y/=

n−2∑
t=d

Kh.y −Yt/ f̂ Å
h′.Yt+1/

n−2∑
t=d

Kh.y −Yt/

, .6/

In what follows, the density of Yt is denoted as p.·/, the gradient operator of a multivariate
function as ∇ and the Laplacian operator is denoted as tr.∇2/, the trace of the Hessian matrix.
Let u2.y/=var{f.Yt+1/|Yt =y} and v2.y, K/=E[{1−w.Yt+1/}σ2.Yt+1/|Yt =y].
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First we list some conditions that are needed for the theorems.

(a) The noise "t is IID with mean 0 and variance 1. The function σ.·/ is continuous and is
positive on set K.

(b) The process {Xt}t�0 is stationary and geometrically β mixing. Sets of sufficient conditions
for geometric ergodicity can be found in Tjøstheim (1990) and Davydov (1973).

(c) The functions f and m are twice continuously differentiable.
(d) The stationary density p.·/ of Yt exists, is bounded, continuous and bounded from below

on S with interior S0 such that S0 ⊃K⊃K0 and continuously differentiable on S0.
(e) The kernel K is a compactly supported, symmetric probability density.

Theorem 1. Under conditions (a)–(e), and h =βn−1=.d+4/ for some β > 0, h′ = o.h/ and h =
o.h′nδ′

/, ∀δ′ > 0, we have

n2=.d+4/{m̂2.y/−m2.y/−β2 B.y/} D→N{0, β−d‖K‖2d
2 s2.y/=p.y/}

where s2.y/=u2.y/+v2.y, K/, and

B.y/= µ2.K/

2
tr{∇2

y m2.y/}+ µ2.K/

p.y/
∇T

y m2.y/ ∇yp.y/ .7/

and µ2.K/=∫
u2 K.u/ du and ‖K‖2

2 =∫
K2.u/ du.

To understand theorem 1, we introduce a ‘genie’ smoother

m̃.y/= m̃2.y/=

n−2∑
t=d

Kh.y −Yt/ fÅ.Yt+1/

n−2∑
t=d

Kh.y −Yt/

.8/

in which

fÅ.Yt+1/=f.Yt+1/+{1−w.Yt+1/} σ.Yt+1/"t+2 =
{

f.Yt+1/ if Yt+1 ∈K,
Xt+2 if Yt+1 �∈K,

where w.Yt+1/= I.Yt+1 ∈K/, the indicator function. This estimator assumes perfect knowledge
of the function f (except outside the set K). Because of model (1), Xt+2 is a noisier version
of f.Yt+1/; hence the genie estimator should perform better than the director estimator in
equation (2).

Of course in reality we do not have perfect knowledge of the function f , but the following
lemma explains that the difference between the two-staged predictor m̂2.y/ and the genie estima-
tor m̃2.y/ is asymptotically negligible compared with that between m̃2.y/ and the true function
m2.y/. Hence the two-stage predictor behaves the same, asymptotically, as the genie estimator.

Lemma 1 is based on the observation that, owing to the choice of bandwidths h and h′ =o.h/,
the asymptotic bias between f̂ Å

h′.Yt+1/ and fÅ.Yt+1/ is of order h′2, which is also the bias order
between m̂2.y/ and m̃2.y/. This bias is negligible compared with the bias between m̃2.y/ and
m2.y/ (of order h2). Meanwhile, the condition that h=h′ =an goes to ∞ slower than any power of
n ensures that the asymptotic variance of approximating m̃2.y/ with m̂2.y/ is of order 1=nhd−1,
which is negligible compared with the variance order of approximating m2.y/ with m̃2.y/ (of
order 1=nhd).

Lemma 1. Under the conditions of theorem 1, the mean-squared error between m̂2.y/ and
m̃2.y/ is
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E{m̂2.y/− m̃2.y/}2 = ‖K‖2.d−1/
2

nhd−1 p.y/2

∫
w2.x, y .d−1//

p.x, y .d−1//
σ2.x, y .d−1// p2.x, y/ dx

+
{∫

B′.x, y .d−1// p.x, y/=p.y/ dx

}2

h′4 +o.h′4 +1=nhd−1/, .9/

in which y .d−1/ denotes .y1, . . . , yd−1/, the first d − 1 elements of y, and p.x, y .d−1// denotes
the density of Yi at .x, y1, . . . , yd−1/ and p.x, y/ the density of .Xi, Yi−1/ at .x, y1, . . . , yd/ and
function B′.·/ is defined as

B′.z/=w.z/

{
1
2
∇2f.z/+∇Tf.z/

∇p.z/

p.z/

}
µ2.K/:

In particular

E{m̂2.y/− m̃2.y/}2 =o[E{m2.y/− m̃2.y/}2]: .10/

Similarly, the mean integrated squared error over K0 is∫
K0

E{m̂.y/− m̃.y/}2 p.y/ dy

= ‖K‖2.d−1/
2

nhd−1

∫
K0

{∫
w2.x, y .d−1//

p.x, y .d−1//
σ2.x, y .d−1//p

2.x, y/ dx

}/
p.y/ dy

+
∫

K0

{∫
B′.x, y .d−1// p.x, y/ dx

}2/
p.y/ dyh′4 +op.h′4 +1=nhd−1/: .11/

It is interesting to note from lemma 1 that, although two bandwidth parameters h and h′ are
used in m̂2.y/, asymptotically the effect of h′ is only in the bias of approximating m̃2.y/ with
m̂2.y/; hence there is not an obvious way to balance the bias and variance due to the first-stage
bandwidth h′. In contrast, according to theorem 1, the second-stage bandwidth h appears in
both the bias and the variance of estimating m2.y/ with m̂2.y/. Hence we have the following
simple result.

Corollary 1. Under the conditions of theorem 1, the optimal bandwidth h for the two-step
estimation at y is

hopt.y/=
{

d

4n
‖K‖2d

2 s2.y/ B−2.y/ p−1.y/

}1=.d+4/

: .12/

The optimal bandwidth h for two-step estimation over K0 is

hopt.K0/=
[

d

4n
‖K‖2d

2

∫
K0

s2.y/ dy

{∫
K0

B2.y/ p.y/ dy

}−1 ]1=.d+4/

: .13/

In practice we could use h′ =h= log.n/ to satisfy h′ =o.h/ and h=o.h′nδ/, ∀δ > 0, which works
quite well in simulations. By replacing the unknown terms in the above expressions with their
estimates from a preliminary procedure, we can obtain the plug-in optimal bandwidth for the
second stage. For more general results on plug-in bandwidth selection in multivariate settings,
see Yang and Tschernig (1999).

Detailed proofs of theorem 1 and lemma 1 are given in Chen et al. (2004). All the same con-
clusions are true for local linear regressors as well. The only change is that the bias function
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B.y/ becomes

B.y/= µ2.K/

2
tr{∇2

y m2.y/}: .14/

Comparing with the direct smoother (2), we have the following corollary.

Corollary 2. Under the conditions of theorem 1, at a single point y, the ratio of the asymp-
totic mean-squared error of the two-stage smoother (6) and the direct smoother (2), both using
optimal bandwidths, is

r.y/=
{

u2.y/+v2.y, K/

u2.y/+v2.y/

}4=.d+4/

,

where v2.y/=E{σ2.Yt+1/|Yt =y}.
The same ratio over a d-dimensional compact set K0 that contains y is

r =




∫
K0

u2.y/ dy +
∫

K0

v2.y, K/ dy∫
K0

u2.y/ dy +
∫

K0

v2.y/ dy




4=.d+4/

: .15/

Remark 1. Theorem 1 says that asymptotically the two-stage predictor behaves the same as
if we knew exactly the function f in the compact set K. The improvement of the mean-squared
error over the direct predictor (2) is due to the smaller asymptotic variance u2.y/ + v2.y, K/

versus var.Xt+2|Yt = y/ = u2.y/ + v2.y/. With large K, we can achieve a significant improve-
ment, since v2.y, K/ < v2.y/. If σ.Yt+1/=σ2, a constant, then v2.y, K/=P.Yt+1 �∈K|Yt = y/σ2.
The compact set K is used here for technical reasons in proving the asymptotics. In theory, as
the sample size increases, we can also increase the size of K, to increase the improvement. In
practice we obtained satisfactory results with very large K that covers the entire data range.

Remark 2. We can replace the NW smoother by the local polynomial estimator of order 2p

or 2p + 1 and the asymptotic result will be similar. The ratio of improvement in terms of the
mean-squared error becomes at most

r.y/=
{

u2.y/+v2.y, K/

u2.y/+v2.y/

}.4p+4/=.4p+4+d/

,

where p=0 represents the improvement for the NW and local linear estimators.

Remark 3. The multistage predictor is sensitive to the correctness of the model specification,
particularly the AR order. For example, examine the equation

E.Xt+2|Xt/=E{E.Xt+2|Xt+1, Xt/|Xt}=E{E.Xt+2|Xt+1/|Xt}:

The first equality always holds, but the second holds only when Xt is first order Markovian.
Hence, if the process is not a non-linear AR(1) (NAR(1)) process, the multistage prediction that
is based on the second equality would be incorrect, whereas the direct smoothing procedure
does not have this problem. However, a multistage prediction based on an NAR(2) process (i.e.
using the first equality) will still gain efficiency over the direct smoothing method. To identify
the correct model structure, we can effectively use the nonparametric procedures of Auestad
and Tjøstheim (1990) or Tschernig and Yang (2000).
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Remark 4. Theorem 1 requires the first-stage bandwidth to be of smaller order than the
second-stage bandwidth. This requirement basically ensures that the bias that is created in the
first-stage smoothing is of a smaller order so that their effect on the second-stage smoothing is
negligible. Similar features have been found in other multistage nonparametric procedures (Fan
and Zhang, 1999).

3. Bandwidth selection and simulation

Automatic bandwidth selection is always an important part of any nonparametric procedure.
Cross-validation and plug-in methods are commonly used. It is possible to perform cross-
validation procedures to obtain the optimal combination of .h′, h/ for the two-stage smooth-
ing, though it requires a two-dimensional search, which can be computationally intensive. A
simpler and faster way is to obtain the optimal cross-validation bandwidth for each stage sep-
arately, though our simulation shows that the final result is not very sensitive to the selection.
Lastly, we can also use a plug-in bandwidth for the selection of second-stage bandwidth h as in
corollary 1, together with h′ =h= log.n/.

In what follows, we present simulation results for three processes, the third with plug-in and
the first and second with cross-validation bandwidth selection for the second stage.

3.1. Example 1
Let us first consider an extension of process (3) given as

Xt =a sin.bXt−1/+σ.Xt−1/"t .16/

with

σ2.Xt−1/=ω +αX2
t−1,

where ω > 0 and α� 0. We fix the parameters b=π=2, and the amplitude a can be 1 or 2. The
process is geometrically ergodic by Cline and Pu (1999). In our study, we let α be alternatively
0, 0.2 and 0.5, and ω =1−α. Note that α=0 corresponds to process (3).

To reduce the effect of outliers, each generated series was trimmed at its 0.5% and 99.5%
quantile. We use cross-validation optimal bandwidths for the direct smoother and the second-
stage of the multistage smoother. For the first-stage smoothing we should undersmooth. To see
the sensitivity of the results with respect to the degree of undersmoothing, we use three band-
widths for the first-stage smoothing: h′ =hÅ, h′ =hÅ=5 and h′ =hÅ=10, in which hÅ denotes the
cross-validation optimal bandwidth for the NW smoother. Figs 1 and 2 illustrate the direct and
multistage smoothers versus the true function for one sample of size n = 300 with α = 0 and
a=1.

Table 1 provides summary statistics for the improvement rates for 200 replications of process
(16) with sample size n. Since the distribution of r̂ is highly skewed, we present their quantiles.
The theoretical (and optimal) improvement rate r in equation (15) in this case is

r =




∫ c

−c

{u2.x/+v2.x, [−c, c]/} dx∫ c

−c

{u2.x/+v2.x/} dx




4=5

.17/

where c determines the interval of interest. We have chosen c = 4 for the case a = 1 and c = 5
for the case a = 2. The intervals [−c, c] cover about all the simulated data points, and hence
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Fig. 2. True function m.x/Dexp.�π2=4/ sin{.π=2/ sin.πx=2/} ( ) for a sample of nD300 (a D1;
improvement rate 0.789), multistage predictor (. . . . . . .) and direct predictor ( )

approximately we can take v2.x, [−c, c]/ = 0. Functions u2.x/ and v2.x/, which are obtained
through elementary calculation, are

u2.x/=var{E.Xt+2|Xt+1/|Xt =x}
= 1

2 a2[1− exp{−b2.ω +αx2/}][1+ exp{−b2.ω +αx2/}cos{2ab sin.bx/}]

and

v2.x/=E{var.Xt+2|Xt+1/|Xt =x}=ω.1+α/+αa2 sin2.bx/+α2x2

respectively. For each simulated series, we estimated m2 by using both the direct predictor m̂Å

in equation (2) and the two-stage predictor m̂ in equation (6), and calculated

r̂ =

n−2∑
t=1

{m̂2.Yt/−m2.Yt/}2

n−2∑
t=1

{m̂Å
2 .Yt/−m2.Yt/}2

, .18/

where the true prediction function is calculated to be

m2.x/=a sin
{π

2
a sin

(π

2
x
)}

exp
{
− π2

8
.ω +αx2/

}
:

From the results in Table 1, the multistage predictor clearly outperforms the direct predictor.
It appears that the improvement rate is not very sensitive to the degree of undersmoothing.
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Table 1. Example 1: summary statistics of the simulated ratios of improvement†

(a, α) h′ r Results for n=300 Results for n=1000

Minimum 25% 50% 75% Maximum Minimum 25% 50% 75% Maximum

(1, 0) hÅ 0.39 0.17 0.45 0.62 0.86 2.56 0.17 0.39 0.56 0.72 2.49
hÅ=5 0.39 0.29 0.51 0.58 0.65 0.92 0.13 0.39 0.51 0.70 1.41
hÅ=10 0.39 0.32 0.71 0.87 1.04 1.94 0.08 0.22 0.31 0.44 0.93

(1, 0.2) hÅ 0.27 0.11 0.41 0.61 0.83 2.44 0.13 0.38 0.52 0.70 1.53
hÅ=5 0.27 0.16 0.49 0.64 0.85 2.74 0.12 0.28 0.39 0.54 1.14
hÅ=10 0.27 0.19 0.47 0.61 0.78 1.53 0.19 0.47 0.63 0.74 1.88

(1, 0.5) hÅ 0.17 0.08 0.24 0.35 0.48 1.02 0.12 0.34 0.46 0.60 1.53
hÅ=5 0.17 0.10 0.47 0.64 0.82 1.51 0.10 0.37 0.50 0.67 1.45
hÅ=10 0.17 0.08 0.23 0.33 0.44 0.84 0.14 0.29 0.39 0.49 1.18

(2, 0) hÅ 0.71 0.41 0.71 0.81 0.94 1.61 0.42 0.65 0.76 0.88 1.58
hÅ=5 0.71 0.86 0.98 0.99 1.01 1.06 0.22 0.44 0.52 0.61 0.98
hÅ=10 0.71 0.68 0.89 0.95 0.99 1.19 0.39 0.68 0.79 0.89 1.40

(2, 0.2) hÅ 0.53 0.21 0.63 0.83 1.04 2.24 0.31 0.55 0.66 0.77 1.23
hÅ=5 0.53 0.32 0.48 0.61 0.76 1.71 0.40 0.64 0.71 0.85 1.35
hÅ=10 0.53 0.38 0.79 0.95 1.19 2.39 0.39 0.63 0.70 0.82 1.23

(2, 0.5) hÅ 0.33 0.38 0.73 0.94 1.40 13.77 0.39 0.51 0.57 0.67 1.21
hÅ=5 0.33 0.22 0.66 0.77 0.90 1.53 0.34 0.51 0.58 0.66 1.12
hÅ=10 0.33 0.05 0.99 1.03 1.08 2.31 0.26 0.49 0.61 0.71 1.19

†The minima, maxima and quartiles of the simulated improvement rates r̂ are given. r is the theoretical ratio in
equation (17).

Note also the interesting phenomenon that the improvement becomes more pronounced as the
heteroscedasticity is increased by changing α from 0 to 0.2 and then to 0.5. In all cases, the
multistage predictor has a substantial advantage over the direct predictor.

3.2. Example 2
Our second example uses an exponential AR model (Haggan and Ozaki, 1981), given by

Xt ={0:7+0:5 exp.−cX2
t−1/}Xt−1 +σ"t .19/

with "t IID as N.0, 1/ and alternative .c, σ/ combinations. As in example 1, we use cross-
validation optimal bandwidths. 200 series are generated, each of size 400. Table 2 shows the
quartiles of the improvement rate r. Again, the multistage predictor outperforms the direct pre-
dictor. Note that, as the noise variance σ2 is increased, the improvement increases. The same
happens when the parameter c is increased.

3.3. Example 3
To give an example for d =2, consider the process

Xt =a1 sin.b1Xt−1/+a2 sin.b2Xt−2/+σ"t .20/

with "t IID as N.0, 1/. For two-step-ahead prediction, the true conditional mean function is

m2.x/=E.Xt+2|Xt =x1, Xt−1 =x2/

=a1 sin{a1b1 sin.b1x1/+a2b1 sin.b2x2/} exp.−b2
1σ

2=2/+a2 sin.b2x1/:
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Table 2. Example 2: theoretical improvement rate r and quartiles of the improvement rate r̂ of simulated series for various combinations of .c,σ/ and
bandwidth for the first-stage smoothing using model (19)

(c, σ) r Results for h1 =hÅ
1 Results for h1 =hÅ

1 =5 Results for h1 =hÅ
1 =10

Minimum 25% 50% 75% Maximum Minimum 25% 50% 75% Maximum Minimum 25% 50% 75% Maximum

(0.15, 1) 0.52 0.16 0.54 0.75 1.00 3.80 0.22 0.51 0.70 0.88 2.30 0.24 0.55 0.75 0.92 2.00
(0.15, 0.5) 0.56 0.58 1.10 1.30 1.40 2.60 0.39 0.78 0.91 1.00 1.50 0.39 0.79 0.91 1.00 1.50
(0.5, 1) 0.43 0.10 0.65 0.94 1.20 4.40 0.17 0.50 0.72 0.93 2.10 0.19 0.53 0.75 0.94 2.60
(0.5, 0.5) 0.52 0.21 0.77 1.10 1.40 3.20 0.16 0.65 0.83 1.00 2.40 0.21 0.68 0.85 1.00 2.30
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This function is plotted in Fig. 3(c) with a1 =a2 = 1
2 , b1 =π=4 and b2 =π. Using these param-

eters and σ = 1
2 , we generated a series from model (20) and estimated m2 by using local linear

estimates for the direct predictor and the multistage predictor, both shown also in Fig. 3. To
reduce the effect of outliers, we trimmed the generated series at the 2.5- and 97.5-percentiles.
Plug-in bandwidths were used for the direct predictor and the second stage of the multistage
predictor, whereas a grid search was performed for h′ to minimize the mean-squared error. All
functions are shown for the range .−1, 1/ × .−1, 1/ which covers most data points. The mean-
squared errors were calculated also for this range. We generated 100 replications, each with
n= 1000. The mean integrated squared error of direct smoothing was 0.0093, whereas that of
multistage smoothing was 0.0064. The quartiles of the improvement ratios defined in equation
(18) were 0.6154, 0.6873 and 0.7616, with a minimum of 0.4319 and a maximum of 1.033.

4. Multistage predictor for multistep-ahead prediction

For non-linear AR(d) models in equation (1), multistep prediction can be done recursively by
using the multistage smoother. Define f1.y/ = E.Xt+1|Yt = y/ and for j = 2, . . . , k recursively
define fj.y/=E{fj−1.Yt+1/|Yt =y}. Then

mk.y/=E.Xt+k|Yt =y/=E{f1.Yt+k−1/|Yt =y}=E{f2.Yt+k−2/|Yt =y}
= . . . =E{fk−1.Yt+1/|Yt =y}=fk.y/:

Note that var{fj.Yt+k−j/}=var{fj+1.Yt+k−j−1/}+E[var{fj.Yt+k−j/|Yt+k−j−1}] and there-
fore var{fj+1.Yt+k−j−1/} � var{fj.Yt+k−j/}, which holds for all j. Applying this recursively
leads to var{fk.Yt/}�var{f1.Yt+k−1/}, which means that k-step smoothing has a smaller vari-
ance than smoothing f1.Yt+k−1/ on Yt . This is the motivation for doing more steps.

In what follows, we write

Xt+k =fk−1.Yt+1/+σk−1.Yt+1/"t+k,k−1 .21/

where fk−1.z/≡E.Xt+k|Yt+1 =z/ and σ2
k−1.z/≡var.Xt+k|Yt+1 =z/, and E."t+k,k−1|Yt+1 =z/=0

and var."t+k,k−1|Yt+1 = z/ = 1. For clearer presentation, we shall use the NW smoother. The
method can be immediately extended to using the local polynomial estimator. Starting with
X

.0/
t =Xt , we repeat the following steps for j =1, . . . , k −1.

Stage j: estimate

X
.j/
t+k = f̂

Å
j .Yt+k−j/=

{
f̂j .Yt+k−j/ if Yt+k−j ∈K,
Xt+j if Yt+k−j �∈K

where

f̂ j.y/=

n−k∑
t=d

Khj .y −Yt+k−j/X
.j−1/
t+k

n−k∑
t=d

Khj .y −Yt+k−j/

:

Then, the conditional mean function mk.y/ is estimated by

m̂k.y/=

n−k∑
t=d

Khk
.y −Yt/X

.k−1/
t+k

n−k∑
t=d

Khk
.y −Yt/

: .22/
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(a) (b)

(c) (d)

Fig. 3. Results for a generated sample of model (20) with n D 1000 (the ratio of the mean-squared error
for this sample was 0.50; the bandwidths were 0.4055 for the direct predictor, 0.2408 for the first stage and
0.2797 for the second stage): (a) direct predictor; (b) multistage predictor; (c) true function; (d) scatterplot of
the predictors (in (a)–(c) the left-hand axis is the first lag .xt�1/ and the right-hand axis is the second lag
.xt�2/)

Graphically, this recursive method can be presented as

Xt+k
.Xt+k ,Yt+k−1/�⇒ X

.1/
t+k

.X
.1/
t+k ,Yt+k−2/�⇒ X

.2/
t+k

.X
.2/
t+k ,Yt+k−3/�⇒ . . .

.X
.k−2/
t+k ,Yt+1/�⇒ X

.k−1/
t+k

.X
.k−1/
t+k ,Yt/�⇒ mk.y/:

We have the following theorem.
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Theorem 2. Under the conditions of theorem 1, if hk = βn−1=.d+4/ for some β > 0, h′
j =

o.hk/ and hk =o.h′
jnδ′

/, ∀δ′ > 0 for j =1, . . . , k −1, we have

n2=.d+4/{m̂k.y/−mk.y/−β2 Bk.y/} D→N{0, β−d‖K‖2d
2 s2

k.y/=p.y/},

where

B.y/= µ2.K/

2
tr{∇2

ymk.y/}+µ2.K/∇T
y mk.y/∇p.y/=p.y/,

and

s2
k.y/=var{fk−1.Yt+1/|Yt =y}+var[{1−w.Yt+1/}{Xt+k −fk−1.Yt+1/}|Yt =y]

=var{fk−1.Yt+1/|Yt =y}+var[{1−w.Yt+1/} σ2
k−1.Yt+1/|Yt =y]:

The proof of the theorem is very tedious and we show only a sketch in Chen et al. (2004).
The asymptotic bias and variance are the same as if we knew exactly the function fk−1.·/ and

smoothed fk−1.Yt/ on Yt−1. Comparing with the direct smoother, the bias term is the same,
whereas the estimator (22) has smaller variance. The ratio of the asymptotic optimal mean
squared error of the multistage smoother (22) and the direct smoother (2) at a single point is then

r.y/=
(

var{fk−1.Yt+1/|Yt =y}+var[{1−w.Yt+1/}{Xt+k −fk−1.Yt+1/}|Yt =y]
var.Xt+k|Yt =y/

)4=.d+4/

=
(

var{fk−1.Yt+1/|Yt =y}+var[{1−w.Yt+1/} σ2
k−1.Yt+1/|Yt =y]

var.Xt+k|Yt =y/

)4=.d+4/

:

The improvement ratio over a compact set can be obtained similarly as equation (15).
Also note that the above asymptotic result is the same as a two-step procedure:

(a) estimate fk by smoothing Yt+k on Yt+1 and obtain f̂Å
k−1.Yt+1/; then

(b) estimate mk by smoothing f̂Å
k−1.Yt+1/ on Yt .

The improvements in using the extra intermediate steps are asymptotically of smaller order.
However, the benefit of these intermediate steps can be seen with a finite sample size, because
by inserting those intermediate steps the estimation of fk−1 is more accurate. It is noted that
the practical implementation of the estimator becomes increasingly difficult as the number of
steps k increases, owing to the difficulties in selecting a bandwidth for each step. There is a
strong tendency to oversmooth, owing to the large amount of smoothing that is involved.
Theoretically, we have shown that the bandwidths at the earlier stages h1, . . . , hk−1 should be of
smaller order than the optimal bandwidth (to keep the bias that is introduced in the early stages
negligible) whereas the final stage uses the optimal rate. Simultaneous bandwidth selection of
.h1, . . . , hk−1/ by using cross-validation is almost impossible computationally. It seems that the
plug-in method may be computationally more feasible, as discussed in Section 2.2.

When k is large, it is reasonable to skip some steps in the recursion, i.e. setting some hi to 0, since
the intermediate steps are less important asymptotically. This enables us to control the number of
smoothing parameters that are used, while still benefiting from the multistage smoothing proce-
dure. However, the second-to-last step (obtaining f̂Å

k−1) should not be skipped. This can be seen
in the following simple example. For a non-linear AR(1) model Xt+1 =f.Xt/+σ.Xt/"t , we have

m3.x/=E.Xt+3|Xt =x/=E{f.Xt+2/|Xt =x}=E{f2.Xt+1/|Xt =x},

where f2.z/ = E{f.Xt+2/|Xt+1 = z}. Since var{f2.Xt+1/|Xt = x} � var{f.Xt+2/|Xt = x}, by
theorem 1 we should smooth Xt+3 on Xt+1 to obtain an estimate of f2, and then smooth
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f̂Å
2 .Xt+1/ on Xt to estimate m3. This is better than obtaining f̂ Å and then smoothing f̂ Å.Xt+2/

on Xt to estimate m3.
Our limited simulation study shows that, with a sufficient sample size and carefully chosen

bandwidth, performing smoothing in every step of recursion provides more accurate results.
Experiments have also shown that the second-to-last step should not be skipped.

4.1. Example 4
To check the performance of the recursive multistage prediction estimator, we generated 200
series from the exponential AR model (19) with different .c, σ/ combinations. We tried three
different recursive schemes for four-step prediction: four-stage smoothing (4), 4–3–2–1–0; three-
stage (3), 4–3–1–0 (i.e. h2 = 0); two-stage (2), 4–2–0 (i.e. h1 = 0 and h3 = 0). Table 3 shows
the improvement rate by using different bandwidths (the cross-validation optimal, the cross-
validation optimal over 5 and the cross-validation optimal over 10), except for the last stage,
which always uses the optimal cross-validation bandwidth.

We can see from Table 3 that the multistage estimator has a marked improvement over the
direct smoothers. The use of hÅ

i =5 as the early stage bandwidth seems to work the best. And the
two-step estimator does not perform as well as the other two since it skipped the most important
step (setting h3 =0).

To see the effect of each stage of smoothing, we plotted one of the simulated series. In Fig. 4,
we show the scatterplot of Xt+4, X

.1/
t+4, X

.2/
t+4 and X

.3/
t+4 against Xt , where X

.i/
t+4 is the ith smoothed

version of Xt+4 after the ith stage of smoothing. We can see that the variation of X
.i/
t+4 becomes

increasingly smaller after each stage of smoothing.

5. A real data example

The practical relevance of our results is seen by comparing the performance of the direct and
the multistage smoothers on a real data set bench-mark. We have chosen the famous sunspot

Table 3. Quartiles of the improvement rates of four-step prediction for model (19) using various .c,s/ com-
binations, various early stage bandwidth selection and various recursion schemes, based on 200 simulated
series, each of size 400

(c, s) Results for hi =hÅ
i Results for hi =hÅ

i =5 Results for hi =hÅ
i =10

25% 50% 75% 25% 50% 75% 25% 50% 75%

(0.15, 1) 4 0.30 0.46 0.70 0.29 0.45 0.64 0.33 0.48 0.66
3 0.31 0.46 0.66 0.33 0.49 0.67 0.39 0.54 0.70
2 0.41 0.58 0.74 0.47 0.62 0.79 0.53 0.67 0.80

(0.15, 0.5) 4 0.50 0.71 0.94 0.46 0.62 0.88 0.49 0.65 0.90
3 0.50 0.69 0.94 0.50 0.66 0.86 0.55 0.72 0.91
2 0.57 0.75 0.90 0.62 0.76 0.91 0.67 0.80 0.96

(0.5, 1) 4 0.17 0.31 0.47 0.19 0.33 0.53 0.24 0.39 0.55
3 0.19 0.33 0.47 0.24 0.38 0.57 0.28 0.44 0.64
2 0.28 0.42 0.57 0.36 0.49 0.70 0.43 0.57 0.79

(0.5, 0.5) 4 0.31 0.46 0.65 0.30 0.45 0.61 0.34 0.48 0.64
3 0.31 0.47 0.62 0.36 0.47 0.62 0.41 0.54 0.70
2 0.41 0.58 0.74 0.47 0.61 0.78 0.52 0.66 0.83
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Fig. 4. Process of four-stage smoothing for four-step-ahead prediction using model (19) with a sample
size of 400: (a) XtC4 versus Xt ( , true conditional expectation E.XtC4jXt/ ; . . . . . . ., direct estimate);
(b) X.1/

tC4 versus Xt after the first-stage smoothing; (c) X.2/
tC4 versus Xt after the second-stage smooth-

ing; (d) X.3/
tC4 versus Xt after the third-stage smoothing (. . . . . . ., final estimate)

data, i.e. the yearly average numbers of sunspots, as provided by the Royal Observatory of
Belgium (http://www.oma.be) for the years 1700–1997. A short version of this series has
been analysed for example by Tong (1990), page 419, and Fan and Gijbels (1996), page 222.
Following Fan and Gijbels, we regress linearly Xt on Xt−10 with coefficient 0.903 to obtain the
deseasonalized series Zt . Then the object is to predict Zt by Xt−1. We use local linear estimation
with a quartic kernel. The optimal bandwidths are obtained by leave-one-out cross-validation.
Similarly to Tong (1990), page 425, we use the last 20 years (1978–1997) as the prediction period,
which covers roughly two cycles. Hence, the function is estimated by using data only until 1977.
Then we performed two- and three-step-ahead prediction within the prediction period, keeping
the estimated function fixed. The optimal bandwidths for the direct smoother for one- to three-
step-ahead prediction are 25.49, 22.02 and 25.49. For the ith stage bandwidth of the multistage
smoother we tried hÅ

i =j, where hÅ
i is the cross-validation optimal bandwidth of the ith stage,

i < k and j =1, 2, 3, . . . , 10. For the kth stage the cross-validation optimal bandwidth was used,
k =2, 3. Table 4 reports the results for the ratio of the mean-square prediction error r̃.

Obviously, multistage smoothing substantially improves direct prediction for two-step-ahead
prediction. In Fig. 5 the two predictors are visualized. It can be seen that the variance of the two-
stage smoother is much smaller. The drastic dip in the direct predictor at around Xt =1:6×102

apparently indicates that the bandwidth is small owing to the large amount of noise in the
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Table 4. Results from the sunspot analysis†

k hdir h1 h2 h3 r̃

2 22.02 hÅ
1 /2 30.98 0.8033

2 22.02 hÅ
1 /4 30.98 0.7973

2 22.02 hÅ
1 /5 30.98 0.8393

3 25.49 hÅ
1 /8 hÅ

2 /4 22.13 0.9783
3 25.49 hÅ

1 /7 hÅ
2 /6 22.13 0.9754

3 25.49 hÅ
1 /6 hÅ

2 /3 21.08 0.9863

†hdir is the bandwidth for direct smoothing, hi is
the bandwidth used at the ith stage of the multistage
smoother, where hÅ

i denotes the cross-validation opti-
mal bandwidth of the ith stage, and r̃ is the ratio of
mean-square prediction errors.
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Fig. 5. Two-step-ahead prediction of the sunspot numbers Xt , predicting the deseasonalized series
Zt DXt �0:903Xt�10 by Xt�2: (a) direct predictor and the pairs {Xt,ZtC2}; (b) multistage predictor and
the pairs {Xt, f̂ Å.XtC1/}, where f̂ Å is the first-stage smoother for E.ZtjXt�1/

data, whereas the reduced noise level in the pseudo-data-set {Xt , f̂ Å.Xt+1/} allows the use of
a larger bandwidth. The bandwidth that was used in each plot is the plug-in optimal band-
width.

For three-step-ahead prediction the improvement is less. We also experimented with four-
step-ahead prediction where the improvement was even less. This may be due to the shape of
the conditional mean function, which is non-linear for one and two steps ahead but quite linear
for three and four steps.
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