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Abstract. We consider nonparametric estimation and testing of linearity in a panel of
intercorrelated time series. We place the emphasis on the situation where there are many
time series in the panel but few observations for each of the series. The intercorrelation is
described by a latent process, and a conditioning argument involving this process plays an
important role in deriving the asymptotic theory. To be accurate the asymptotic
distribution of the test functional of linearity requires a very large number of observations,
and bootstrapping gives much better finite sample results. A number of simulation
experiments and an illustration on a real data set are included.
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1. INTRODUCTION

There is a vast literature on linear modelling of panel data (see e.g. Mátyas and
Sevestre, 1992; Baltagi, 1995; Arellano, 2003), but surprisingly little on nonlinear
models and nonparametric methods. In the univariate time series case, nonlinear
and nonparametric analyses have played important roles for a long time, and in a
number of practical examples a nonlinear approach has turned out to be essential
to understand the data. There is no good reason to believe that the situation
should be different for panels of time series data. One will surely find situations
where a linear approximation is not feasible, although there is very little evidence
of this in the literature. There is a considerable number of papers on curve
estimation (cf. the works by Rice and Silverman, 1991; Gasser and Kneip, 1995;
Ramsay and Silverman, 1997, 2002; Cardot et al., 2003), but the focus is different.
More close to our work is the paper by Yao et al. (1998).

A rather general nonlinear dynamic model for a panel of time series is given by

XðiÞt ¼ f ðXðiÞt�1; . . . ;XðiÞt�pÞ þ gt þ ki þ gðWðiÞtÞ þ �ðiÞt: ð1Þ

Here {X(i)t, i ¼ 1,…,n; t ¼ 1,…,T} are the observations from n individual time
series with T observations taken for each. The model (1) is the nonlinear analogue
of the linear dynamical models presented in Hsiao (1986, Ch. 4). (see also
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Arellano, 2003, part 2 and Greene, 2003, Ch. 13.6). The function f is assumed to
be independent of i and t, but this can be relaxed if T and n, respectively, are large
enough. The quantities {gt} represent effects over time influencing all of the time
series, and similarly the variables {ki} stand for individual effects not taken care of
by the explanatory variables {W(i)t} that are entering the system nonlinearly
through the function g. Finally, {�(i)t} are the error terms assumed to be
independently identically distributed (i.i.d.) with varð�ðiÞtÞ ¼ r2� in the following.

The model (1) is far too complicated to work with at present. It is important to
understand the dynamics of a simple situation first. In this paper, we therefore
concentrate on the model

XðiÞt ¼ f ðXðiÞt�1; . . . ;XðiÞt�pÞ þ gt þ �ðiÞt: ð2Þ

The process {gt} [with varðgtÞ ¼ r2g] describes the intercorrelation (or
interdependence) in the panel. It is assumed to be independent of {�(i)t}, and it
could be thought of as an external synchronous agent influencing all the series. In
the most general case it could be nonstationary or even deterministic, and actually
in a typical situation of large n and small T, we allow {gt} to have an arbitrary
dependence structure.

Models like (2), or rather the linear analogy, are slightly unconventional in an
econometric setting where one tends to include ki and omit gt. As pointed out in
Hjellvik and Tjøstheim (1999a), the omission of gt can lead to inconsistency and
loss of efficiency (as can the omission of ki, of course; see e.g. Greene, 2003, Ch.
13, for a discussion). A practical example where this effect is present is displayed
in Figure 1, which shows the logarithms of the yearly catches of grey-sided voles
over a period of 31 years at 91 different locations at the island of Hokkaido (cf.
Bjørnstad et al., 1996). Clearly, the series are intercorrelated, and the three
geographical areas have been chosen so as to minimize individual variations
[measured by ki in (1)] from one catch site to another.

The description of the intercorrelation structure by means of the series {gt} can
be looked at as a simplified one-factor model. Much more complicated factor
models for describing interdependence have been proposed in the econometric
literature (see e.g. Geweke, 1977; Chamberlain, 1983; Chamberlain and
Rothschild, 1983). Important recent progress in dynamic factor models have
been made by Forni et al. (2000, 2001) and Stock and Watson (2002). The
capabilities of such models in handling interdependence structures are far superior
to that of using a single process {gt} as in (1), but a drawback of the dynamic
factor models is that they are linear. We believe that it would be of great practical
and theoretical interest to introduce a nonlinear framework in a factor context,
where one allows for nonlinear dependence on previous X-values and/or on a set
of dynamic factors. Possibly, one could also relax the cross-sectional
independence assumption on the residuals {�(i)t} in such a context. But, again,
to be able to go on to this difficult task we think that it is essential first to
understand how to deal with the much simpler case of (2).

For the model (2) we concentrate on two problems: (i) estimating f
nonparametrically, (ii) testing whether X(i)t is linearly generated. In a practical
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situation, the latter problem should be attacked first, as it is important to know if
linearity can be used as a simplifying device. This should really form part of an
exploratory analysis for a panel, but the exploratory issue has been much ignored
even for linear panels (cf. Hjellvik and Tjøstheim, 1999b). We establish tests of

(a)

(b)

(c)

Figure 1. The figure shows for n ¼ 16,41 and 34 for group 1, 2 and 3, respectively, log (X(i)t+1)
where {X(i)t, i ¼ 1,…,n; t ¼ 1,…,31} is the number of grey-sided voles trapped each year from 1961 to

1992 in n different locations in Hokkaido, Japan.
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linearity in Sections 3 and 4, whereas the estimation theory is considered in
Section 2.

As for almost all nonparametric methods applied to correlated data, an
essential condition, when T is large, is that the series satisfies certain mixing
condition so that the whitening by window principle (Hart, 1996) is achievable.
Among various mixing conditions used in the literature, a-mixing is reasonably
weak and is known to be fulfilled by many nonlinear time series models under
some regularity conditions. Specifically, Tjøstheim (1990) discussed the use of
ergodicity and a-mixing conditions in nonlinear time series analysis. Among
others Cline and Pu (1999), Fan and Li (1999), Masry and Tjøstheim (1995,
1997), Meyn and Tweedie (1994), Ling (2004), Lu (1998) have provided sets of
conditions for a (univariate) nonlinear time series to be stationary and
a-mixing with specified rates on the mixing coefficients, although sufficient and
necessary conditions are extremely difficult to obtain. One such sufficient
condition is as follows. (In addition it attains a mixing rate which is sufficient
for our purposes; i.e. such that the results of Masry and Fan (1997) can be
applied.)

1.1. Geometric ergodicity condition

For the function f in (2), there exist two linear functions

l1ðxÞ ¼ a0 þ
Xp
j¼1

ajxj and l2ðxÞ ¼ b0 þ
Xp
j¼1

bjxj;

such that l1ðxÞ < f ðxÞ < l2ðxÞ for x ¼ ðx1; . . . ; xpÞ outside a compact region in
<p. In addition, the roots of

a0 þ
Xp
j¼1

ajk
j ¼ 0 and b0 þ

Xp
j¼1

bjk
j ¼ 0

are all outside the unit circle (cf. Masry and Tjøstheim 1995).
In this paper, we will simply assume that the function f in model (2) is such that

the resulting time series are stationary and a-mixing with a sufficiently fast mixing
rate.

We also extend our method to a group of heteroscedastic models of the form

XðiÞt ¼ f ðXðiÞt�1; . . . ;XðiÞt�pÞ þ eðiÞt; eðiÞt ¼ fgðeðiÞt�1Þg1=2zðiÞt;
zðiÞt ¼ gt þ �ðiÞt;

ð3Þ

the case where f is a linear function being emphasized.
For asymptotic behaviour of the proposed methods, we will study two cases: (i)

n fixed and T large and (ii) T fixed and n large, although more space will be
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devoted to the latter case. This is because it is a common practical situation that
there are many series with few observations (T small) for each series, and it is also
theoretically challenging. Such problems have been treated in the linear case in
Hjellvik and Tjøstheim (1999a), and a related question with T small (T ‡ 3) has
been dealt with by Cox and Solomon (1988). As for the univariate case,
bootstrapping will play a crucial role in the linearity testing (cf. Hjellvik and
Tjøstheim, 1995). We refer to Section 4 for a number of simulated examples and
to Section 5 for the real data example involving the Hokkaido data depicted in
Figure 1.

2. NONPARAMETRIC ESTIMATION OF PANEL TIME SERIES

2.1. The conditional mean function: the T fi 1 and n fixed case

In this case, assuming that {gt} is an i.i.d sequence, the standard results (see e.g.
Masry and Fan, 1997) are applied to each individual series {X(i)t, t ¼ 1,…,T},
given that the sequence is a-mixing or q-mixing. Since the extension to the panel
time series case is relatively simple, while explicitly stating the conditions is
tedious, we will omit the conditions and refer the readers to Masry and Fan
(1997).

We first consider (2) in the first-order case p ¼ 1,

XðiÞt ¼ f ðXðiÞt�1Þ þ eðiÞt; eðiÞt ¼ gt þ �ðiÞt; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T ð4Þ

with varðeðiÞtÞ ¼ r2e . In this simple case, it is feasible to use high-order local
polynomial estimation.

For each series i, let ĉ0; ĉ1; . . . ; ĉ‘ be the minimizer of

XT
t¼2

XðiÞt �
X‘
s¼0

csðXðiÞt�1 � xÞs
( )2

KhðXðiÞt�1 � xÞ: ð5Þ

Here Kh(x) ¼ h)1K(h)1x), K is non-negative serving as a kernel function, and h
is the bandwidth controlling the size of the local neighbourhood. Define the local
polynomial estimator of f from the ith panel time series as

f̂iðxÞ ¼ ĉ0:

The combined estimator for f(x) is then defined as

f̂ ðxÞ ¼ 1

n

Xn
i¼1

f̂iðxÞ: ð6Þ
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Note that in this case the number of series n in the panel is fixed.
We have the following theorem:

Theorem 1. Under conditions given in Masry and Fan (1997), as n is fixed and
T fi 1, we have

ffiffiffiffiffi
Th

p
f̂ ðxÞ � f ðxÞ � f ð‘þ1ÞðxÞB0

ð‘þ 1Þ! h‘þ1

� �
�!D N 0;

V0r2e
npðxÞ

� �
;

where p(x) is the stationary density function at point x for all series {X(i)t}, B0 is the
first element of

B ¼ S�1l ð7Þ

and V0 is the first diagonal element of V ¼ S�1~SS�1 where

S ¼

l0 � � � l‘
l1 � � � l‘þ1

..

. . .
. ..

.

l‘ � � � ; l2‘

2
6664

3
7775; ~S ¼

m0 � � � m‘
m1 � � � m‘þ1

..

. . .
. ..

.

m‘ � � � ; m2‘

2
664

3
775 and l ¼

l‘þ1

l‘þ2

..

.

l2‘þ1

2
6664

3
7775; ð8Þ

where li ¼ �uiK(u)du and mi ¼ �uiK2(u)du.

A sketch of the proof of the theorem is given in Appendix A.
For the general AR(p) case in (2) one encounters the curse of dimensionality in

practice. Often, some dimension-reduction restrictions are required, such as the
additive autoregressive models (Chen and Tsay, 1993b) or the functional
coefficient autoregressive models (Chen and Tsay, 1993a; Cai et al., 2000). If
the estimation of the general p-dimensional function is desired, it is argued by Fan
and Yao (2003) that a higher-order polynomial is rarely used. Here we present a
local linear estimator for the p-dimensional case.

Let

xðiÞt�1 ¼ ðXðiÞt�1; . . . ;XðiÞt�pÞ and x ¼ ðx1; . . . ; xpÞ:

Define a multiplicative kernel function

KðxÞ ¼
Yp
i¼1

KðxiÞ:

With a diagonal bandwidth matrix H ¼ diag(h1,…,hp), define

KH ¼ ð
Yp
i¼1

hiÞ�1
KðH�1xÞ:

Let ĉ0; ĉ1; . . . ; ĉp be the minimizer of

XT
t¼pþ1

XðiÞt � c0 �
Xp
s¼1

csðXðiÞt�s � xsÞ
( )2

KH ðXðiÞt�1 � xÞ;
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and define the local linear estimator of f based on {X(i)t, t ¼ 1,…,T} as

f̂iðxÞ ¼ ĉ0:

The overall estimator for f̂ ðxÞ is then defined as

f̂ ðxÞ ¼ 1

n

Xn
i¼1

f̂iðxÞ

We have the following theorem:

Theorem 2. Under the conditions given in Masry and Fan (1997) and Fan and
Yao (2003), as n is fixed and T fi 1, we have

T
Yp
i¼1

hi

( )1=2

f̂ ðxÞ � f ðxÞ � 0:5 tr f 00ðxÞHHTl
� �n o

�!D N 0;
mr2e
npðxÞ

� �
;

where f 00ðxÞ is the Hessian matrix of f, l ¼
R
KðuÞuuT du, m ¼

R
K2ðuÞdu and pðxÞ

is the stationary density function at the point x of {X(i)t)1, …, X(i)t)p}.

The proof of the theorem is a simple extension of that of Theorem 1, hence
omitted.

2.2. The conditional mean function: the n fi 1 and T fixed case

This case is not standard. We will use a conditioning argument with respect to {gt}
to obtain asymptotic results. However, the assumptions on {gt} are relaxed to just
requiring that it is a sequence of random variables. Note that it is difficult to
impose any ’mixing’ conditions on a panel of time series with no obvious order or
distance measure between the series in the cross-sectional direction. Hence, most
of the results dealing with correlated data based on the mixing conditions cannot
be applied here. Fortunately, the length of the time series T is fixed and finite. It
allows us to condition on the g-sequence which is the only source of correlation
between the panels. The conditioning argument essentially treats the finite number
of gts as unobservable constants. As a result the asymptotic distribution depends
on the gts.

Again, we begin with the p ¼ 1 case. We assume that the series start at t ¼ )T0

with independent observations X(1))T0
,X(2))T0

,… across the panel.
For each fixed time t, let ft(x) ¼ f(x)+gt and let f ðiÞ

t ðxÞ be the ith derivative of
ft(x) evaluated at x. We first construct local polynomial estimators for each ft(x).
Let ĉ0; ĉ1; . . . ; ĉ‘ be the minimizer of

Xn
i¼1

XðiÞt �
X‘
s¼0

csðXðiÞt�1 � xÞs
( )2

KhðXðiÞt�1 � xÞ; ð9Þ
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and define

~ftðxÞ ¼ ĉ0:

Then we have the following theorem:

Theorem 3. Let g ¼ fg�T0 ; . . . ; gtg. Under conditions (B1)–(B6) given in
Appendix B, and conditioning on g, we have

ffiffiffiffiffi
nh

p
~ftðxÞ � ftðxÞ �

f ð‘þ1ÞðxÞB0

ð‘þ 1Þ! h‘þ1

� �
�!D N 0;

V0r2�
pt�1ðx j gÞ

� �

where B0 is the first element of S�1l and V0 is the first diagonal element of S�1~SS�1

with S; ~S; l, and f(‘+1)(x) defined as in Theorem 1, and where pt)1(x Œg) is the
conditional density function of X(i)t)1 given g (hence depending on g).

The proof of the theorem is given in Appendix B. The essential argument is
that, under condition (B1) in Appendix B, X(i)t and X(j)t are conditionally
independent of each other (i „ j), given g.

To avoid ambiguity, we assume f(0) ¼ 0. In order to eliminate the random
effect of gt and to estimate f(x), define

~f ðxÞ ¼ 1

T � 1

XT
t¼2

f~ftðxÞ � ~ftð0Þg: ð10Þ

We have (suppressing the t-dependence in g):

Theorem 4. Under the conditions of Theorem 3, given g, we have

ffiffiffiffiffi
nh

p
~f ðxÞ � f ðxÞ �

f ð‘þ1ÞðxÞ � f ð‘þ1Þð0Þ
� �

B0

ð‘þ 1Þ! h‘þ1

" #

�!D N 0;
V0r2�

ðT � 1Þ2
XT
t¼2

1

pt�1ðx j gÞ
þ 1

pt�1ð0jgÞ

� �" #
:

Note that the bias term does not depend on g. The asymptotic variance depends
on g through the conditional densities pt)1. Assuming that gt has finite support
and �(i)t has infinite support, one can bound the asymptotic variance with

V0r2�
ðT � 1Þ2

XT
t¼2

1

pt�1ðxjgÞ
þ 1

pt�1ð0jgÞ

� �
� CV0r2�

T � 1
;

uniformly for all g, where

C ¼ sup
g�T0þ1;...;gT

1

pt�1ðxjgÞ
þ 1

pt�1ð0jgÞ

� �
< 1:

The convergence of ~f ðxÞ to f(x) is illustrated in Figure 2 for T ¼ 2 and n ¼
102,…,105 for the nonlinear exponential autoregressive model

838 V. HJELLVIK, R. CHEN AND D. TJØSTHEIM

� Blackwell Publishing Ltd 2004



XðiÞt ¼ faþ b expð�0:5X 2
ðiÞt�1ÞgXðiÞt�1 þ gt þ �ðiÞt; ð11Þ

with a ¼ 0 and b ¼ 2. The bandwidth used is h ¼ hn ¼ sn)1/5, where s is the
empirical standard deviation of {X(i)1, i ¼ 1,…,n} and where we have taken ‘ ¼ 0
(the Nadaraya-Watson estimator) in (9). For all realizations g1 ¼ )0.554 and
g2 ¼ )0.705, and {gt} and {�(i)t} are independent zero-mean Gaussian variables
with r2g ¼ r2� ¼ 1. In the figure is shown. ~f2ðxÞ, which converges to f(x)+g2 ¼
f(x) ) 0.705

For the p-dimensional case, again we use the local linear estimator of ftðxÞ
using the cross-panel data (X(i)t)1,X(i)t),i ¼ 1,…,n, with XðiÞt�1;K;H defined as in
Section 2.1. Specifically, let ĉ0; ĉ1; . . . ; ĉp be the minimizer of

Xn
i¼1

XðiÞt � c0 �
Xp
s¼1

csðXðiÞt�s � xsÞ
( )2

KH ðXðiÞt�1 � xÞ;

and define

~ftðxÞ ¼ ĉ0:

The overall estimator for f can then be constructed in the same way as in the
p ¼ 1 case.

2.3. The conditional variance function

It is possible to generalize Theorem 1 to an autoregressive conditionally
heteroscedastic process (ARCH)-type intercorrelated panel model, with linear
conditional mean function,

XðiÞt ¼
Xp
s¼1

asXðiÞt�s þ eðiÞt; eðiÞt ¼ fgðeðiÞt�1Þg1=2zðiÞt; zðiÞt ¼ gt þ �ðiÞt: ð12Þ

Figure 2. Thin lines: ~f2ðxÞ plotted against x for four realizations of model (11) with a ¼ 0, b ¼ 2, T ¼
2 and n ¼ 100 (asterisks), 1000 (bullets), 10,000 (open circles) and 100,000 (stars). In all cases g2 ¼

)0.705. Thick line: f(x))0.705 plotted against x.

839NONPARAMETRIC TESTING OF INTERCORRELATED TIME SERIES

� Blackwell Publishing Ltd 2004



where {gt} and {�(i)t} are independent sequences of zero-mean i.i.d. random
variables, such that

varðzðiÞtÞ ¼ varðgtÞ þ varð�ðiÞtÞ ¼ r2g þ r2� ¼ 1:

Clearly, this is not the only way of defining ARCH-like structures for panels.
In the case that T is large and n is fixed, the conditional variance function g can

be estimated by

ĝðxÞ ¼
ðnT Þ�1PT

t¼1

Pn
i¼1 Khð~eðiÞt � xÞ~e2ðiÞtþ1

ðnT Þ�1PT
t¼1

Pn
i¼1 Khð~eðiÞt � xÞ

ð13Þ

where

~eðiÞt ¼ XðiÞt �
Xp
s¼1

~asXðiÞt�s ð14Þ

is the residual of a least squares estimation of model (12), and where the estimates
f~as; s ¼ 1; . . . ; pg are given in Hjellvik and Tjøstheim (1999a).

Theorem 5. Under conditions given in Masry and Tjøstheim (1995), for n fixed
and T fi 1, we have

ffiffiffiffiffiffiffiffi
nTh

p
ĝðxÞ � gðxÞ � h2l2½g0ðxÞp0eðxÞ=peðxÞ þ 0:5 g00ðxÞ�
� �

�!D N 0;
V0g2ðxÞr2
peðxÞ

� �

where

r2 ¼ varð�2ðiÞtÞ þ varðg2t Þ þ 4r2�r
2
g; l2 ¼

Z
u2KðuÞdu

and pe(x) is the stationary density function of e(i)t.

The proof of the theorem is given in Appendix C.
Note that, in practice, it may be beneficial to use ĝðxÞ � f̂ 2ðxÞ; where f̂ ðxÞ is

obtained by replacing ~e2ðiÞt with ~eðiÞt in (13),although asymptotically they are the
same.

For the case that T is small but n is large, it is difficult to define an estimator
analogous to ~ftðxÞ and ~f ðxÞ of (9) and (10) because we do not have the additive
structure ft(x) ¼ f(x)+gt. If we modify model (12) to be

XðiÞt ¼
Xp
s¼1

asXðiÞt�s þ gt þ eðiÞt; eðiÞt ¼ fgðeðiÞt�1Þg1=2�ðiÞt; ð15Þ

it is simpler. A first-stage least-square estimation, treating gts as unknown
constants, provides consistent estimates of e(i)t. Then a conditioning argument
warrants that the estimator (13) has the same asymptotic distribution as in
Theorem 5, except that r2 ¼ r2� . However, for an ARCH-type model with
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a1 ¼ � � � ¼ ap ¼ 0, whether (15) is the most appropriate generalization remains
to be discussed. Indeed, at present, it is not entirely clear as to what is the best
generalization of the ARCH-concept to the intercorrelated panel case. If the
problem is to test for the presence of a nonconstant conditional variance, this
is in a sense easier than the problem of estimation, since under the null
hypothesis of g(x) ” constant, both (12) and (15) reduce to the same model. As
in Section 3 we have decided to use essentially the estimate ĝðxÞ of (13) in this
situation, although the properties of this estimate are unknown under the
alternative hypothesis of a nonconstant g for T small and n large. Some
examples of ĝðxÞ are given in Figure 5, but we refer to Section 3.3 for a closer
description.

3. TESTING OF LINEARITY

We are interested in testing the hypothesis that the process is linear, i.e. that the
function f in (1) is linear and that g in (12) or (15) is constant so that each
individual series follows a linear AR(p) model. We consider both (i) n fixed and
T fi 1 and (ii) T fixed and n fi 1 with emphasis on the latter.

Linearity tests in the univariate case have been studied by many authors.
For example, Keenan (1985), Tsay (1986), Luukkonen et al. (1988) and
Granger and Teräsvirta (1993, Ch.6) proposed different forms of Lagrange
multiplier tests. These tests and the tests by Petruccelli and Davis (1986), Chan
and Tong (1986) and Tsay (1989) are designed for testing against specific types
of nonlinearity.

Hjellvik and Tjøstheim (1995, 1996), Hjellvik et al. (1998) and Dette and
Spreckelsen (2003) considered nonparametric tests of linearity in univariate time
series. They suggested comparing nonparametric estimates of the lagged
conditional mean Mk(x) ¼ E(Xt|Xt)k ¼ x) and least-squares estimates of the
linear lag-k predictor hkx where hk ¼ {var(Xt)k)}

)1cov(Xt,Xt)k), assuming
the process has zero mean. If the process is linear, then these two predictors are
the same for all lags. The concept of linearity used here is discussed in Hjellvik
et al. (1998, p. 297), and we take the same pragmatic view in this paper. The tests
have been shown to be able to detect general nonlinearities. In this section we try
to establish similar tests for intercorrelated panel time series. This is a nontrivial
task.

We present three versions of the tests. In Section 3.1 we exploit the
conditioning argument of Section 2 and we construct an asymptotic theory
for test functionals based on the conditional expectation Mk,t(x) ¼
E(X(i)t|X(i)t)k,g). This test is designed to handle the cases where T is small,
while the number of series n is large. Modifications, where we do not condition
on g, are given in Section 3.2. These modifications are more difficult to handle
theoretically, but they work better in certain situations, primarily when n is
small and T large.
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3.1. Test functionals for the conditional mean

For our panel time series model (2), for fixed t,t ¼ 1,…,T, define

Mk;tðxÞ ¼ EðXðiÞtjXðiÞt�k ¼ x; gÞ:

Corresponding to the minimization in (9), let ~M ðmÞ
k;t be the ‘th order (‘ ‡ m) local

polynomial estimator of the mth derivative of Mk,t(Æ). Specifically,

~Mk;tðxÞ; ~M ð1Þ
k;t ðxÞ; . . . ; ~M

ð‘Þ
k;t ðxÞ

n o

¼ arg min
c0;...;c‘

Xn
i¼1

XðiÞt �
X‘
s¼0

cs
s!
ðXðiÞt�k � xÞs

( )2

K
XðiÞt�k � x

h

� �
; ð16Þ

where again K is a non-negative kernel function and h is the bandwidth. Let ~ak;t
and ~bk;t be the estimated intercept and slope, respectively, of the global linear
regression of X(i)t on X(i)t)k,i¼1,…,n, i.e.

ð~ak;t; ~bk;tÞ ¼ argmin
a;b

Xn
i¼1

ðXðiÞt � a� bXðiÞt�kÞ2:

We define, with a slight abuse of notation, the following statistics for testing
linearity of the process. Let

L1ðMkÞ ¼
1

T � k

XT
t¼kþ1

L1ðMk;tÞ;

L1ðMk;tÞ ¼
1

n

Xn
i¼1

~Mk;tðXðiÞt�kÞ � ~ak;t � ~bk;tXðiÞt�k
� �2

wðXðiÞt�kÞ;

L1ðM ð1Þ
k Þ ¼ 1

T � k

XT
t¼kþ1

L1ðM ð1Þ
k;t Þ;

L1ðM ð1Þ
k;t Þ ¼

1

n

Xn
i¼1

~M ð1Þ
k;t ðXðiÞt�kÞ � ~bk;t

n o2

wðXðiÞt�kÞ;

L1ðM ð2Þ
k Þ ¼ 1

T � k

XT
t¼kþ1

L1ðM ð2Þ
k;t Þ;

L1ðM ð2Þ
k;t Þ ¼

1

n

Xn
i¼1

~M ð2Þ
k;t ðXðiÞt�kÞ

n o2

wðXðiÞt�kÞ;

where w is a weight function. Here and elsewhere we have used the trapezium (cf.
Hjellvik et al., 1998)

wðxÞ ¼ 1ðjx� �x0j � 2s0Þ þ ð3� jx� �x0j=s0Þ1ð2s0 < jx� �x0j � 3s0Þ;

where �x0 and s0 are the empirical mean and standard deviation, respectively, of
{X(i)t,i ¼ 1,…,n, t ¼ k+1,…,T}. Although, for a fixed i, the empirical mean
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of data generated from a zero-mean model may be far from zero for T small, X.. ¼
n)1T)1P

i

P
tX(i)t is still the best estimate of E(X(i)t), and, following Hjellvik

et al. (1998) we therefore subtract X.. from the data before performing the
linearity test.

Theorems 6 and 7 then give the asymptotic behaviour of the test statistics under
the null hypothesis and the alternative hypotheses, respectively. For reasons of
simplicity (and space) we only state and prove the results for ‘ ¼ 2 in (16).

Theorem 6. Consider ‘ ¼ 2. Under assumptions (B1)–(B4) and (D1)–(D5) given
in Appendix B and D, and the null hypothesis that Mk,t(Æ) is linear and the processes
{X(i)t} are stationary, we have

ðiÞ L1ðMkÞ � NfB0;k=ðnhÞ; s20;k=ðn2hÞg;

ðiiÞ L1ðM ð1Þ
k Þ � NfB1;k=ðnh3Þ; s21;k=ðn2h5Þg;

ðiiiÞ L1ðM ð2Þ
k Þ � NfB2;k=ðnh5Þ; s22;k=ðn2h9Þg;

where

B0;k ¼
1

ðl4 � l22Þ
2
r2k

Z
ðl4 � l2u

2Þ2K2ðuÞdu
Z

wðxÞdx;

B1;k ¼
1

l22
r2k

Z
u2K2ðuÞdu

Z
wðxÞdx;

B2;k ¼
4

ðl4 � l22Þ
2
r2k

Z
ðu2 � l2Þ2K2ðuÞdu

Z
wðxÞdx;

s20;k ¼
2

ðT � kÞðl4 � l22Þ
4
r4k

Z
w2ðxÞdx

Z
ðl4 � l2u

2Þðl4 � l2v
2Þfl4 � l2ðu� zÞ2g

� fl4 � l2ðv� zÞ2gKðuÞKðvÞKðu� zÞKðu� vÞdu dv dz;

s21;k ¼
2

ðT � kÞl22
r4k

Z
w2ðxÞdx

Z
uvðu� zÞðv� zÞKðuÞKðvÞKðu� zÞKðv� zÞdu dv dz;

s22;k ¼
32

ðT � kÞðl4 � l22Þ
4
r4k

Z
w2ðxÞdx

Z
ðu2 � l2Þðv2 � l2Þfðu� zÞ2 � l2g

� fðv� zÞ2 � l2gKðuÞKðvÞKðu� zÞKðv� zÞdu dv dz;

where li ¼ �uiK(u)du and r2k ¼ varðXðiÞt j XðiÞt�k ¼ x; gÞ, which is independent of x
and g.

Although a conditioning argument is used to prove Theorem 6 it should be
noted that the asymptotic distribution does not depend on g. Let X be the interval
defined by Lemma B.2 in Appendix B. Again, let

Mk;t ¼ EðXðiÞt j XðiÞt�k ¼ x; gÞ

and let
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bk;t ¼ varðXðiÞt�k j gÞ�1covðXðiÞt;XðiÞt�k j gÞ

and

ak;t ¼ EðXðiÞt j gÞ � bk;tEðXðiÞt�k j gÞ:

We consider the following local alternative hypotheses:

H ð0Þ
a ðk; a0Þ :

Z
X

Mk;tðxÞ � ak;t � bk;tx
� �2

wðxÞdx > cn�a0 ;

H ð1Þ
a ðk; a1Þ :

Z
X

M ð1Þ
k;t ðxÞ � bk;t

n o2

wðxÞdx > cn�a1 ;

H ð2Þ
a ðk; a2Þ :

Z
X

M ð2Þ
k;t ðxÞ

n o2

wðxÞdx > cn�a2 ;

uniformly for all sequence of {g)T0
,…,gT}.

Theorem 7. Under assumptions (B1)–(B4) and (D1)–(D5) given in Appendix B
and D, and the alternative hypotheses H ðiÞ

a ðk; aiÞ; i ¼ 0; 1; 2, if na0 ¼ o(nh), na1 ¼
o(nh3), na2 ¼ o(nh5), we have

nhL1ðMkÞ ! 1 in probability

nh3L1ðM ð1Þ
k Þ ! 1 in probability

nh5L1ðM ð2Þ
k Þ ! 1 in probability:

Proofs of Theorems 6 and 7 are given in Appendix D.

3.2. Two modifications

Corresponding to (5) but minimizing over both n and t, define the local
polynomial minimizer

M̂kðxÞ; . . . ; M̂ ð‘Þ
k ðxÞ

n o

¼ arg min
c0;...;c‘

Xn
i¼1

XT
t¼kþ1

XðiÞt �
X‘
s¼0

cs
s!
ðXðiÞt�k � xÞs

( )2

KhðXðiÞt�k � xÞ: ð17Þ

Since Mk(x) is linear under the null hypothesis, the most natural choice of ‘ is
perhaps ‘ ¼ 1. But since we need to evaluate M̂ ð‘Þ

k ðxÞ for ‘ £ 2, and since ‘ ¼ 2 is
not very natural under a linear null hypothesis, we have taken ‘ ¼ 3 in our
simulations and for the real data. Taking ‘ ¼ 3 means that by letting h fi 1 the
local estimate will approach a global estimate of a linear function. Similarly, we
define,
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ðâk; b̂kÞ ¼ argmin
a;b

Xn
i¼1

XT
t¼kþ1

XðiÞt � a� bXðiÞt�k
� 	2

;

obtaining the test functional

L2ðMkÞ ¼
1

nðT � kÞ
Xn
i¼1

XT
t¼kþ1

M̂kðXðiÞtÞ � âk � b̂kXðiÞt�k

n o2

wðXðiÞtÞ:

We can define L2ðM ð1Þ
k Þ and L2ðM ð2Þ

k Þ in the same way.
The functional L2(Mk) could be compared with the corresponding L(Mk)-

functionals in Hjellvik et al. (1998), but it should be carefully noted that M̂k is not
in general a consistent estimator of E(X(i)t|X(i)t)k ¼ x). However, we have
M̂kðxÞ � âk � b̂kx ! 0 in probability under fairly weak regularity conditions under
the null hypothesis of a linear model, which serves as a justification for using it as
a test functional.

A more direct modification of L1(Mk) of Section 3.1 is obtained by replacing
~Mk;tðxÞ by a ‘zero-mean intercept’ alternative ~Mk;tðxÞ � ~ak;t and then taking a
density-weighted average to obtain

~MkðxÞ ¼
1

T � k

XT
t¼kþ1

~Mk;tðxÞ � ~ak;t
� �

utðxÞ=uðxÞ;

where

utðxÞ ¼
1

n

Xn
i¼1

Khtðx� XðiÞtÞ; uðxÞ ¼
XT
t¼kþ1

utðxÞ; ht ¼ sth�1=5;

where st is the empirical standard deviation of {X(i)t, i ¼ 1,…,n}. The motivation
for taking a weighted average is that the estimates ~Mk;tðxÞ may be concentrated at
rather different x-values as t varies because of the different values of gt being
realized. To avoid very large variance in an x-region with few observations it
seems reasonable to use a density-weighted average. We compare it with the
average zero-intercept linear approximation

~bkx ¼ ðT � kÞ�1
XT
t¼kþ1

~bk;tx

to obtain the functional

L3ðMkÞ ¼
1

nðT � kÞ
Xn
i¼1

XT
t¼kþ1

~MkðXðiÞtÞ � ~bkXðiÞt
� �2

wðXðiÞtÞ:

Stages in the construction of ~M1ðxÞ and ~b1x are shown in Figure 3 for an
intercorrelated (r2g ¼ r2� ¼ 0:5) linear model [a ¼ 0.5, b ¼ 0 in (11)] and a
corresponding nonlinear model [a ¼ 0.5, b ¼ 2 in (11)] with T ¼ 4. The
differences in vertical level for the three curves/lines in plots (a) and (b) are due
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to differences in g2, g3 and g4. In Figure 4, ~M1ðxÞ is plotted for various
combinations of n and T for linear and nonlinear panels of intercorrelated series
generated by (11).

All the functionals considered so far are for a specified lag. As in Hjellvik et al.
(1998), functionals accumulated up to lag k can easily be constructed, e.g.

Ls;supðM ðrÞ
k Þ ¼ sup

1�j�k
LsðM ðrÞ

j Þ and Ls;aveðM ðrÞ
k Þ ¼ 1

k

Xk
j¼1

LsðM ðrÞ
j Þ;

for s ¼ 1, 2, 3 and r ¼ 0, 1, 2.

Figure 3. (a) ~M1;tðxÞ; t ¼ 1; 2; 3 (thick lines) and ~a1;t þ ~b1;tx; t ¼ 1; 2; 3 (thin lines), plotted against x
for one intercorrelated realization of model (11) with T ¼ 4, n ¼ 1024, a ¼ 0.5 and b ¼ 0. (c)
~M1;tðxÞ � ~a1;t and ~b1;tx. (e) Thick line: the density-weighted average ~M1ðxÞ of the thick lines in (c). Thin
line: the average ~bkx of the thin lines in (c). (b), (d), and (f). The same as (a), (c) and (e) for model (11)

with a ¼ 0.5 and b ¼ 2.
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3.3. The conditional variance

When it comes to testing for homoscedasticity (i.e. constant conditional variance)
for the ARCH-type models of Section 2.2, as in Hjellvik and Tjøstheim (1995,
1996) and Hjellvik et al. (1998), it is the conditional variance of the residual
process from the best linear autoregressive fit to the data we are interested in,
rather than of the series {X(i)t} itself; i.e. we assume that the conditional mean
function is linear. To find the order p of the best autoregressive fit, we follow the
procedure described in Hjellvik and Tjøstheim (1999a, 1999b). We assume an
upper limit L of p, where L ¼ 1 for T £ 4 and L ¼ min(10,T/2) for T > 4. We

Figure 4. ~M1ðxÞ plotted against x for five independent realizations of (11) with a ¼ 0.5 and b ¼ 0 and
2, and r2� ¼ r2g ¼ 0:5. For b ¼ 2, the curves are raised vertically by 2 units.
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then choose the order p which minimizes the Final Prediction Error (FPE)-type
criteria FPE~e;p and FPE~�;p defined by (5.2) and (5.3) in Hjellvik and Tjøstheim
(1999b). For T > 8 we always use FPE~�;p, but for T £ 8 we use FPE~e;p if the
intercorrelation q is estimated to be less than q0 given by (4.9) in Hjellvik and
Tjøstheim (1999b). The intercorrelation q ¼ corr(X(i)t,X(j)t) is estimated by

q̂ ¼
Pn�1

i¼1

Pn
j¼iþ1

PT
t¼1ðXðiÞt � XðiÞ�ÞðXðjÞt � XðjÞ�ÞPn�1

i¼1

Pn
j¼iþ1

PT
t¼1ðXðiÞt � XðiÞ�Þ2

PT
t¼1ðXðjÞt � XðjÞ�Þ2

n o1=2

A conditional variance estimator can now be based on the local polynomial
estimator defined in Sections 2.2.

For testing against heteroscedasticity, we define functionals similar to those of
Sections 3.1 and 3.2, using ~e2ðiÞt, instead of X(i)t. Here, ~eðiÞt is defined by (14).
Corresponding to (13), the T fi 1, n fixed case, we define the conditional
variance estimator

V̂kðxÞ ¼
Pn

i¼1

PT
t¼kþ1 ~e

2
ðiÞtKhð~eðiÞt�k � xÞPn

i¼1

PT
t¼kþ1 Khð~eðiÞt�k � xÞ

�
Pn

i¼1

PT
t¼kþ1 ~eðiÞtKhð~eðiÞt�k � xÞPn

i¼1

PT
t¼kþ1 Khð~eðiÞt�k � xÞ

( )2

:

Using the reasoning of Section 2.2 we have that under the hypothesis of
homoscedasticity, i.e. g ” c in (3), if we have a linear AR(p) model, and if p̂ ¼ p,
then under relatively weak regularity conditions V̂kðxÞ ! c in probability as
T fi 1 with n fixed.

Plots of V̂1ðxÞ for the AR(1) process obtained by taking a ¼ 0.5 and b ¼ 0 in
(11) are shown in Figure 5. To get an idea of the power against ARCH-type
alternatives, V̂1ðxÞ for the process

XðiÞt ¼ 0:5XðiÞt�1 þ eðiÞt; eðiÞt ¼ zðiÞtð0:2þ 0:8eðiÞt�1Þ1=2; zðiÞt ¼ gt þ �ðiÞt ð18Þ

is included in the same figure. For both (11) and (18) we have taken
r2� ¼ r2g ¼ 0:5. The bandwidth is h ¼ 2sfnðT � p̂ � 1Þg�1=5, where s is the
empirical standard deviation of f~eðiÞtg. The estimated order of the AR approxi-
mation is greater than or equal to 1 in all cases. As can be expected
(cf. Section 2.2), the behaviour of V̂1ðxÞ deteriorates as T decreases.

Homoscedasticity tests for the conditional variance can now be constructed in
analogy with the conditional mean case: corresponding to L2(Mk) we introduce
the test functional

L2ðVkÞ ¼
1

nðT � p̂ � kÞ
Xn
i¼1

XT�p̂�k

t¼1

V̂kð~eðiÞtÞ � ~r2e;p̂

n o2

wð~eðiÞtÞ;
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Figure 5. V̂1ðxÞ plotted against x for five independent realizations of (18) and (11) with a ¼ 0.5 and
b ¼ 0. The straight lines indicate r2e ¼ 1 in the homoscedastic model. For model (18) the curves are

raised vertically by 2 units.
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where p̂ is the estimated order and ~r2e;p is the estimate defined in Hjellvik and
Tjøstheim (1999b) of r2e .

It is also possible to construct an analogue of L3(Mk), suitable for the n fi 1
T-fixed case, by using the weighted average

~VkðxÞ ¼
1

T � k

XT
t¼kþ1

~Vk;tðxÞ
utðxÞ
uðxÞ ;

where

~Vk;tðxÞ ¼
Pn

i¼1 ~e
2
ðiÞtKhð~eðiÞt�k � xÞPn

i¼1 Khð~eðiÞt�k � xÞ �
Pn

i¼1 ~eðiÞtKhð~eðiÞt�k � xÞPn
i¼1 Khð~eðiÞt�k � xÞ

� �2

:

It is easy to show that under the hypothesis of homoscedasticity, i.e. g ” 1 in
(12), in the limit as n fi 1, gt drops out and

~VkðxÞ ! r2�

in probability as n fi 1, and corresponding to L3(Mk) one can introduce the
functional

L3ðVkÞ ¼
1

nðT � p̂ � kÞ
Xn
i¼1

XT�p̂�k

t¼1

~Vkð~eðiÞtÞ � ~r2�;p̂

n o2

wð~eðiÞtÞ;

with ~r2�;p̂ as estimated in Hjellvik and Tjøstheim (1999b).
The more general test statistics L2,sup(Vk), L3,sup(Vk), L2,ave(Vk) and L3,ave(Vk)

are constructed as for the conditional mean case.

4. BOOTSTRAPPING THE NULL DISTRIBUTION

The asymptotic theory of Section 3.1 requires very large sample sizes for it to be
accurate. This is consistent with the results of Hjellvik and Tjøstheim (1995, 1996)
and Hjellvik et al. (1998). We have therefore developed a bootstrap procedure
which works much better for small and moderate sample sizes.

There are two possibilities for bootstrapping according to whether {gt} is
considered to consist of i.i.d. random variables or not. If dependence is allowed
for {gt}, which is covered in our theory and which could well be of interest in
practical situations, then we do not bootstrap gt; i.e. one may use the following
scheme: fit an autoregressive model

XðiÞt ¼
Xp
j¼1

ajXðiÞt�j þ gt þ �ðiÞt ð19Þ

to the data using the FPE (cf. Hjellvik and Tjøstheim, 1999b) to determine the
order and the method developed in Hjellvik and Tjøstheim (1999a) to estimate the
AR coefficients, Calculate
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~gt ¼
1

n

Xn
i¼1

~eðiÞt ¼
1

n

Xn
i¼1

XðiÞt �
X̂p
j¼1

~ajXðiÞt�j

 !
; t ¼ p̂ þ 1; . . . ; T ð20Þ

and

~�ðiÞt ¼ XðiÞt �
X̂p
j¼1

~ajXðiÞt�j � ~gt:

We then bootstrap f~�ðiÞtg to get a version f�?ðiÞtg, and get a version of X(i)t by

X �
ðiÞt ¼

X̂p
j¼1

~ajX ?
ðiÞt�j þ ~gt þ �?ðiÞt; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T ;

without bootstrapping the ~gts.
Alternatively, if the gts are supposed to be i.i.d., then {gt} and {�(i)t} may be

bootstrapped separately. We are generally able to recreate the intercorrelation
structure with q ¼ r2g=ðr2� þ r2gÞ (cf. Hjellvik and Tjøstheim, 1999a), but for n
small and T small, some adjustments are needed. We have shown (Hjellvik and
Tjøstheim, 1999b) that varð~gtÞ � r2g þ n�1r2� and varð~�ðiÞtÞ � r2� ðn� 1Þ=n (if we
replace ~eðiÞt by e(i)t in the definitions of ~gt and ~�ðiÞt, the variance expressions are
exact), and this implies that the inter-individual correlation of the bootstrap
replicas becomes too large when n is small. We therefore define

~g0t ¼
~gt

~rg;p̂
sg

n < 10

~gt; n 	 10

(

~�0ðiÞt ¼ ~�ðiÞt
n

n� 1


 �1=2
; t ¼ p̂ þ 1; . . . ; T ;

ð21Þ

where

s2g ¼ ðT � p̂Þ�1
X
t

ð~gt � ~g�Þ2; ~g� ¼ ðT � p̂Þ�1
X
t

gt; and ~r2g;p̂ ¼ s2g � n�1~r2�;p̂

as defined in Hjellvik and Tjøstheim (1999b). Then varð~g0tÞ � r2g and
varð~�0ðiÞtÞ � r2� and the inter-individual correlation should be approximately the
same for the bootstrap replicas as for the mother realization. This is confirmed for
n small in simulation studies. For T small, a problem is that we only have T � p̂
distinct ~gts. Especially for T ¼ 2 and p̂ ¼ 1; this makes it difficult to recreate the
inter-individual correlation! But for a zero-mean process, E(g1+� � �+gT) ¼ 0,
and since we have subtracted the average X.. to get zero-mean observations, we
may, for p̂ ¼ 1; utilize this to create one ‘extra’ ~gt by estimating g1 by
~g1 ¼ �ð~g2 þ � � � þ ~gT Þ. This leads to some improvement, but, as may be expected,
such a small T is still a difficult matter.

851NONPARAMETRIC TESTING OF INTERCORRELATED TIME SERIES

� Blackwell Publishing Ltd 2004



5. EVALUATION OF FINITE SAMPLE PROPERTIES OF THE TESTS

We will examine the finite sample properties of the tests by simulation of the five
linear models

(1) XðiÞt ¼ �0:5XðiÞt�1 þ eðiÞt

(2) XðiÞt ¼ eðiÞt

(3) XðiÞt ¼ 0:5XðiÞt�1 þ eðiÞt

(4) XðiÞt ¼ 1:189XðiÞt�1 � 0:249XðiÞt�2 þ 0:029XðiÞt�3 � 0:137XðiÞt�4 þ eðiÞt

(5) XðiÞt ¼ 1:063XðiÞt�1 � 0:638XðiÞt�2 þ 0:218XðiÞt�3 � 0:151XðiÞt�4 � 0:014XðiÞt�5

þ 0:033XðiÞt�6 � 0:241XðiÞt�7 þ 0:344XðiÞt�8 þ eðiÞt

and the six nonlinear models

(6) XðiÞt ¼ f0:5þ b expð�0:5X 2
ðiÞt�1ÞgXðiÞt�1 þ eðiÞt

(7) XðiÞt ¼ ð0:5þ beðiÞt�1ÞXðiÞt�1 þ eðiÞt

(8) XðiÞt ¼ bXðiÞt�11ðXðiÞt�1 � 1Þ þ 0:3XðiÞt�11ðXðiÞt�1 > 1Þ þ eðiÞt

(9) XðiÞt ¼ ð�bXðiÞt�6 þ bXðiÞt�10Þ1ðXðiÞt�6 � 0Þ þ 0:8XðiÞt�101ðXðiÞt�6 > 0Þ þ eðiÞt

(10) XðiÞt ¼ f0:4þ b expð�0:5X 2
ðiÞt�6ÞgXðiÞt�6

þf0:5� 0:5 expð�0:5X 2
ðiÞt�10ÞgXðiÞt�10 þ eðiÞt

(11) XðiÞt ¼ eðiÞt 1þ bX 2
t�1

� 	1=2
; b 	 0

where e(i)t ¼ gt+�(i)t and {gt} and {�(i)t} are i.i.d. Gaussian zero-mean variables
with variance r2g and r2� , respectively. We have based our results for each example
on 500 realizations and 40 bootstrap replicas for each of the realizations.

We have conducted separate simulation studies for the test functional L1 of
Section 3.1 and the alternative test functionals L2 and L3 of Section 3.2.

5.1. The test functional L1ðMð‘Þ
k Þ

The bootstrap algorithm allowing for dependence in {gt} has been used. We study
the size and the power of the test using models (1)–(3) and (6)–(8). The first lag
conditional meanM1, and variances r2� ¼ r2g ¼ 0:5 are used. For each model, the
median of the optimal cross-validation bandwidth of 10 simulated series from the
model is obtained and used for calculating the test statistics. Under the null
hypothesis, we fit the best AR model using the FPE (Hjellvik and Tjøstheim,
1999b), thus obtaining the residuals f~�ðiÞtg and the common random effects f~gtg.
As mentioned in Section 4, only the residuals f~�ðiÞtg are bootstrapped in
generating bootstrap samples. The estimated ~gts are treated as fixed values. We
have generated Gaussian zero-mean i.i.d. gts to facilitate the comparison with the
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other bootstrap technique, but it should be realized that the bootstrap described
in this sub-section can be carried through for a dependent sequence {gt}. The
nominal size is fixed at 0.05.

Table I shows the empirical size of the tests L1(M1), L1ðM ð1Þ
1 Þ and L1ðM ð2Þ

1 Þ for
models (1)–(3) with different sample sizes. As can be seen, the sizes of the tests are
reasonable. Tables II–IV show the empirical power of the tests L1(M1), L1ðM ð1Þ

1 Þ
and L1ðM ð2Þ

1 Þ for models (6)–(8) with different sample sizes and different values of
the coefficient b, which indicates how strong the nonlinearity is. We can see from
Tables II–IV, that, in general, increasing n is more effective than increasing T.
Note that (n,T) ¼ (256,3) gives the same effective sample size as (n,T) ¼ (128,5)
and (n,T) ¼ (64,9). This is expected since the tests are designed for T small and n
large. Moreover, as expected, as |b| increases, the models exhibit stronger
nonlinearity. Consequently, the tests have more power, except L1ðM ð1Þ

1 Þ and
L1ðM ð2Þ

2 Þ for model (8), when b ¼ 0.4. It is also noticed that for model (7) all of the
tests have very little power for T ¼ 2, no matter how large n is.

5.2. The test functionals L2(Mk) and L3(Mk)

Here we bootstrap f~gtg and f~�ðiÞtg separately as in (21). The nominal size is 0.05
everywhere. The cubic spline algorithm described in Hjellvik and Tjøstheim (1995,
Sect. 4, Remark 3) is used to increase computational speed.

Table V shows the empirical size of L2(M1) and L3(M1) (in parentheses) for
various combinations of n and T. In the uncorrelated case (r2g ¼ 0), the empirical
size is lower than 0.060 in 107 of 115 cases. The highest empirical size is 0.068,
obtained for model (1) with (n,T) ¼ (256,2). The clearly lowest empirical size in
the uncorrelated case is 0.002 (0.004) obtained for the 8th order model (5) with
(n,T) ¼ (128,4). Difficulties should be expected here since the highest order
allowed in the linear approximation on which the null distribution is based, is 1 in
this case. In the correlated case the average empirical size is a bit higher than in
the uncorrelated case and higher than 0.060 in 26 cases. Here the 8th order model

TABLE I

The Empirical Size of L1(Mk) (left), L1ðM ð1Þ
k Þ (middle), and L1ðM ð2Þ

k Þ (right) for Models (1)–(3)

n T Model 1 Model 2 Model 3

64 2 0.080 0.067 0.050 0.067 0.070 0.080 0.060 0.070 0.043
64 3 0.070 0.080 0.070 0.040 0.033 0.040 0.053 0.057 0.053
64 5 0.057 0.047 0.047 0.053 0.057 0.070 0.047 0.047 0.060
64 9 0.077 0.060 0.073 0.050 0.047 0.027 0.040 0.060 0.067
128 2 0.063 0.063 0.063 0.073 0.063 0.067 0.050 0.043 0.053
128 3 0.063 0.053 0.043 0.047 0.047 0.050 0.037 0.037 0.043
128 5 0.037 0.030 0.030 0.060 0.060 0.063 0.073 0.080 0.083
128 9 0.060 0.047 0.050 0.060 0.067 0.063 0.040 0.060 0.043
256 2 0.063 0.063 0.060 0.037 0.050 0.040 0.033 0.073 0.040
256 3 0.053 0.053 0.040 0.060 0.050 0.050 0.057 0.057 0.070
256 5 0.057 0.057 0.070 0.047 0.037 0.037 0.060 0.050 0.083
256 9 0.043 0.060 0.050 0.060 0.053 0.060 0.033 0.060 0.057
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(5) represents both the highest (0.164) and the lowest (0.014) empirical size. The
lowest occurs as in the uncorrelated case for T ¼ 4, whereas the highest occurs for
T ¼ 8 where the highest order allowed in the linear approximation is 4. Similar
comments can be made for model (4). For T ¼ 2, however, the empirical size is
quite close to the nominal size for models (4) and (5) both in the correlated and
the uncorrelated case. One possible explanation is the definition of ~g1 for p̂ ¼ 1 in
Section 4, which yields ~g1 ¼ �~g2 for T ¼ 2.

Table VI shows the empirical power for L2(M1) and L3(M1) for models (6)–(8)
and for L2(M6) and L3(M6) for models (9)–(10). The nonlinearity parameter b is
chosen to get roughly the same empirical power for the different models and sample
sizes. For nT ¼ 512, b ¼ 0.6, 0.1,)0.1, 0.5 and)0.7 and for nT ¼ 128, b ¼ 1.3, 0.5,
)0.4, 0.7 and )2.0 for models (6), (7), (8), (9), (10) respectively. We make the
following observations: In most cases: (i) L2(Æ) yields higher power in the

TABLE II

The Empirical Power of L1(Mk) (left), L1ðM ð1Þ
k Þ (middle), and L1ðM ð2Þ

k Þ (right) for Model (6),
with Different Values of b

Model 6

n T b ¼ 0.2 b ¼ 0.4 b ¼ 0.6 b ¼ 0.8

64 2 0.073 0.080 0.090 0.107 0.093 0.110 0.233 0.200 0.253 0.413 0.203 0.303
64 3 0.080 0.083 0.080 0.163 0.113 0.150 0.260 0.213 0.320 0.527 0.263 0.367
64 5 0.087 0.093 0.087 0.200 0.130 0.180 0.440 0.370 0.460 0.667 0.293 0.527
64 9 0.083 0.057 0.063 0.267 0.143 0.187 0.600 0.563 0.717 0.760 0.430 0.690
128 2 0.083 0.050 0.057 0.217 0.167 0.250 0.417 0.217 0.290 0.670 0.380 0.537
128 3 0.110 0.110 0.113 0.287 0.237 0.347 0.567 0.277 0.413 0.813 0.517 0.703
128 5 0.103 0.073 0.090 0.317 0.273 0.457 0.777 0.370 0.597 0.890 0.680 0.887
128 9 0.137 0.093 0.117 0.523 0.480 0.660 0.863 0.537 0.780 0.923 0.857 0.943
256 2 0.150 0.143 0.143 0.327 0.347 0.433 0.657 0.563 0.717 0.903 0.717 0.810
256 3 0.130 0.130 0.133 0.453 0.460 0.607 0.887 0.793 0.927 0.957 0.863 0.930
256 5 0.210 0.227 0.263 0.653 0.673 0.793 0.950 0.917 0.983 0.963 0.940 0.977
256 9 0.280 0.313 0.327 0.820 0.823 0.947 0.963 0.957 0.987 0.980 0.957 0.990

TABLE III

The Empirical Power of L1(Mk) (left), L1ðM ð1Þ
k Þ (middle), and L1ðM ð2Þ

k Þ (right) for Model (7),
with Different Values of b

Model 7

n T b ¼ 0.1 b ¼ 0.2 b ¼ 0.3 b ¼ 0.4

64 2 0.063 0.053 0.043 0.053 0.077 0.043 0.083 0.083 0.070 0.120 0.070 0.050
64 3 0.103 0.093 0.093 0.323 0.163 0.170 0.470 0.290 0.347 0.603 0.420 0.450
64 5 0.230 0.190 0.177 0.567 0.327 0.350 0.833 0.757 0.780 0.877 0.773 0.787
64 9 0.317 0.287 0.270 0.753 0.477 0.503 0.937 0.930 0.957 0.967 0.867 0.903
128 2 0.073 0.057 0.060 0.097 0.097 0.090 0.077 0.063 0.060 0.110 0.083 0.063
128 3 0.177 0.160 0.163 0.597 0.400 0.440 0.827 0.830 0.820 0.787 0.663 0.750
128 5 0.407 0.293 0.337 0.900 0.783 0.840 0.987 0.987 0.997 0.977 0.953 0.973
128 9 0.583 0.453 0.577 0.967 0.960 0.983 0.997 1.00 1.00 0.993 0.983 0.990
256 2 0.070 0.070 0.067 0.073 0.077 0.080 0.107 0.100 0.080 0.130 0.087 0.047
256 3 0.437 0.390 0.410 0.887 0.863 0.907 0.953 0.923 0.943 0.947 0.913 0.927
256 5 0.790 0.770 0.790 0.997 1.00 1.00 0.993 0.997 0.997 0.990 0.977 0.987
256 9 0.953 0.970 0.980 1.00 1.00 1.00 0.997 0.997 1.00 1.00 1.00 1.00
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uncorrelated case than in the correlated case, (ii) L3(Æ) yields higher power in the
correlated case than in the uncorrelated case, and (iii)L3(Æ) yields higher power than
L2(Æ) in the correlated case and lower power than L2(Æ) in the uncorrelated case. As
expected,L2(Æ) performs best for a large T (cf. Section 3.2). As a result of the double
sum in (17) it is also fairly stable over awide range of different combinations of n and
T, whereas bothL1(Æ) andL3(Æ) are unstable for a small n since then theminimization
in (16) is based on a smaller number of terms.

Figures 6, 7 show the empirical size and power of L2,sup(Mk) and L3,sup(Mk) for
k ¼ 1,…,min(10,T)1) and nT ¼ 128. As can be seen, the size is acceptable
for models (1)–(3) both in the uncorrelated and the correlated case, whereas for
models (4) and (5) it is more variable, especially in the correlated case. For T ¼ 8
and T ¼ 16, the empirical size of L3,sup(Mk) is closer to 0.05 than that of
L2,sup(Mk) in most cases.

The models (9) and (10) have their nonlinearities defined in terms of lag 6 and
10, and the rise in power for lag 6 for these models is consistent with this.

The empirical power drops quicker as k increases for n large than for n small.
This is expected because as we increase k with one unit we get n observations less
to calculate M̂kðxÞ from.

The statistics L2,ave(Mk) and L3,ave(Mk) behave approximately as L2,sup(Mk)
and L3,sup(Mk) for the linear models, but, as should be expected, for models (7)–
(10) the power of L2,ave(Mk) and L3,ave(Mk) drops faster than for L2,sup(Mk) and
L3,sup(Mk), as k increases.

5.3. The test functionals L2(Vk) and L3(Vk)

Table VII shows the empirical size and power of L2(V1) and L3(V1). Since the
tests are based on the residual process, we have not included models (1) and (2)

TABLE IV

The Empirical Power of L1(Mk) (left), L1ðM ð1Þ
k Þ (middle), and L1ðM ð2Þ

k Þ (right) for Model (8),
with Different Values of b

Model 8

n T b ¼ )0.2 b ¼ )0.4 b ¼ )0.6 b ¼ )0.8

64 2 0.207 0.093 0.130 0.340 0.123 0.227 0.497 0.347 0.517 0.673 0.220 0.283
64 3 0.247 0.113 0.133 0.390 0.150 0.177 0.670 0.437 0.627 0.807 0.170 0.270
64 5 0.260 0.107 0.150 0.513 0.150 0.187 0.787 0.547 0.813 0.860 0.260 0.377
64 9 0.257 0.070 0.130 0.610 0.163 0.280 0.863 0.693 0.937 0.850 0.253 0.427
128 2 0.313 0.193 0.263 0.507 0.287 0.430 0.657 0.173 0.217 0.773 0.350 0.400
128 3 0.403 0.217 0.330 0.613 0.337 0.507 0.840 0.190 0.187 0.933 0.417 0.470
128 5 0.547 0.273 0.467 0.827 0.473 0.800 0.937 0.217 0.233 0.957 0.500 0.573
128 9 0.727 0.420 0.660 0.870 0.657 0.877 0.890 0.240 0.273 0.953 0.617 0.673
256 2 0.520 0.420 0.553 0.647 0.487 0.580 0.727 0.417 0.413 0.793 0.273 0.180
256 3 0.623 0.523 0.677 0.840 0.653 0.800 0.903 0.517 0.513 0.953 0.223 0.123
256 5 0.837 0.743 0.900 0.933 0.800 0.930 0.967 0.607 0.580 0.977 0.180 0.067
256 9 0.913 0.883 0.987 0.980 0.943 0.987 0.963 0.740 0.733 0.960 0.233 0.093
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which would yield results similar to those of model (3). For the power results the
nonlinear models have b ¼ 0.3 for both model (7) and (11) with nT ¼ 512, and
for nT ¼ 128, b ¼ 0.5 and 0.7 for model (7) and (11), respectively. As can be seen,
the empirical size is too high for the 4th-and the 8th-order model with T ¼ 4, but
in all the other cases the size is acceptable. There is power against model (7) and
(11) for a fairly wide range of combinations of n and T.

6. A REAL-DATA EXAMPLE

We end by taking a look at a real-data example discussed in Bjørnstad et al.
(1996) and Stenseth et al. (1996). The data set contains the logarithms of the
yearly catch of grey-sided voles over a period of T ¼ 31 years at 91 different

TABLE V

The Empirical Size of L2(M1) and L3(M1) (in Parenthesis) for Models (1)–(5) of Section 5.1

Models

n T (1) (2) (3) (4) (5)

Linear models, r2� ¼ 1;r2g ¼ 0
1 512 0.048 0.038 0.046 0.044 0.062
2 256 0.058 0.044 0.044 0.032 0.058
4 128 0.040 0.058 0.050 0.052 0.042
8 64 0.042 0.030 0.052 0.050 0.056
16 32 0.036 (0.046) 0.048 (0.042) 0.044 (0.058) 0.054 (0.032) 0.038 (0.044)
32 16 0.050 (0.046) 0.038 (0.064) 0.058 (0.062) 0.036 (0.052) 0.054 (0.050)
64 8 0.046 (0.044) 0.048 (0.054) 0.054 (0.042) 0.044 (0.048) 0.046 (0.040)
128 4 0.042 (0.046) 0.052 (0.058) 0.062 (0.054) 0.038 (0.048) 0.002 (0.004)
256 2 0.068 0.062 0.050 0.046 0.056
1 128 0.038 0.044 0.050 0.046 0.058
2 64 0.052 0.048 0.040 0.042 0.046
4 32 0.038 0.030 0.050 0.034 0.054
8 16 0.040 (0.046) 0.034 (0.042) 0.052 (0.050) 0.042 (0.036) 0.034 (0.058)
16 8 0.040 (0.066) 0.030 (0.040) 0.038 (0.048) 0.042 (0.040) 0.050 (0.048)
32 4 0.046 (0.060) 0.038 (0.046) 0.054 (0.044) 0.044 (0.050) 0.010 (0.020)
64 2 0.042 0.038 0.042 0.034 0.054
Linear models, r2� ¼ r2g ¼ 0:5
2 256 0.046 0.050 0.042 0.042 0.050
4 128 0.042 0.052 0.042 0.052 0.048
8 64 0.058 0.044 0.058 0.048 0.064
16 32 0.030 (0.060) 0.036 (0.048) 0.038 (0.056) 0.036 (0.046) 0.054 (0.044)
32 16 0.054 (0.064) 0.044 (0.052) 0.052 (0.052) 0.070 (0.056) 0.090 (0.062)
64 8 0.060 (0.074) 0.066 (0.056) 0.058 (0.064) 0.096 (0.078) 0.164 (0.126)
128 4 0.048 (0.064) 0.080 (0.072) 0.054 (0.080) 0.028 (0.056) 0.014 (0.040)
256 2 0.072 0.048 0.046 0.044 0.050
2 64 0.038 0.044 0.058 0.036 0.040
4 32 0.044 0.052 0.036 0.048 0.028
8 16 0.048 (0.058) 0.048 (0.032) 0.060 (0.040) 0.066 (0.070) 0.076 (0.070)
16 8 0.024 (0.038) 0.050 (0.058) 0.034 (0.038) 0.068 (0.074) 0.116 (0.086)
32 4 0.050 (0.060) 0.058 (0.058) 0.038 (0.046) 0.018 (0.048) 0.016 (0.040)
64 2 0.042 0.048 0.038 0.040 0.048

856 V. HJELLVIK, R. CHEN AND D. TJØSTHEIM

� Blackwell Publishing Ltd 2004



locations of the island of Hokkaido (cf. Figure 1). They are distributed in three
panels (groups), with n ¼ 16,41 and 34 in group 1, 2 and 3, respectively. The
intercorrelation is estimated to be q̂ ¼ 0:430; 0:437 and 0.305, in group 1, 2 and 3,
respectively. A more detailed presentation of parts of the data is given in Section 7
of Hjellvik and Tjøstheim (1999a) and in Section 6 of Hjellvik and Tjøstheim
(1999b).

At this stage, we use this data set merely as an illustration. We are primarily
interested in checking whether the data are nonlinearly generated or not. We do
not attempt any biological or ecological interpretation of our results. For readers
interested in some of the biological/ecological aspects of the data we refer to the
two references mentioned in the beginning of this section and to the special issue
of Researches of Population Ecology (vol. 40, no. 1, 1998) on the population
ecology of the vole Clethrionomys rufocanus.

TABLE VI

The Empirical Size of L2(M1) and L3(M1) (in Parenthesis) for Models (6)–(8) of Section 5.1

and of L2(M6) and L3(M6) (in Parenthesis) for Models (9)–(10) of Section 5.1

Models

n T (6) (7) (8) (9) (10)

Nonlinear models, r2� ¼ 1;r2g ¼ 0
1 512 0.892 0.772 0.836 0.762 0.810
2 256 0.876 0.792 0.842 0.784 0.792
4 128 0.876 0.784 0.882 0.760 0.788
8 64 0.868 0.774 0.876 0.764 0.778

16 32 0.826 (0.770) 0.746 (0.322) 0.850 (0.626) 0.716 (0.458) 0.718 (0.618)
32 16 0.888 (0.836) 0.750 (0.508) 0.838 (0.756) 0.772 (0.620) 0.622 (0.660)
64 8 0.780 (0.786) 0.690 (0.580) 0.782 (0.770) 0.358 (0.324) 0.282 (0.288)
128 4 0.776 (0.768) 0.600 (0.538) 0.688 (0.678)
256 2 0.534 0.426 0.526

1 128 0.890 0.956 0.724 0.482 0.950
2 64 0.836 0.942 0.682 0.494 0.918
4 32 0.832 0.924 0.692 0.458 0.872
8 16 0.802 (0.408) 0.880 (0.132) 0.646 (0.138) 0.682 (0.102) 0.840 (0.266)

16 8 0.804 (0.774) 0.872 (0.598) 0.632 (0.452) 0.182 (0.096) 0.440 (0.310)
32 4 0.776 (0.768) 0.832 (0.740) 0.538 (0.508)
64 2 0.630 0.676 0.350
Nonlinear models, r2� ¼ r2g ¼ 0:5

2 256 0.870 0.730 0.810 0.692 0.778
4 128 0.804 0.654 0.762 0.640 0.700
8 64 0.794 0.568 0.672 0.526 0.638

16 32 0.610 (0.918) 0.412 (0.638) 0.544 (0.898) 0.330 (0.630) 0.438 (0.812)
32 16 0.560 (0.956) 0.362 (0.716) 0.450 (0.934) 0.456 (0.810) 0.382 (0.804)
64 8 0.510 (0.952) 0.272 (0.650) 0.372 (0.886) 0.240 (0.346) 0.338 (0.422)
128 4 0.582 (0.922) 0.278 (0.508) 0.430 (0.746)
256 2 0.738 0.236 0.410

2 64 0.832 0.902 0.632 0.430 0.896
4 32 0.830 0.884 0.614 0.380 0.850
8 16 0.764 (0.568) 0.804 (0.350) 0.570 (0.244) 0.576 (0.220) 0.822 (0.410)

16 8 0.710 (0.922) 0.718 (0.720) 0.466 (0.664) 0.148 (0.170) 0.534 (0.464)
32 4 0.748 (0.942) 0.636 (0.726) 0.468 (0.686)
64 2 0.814 0.478 0.368
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Figure 8a–f shows the p-values of L2(Mk), L3(Mk) (independence of {gt} cannot
be ruled out; cf. Hjellvik and Tjøstheim, 1999a) and the corresponding cumulative
statistics for k ¼ 1,…,10. We have used 500 bootstrap replicas and an adaptive
kernel estimate with a ¼ 0.5 (cf. Silverman, 1986, p. 100 ff and Section 6.4 of
Hjellvik et al., 1998) to estimate the nulldistribution. For group 2, there are clear
indications of a nonlinearity. The lowest p-value obtained for this group is
0.00042 for L3,ave(Mk). For group 1, the lowest p-value obtained for the

Figure 6. Empirical size of L2,sup(Mk)(lines with bullets) and L3,sup(Mk) (clean lines) for models (1)–(5)
of Section 5.1 with q ¼ 0.5.
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cumulative statistics is 0.048 for L3,ave(Mk), and for group 3, it is 0.020 for
L3,sup(Mk). It could be suspected that the difference in nonlinearity between the
three groups is due to the varying numbers of observations, but if we split group 2
into three subgroups with n ¼ 14, 14 and 13, respectively, the lowest p-values for
the cumulative statistics are for the three subgroups 0.00051, 0.019 and 0.0010,
respectively.

Figure 7. Empirical power of L2,sup(Mk)(lines with bullets) and L3,sup(Mk) (clean lines) for models (6)–
(10) of Section 5.1 with q ¼ 0.5.
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Figure 9 shows the same as Figure 8 for the conditional variance. Using the
cumulative statistics, group 2 is the only group for which the null hypothesis of
homoscedasticity is rejected even with a size as high as 0.10. However, the
rejection for this group may be due to nonlinearity for the conditional mean in
this case.

APPENDIX A

Proof of Theorem 1. The proof of the theorem follows that of Masry and Fan (1997) very
closely. First, for a fixed series i, the solution ĉi ¼ fĉ0; . . . ; ĉ‘gT to (5) is

ĉi ¼ ðXT
i WiXiÞ�1

XT
i Wiyi

TABLE VII

The Empirical Size and Power of L2(V1) and L3(V1) (in Parenthesis) for Models (3)–(5), (7)
and (11) of Section 5.1

Models

n T (3) (4) (5) (7) (11)

r2� ¼ 1; r2g ¼ 0
1 512 0.052 0.064 0.048 0.762 0.964
2 256 0.062 0.064 0.052 0.766 0.952
4 128 0.040 0.036 0.058 0.752 0.962
8 64 0.060 0.050 0.048 0.738 0.954
16 32 0.036 (0.034) 0.042 (0.044) 0.028 (0.040) 0.654 (0.852) 0.958 (0.940)
32 16 0.044 (0.046) 0.050 (0.044) 0.042 (0.052) 0.650 (0.810) 0.930 (0.916)
64 8 0.048 (0.046) 0.044 (0.054) 0.040 (0.050) 0.520 (0.598) 0.892 (0.856)
128 4 0.062 (0.068) 0.218 (0.258) 0.470 (0.524) 0.354 (0.390) 0.824 (0.794)
170 3 (0.038) (0.122) (0.238) (0.202) (0.698)
1 128 0.060 0.066 0.058 0.844 0.888
2 64 0.044 0.052 0.052 0.802 0.912
4 32 0.046 0.050 0.050 0.796 0.878
8 16 0.040 (0.042) 0.036 (0.064) 0.050 (0.042) 0.690 (0.528) 0.832 (0.638)
16 8 0.046 (0.068) 0.052 (0.072) 0.030 (0.044) 0.480 (0.478) 0.718 (0.592)
32 4 0.042 (0.066) 0.070 (0.116) 0.092 (0.130) 0.332 (0.324) 0.610 (0.544)
42 3 (0.050) (0.058) (0.054) (0.140) (0.392)
r2� ¼ r2g ¼ 0:5
2 256 0.036 0.030 0.040 0.754 0.958
4 128 0.046 0.048 0.040 0.712 0.950
8 64 0.056 0.050 0.048 0.548 0.858
16 32 0.046 (0.044) 0.040 (0.044) 0.030 (0.042) 0.414 (0.948) 0.712 (0.922)
32 16 0.030 (0.044) 0.038 (0.036) 0.028 (0.044) 0.310 (0.880) 0.518 (0.916)
64 8 0.034 (0.050) 0.036 (0.040) 0.028 (0.052) 0.218 (0.674) 0.312 (0.868)
128 4 0.036 (0.058) 0.124 (0.234) 0.242 (0.438) 0.162 (0.354) 0.220 (0.782)
170 3 (0.048) (0.116) (0.230) (0.222) (0.388)
2 64 0.044 0.058 0.050 0.816 0.890
4 32 0.042 0.052 0.054 0.742 0.866
8 16 0.050 (0.040) 0.052 (0.056) 0.030 (0.040) 0.576 (0.602) 0.746 (0.672)
16 8 0.032 (0.056) 0.038 (0.062) 0.024 (0.042) 0.420 (0.532) 0.494 (0.588)
32 4 0.028 (0.052) 0.060 (0.082) 0.086 (0.116) 0.238 (0.342) 0.330 (0.522)
42 3 (0.052) (0.060) (0.056) (0.172) (0.334)
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where yi¼{X(i)2,…,X(i)T}
T,Wi is the diagonal matrix the tth element of which is Kh(X(i)t)x),

and

Xi ¼
1 ðXðiÞ1 � xÞ . . . ðXðiÞ1 � xÞ‘

..

. ..
. ..

.

1 ðXðiÞT�1 � xÞ . . . ðXðiÞT�1 � xÞ‘

0
B@

1
CA:

Let

c ¼ cðxÞ ¼ ff ðxÞ; . . . ; f ð‘ÞðxÞ=‘!gT and mi ¼ ff ðXðiÞ1Þ; . . . ; f ðXðiÞT�1ÞgT:

Following Masry and Fan (1997), write

Figure 8. p-values of various tests based on the conditional mean for the grey-sided voles data.

Figure 9. p-values of various tests based on the conditional variance for the grey sided voles data.
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ĉi � c ¼ ðXT
i WiXiÞ�1

XT
i Wifmi � XicðxÞg þ ðXT

i WiXiÞ�1
XT

i Wifyi �mig
¼ bi þ ti:

As T fi 1,

bi ¼
1

ð‘þ 1Þ! f
ð‘þ1ÞðxÞH�1Bh‘þ1f1þ opð1Þg

with H ¼ diag(1,h,…,h‘) and B as defined in (7), and

ti ¼ p�1ðxÞH�1S�1uif1þ opð1Þg

where ui ¼ ðT � 1Þ�1H�1XT
i Wiðyi �miÞ. Hence,

1

n

Xn
i¼1

ðĉiðxÞ � cðxÞÞ ¼ 1

n

Xn
i¼1

bi þ
1

n

Xn
i¼1

ti

¼ f ð‘þ1ÞðxÞ
ð‘þ 1Þ! H

�1Bh‘þ1f1þ opð1Þg

þ p�1ðxÞH�1S�1uf1þ opð1Þg

where u ¼ n�1
Pn

i¼ 1 ui.
Again, following Masry and Fan (1997), we can show the asymptotic normality of u, by

considering an arbitrary linear combination cTu with cT ¼ ½c0; . . . ; c‘� and the
representation

cTu ¼ 1

T � 1

XT�1

t¼1

Zt

where

Zt ¼ n�1
Xn
i¼1

fXðiÞtþ1 � f ðXðiÞtÞgChðXðiÞt � xÞ

and CðvÞ ¼
P‘

j¼ 0 cjv
jKðvÞ and Ch(v) ¼ C(v/h)/h. The rest of the proof follows Masry and

Fan (1997) except in calculating var(Zt).

Specifically,

varðZtÞ ¼ n�2 var
Xn
i¼1

�ðiÞtChðXðiÞt � xÞ þ gt
Xn
i¼1

ChðXðiÞt � xÞ
" #

¼ n�1r2� var½ChðXðiÞt � xÞ� þ n�2r2gvar½
Xn
i¼1

ChðXðiÞt � xÞ�:

It is known that

var½ChðXðiÞt � xÞ� ¼ h�1ðpðxÞcT~Scþ oð1ÞÞ;

where ~S is defined in (8). It is easy to show that cov[Ch(X(i)t)x),Ch(X(j)t)x)] ¼ o(1). Note
that n is a fixed finite number, hence we have
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varðZtÞ ¼
1

nh
fðr2� þ r2gÞpðxÞcT~Scþ oð1Þg:

The rest of the proof follows exactly in the same line as that of Masry and Fan (1997),
utilizing the mixing condition of the panel time series. QED

APPENDIX B

The following assumptions are used for Theorems 3 and 4.

(B1) The kernel function K is a symmetric density function with a bounded support in
<, and |K(x1))K(x2)| < c|x1)x2| for all x1 and x2 in its support.

(B2) The function f (‘+1)(x) exists and is continuous in the neighbourhood of x.

(B3) h ¼ O(n)1/(2p+3)).
(B4) For some small d > 0;EðX 2þd

ðiÞt Þ < 1 for all t.
(B5) The distribution of gt has bounded support and the distribution of �(i)t has infinite

support.

(B6) The series starts at t ¼ )T0 with independent observations X(1))T0
, X(2))T0

,… across
the panel.

Lemma B.1. Under condition (B6), for fixed t and conditioning on g; fXðiÞtg and {X(j)t} are

conditionally independent for i „ j.

Proof. By induction. QED

Lemma B.2. Under assumptions (B5) and (B6), for any t < m, (m fixed), there is a
compact interval in < such that the conditional distribution pt(x) ¼ pt(x | g) of X(i)t given g is

bounded below uniformly for x in the compact interval for any sequence of g)T0
,…,gT and all

)T0 £ t £ T.

Proof. By construction. QED

Proof of Theorem 3. By Lemma B.1, we have that, conditioning on g;XðiÞt; i ¼ 1; . . . ; n
are conditionally independent for fixed t. Then by standard results (on independent
observations) (Fan and Gijbels, 1996) and the fact that f ð‘þ1Þ

t ðxÞ ¼ f ð‘þ1ÞðxÞ, the theorem
follows. QED

Proof of Theorem 4. First, let yt ¼ fXð1Þt; . . . ;XðnÞtgT, letWtðxÞ be the diagonal matrix the
ith element of which is Kh(X(i)t)1 ) x), and

XtðxÞ ¼
1 ðXð1Þt�1 � xÞ . . . ðXð1Þt�1 � xÞ‘

..

. ..
. ..

.

1 ðXðnÞt�1 � xÞ . . . ðXðnÞt�1 � xÞ‘

0
B@

1
CA:
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Then for fixed t, the solution ĉt ¼ fĉ0; . . . ; ĉ‘gT minimizing (9) is

ĉtðxÞ ¼ ðXT
t ðxÞWtðxÞXtðxÞÞ�1

XT
t ðxÞWtðxÞyt:

Let

mt ¼ fftðXð1ÞtÞ; . . . ; ftðXðnÞtÞgT and ctðxÞ ¼ fftðxÞ; . . . ; f ð‘Þ
t ðxÞ=‘!gT:

Write

ĉtðxÞ � ctðxÞ ¼ ðXT
t ðxÞWtðxÞXtðxÞÞ�1

XT
t ðxÞWtðxÞfmt � XtðxÞctðxÞg

þ ðXT
t ðxÞWtðxÞXtðxÞÞ�1

XT
t ðxÞWtðxÞfyt �mtg

¼ btðxÞ þ ttðxÞ:

As n fi 1, following Masry and Fan (1997), and using that f ðsÞ
t ðxÞ ¼ f ðsÞðxÞ for s > 0,

we have

btðxÞ ¼
1

ð‘þ 1Þ! f
ð‘þ1ÞðxÞH�1Bh‘þ1f1þ opð1Þg

with H ¼ diag(1,h,…,h‘) and B as defined in (7). Moreover, writing pt)1(x) for pt�1ðxjgÞ,

ttðxÞ ¼ p�1
t�1ðxÞH�1S�1utðxÞf1þ opð1Þg

where utðxÞ ¼ n�1H�1XT
t ðxÞWtðxÞðyt �mtÞ and S is defined in (8).

Hence, letting fðxÞ ¼ ff ðxÞ; . . . ; f ð‘ÞðxÞ=‘!gT and

~fðxÞ ¼ 1

T � 1

XT
t¼2

ðĉtðxÞ � ĉtð0ÞÞ;

~fðxÞ � fðxÞ ¼ 1

T � 1

XT
t¼2

½ĉtðxÞ � ctðxÞ � fĉtð0Þ � ctð0Þg�

¼ 1

T � 1

XT
t¼2

½btðxÞ � btð0Þ� þ
1

T � 1

XT
t¼2

½ttðxÞ � ttð0Þ�

¼ f ‘þ1ðxÞ � f ‘þ1ð0Þ
ð‘þ 1Þ! H�1Bh‘þ1f1þ opð1Þg

þ H�1S�1uf1þ opð1Þg

where

u ¼ ðT � 1Þ�1
XT
t¼2

futðxÞ=pt�1ðxÞ � utð0Þ=pt�1ð0Þg:

Reasoning as in the proof of Theorem 1 for an arbitrary linear combination cTu, and

again, following Masry and Fan (1997), we can show the asymptotic normality of u, with
only the exception in calculation of varðZijgÞ, where

864 V. HJELLVIK, R. CHEN AND D. TJØSTHEIM

� Blackwell Publishing Ltd 2004



Zi ¼ ðT � 1Þ�1
XT
t¼2

p�1
t�1ðxÞfXðiÞt � f ðXðiÞt�1ÞgChðXðiÞt�1 � xÞ

� ðT � 1Þ�1
XT
t¼2

p�1
t�1ð0ÞfXðiÞt � f ðXðiÞt�1ÞgChðXðiÞt�1 � 0Þ

¼ ðT � 1Þ�1
XT
t¼2

eðiÞt½p�1
t�1ðxÞChðXðiÞt�1 � xÞ � p�1

t�1ð0ÞChðXðiÞt�1Þ�

where

CðvÞ ¼
X‘
j¼0

cjvjKðvÞ and ChðvÞ ¼ Cðv=hÞ=h:

Specifically,

varðZi j gÞ ¼ ðT � 1Þ�2var
XT
t¼2

�ðiÞt½p�1
t�1ðxÞChðXðiÞt�1 � xÞ � p�1

t�1ð0ÞChðXðiÞt�1 � 0Þ�
( )

¼ ðT � 1Þ�2r2�
XT
t¼2

var½p�1
t�1ðxÞChðXðiÞt�1 � xÞ � p�1

t�1ð0ÞChðXðiÞt�1Þ�:

It is known that

var½ChðXðiÞt�1 � xÞ� ¼ h�1ðpt�1ðxÞcT~Scþ oð1ÞÞ

where ~S is as in (8), and it is easy to show

cov½ChðXðiÞt�1 � xÞ;ChðXðiÞt�1 � 0Þ� ¼ oð1Þ;

under the condition that C(v fi 0 as v fi 1. Note that T is a fixed finite number, hence we
have

varðZijgÞ ¼
1

ðT � 1Þ2h
r2�
XT�1

t¼1

1

pt�1ðxÞ
þ 1

pt�1ð0Þ

� �
cT~Scþ oð1Þ

" #
:

The rest of the proof follows exact the same line as that of Masry and Fan (1997). QED

APPENDIX C

Proof of Theorem 5. Since ~eðiÞt is the residual of the least squares estimation of model
(12), we have ~eðiÞt ¼ eðiÞt þ XðiÞt�1ða� ~aÞ with a estimated as in Hjellvik and Tjøstheim
(1999a) and where X(i)t ¼ (X(i)t,…,X(i)t)p+1) and a ¼ (a1,…,ap)

T and ~a� a ¼ OpðT�1=2Þ.
(Note that n is fixed and T fi 1.)

Then we have

ĝðxÞ � gðxÞ ¼
ðnT Þ�1PT

t¼1

Pn
i¼1 Khð~eðiÞt � xÞf~e2ðiÞtþ1 � gðxÞg

ðnT Þ�1PT
t¼1

Pn
i¼1 Khð~eðiÞt � xÞ

¼4 I

II
;

where
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II ¼ ðnT Þ�1
XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞ

¼ 1

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h
þ
XðiÞt�1ða� ~aÞ

h

� �

¼ 1

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h


 �
þ K 0ðe�ðiÞtÞ

XðiÞt�1ða� ~aÞ
h

� �� 


¼4 II1 þ II2;

where K¢ is the first derivative of the kernel function K and e�ðiÞt is between
(e(i)t)x)/h and ðeðiÞt � xÞ=hþ XðiÞt�1ða� ~aÞ=h. By standard results, II1 fi pe(x) in probab-
ility under a strong mixing condition (cf. introductory remarks on geometric mixing and see
e.g. Masry and Tjøstheim, 1995) and, with K¢ bounded,

jII2j �
1

nTh

XT
t¼1

Xn
i¼1

jK 0ðe�Þj
jXðiÞt�1ða� ~aÞj

h
� Op

ja� ~aj
nTh2

� �
¼ opð1Þ:

Hence II fi pe(x) in probability.
For the numerator I, we have

I ¼ 1

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞ eðiÞtþ1 þ XðiÞtða� ~aÞ
� �2�gðxÞ
h i

¼ 1

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞfgðeðiÞtÞ � gðxÞg

þ 1

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞgðeðiÞtÞð�2ðiÞtþ1 � r2� Þ

þ 1

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞgðeðiÞtÞðg2tþ1 � r2gÞ

þ 1

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞgðeðiÞtÞð2�ðiÞtþ1gtþ1Þ

þ 2

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞg1=2ðeðiÞtÞ�ðiÞtþ1XðiÞtða� ~aÞ

þ 2

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞg1=2ðeðiÞtÞgtþ1XðiÞtða� ~aÞ

þ 1

nT

XT
t¼1

Xn
i¼1

Khð~eðiÞt � xÞfXðiÞtða� ~aÞg2

¼4 I1 þ I2 þ I3 þ I4 þ I5 þ I6 þ I7:

Now we study each Ii separately. First,
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I1 ¼
1

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h
þ
XðiÞt�1ða� ~aÞ

h

� �
fgðeðiÞtÞ� gðxÞg

¼ 1

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h


 �
þK 0 eðiÞt � x

h


 �XðiÞt�1ða� ~aÞ
h

�

þ1

2
K 00 eðiÞt � x

h


 �fXðiÞt�1ða� ~aÞg2

h2
þ 1

6
K 000ðe�ðiÞtÞ

fXðiÞt�1ða� ~aÞg3

h3

#
fgðeðiÞtÞ� gðxÞg

¼ I11þ I12þ I13þ I14;

where e�ðiÞt lies between (e(i)t)x)/h and ðeðiÞt � xÞ=hþXðiÞt�1ða� ~aÞ=h. By standard calcula-
tion,

I11 ¼ h2BðxÞ þ opðh2Þ;

where BðxÞ ¼ l2f0:5g00ðxÞpeðxÞ þ g0ðxÞp0eðxÞg: Under standard assumptions,

nI12 !
1

h

Z
K 0ðuÞyfgðxþ huÞ � gðxÞgpeðiÞt ;XðiÞt�1

ðxþ hu; yÞdudy
� 


ð~a� aÞ

¼
Z

K 0ðuÞu du
� �

g0ðxÞpeðiÞt ðxÞEðXðiÞt�1jeðiÞt ¼ xÞð~a� aÞ

¼ OpðT�1=2Þ ¼ opðh2Þ:

Similarly, we can show that I13 ¼ Op(T
)1h)1) ¼ op(h

2). For I14, we have

jI14j �
1

6nTh

XT
t¼1

Xn
i¼1

jK 000ðe�ðiÞtÞj
fXðiÞt�1ða� ~aÞg3

h3

�����
�����

¼ OpðT�3=2h�4Þ

¼ opðh2Þ:

Hence, I1 ¼ h2B(x)+op(h
2). Similarly,

I2 ¼
1

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h
þ
XðiÞt�1ða� ~aÞ

h

� �
gðeðiÞtÞð�2ðiÞtþ1 � r2� Þ

¼ 1

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h


 �
þ K 0 eðiÞt � x

h


 �XðiÞt�1ða� ~aÞ
h

�

þ 1

2
K 00 eðiÞt � x

h


 � fXðiÞt�1ða� ~aÞg2

h2
þ 1

6
K 000ðe�ðiÞtÞ

fXðiÞt�1ða� ~aÞg3

h3

#

� gðeðiÞtÞð�2ðiÞtþ1 � r2� Þ
¼ I21 þ I22ða� ~aÞ þ ða� ~aÞ0I23ða� ~aÞ þ I24:

Standard results yield that
ffiffiffiffiffiffiffiffi
nTh

p
I21 ! Nð0; s21Þ; where s21 ¼ V0g2ðxÞvarð�2ðiÞtÞ. For I22, we

note that E(I22) ¼ 0 and, because of the fact that �(i)t+1 is independent of X(i)s and �(i)s for
all s £ t, we have
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varðI22Þ ¼
varð�2ðiÞtÞ
n2T 2h4

E
XT
t¼1

Xn
i¼1

K 02 eðiÞt � x

h


 �
XT

ðiÞt�1XðiÞt�1g
2ðeðiÞtÞ

( )

!
varð�2ðiÞtÞ
nTh3

Z
K 02ðuÞg2ðxþ huÞyTypeðiÞt ;xðiÞt�1

ðxþ hu; yÞdudy

¼ OðT�1h�3Þ:

Hence I22ða� ~aÞ ¼ OpðT�1h�3=2Þ ¼ opðT�1=2h1=2Þ: Similarly, we can show that
ða� ~aÞ0I23ða� ~aÞ ¼ opðT�1=2h1=2Þ. As for I14, we can show that |I24| ¼ op(h

2). Hence,

ðnThÞ1=2I2 ! Nð0; s21Þ. Analogous to the calculation of I2 and that in the proof of Theorem
1, we obtain ffiffiffiffiffiffiffiffi

nTh
p

I3 ! Nð0; s22Þ and
ffiffiffiffiffiffiffiffi
nTh

p
I4 ! Nð0; s23Þ;

where s22 ¼ V0g2ðxÞvarðg2t Þ and s23 ¼ 4V0g2ðxÞr2gr2� . Moreover, it is easy to show that

covðI2; I3Þ ¼ covðI2; I4Þ ¼ covðI3; I4Þ ¼ 0:

Hence, ffiffiffiffiffiffiffiffi
nTh

p
ðI2 þ I3 þ I4Þ ! Nð0; s21 þ s22 þ s23Þ:

For I5, we have

I5 ¼
2

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h
þ
XðiÞt�1ða� ~aÞ

h

� �
g1=2ðeðiÞtÞ�ðiÞtþ1XðiÞtða� ~aÞ

¼ 2

nTh

XT
t¼1

Xn
i¼1

K
eðiÞt � x

h


 �
þ K 0ðe�ðiÞtÞ

XðiÞt�1ða� ~aÞ
h

� �

� g1=2ðeðiÞtÞ�ðiÞtþ1XðiÞtða� ~aÞ

¼4 I51ða� ~aÞ þ I52;

where E(I51) ¼ 0 and

varðI51Þ ¼
4r2�

n2T 2h2
E
XT
t¼1

Xn
i¼1

K2 eðiÞt � x

h


 �
gðeðiÞtÞXT

ðiÞtXðiÞt

( )

¼ OðT�1h�2Þ:

Hence, I51ða� ~aÞ ¼ opðT�1=2h1=2Þ, and

jI52j�
2

nTh

XT
t¼1

Xn
i¼1

K 0ðe�ðiÞtÞ
XðiÞt�1ða�~aÞ

h

����
���� g1=2ðeðiÞtÞ�ðiÞtþ1XðiÞtða�~aÞ
�� ��¼Op

ða�~aÞ2

h2

( )
¼opðh2Þ:

Hence, I5 ¼ op{(Th)
)1/2}+op(h

2). Similarly, I6 ¼ op{(Th)
)1/2}+op(h

2), and jI7j ¼
Opfða�~aÞ2h�1g ¼ opðh2Þ: The theorem follows. QED
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APPENDIX D

(D1) The series starts at t ¼ )T0. The starting observations (X(i))T0
,…,X(i))T0+p) and

(X(j))T0
,…,X(j))T0+p) are independent for i „ j; that is, the series are started inde-

pendently.
(D2) For all t, EðX 8þd

ðiÞt Þ < 1 for some small d > 0, and EðX 2
ðiÞt j XðiÞt�k ¼ xÞ is a

bounded function for all k > 0.

(D3) The joint density of (X(i)t,X(i)t)k) is a bounded function for all k > 0.
(D4) As n fi 1, then h fi 0 and nh(2+4d)/(1+d)/ log (n) fi 1 for some d > 0.
(D5) The weight function w(Æ) is continuous and with compact support in

{x:pt(x) > 0 for all t}.

Lemma D.1. Let Xt be a stationary and reversible linear AR process

Xt ¼ cþ a1Xt�1 þ � � � þ apXt�p þ gt þ �t

where {�t} and {gt} are independent sequences, each consisting of independent variables with

zero mean and constant variances. Then the conditional variance function var(Xt ŒXt)k,g) is a
constant only depending on k and the model coefficients, not on g.

Proof. Conditioning on g, it is easy to show that Xt can be written as Xt ¼
Yt+bt where bt is a constant depending on g and the coefficients of the model, and Yt

follows the linear AR model Yt ¼ a1Yt)1+� � �+apYt)p
+�t, which is a zero-mean stationary

process. Using the fact that the process is reversible and a Yale-Walker equation-type of

argument, it can be shown that var(Yt ŒYt)k,g) is a constant only depending on k and the
coefficients. Since var(Xt ŒXt)k,g) ¼ var(Yt+bt ŒYt)k+bt)k,g), the lemma follows. QED

Proof of Theorem 6. From Lemma D.1, it follows that r2k is independent of x and g. We
will only look at the case of L1ðM ð1Þ

k Þ, the proof of L1(Mk) and L1ðM ð2Þ
k Þ being similar. From

the proof of Theorem 3.2 (ii) in Hjellvik et al. (1996), we have, conditioning on g,

nh5=2L1ðM ð1Þ
k;t Þ ¼ I1;k;t þ I2;k;t þ opð1Þ;

where I1,k,t ¼ h)1/2B1,k,t+op(1) and I2;k;t � Nð0; s21;k;tÞ, where

B1;k;t ¼
1

l22

Z
u2K2ðuÞdu

Z
r2k;tðxÞwðxÞdx;

and

s21;k;t ¼
2

l22

Z
r4k;tðxÞw2ðxÞdx

Z
uvðu� zÞðv� zÞKðuÞKðvÞKðu� zÞKðv� zÞdudvdz;

where r2k;tðxÞ ¼ varðXðiÞt j XðiÞt�k ; gÞ. By Lemma D.1, we have B1,k,t ¼ B1,k and s1,k,t ¼
(T)k)s1,k.

Note that the above result was proved under weaker conditions in Hjellvik et al. (1996,

1998) where they assumed that the observations come from an absolutely regular process.
Here, conditioned on g, our (X(i)t)k,X(i)t) are independent for i ¼ 1,…,n.

In addition, let nt,i ¼ (X(i)t,e(i)t). Then, I2,k,t can be expressed as

I2;k;t ¼
1

n2h4l22

X
i 6¼j

/ðnt;int;jÞ;
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where

/ðnt;i;nt;jÞ¼ eðiÞteðjÞt

Z
wðxÞ
pt�kðxÞ

ðXðiÞt�k�xÞðXðjÞt�k�xÞKhðXðiÞt�k�xÞKhðXðjÞt�k�xÞdx;

where Kh(x) ¼ K(x/h)/h, e(i)t ¼ X(i)t)E(X(i)tŒX(i)t)k,g) and pt)k(x) is the conditional density

of X(i)t)k given g.
To prove the theorem, we now only need to show that

Eðnh5=2I2;k;t1nh5=2I2;k;t2Þ ¼ oð1Þ

for t1 „ t2. Note that

EðI2;k;t1 I2;k;t2Þ ¼
X
i1 6¼j1

X
i2 6¼j2

Ef/ðnt1;i1 ; nt1 ;j1Þ/ðnt2;i2 ; nt2;j2Þg

¼
X
i6¼j

Ef/ðnt1;i; nt1;jÞ/ðnt2;i; nt2 ;jÞg:

The last equality is due to the fact that for i „ j, X(i)t and X(j)s are conditionally

independent given g for all s £ t. Furthermore,

Ef/ðnt1;i; nt1;jÞ/ðnt2 ;i; nt2;jÞg ¼
Z

wðxÞwðyÞ
pt1�kðxÞpt2�kðyÞ

A2ðx; yÞdx dy;

where

Aðx; yÞ ¼ E eðiÞt1eðiÞt2ðXðiÞt1�k � xÞðXðiÞt2�k � yÞKhðXðiÞt1�k � xÞKhðXðiÞt2�k � yÞ
� �

� EðjeðiÞt1eðiÞt2 j
qÞ

� �1=q
� EfðXðiÞt1�k � xÞðXðiÞt2�k � yÞKhðXðiÞt1�k � xÞKhðXðiÞt2�k � yÞgp
� �1=p

¼ h2=p
Z

upvpKpðuÞKpðvÞdudv
� �1=p

E jeðiÞt1eðiÞt2 j
q� 	� �1=q

¼ Oðh2=pÞ;

where q ¼ 4+d/2 and p < 4/3. The last equality is due to fact that

EðjeðiÞt1eðiÞt2 j
qÞ � fEðe2qðiÞt1Eðe

2q
ðiÞt2Þg

1=2 � fEðX 8þd
ðiÞt1 ÞEðX

8þd
ðiÞt2 Þg

1=2 ¼ Oð1Þ

by assumption (D2).
Hence,

Ef/ðnt1;i; nt1 ;jÞ/ðnt2;i; nt2;jÞg ¼ Oðh4=pÞ;

and consequently E(nh5/2I2,k,t1nh
5/2I2,k,t2) ¼ O(h)3+4/p) ¼ o(1). Finally, note that B1,k and

s1,k do not depend on g. QED

Proof of Theorem 7. Following Theorem 3.3 of Hjellvik et al. (1998), given g,

EfL1ðMk;tÞg ¼ E fMk;tðXðiÞt�kÞ � ak;t � bk;tXðiÞt�kg2wðXðiÞt�kÞ j g
h i

:

By Lemma B.2 and the hypothesis H ð0Þ
a , E{L1(Mk,t)}>c where c is a constant which does

not depend on g. The functionals L1ðM ð1Þ
k Þ and L1ðM ð2Þ

k Þ have similar properties. The
theorem follows. QED
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Yao, Q., Tong, H., Finkenstädt, B. and Stenseth, N. C. (1998) Common structure in panels of short

time series. Preprint.

872 V. HJELLVIK, R. CHEN AND D. TJØSTHEIM

� Blackwell Publishing Ltd 2004


