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Sequential Monte Carlo methods, especially the particle filter (PF) and its various modifications, have been used effectively in dealing
with stochastic dynamic systems. The standard PF samples the current state through the underlying state dynamics, then uses the current
observation to evaluate the sample’s importance weight. However, there is a set of problems in which the current observation provides
significant information about the current state but the state dynamics are weak, and thus sampling using the current observation often
produces more efficient samples than sampling using the state dynamics. In this article we propose a new variant of the PF, the independent
particle filter (IPF), to deal with these problems. The IPF generates exchangeable samples of the current state from a sampling distribution
that is conditionally independent of the previous states, a special case of which uses only the current observation. Each sample can then be
matched with multiple samples of the previous states in evaluating the importance weight. We present some theoretical results showing that
this strategy improves efficiency of estimation as well as reduces resampling frequency. We also discuss some extensions of the IPF, and
use several synthetic examples to demonstrate the effectiveness of the method.
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1. INTRODUCTION

Sequential Monte Carlo (SMC) methods provide a general
framework for tackling stochastic dynamic systems, which of-
ten arise in engineering, bioinformatics, economics, and other
fields. They have been applied successfully in various real prob-
lems, including computer vision and target tracking (Gordon,
Salmond, and Smith 1993; Avitzour 1995; Isard and Blake
1996; Blake, Bascle, Isard, and MacCormick 1998; Salmond
and Gordon 2001; McGinnity and Irwin 2001; Hue, Le Cadre,
and Perez 2002), economic time series analysis (Hendry and
Richard 1991; Durbin and Koopman 1997; Pitt and Shephard
1999; Durham and Gallant 2002), protein structure simula-
tion and energy minimization (Vasquez and Scheraga 1985;
Grassberger 1997; Zhang and Liu 2002; Liang, Chen, and
Zhang 2002; Zhang, Chen, Tang, and Liang 2003), communica-
tions and signal processing (Chen, Wang, and Liu 2000; Wang,
Chen, and Guo 2002; Fong, Godsill, Doucet, and West 2002).
Also see Liu 2001; Doucet, Gordon, and Krishnamurthy 2001,
and references therein. Specially, Liu and Chen (1998) provided
a general framework for SMC and unified various sequential
simulation algorithms.

We focus our discussion herein on the discrete-time state-
space model

state equation: xt ∼ qt(·|xt−1); (1)

observation equation: yt ∼ ft(·|xt), (2)

where xt is the latent state and yt is the observation at time t.
Let Xt = (x0,x1, . . . ,xt) and Yt = (y1, . . . ,yt). Statistical in-
ference about Xt can often be formulated as an estimation of
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Eπt [h(Xt)], the expectation of h(Xt) with respect to the poste-
rior distribution

πt(Xt|Yt) ∝ q0(x0)q1(x1|x0)f1(y1|x1) · · ·qt(xt|xt−1)ft(yt|xt),

where h(·) is a square-integrable function. The SMC algorithm,
in the framework of Liu and Chen (1998), draws samples of Xt
from

g∗
t (Xt) = g0(x0)g1(x1|x0,y1) · · ·gt(xt|Xt−1,Yt),

where gt is the conditional sampling distribution of xt given
Xt−1 and Yt, and g∗

t is the joint sampling distribution of Xt.
Each draw of Xt needs to be weighted by

wt(Xt) = πt(Xt|Yt)

g∗
t (Xt)

.

It can be shown that such a sample, {(X( j)
t ,w( j)

t ), j = 1, . . . ,m},
is properly weighted with respect to the distribution πt. That is,
for any square-integrable function h(·),

∑m
j=1 w( j)

t h(X( j)
t )

∑m
j=1 w( j)

t

→ Eπt [h(Xt)] as m → ∞.

In all of the discussions that follow, we assume that the
sampling distribution g∗ selected and the function h satisfy
var[w(Xt)] < ∞ and var[h(Xt)w(Xt)] < ∞.

We consider the situation when h is a function of xt only.
When SMC is used for filtering purposes and the inference is
made directly using the samples (particles), it is also called
the particle filter (PF) (Kitagawa 1996; Carpenter, Clifford,
and Fearnhead 1999; Pitt and Shephard 1999). Note that SMC
(PF) can be implemented in a sequential way; at stage t, for
j = 1, . . . ,m:

1. Generate x( j)
t from gt(x

( j)
t |X( j)

t−1,Yt), and let X( j)
t =

(X( j)
t−1,x( j)

t ).
2. Compute incremental weight

u( j)
t = πt(X

( j)
t−1,x( j)

t |Yt)

πt−1(X
( j)
t−1|Yt−1)gt(x

( j)
t |X( j)

t−1,Yt)

∝ qt(x
( j)
t |x( j)

t−1)ft(yt|x( j)
t )

gt(x
( j)
t |X( j)

t−1,Yt)
,

© 2005 American Statistical Association
Journal of the American Statistical Association

December 2005, Vol. 100, No. 472, Theory and Methods
DOI 10.1198/016214505000000349

1412



Lin et al.: Independent Particle Filters 1413

and let w( j)
t = w( j)

t−1u( j)
t .

Sample generation and importance weight calculation are
two key factors determining the efficiency of SMC methods.
The bootstrap filter (Gordon et al. 1993) uses the state dynam-
ics in (1) as the sampling distribution, that is, gt(xt|Xt−1,Yt) =
qt(xt|xt−1). Fox et al. (2001), Torma and Szepesvari (2003),
Isard and Blake (2004), and Rossi (2004), in several special
applications, proposed using a sampling distribution depending
only on the current observation,

gt(xt|Xt−1,Yt) ∝ ft(yt|xt). (3)

Kong, Liu, and Wong (1994) and Liu and Chen (1995, 1998)
proposed using a sampling distribution that combines informa-
tion from both the state dynamics and the current observation,
such as

gt(xt|Xt−1,Yt) ∝ qt(xt|xt−1)ft(yt|xt). (4)

Various approximation methods have been developed for use
when it is difficult to sample from (4), including auxiliary
PFs (Pitt and Shephard 1999), unscented PFs (van der Merwe,
Doucet, de Freitas, and Wan 2002), mixture Kalman filters
(Chen and Liu 2000), and Gaussian sum PFs (Kotecha and
Djuric 2003).

In this article we focus on a set of problems for which
the current observation provides significant information about
the current state but the state dynamics are weak. For ex-
ample, in visual tracking and robot localization, the observa-
tions in the form of images provide significant information,
whereas the motion dynamics are not stable (Fox et al. 2001;
Blake et al. 1998; Torma and Szepesvari 2003). Such problems
also arise in target tracking with fast and unstable maneuver-
ing (Bar-Shalom and Fortmann 1988), fast flat-fading channels
(Chen et al. 2000), and population biology. Also, more and
more applications in communications are under a high signal-
to-noise ratio environment.

Because of the weak state dynamics, the particles from the
bootstrap filter do not follow the target distribution closely, re-
sulting in excessive weight variation that will greatly reduce the
accuracy of statistical inference (Kong et al. 1994). In contrast,
the sampling distribution in (3) uses information from the cur-
rent observation in the sampling distribution and presumably
can work well. In this article, we extend this idea and propose
using sampling distributions in the form of

gt(xt|Xt−1,Yt) ∝ gt(xt|Yt). (5)

We call a PF using (5) as the sampling distribution an inde-
pendent particle filter (IPF), because each draw of xt is con-
ditionally independent of individual past particles and of each
other. In this article we formulate a general framework of the
IPF and study its theoretical and empirical properties. The most
intriguing feature of IPF, as also noted by Torma and Szepesvari
(2003) and Isard and Blake (2004), is that it allows the draws
of xt from the sampling distribution (5) to be matched arbitrar-
ily with the past particles of Xt−1. We show that for the set of
problems on which we focus, an IPF can outperform a PF using
full information, that is, using the sampling distribution in (4).

We proceed as follows. Section 2 formally presents IPF and a
multiple-matching scheme that uses the independence feature.

It also discusses some theoretical properties of the IPF with
multiple matching. Section 3 discusses extensions of the IPF
and practical guidance for designing IPFs. Section 4 presents
several examples. The technical proofs of all theorems are pre-
sented in the Appendix.

2. THE INDEPENDENT PARTICLE FILTER

2.1 The Basic Form

Formally, the IPF can be described as follows: At stage t, for
j = 1, . . . ,m,

1. Generate x( j)
t from gt(x

( j)
t |X( j)

t−1,Yt) = gt(x
( j)
t |Yt), and let

X( j)
t = (X( j)

t−1,x( j)
t ).

2. Compute incremental weight

u( j)
t ∝ qt(x

( j)
t |x( j)

t−1)ft(yt|x( j)
t )

gt(x
( j)
t |Yt)

and let w( j)
t = w( j)

t−1u( j)
t .

If gt(xt|Yt) ∝ ft(yt|xt) is used, then the incremental weight
becomes u( j)

t ∝ qt(x
( j)
t |x( j)

t−1). This would require that
∫

ft(yt|
xt)dxt < ∞; that is, ft(yt|xt) as a distribution of xt is proper.

2.2 Independent Particle Filter With Multiple Matching

Throughout this article, we let St = {(x( j)
t ,w( j)

t ), j = 1,

. . . ,m} denote a set of weighted random samples properly
weighted with respect to πt(xt|Yt). Because the draws {x( j)

t , j =
1, . . . ,m} in the IPF are not coupled with any particular parti-
cles in St−1, they can be matched with the samples in St−1 in
any order. Specifically, if x(i)

t−1 is matched with x( j)
t , then the

importance weight is

λ
(i, j)
t = w(i)

t−1u(i, j)
t ,

(6)

u(i,j)
t ∝ qt(x

( j)
t |x(i)

t−1)ft(yt|x( j)
t )

gt(x
( j)
t |Yt)

.

Each different match will result in different weights for {x( j)
t ,

j = 1, . . . ,m}, and thus different estimates of Eπt [h(xt)]. It is
natural to combine these estimates to produce more efficient
ones.

Consider L different permutations of (1, . . . ,m): Kl
.=

(kl,1, . . . , kl,m), l = 1, . . . ,L. For each permutation, the past par-

ticles {x(kl,j)

t−1 , j = 1, . . . ,m} are matched with the current parti-

cles {x( j)
t , j = 1, . . . ,m}, and the importance weights are

w( j)
t,l ≡ λ

(kl,j,j)
t . (7)

The resulting set of weighted random samples, {(x( j)
t ,w( j)

t,l ), j =
1, . . . ,m}, is properly weighted with respect to π(xt|Yt). Com-
bining different permutations, we can also construct a new
weight, w( j)

t , for each x( j)
t ,

w( j)
t =

∑L
l=1 w( j)

t,l

L
, (8)
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and estimate Eπt [h(xt)] with

Ĥt,L = m−1 ∑m
j=1 w( j)

t h(x( j)
t )

m−1
∑m

j=1 w( j)
t

= (Lm)−1 ∑m
j=1

∑L
l=1 w( j)

t,l h(x( j)
t )

(Lm)−1
∑m

j=1
∑L

l=1 w( j)
t,l

≡ At,L

Bt,L
. (9)

Because λ
(i,j)
t h(x( j)

t ) and λ
(i,j)
t are exchangeable for different

i and j, we can define two constants, At ≡ E[λ(i,j)
t h(x( j)

t )] and
Bt ≡ E(λ

(i,j)
t ) > 0. We then have the following results.

Proposition 1. For any L permutations and any 1 ≤ l ≤ L,

E(At,L) =At, E(Bt,L) = Bt, Eπt [h(xt)] = At

Bt
. (10)

Proposition 2. Under the assumption that {(x( j)
t−1,w( j)

t−1), j =
1, . . . ,m} are exchangeable, (a) for any fixed 2 ≤ L ≤ m,
var(At,L) and var(Bt,L) achieve minimum when the L permu-
tations are mutually exclusive, that is, for any l1, l2 (1 ≤ l1 �=
l2 ≤ L), kl1,j �= kl2,j, j = 1, . . . ,m; and (b) with mutually ex-
clusive permutations, var(At,L) and var(Bt,L) decrease as L in-
creases (L ≤ m).

Proposition 3. When {(x( j)
t−1,w( j)

t−1), j = 1, . . . ,m} are ex-
changeable, if At,m and Bt,m are obtained with m mutually ex-
clusive permutations, then for any L > m, var(At,L) ≥ var(At,m)

and var(Bt,L) ≥ var(Bt,m).

Remark 1. According to (9), (10), and Proposition 2, to re-
duce the variance of Ĥt,L, we should choose mutually exclusive
permutations. The largest set containing such permutations is of
size L = m. Proposition 3 says that using L > m nonexclusive
permutations does not help. The size of L controls a trade-off
between estimation efficiency and computational cost.

Remark 2. There is no obvious way to select the “good”
matches without first calculating the weights. Torma and
Szepesvari (2003) and Isard and Blake (2004) proposed cal-
culating all the weights in complete matching (L = m mutually
exclusive permutations) and then use these weights to sample
a “good” match that is used for estimation. In our approach,
all weights that have been calculated are used in estimation, in
partial matching (L < m) or complete matching.

Remark 3. Torma and Szepesvari (2003) and Isard and Blake
(2004) used complete matching for certain special applications.
Although complete matching has the maximum benefit, it is
often computationally intensive. As shown in the examples in
Section 4, partial matching with L = 5 or 10 often performs
better than complete matching, given the same amount of com-
putation.

2.3 Multiple Matching as a Discharging Tool for
the Independent Particle Filter

2.3.1 Discharging in Standard Importance Sampling. Sup-
pose that the target distribution is π(x). To draw a set of ran-
dom samples from a trial distribution g(x), we can generate
{(x( j), z( j)), j = 1, . . . ,m} from g∗(x, z) with

∫
g∗(x, z)dz =

g(x) and consider only {x( j), j = 1, . . . ,m}. The importance

weight can be calculated in two ways: through the joint trial dis-
tribution, w∗

j = π(x( j),z( j))

g∗(x( j),z( j))
, where π(x, z) is any distribution sat-

isfying
∫

π(x, z)dz = π(x), and by direct calculation through
the marginal distribution wj = π(x( j))

g(x( j))
. Both {(x( j),w∗

j ), j =
1, . . . ,m} and {(x( j),wj), j = 1, . . . ,m} are properly weighted
with respect to π(x), which can be seen from

∫ ∫

h(x)
π(x, z)
g∗(x, z)

g∗(x, z)dz dx =
∫

h(x)
π(x)

g(x)
g(x)dx

=
∫

h(x)π(x)dx. (11)

Proposition 4. With the foregoing w∗
j and wj, we have

varg

[
1

m

m∑

j=1

h
(
x( j))wj

]

≤ varg∗

[
1

m

m∑

j=1

h
(
x( j))w∗

j

]

.

Hence the weight based on the marginal distribution is more
efficient than the weight based on the joint distribution, even
though the sample was actually generated using the joint dis-
tribution. We call such a procedure discharging. It removes the
inefficiency due to the additional sampling of z.

2.3.2 Discharging in the Independent Particle Filter. We
demonstrate that multiple matching serves as an approximation
of discharging for the IPF. Suppose that we perform complete
matching (i.e., using L = m mutually exclusive permutations)
in the IPF; then, according to (6)–(8),

w( j)
t = 1

m

m∑

i=1

w(i)
t−1

πt(X
(i)
t−1,x( j)

t |Yt)

πt−1(X
(i)
t−1|Yt−1)gt(x

( j)
t |Yt)

.

Because {(X(i)
t−1,w(i)

t−1)}m
i=1 is properly weighted with respect to

πt−1(Xt−1|Yt−1), we have

w( j)
t ≈

∫
πt(Xt−1,x( j)

t |Yt)

πt−1(Xt−1|Yt−1)gt(x
( j)
t |Yt)

πt−1(Xt−1|Yt−1)dXt−1

= πt(x
( j)
t |Yt)

gt(x
( j)
t |Yt)

, (12)

which is the weight as if we had performed discharging. With
partial matching (L < m), the foregoing calculation still holds,
although the approximation in (12) is less accurate.

Remark 4. It should be clear that the IPF with discharging is
not necessarily better than the PF without discharging, due to
the use of different sampling distributions. However, discharg-
ing provides a justification that the IPF with multiple match-
ing performs better than the IPF without multiple matching. In
some cases, this improvement can be significant enough so that
the IPF outperforms the PF using full information in the sam-
pling distribution (4), as shown by the examples in Section 4.

2.4 Multiple Matching and Resampling

Resampling is an important step in all SMC algorithms, be-
cause the importance weight wt can be increasingly skewed,
resulting in many unrepresentative samples of xt. Suppose that
we have obtained St. By drawing a new set of samples from
{X( j)

t , j = 1, . . . ,m} with probabilities proportional to w( j)
t and

reassigning the weights to 1, we can effectively discard the
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samples with small weights and duplicate the more important
samples. Liu and Chen (1998) proposed engaging the resam-
pling step when the effective sample size (Kong et al. 1994),
ESS = m

1+C2(w)
, is less than a certain threshold, where C(w) is

the coefficient of variation of the weights.
A shortcoming of resampling is that it reduces sample diver-

sity. The following proposition shows that multiple matching
in the IPF reduces the coefficient of variation of the weights
with increasing L, and thus reduces the frequency of resam-
pling, maintaining sample diversity.

Proposition 5. E(w( j)
t ) = Bt is constant for different L, while

var(w( j)
t ) decreases as L increases.

The following proposition further shows that if complete
matching is to be performed at time t, then resampling should
not be performed at time t − 1, because it cannot improve the
efficiency of statistical inference about xt.

Proposition 6. Suppose that at time t − 1 we have obtained
St−1, where (without loss of generality) the weights are stan-
dardized such that

∑m
j=1 w( j)

t−1 = m. Let At,m and Bt,m be ob-
tained with m mutually exclusive permutation. Suppose that we
have performed a resampling step and obtained {(x∗( j)

t−1 ,w∗( j)
t−1 =

1), j = 1, . . . ,m} at time t − 1. Let A∗
t,m and B∗

t,m be obtained
with m mutually exclusive permutations using the resampled
samples and weights. Then

E(A∗
t,m) = E(At,m), E(B∗

t,m) = E(Bt,m),

var(A∗
t,m) ≥ var(At,m), var(B∗

t,m) ≥ var(Bt,m).

3. EXTENSIONS OF INDEPENDENT
PARTICLE FILTERS

3.1 Using the Information From Past Particles

The efficiency of the IPF could be improved if the informa-
tion from past particles is also used. To achieve this and at the
same time obtain exchangeable samples of xt as required by
the IPF, we can use the general information from all samples
of xt−1. More formally, suppose that we have obtained St−1.
Through the state equation (1), we can construct a distribution
ξ(xt|Yt−1) for xt using the overall information carried by St−1.
Then the sampling distribution for xt becomes

gt(xt|Yt) ∝ ft(yt|xt)ξ(xt|Yt−1).

In particular, suppose that the state equation is in the form
of xt = Q(xt−1) + εt, where εt ∼ N(0, σ 2I). Then we can use
ξ(xt|Yt−1) ∼ N(µ̂, �̂), where

µ̂ =
∑m

j=1 w( j)
t−1Q(x( j)

t−1)
∑m

j=1 w( j)
t−1

and

(13)

�̂ =
∑m

j=1 w( j)
t−1Q(x( j)

t−1)(Q(x( j)
t−1))

T

∑m
j=1 w( j)

t−1

− µ̂ µ̂T + σ 2I.

Suppose further that ft(yt|xt) can be well approximated by
f̂t(yt|xt), a Gaussian (or mixture Gaussian) approximation of
ft(yt|xt) as a distribution of xt, we form the sampling distrib-
ution gt(xt|Yt) ∝ f̂t(yt|xt)ξ(xt|Yt−1), which is a Gaussian (or

mixture Gaussian) distribution. A similar approach has been
used in other cases (e.g., Chopin 2002).

Such a sampling distribution needs to be constructed only
once at each stage t, hence bearing minimal additional compu-
tational cost. The draws of xt are exchangeable, so partial or
complete matching can still be conducted, and the theoretical
results in Section 2 will hold.

3.2 When yt Is Directly Related to Only Part of xt

In many applications, the observation is related directly only
to part of the state vector xt. For example, in target track-
ing problems the state vector includes speed and acceleration,
which are not directly related to the observations. In state-space
models, if there are some unknown parameters that are involved
only in the state equation but not in the observation equation,
then they are often included as part of the state vector and are
not directly related to the observations.

In these cases, the state space-models can be written as

state-equation: xt = (xt,1, xt,2)

∼ qt(·|xt−1) = qt,1(xt,1|xt−1)

× qt,2(xt,2|xt−1, xt,1);
observation equation: yt ∼ ft(·|xt,1).

The first component, xt,1, can be generated using a sampling
distribution, gt,1(xt,1|Yt), constructed as before. These samples
can be matched arbitrarily with multiple previous particles of
xt−1 and properly weighted. When x( j)

t,1 is matched with x(i)
t−1,

the partial incremental weight is

u(i, j)
t,1 ∝ ft(yt|x( j)

t,1)qt,1(x
( j)
t,1|x(i)

t−1)

gt,1(x
( j)
t,1|Yt)

.

Generating the second component, xt,2, based on a second sam-
pling distribution, gt,2(xt,2|xt−1, xt,1), will require a one-to-one
match of xt,1 and xt−1. Given a match between x(i)

t−1 and x( j)
t,1,

we can generate x(i, j)
t,2 ∼ gt,2(xt,2|x(i)

t−1, x( j)
t,1). The corresponding

partial incremental weight for this stage is

u(i,j)
t,2 ∝ qt,2(x

(i, j)
t,2 |x(i)

t−1, x( j)
t,1)

gt,2(x
(i, j)
t,2 |x(i)

t−1, x( j)
t,1)

.

Under this setting, we modify the IPF as follows.

3.2.1 MIPF-1. Suppose that at stage t − 1, we have ob-
tained St−1; then, at stage t:

1. Generate x( j)
t,1, j = 1, . . . ,m, from gt,1(xt,1|Yt).

2. For each permutation Kl = (kl,1, . . . , kl,m), l = 1, . . . ,L,

match x
(kl, j)

t−1 with x( j)
t,1:

• Calculate the partial incremental weight u
(kl, j, j)
t,1 , j =

1, . . . ,m.
• Generate x

(kl, j, j)
t,2 ∼ gt,2(xt,2|x(kl, j)

t−1 , x( j)
t,1), and calcu-

late the partial incremental weight u
(kl,j,j)
t,2 ; let w( j)

t,l =
w

(kl, j)

t−1 u
(kl, j, j)
t,1 u

(kl, j, j)
t,2 .
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3. Combine all of the weighted samples of xt, that is,
{((x( j)

t,1, x
(kl, j)

t,2 ),w( j)
t,l ), j = 1, . . . ,m, l = 1, . . . ,L}, to es-

timate Eπt [h(xt)],

Ĥt,L =
∑L

l=1
∑m

j=1 w( j)
t,l h(x( j)

t,1, x
(kl, j, j)
t,2 )

∑L
l=1

∑m
j=1 w( j)

t,l

. (14)

4. Construct the set of weighted random samples, St =
{(x( j)

t ,w( j)
t ), j = 1, . . . ,m}, for propagation to stage t + 1:

• For each x( j)
t,1, select a final match x( j)

t,2 from the

set {x(kl, j, j)
t,2 , l = 1, . . . ,L} with probabilities propor-

tional to w( j)
t,l .

• Set the weight for each x( j)
t = (x( j)

t,1, x( j)
t,2) as w( j)

t =
∑L

l=1 w( j)
t,l /L.

Proposition 7. For MIPF-1, Propositions 1–3, 5, and 6 hold.

Remark 5. Although estimation can also be done after
step 4, the estimator (14) has smaller variation under the Rao–
Blackwellization principle (Liu and Chen 1998). If h involves
only xt,1, then the estimation should be done using

Ĥt,L =
∑L

l=1
∑m

j=1 w
(kl, j)

t−1 u
(kl, j, j)
t,1 h(x( j)

t,1)

∑L
l=1

∑m
j=1 w

(kl, j)

t−1 u
(kl, j, j)
t,1

.

This estimator further reduces variation under the Rao–
Blackwellization principle.

In MIPF-1, for each x( j)
t , we need to generate xt,2 and cal-

culate ut,2 L times, increasing the computational cost. Next we
present another modification of the IPF that has lower compu-
tational cost but may be less statistically efficient than MIPF-1.

3.2.2 MIPF-2. Suppose that at stage t − 1, we have ob-
tained St−1; then at stage t:

1. Generate x( j)
t,1, j = 1, . . . ,m, from gt,1(xt,1|Yt).

2. For each permutation Kl = (kl,1, . . . , kl,m), l = 1, . . . ,L,

match x
(kl,j)

t−1 with x( j)
t,1, and calculate the partial incremental

weight u
(kl, j, j)
t,1 .

3. Construct the set of weighted random samples, St =
{(x( j)

t ,w( j)
t ), j = 1, . . . ,m}, to be used for estimation of

Eπt [h(xt)] and for propagation to stage t + 1.

• For each x( j)
t,1, select a final match x

(sj)

t−1 from the

set {x(kl, j, j)
t−1 , l = 1, . . . ,L} with probabilities propor-

tional to w
(kl, j)

t−1 u
(kl, j, j)
t,1 .

• Generate x( j)
t,2 from x( j)

t,2 ∼ gt,2(xt,2|x(sj)

t−1, x( j)
t,1), and

calculate u
(sj, j)
t,2 .

• Calculate the weight for each x( j)
t = (x( j)

t,1, x( j)
t,2) as

w( j)
t = (

∑L
l=1 w

(kl, j)

t−1 u
(kl, j, j)
t,1 /L)u

(sj, j)
t,2 .

• The estimate of Eπt [h(xt)] is then Ĥt,L = (
∑m

j=1w( j)
t ×

h(x( j)
t ))/

∑m
j=1 w( j)

t .

Remark 6. If the second sampling distribution, gt,2, is cho-
sen as the state dynamics, qt,2(xt,2|xt−1, xt,1), then the matching
selection probabilities in step 4 of MIPF-1 and those in step 3
of MIPF-2 become the same, because u(i, j)

t,2 is constant.

4. SYNTHETIC EXAMPLES

4.1 Example 1: Target Tracking With
Random Acceleration

Consider a two-dimensional target tracking model with ran-
dom acceleration,

state equation:

(
zt

vt

)

=
(

I2 T0I2

0 I2

)(
zt−1

vt−1

)

+
(

.5T2
0εt

T0εt

)

; (15)

observation equation: yt = zt + ηt, (16)

where εt ∼ N(0, σ 2I2) and ηt ∼ N(0, δ2I2). Here zt, vt, and
εt are the position, velocity, and random acceleration vectors
for a target moving on a two-dimensional plane. I2 is the 2 × 2
identity matrix, and T0 is the time interval between observa-
tions. The state vector is xt = (zt,vt)

T , in which zt is observed
with noise ηt. The variances σ 2 and δ2 specify the strength of
information for the current state in the state dynamics and the
current observation.

Because the model in (15) and (16) is linear and Gaussian,
a Kalman filter can be used to obtain the exact value of E(zt|Yt),
and thus this example is used purely for illustration. To com-
pare different PF methods, we use the root mean squared error
(RMSE), defined as

RMSE =
[

1

T

T∑

t=1

‖ ẑt − E(zt|Yt)‖2
2

]1/2

, (17)

where ẑt is the estimate of E(zt|Yt) and T is the total number
of observations.

We compared the following PF methods. PF1 is the bootstrap
filter, using gt(xt|Xt−1,Yt) ∝ qt(xt|xt−1). PF2 uses the sam-
pling distribution (4), which combines information from both
the state dynamics and the current observation. APF is the aux-
iliary PF (Pitt and Shephard 1999). Specifically, at each step t,
we first resample from the set {(x( j)

t−1,w( j)
t−1), j = 1, . . . ,m} with

probabilities proportional to w̃( j)
t−1 = w( j)

t−1 ft(yt|E(xt|x( j)
t−1)) then

draw x( j)
t from qt(xt|x( j)

t−1) for j = 1, . . . ,m. So, through an ap-
proximation, APF also uses information from both xt−1 and yt.
MIPF is the MIPF-2 algorithm described in Section 3.2. Ac-
cording to the state equation, vt can be determined exactly by
zt−1, vt−1, and zt as vt = vt−1 + 2(zt − zt−1 − T0vt−1)/T0, so
the state dynamic, qt,2(vt|xt−1, zt), and the sampling distribu-
tion, gt,2(vt|xt−1, zt), in MIPF-2 are degenerate.

In the simulation that follows, we set the initial position vec-
tor and velocity vector as z0 = (0,0)′ and v0 = (1,0)′, and let
T0 = 5 and T = 100. A dynamic resampling schedule is used in
which a resampling step is engaged if the effective sample size
is smaller than .1 m. The experiment is repeated 100 times, and
the average RMSEs are reported.

We fix σ 2 = .52 and let δ2 vary, so that δ controls the relative
importance of the current observation and the state dynamics.
When the same number of particles, m = 500, are used, we ob-
served (detailed results not shown) that as L increases, MIPF
performs better (confirming Prop. 2) with longer computational
time, and that as δ decreases or as the information from the
observations becomes stronger relative to that from the state
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dynamics, MIPF performs better than PF1, PF2, and APF. We
also noticed that as L increases, the number of resampling steps
in MIPF decreases (confirming Prop. 5); also, PF1 requires a
significant amount of resampling, due partially to the fact that
samples of xt are generated with weak state dynamics.

For a fairer comparison, Table 1 reports the average RMSEs
of the PF methods when the numbers of particles were chosen
so that each method used approximately the same CPU time.
It is seen that when the state dynamics is strong (i.e., large δ),
the standard PF is very efficient, because of the ease of com-
putation while enjoying the sufficient information contained in
the state dynamics. In contrast, when the current observation
contains more information (i.e., small δ), MIPF performs bet-
ter than all of the other methods considered. In addition, we
see that with the same computation time, L should not be too
small or too large to achieve small RMSE. Therefore, in prac-
tice, L should be chosen considering the trade-off between es-
timation efficiency and computational effort, as suggested in
Remark 1 in Section 2.2.

4.2 Example 2: Target Tracking With Maneuvering

Consider a two-dimensional maneuvering mobility model
used by Ikoma et al. (2001),

state equation:




zt

vt

rt



 = F




zt−1

vt−1

rt−1



 + Gεt;

observation equation:

(
yt,1

yt,2

)

=
(

tan−1(zt,1/zt,2)
√

z2
t,1 + z2

t,2

)

+ δηt,

where zt, vt, and rt are the position, velocity, and acceleration
of the target moving on a two-dimensional plane; εt is the ran-
dom change of acceleration vector, and F and G are two known
matrices (see Ikoma, Ichimura, Higuchi, and Maeda 2001) with
α = 1,000 (Zaidi and Mark 2003).

The state equation is a discretization of a continuous-time
mobility model. Because the acceleration of the target may
change abruptly with maneuvering, εt,i (i = 1,2) are assumed
to follow Cauchy distributions independently,

p(εt,i) = q

π(ε2
t,i + q2)

.

The observation vector consists of the angle, yt,1, and the ra-
dius, yt,2, of the target, with the observation noise following a

Gaussian distribution,
(

ηt,1

ηt,2

)

∼ N(0,R), R =
(

δ2
1 0

0 δ2
2

)

.

In comparing the PF methods, the RMSE in (17) is used,
with E(zt|Yt) estimated by a bootstrap filter with 100,000
particles. In the simulation, we set T0 = 3.75, T = 100, and
q = 5. Following Ikoma et al. (2001), we set δ2

1 = 10−10 and
δ2

2 = 10−2. The prior distribution for the initial state of the tar-
get is N((50,000,−5,000,0,10,0,0)′, I6). A dynamic resam-
pling schedule is used, as in Example 1. The experiment is
repeated 100 times.

Note that δ in the observation equation again controls the rel-
ative importance between the current observation and the state
dynamic. For different values of δ, Table 2 reports the average
RMSEs of the bootstrap filter (PF), APF, and MIPF-2 with dif-
ferent values of L, using approximately the same computation
time. It reveals the same information as in Example 1. Also note
that when L = m in the MIPF, resampling actually increases the
average RMSEs, which confirms Proposition 6.

4.3 Example 3: Nonlinear Filtering

Consider the following nonlinear state-space model (Gordon
et al. 1993):

state equation: xt = .5xt−1 + 25xt−1

1 + x2
t−1

+ 8 cos(1.2(t − 1)) + εt; (18)

observation equation: yt = x2
t /20 + ηt,

where εt ∼ N(0, σ 2), and ηt ∼ N(0, δ2) are Gaussian white
noise. Because it is difficult to draw xt directly from

ft( yt|xt) ∝ exp

{

− 1

2δ2

(
x2

t

20
− yt

)2}

, (19)

we sample xt from a trial distribution that is close to (19)
but easier to sample from. Specifically, we linearize x2

t /20
at the points of xt that maximize the likelihood ft( yt|xt) and
set the sampling distribution as a mixture Gaussian distribu-
tion. When yt > 0, the points of xt that maximize ft( yt|xt) are
x(k)

t = ±√
20yt (k = 1,2), and the first derivative of x2

t /20 at

Table 1. For Different Values of δ in Example 1, Average RMSEs of PF1, PF2, APF, and MIPF With
Different Values of L, and CPU Time

δ

1 2 4 8 16 CPU time (sec.)

PF1 (m = 8,000) .2669 .2823 .4138 .7983 1.3860 1.5470
PF2 (m = 2,000) .1384 .2126 .5136 1.3229 2.6052 1.3400
APF (m = 6,000) .6757 .8715 .9015 .5768 .6500 1.5470
MIPF (L = 1, m = 4,000) .0460 .1189 .4027 1.4302 5.3018 1.3290
MIPF (L = 5, m = 2,100) .0464 .1085 .3377 1.1560 4.0246 1.3260
MIPF (L = 10, m = 1,400) .0474 .1112 .3407 1.1422 3.8801 1.4060
MIPF (L = 20, m = 900) .0512 .1161 .3541 1.1689 3.9932 1.5470
MIPF (L = 50, m = 400) .0739 .1653 .4596 1.4347 4.4516 1.5780
MIPF (L = 100, m = 200) .1038 .2279 .6271 1.9387 5.4115 1.8910
MIPF (L = 150, m = 150) .1185 .2665 .7297 2.1086 5.8297 1.8250

NOTE: The numbers of particles were chosen so that each method used approximately the same CPU time.
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Table 2. For Different Values of δ in Example 2, Average RMSE of PF, APF, and MIPF With
Different Values of L, and CPU Time

δ

.625 1.25 2.5 5 10 CPU time (sec.)

PF (m = 5,000) .6528 .5467 .6424 1.5377 2.4073 1.1090
APF (m = 3,000) .2324 .3396 .4785 1.0696 1.4373 1.0780
MIPF (L = 1, m = 2,400) .1068 .3076 .8389 2.1268 4.8148 1.0320
MIPF (L = 5, m = 1,600) .0900 .2531 .6797 1.7708 4.4829 1.0310
MIPF (L = 10, m = 1,200) .0952 .2580 .6361 1.7559 4.1170 1.1250
MIPF (L = 20, m = 800) .0918 .2568 .6949 1.6992 3.8907 1.1410
MIPF (L = 50, m = 400) .0877 .2413 .5957 1.5327 3.6006 .1250
MIPF (L = 100, m = 200) .0784 .2398 .6304 1.6985 3.7970 1.1190
MIPF (L = 150, m = 150, r) .0998 .2543 .6203 1.5282 3.5762 1.0940
MIPF (L = 150, m = 150, nr) .0922 .2385 .6210 1.4980 3.4641 1.0780

NOTE: The last two rows are for MIPF with resampling and without resampling. The numbers of particles were chosen so that each method used approximately the
same CPU time.

these points are dk = x(k)
t /10 = ±√

yt/5 (k = 1,2); thus we
have

x2
t

20
≈ (x̄(k)

t )2

20
+ (

xt − x̄(k)
t

)
dk = yt + (

xt − x̄(k)
t

)
dk.

Then

ft( yt|xt) ≈ f̂t( yt|xt)

∝ .5 exp

{

− 1

2δ2

((
xt − x̄(1)

t
)
d1

)2
}

+ .5 exp

{

− 1

2δ2

((
xt − x̄(2)

t
)
d2

)2
}

.

Consequently, we set the sampling distribution for xt as

g(1)
t (xt) ∼ .5N

(
x(1)

t , δ2/d2
1

) + .5N
(
x(2)

t , δ2/d2
2

)

= .5N(
√

20yt,5δ2/yt) + .5N(−√
20yt,5δ2/yt),

in which the maximum variance is set at 25δ2 to avoid very
large variances when yt is close to 0. When yt ≤ 0, we linearize
the observation equation at xt = 0 and set the variance at 25δ2.
In summary, we have

g(1)
t (xt) ∼

{
.5N(c, s2) + .5N(−c, s2), yt > 0

N(0,25δ2), yt ≤ 0,

where c = √
20yt and s2 = min(5δ2/yt,25δ2).

As described in Section 3.1, we can incorporate information
from the past particles to improve our sampling distribution.
Specifically, we first let the past particles {x( j)

t−1, j = 1, . . . ,m}
propagate to xt, using the mean state dynamic in (18) without
the noise. Then we try to “summarize” the propagated particles
into a continuous distribution for xt.

There are two different cases based on the past observation
yt−1. When yt−1 > 0, the past particles xt−1 were generated
from a mixture distribution; as a result, they tend to propagate
into a mixture distribution. Hence we attempt to summarize the
propagated particles using a mixture distribution. Specifically,
let

ξ(xt) ∼ p1N(µ1, τ
2
1 ) + p2N(µ2, τ

2
2 ),

where p1 and p2 are estimated mixing proportions that satisfy
p1 + p2 = 1. Because every particle at time t − 1 is generated

from one of the two mixture components, (13) is used sepa-
rately for the two components to estimate µ1, τ 2

1 , and µ2, τ 2
2 .

When yt−1 ≤ 0, xt−1 was generated from a Gaussian distrib-
ution, and, correspondingly, ξ(xt) is a Gaussian distribution:
ξ(xt) ∼ N(µ, τ 2), using (13) to estimate µ and τ 2. After ξ(xt)

is obtained, the sampling distribution at time t can be set as

g(2)
t (xt) ∝ g(1)

t (xt)ξ(xt),

which is a Gaussian distribution or a mixture Gaussian distrib-
ution.

In the simulation, we use the prior distribution p(x0) =
N(0,2) and set T = 50 and σ = √

10. A dynamic resampling
schedule is used as in the previous examples, and the exper-
iment is repeated 100 times. Again, δ controls the relative im-
portance between the current observation and the state dynamic.
For different values of δ, Table 3 reports the average RMSEs
of the bootstrap filter (PF1), a PF using the sampling distri-
bution gt(xt|Xt−1,Yt) ∝ qt(xt|xt−1)g

(1)
t (xt) to approximate (4)

(PF2), an IPF with g(1)
t (xt) as the sampling distribution (IPF1),

and an IPF with g(2)
t (xt) as the sampling distribution (IPF2), us-

ing approximately the same computational time. For each IPF
method, Table 3 shows similar results as the previous examples.
In addition, it is also seen that when L becomes large and/or
δ becomes large, IPF2 performs slightly better than IPF1, due
to the incorporation of information from xt−1.

APPENDIX: PROOFS

Proof of Proposition 1

The proof is trivial.

Proof of Proposition 2

Because of exchangeability, we have the following constants:

C1 = var
[
λ
(i,j)
t h

(
x( j)

t
)];

C2 = cov
[
λ
(i1,j)
t h

(
x( j)

t
)
, λ

(i2,j)
t h

(
x( j)

t
)]

, i1 �= i2;
C3 = cov

[
λ
(i,j1)
t h

(
x( j1)

t
)
, λ

(i,j2)
t h

(
x( j2)

t
)]

, j1 �= j2;
and

C4 = cov
[
λ
(i1,j1)
t h

(
x( j1)

t
)
, λ

(i2,j2)
t h

(
x( j2)

t
)]

, i1 �= i2, j1 �= j2.
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Table 3. For Different Values of δ in Example 3, Average RMSE for PF1, PF2, and IPF1 and IPF2
With Different Values of L, and CPU Time

δ

1/8 1/4 1/2 1 CPU time (sec.)

PF1 (m = 5,000) .6676 .4767 .3263 .3062 .3170
PF2 (m = 1,200) .3672 .3407 .3401 .3371 .3180

IPF1 (L = 1, m = 2,600) .2879 .2848 .3193 .3921 .3130
IPF1 (L = 5, m = 1,300) .2697 .2784 .3093 .3713 .3120
IPF1 (L = 10, m = 850) .3077 .3134 .3554 .3852 .3440
IPF1 (L = 20, m = 500) .3639 .3441 .3741 .4467 .3290
IPF1 (L = 100, m = 100) .6595 .6957 .7644 .9021 .3120
IPF2 (L = 1, m = 2,000) .3130 .3281 .2996 .3856 .3280
IPF2 (L = 5, m = 1,100) .2880 .3009 .3006 .3794 .3120
IPF2 (L = 10, m = 750) .3342 .3068 .3117 .3692 .3280
IPF2 (L = 20, m = 500) .3814 .3510 .3638 .4199 .3440
IPF2 (L = 100, m = 100) .6381 .6359 .6661 .8270 .3280

NOTE: The number of particles were chosen so that each method used approximately the same CPU time.

For i1 �= i2, j1 �= j2, we have

var

[
(λ

(i1,j1)
t + λ

(i2,j1)
t )h(x( j1)

t ) + (λ
(i1,j2)
t + λ

(i2,j2)
t )h(x( j2)

t )

2

]

≤ var
[
λ
(i1,j1)
t h

(
x( j1)

t
) + λ

(i2,j2)
t h

(
x( j2)

t
)]

.

This gives C1 + C2 + C3 + C4 ≤ 2C1 + 2C4, hence

C1 + C4 − C2 − C3 ≥ 0. (A.1)

Define at,l = m−1 ∑m
j=1 w( j)

t,l h(x( j)
t ). Consider any pair of permuta-

tions, Kl1 and Kl2 (l1 �= l2). Suppose that there are m1 j’s that satisfy
kl1, j = kl2, j and m2 j’s that satisfy kl1, j �= kl2, j (m1 + m2 = m). Us-
ing (A.1), we can easily show that when m1 = 0, cov(at,l1 ,at,l2) is
minimized, and

cov
(
at,l1 ,at,l2

) = C2 + C3 + (m − 2)C4

m
. (A.2)

At the same time, for l = 1, . . . ,L, var(at,l) = m−1[C1 + (m − 1)C4].
Because At,L = ∑L

l=1 at,l/L, var(At,L) is minimized when for any 1 ≤
l1 �= l2 ≤ L, kl1, j �= kl2, j, j = 1, . . . ,m. This proves part (a).

With mutually exclusive permutations, by plugging (A.2) into the
formula of var(At,L) and using (A.1), we get that var(At,L) decreases
as L increases. This proves part (b).

By setting h(xt) = 1, we can prove similar conclusions for var(Bt,L).

Proof of Proposition 3

According to (9), for any L > m permutations,

At,L = 1

m

L∑

l=1

m∑

j=1

1

L
λ
(kl, j, j)
t h

(
x( j)

t
) = 1

m

m∑

i=1

m∑

j=1

di, jλ
(i, j)
t h

(
x( j)

t
)
,

where di,j satisfy

m∑

i=1

m∑

j=1

di, j = m, di, j ≥ 0. (A.3)

The Lagrangian expression of minimizing var(At,L) is

J = var(At,L) + µ

( m∑

i=1

m∑

j=1

di,j − m

)

= 1

m2

{

C1

m∑

i=1

m∑

j=1

d2
i, j + C2

∑

1≤i1 �=i2≤m

m∑

j=1

di1, jdi2, j

+ C3

m∑

i=1

∑

1≤ j1 �=j2≤m

di, j1 di, j2

+ C4
∑

1≤i1 �=i2≤m

∑

1≤ j1 �=j2≤m

di1, j1 di2, j2

}

+ µ

( m∑

i=1

m∑

j=1

di, j − m

)

,

where C1,C2,C3, and C4 are as defined in the proof of Proposition 2.
Setting the derivative of J with respect to a particular di0,j0 to 0, we
get, for any i0 and j0,

(C1 − C2 − C3 + C4)di0, j0 + (C2 − C4)
∑

i

di,j0

+ (C3 − C4)
∑

j

di0,j + C4m = −.5µm2. (A.4)

By summing (A.4) over i0, j0, and (i0, j0) jointly, we find that di0,j0 is
constant for different i0 and j0. By (A.3), var(At,L) achieves its min-
imum when di0,j0 = 1/m, and thus At,L equals At,m for m mutually
exclusive permutations. Because when h(xt) = 1, At,L = Bt,L, similar
conclusion holds for var(Bt,L).

Proof of Proposition 4

It can be seen by

varg∗
[

h(x)
π(x, z)
g∗(x, z)

]

≥ varg

[

Eg∗
{

h(x)
π(x, z)
g∗(x, z)

∣
∣
∣x

}]

= varg

[

h(x)

∫
π(x, z)
g∗(x, z)

g∗(x, z)
g(x)

dz
]

= varg

[

h(x)
π(x)

g(x)

]

.

Proof of Proposition 5

According to (8), E(w(i)
t ) = Bt is a constant for different L’s. Be-

cause of exchangeability, we have two constants, D1 = var(λ(i, j)
t ) and

D2 = cov(λ
(i1, j)
t , λ

(i2, j)
t ), i1 �= i2:

var
(
λ
(i1, j)
t − λ

(i2, j)
t

) = 2D1 − 2D2 ≥ 0 �⇒ D1 ≥ D2
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and

var
(
w( j)

t
) = var

(∑L
l=1 λ

(kl, j, j)
t

L

)

= LD1 + L(L − 1)D2

L2
= D1 − D2

L
+ D2,

which decrease as L increases.

Proof of Proposition 6

A complete matching (L = m) between {x( j)
t , j = 1, . . . ,m} and the

resampled set {x∗(i)
t−1, i = 1, . . . ,m} results in the new weight (under

w∗(i)
t−1 = 1),

w∗( j)
t =

∑m
l=1 w∗( j)

t,l

m
=

∑m
i=1 λ

∗(i, j)
t

m

= 1

m

m∑

i=1

qt(x
( j)
t |x∗(i)

t−1)ft(yt|x( j)
t )

gt(x
( j)
t |Yt)

. (A.5)

Recall that

A∗
t,m = 1

m

m∑

j=1

w∗( j)
t h

(
x( j)

t
)

and B∗
t,m = 1

m

m∑

j=1

w∗( j)
t . (A.6)

Because the resampling probability for x(k′)
t−1 is w(k′)

t−1/m, we have

E
[
λ
∗(i,j)
t

∣
∣
{
x(k)

t−1,w(k)
t−1

}m
k=1,x( j)

t
]

=
m∑

k′=1

[w(k′)
t−1

m

qt(x
( j)
t |x(k′)

t−1)ft(yt|x( j)
t )

gt(x
( j)
t |Yt)

]

=
∑m

k′=1 λ
(k′,j)
t

m
= w( j)

t . (A.7)

From (A.5) and (A.7), we have

E
[
w∗( j)

t
∣
∣
{
x(k)

t−1,w(k)
t−1

}m
k=1,x( j)

t
] = w( j)

t . (A.8)

According to (A.6) and (A.8),

E
(
A∗

t,m
∣
∣
{
x( j)

t−1,w( j)
t−1,x( j)

t
}m

j=1

) = At,m and

E
(
B∗

t,m
∣
∣
{
x( j)

t−1,w( j)
t−1,x( j)

t
}m

j=1

) = Bt,m.

So we have

E(A∗
t,m) = E(At,m), E(B∗

t,m) = E(Bt,m),

var(A∗
t,m) ≥ var(At,m), var(B∗

t,m) ≥ var(Bt,m).

Proof of Proposition 7

The proof is similar to the proofs for Propositions 1–3, 5, and 6.

[Received August 2003. Revised February 2005.]
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