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Conformational entropy makes important contribution to the stability and folding of RNA molecule,
but it is challenging to either measure or compute conformational entropy associated with long
loops. We develop optimized discrete k-state models of RNA backbone based on known RNA
structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate
entropy of hairpin, bulge, internal loop, and multibranch loop of long length �up to 50�, we develop
an efficient sampling method based on the sequential Monte Carlo principle. Our method considers
excluded volume effect. It is general and can be applied to calculating entropy of loops with longer
length and arbitrary complexity. For loops of short length, our results are in good agreement with a
recent theoretical model and experimental measurement. For long loops, our estimated entropy of
hairpin loops is in excellent agreement with the Jacobson–Stockmayer extrapolation model.
However, for bulge loops and more complex secondary structures such as internal and multibranch
loops, we find that the Jacobson–Stockmayer extrapolation model has large errors. Based on
estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long
loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest
that loop entropy of internal loops is largely determined by the total loop length, and is only
marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant
asymmetric effects of loop length in internal loops measured by experiments are likely to be
partially enthalpic. Our method can be applied to develop improved energy parameters important for
studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The
discrete model and the program used to calculate loop entropy can be downloaded at
http://gila.bioengr.uic.edu/resources/RNA.html. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2895050�

I. INTRODUCTION

Accurate assessment of the free energy of secondary
structures of RNA molecules is essential for understanding
the stability and function of this important class of biomol-
ecules. It is the basis of RNA secondary structure
predictions,1 and is also important for RNA tertiary structure
predictions. Numerous experiments have been carried out to
measure the free energy contributions of important structural
features,1–6 including base stacking, base pair closing, first
mismatch of base pairing, asymmetric terms, and coaxial
stacking. Although enthalpic and entropic contributions of
base-paired stem regions can now be well accounted for by
the nearest-neighbor models and experimentally measured
parameters, and theoretical models for simple RNA oligo-
mers work well,1 the evaluation of entropic cost of loops
remains challenging.

For larger RNA molecules, loop regions such as hair-
pins, bulges, internal loops, and helical junctions �or multi-

branched loops� �see Fig. 1� are ubiquitous and play central
roles in forming RNA secondary structures.5–7 Frequently,
they are also important for RNA functions.7–9 However, little
is known about the entropic cost of the loop regions, espe-
cially when loops are long and when multibranched loops
form.4 An analysis of a database containing 246 RNA struc-
tures shows that instead of engaged in base pairing, 46% of
the nucleotides remain as single strands forming different
types of loops.10 Therefore, substantial improvements in
RNA structure prediction is likely to require that the entropic
cost of forming such loops be calculated or measured accu-
rately.

Experimental measurement of loop entropy is difficult.
First, a phenomenological model is needed with which to fit
observed data, and the accuracy will depend on whether all
important physical factors are incorporated in the model.
Parameters for estimating multibranch loop entropy are es-
pecially problematic, as they are currently obtained by a ge-
netic algorithm that optimizes the results of secondary struc-
ture predictions. This approach is not based on a physical
model and the derived parameters may not reflect accurately
the true entropic costs,1 as predicted free energy is frequently
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less stable than experimentally measured values.5 Second, as
the number of nucleotides increases, the number of possible
secondary structures also grows rapidly. It becomes increas-
ingly difficult to design sequences that will produce desired
conformational transitions and melt in a two-state manner for
experimental measurement.5

Previous theoretical models for free energy estimations
of RNA secondary structures use simplified assumptions for
the loop conformational entropies. For example, loop en-
tropy is assumed to depend on the loop sizes linearly for
multibranched loops in Ref. 11. A polymer principle based
statistical mechanical model was developed based on square
and cubic lattice chain conformations,12–15 and gave good
estimation of folding thermodynamics of secondary
structures.12 An important recent advance is the development
of a method for calculating loop entropy based on a virtual
bond representation of RNA backbone.16 This method con-
siders excluded volume and is based on the enumeration of
all possible self-avoiding walks on a diamond lattice with
fixed ends at the stem terminus of an RNA structure.16 For
loops up to length of 9, the calculated loop entropy of hair-
pins, bulges, and internal loops has excellent agreement with
the experimental results. However, for loops of longer
length, enumeration becomes infeasible due to the exponen-
tially increasing size of conformational space.17 In these
cases, one has to use an empirical extrapolation formula.16

However, it is validity and applicability is untested.
In this work, we develop a method for estimating en-

tropy of secondary structures of RNA molecules with long
loops. We first develop an optimized discrete k-state virtual
bond model that faithfully represents RNA backbone confor-
mations. It is derived from an analysis of RNA backbone
rotamers. We then develop an efficient sampling method
based on the sequential Monte Carlo principle to estimate the
entropy of RNA loops in hairpins, bulges, internal loops, and
multibranch loops. Our model has the advantage that it in-
corporates excluded volume effect, and can calculate the en-
tropy of loops of arbitrary complexity and of very long
length �up to 50 in this study� without resorting to extrapo-
lations. Here, we aim to compute conformational entropy
and assume that the entire loop is unattached and there is no
intraloop base stacking. Furthermore, by increasing the num-
ber of states or using different rotamers libraries in different
structural regions, our model can be adjusted conveniently to
improve accuracy, which enables us to take full advantage of

such discrete models. This would be impossible for lattice
models. Our work provides a basis for both RNA structure
representation and for entropy estimation, which we believe
will also be useful for RNA tertiary structure predictions.

We organize our papers as follows: we first describe the
optimized k-state virtual bond model for RNA backbones
and our sampling method. In the results section, we discuss
the estimated values of loop entropies of various secondary
structures, and derive empirical formulae that predicts loop
entropy accurately. We conclude with as short discussion.

II. METHODS

A. Database

The RNA05 database from Duke University is used in
this work.18 This database contains 172 RNA structures with
total 9 486 nucleotides. These structures are selected from
the Nucleic Acid Database �NDB, Feb 2005 version�, with
resolution of 3.0 Å or better.19 We further remove nucle-
otides that have steric overlaps with other nucleotides, as
identified by the MOLPROBITY web server also at Duke Uni-
versity. The remaining 156 structures with total 4 773 nucle-
otides are used in this study.

B. Virtual bond representation and discrete
k-state model

We use the virtual bond representation to describe the
RNA backbone conformation.16,20 Here we consider two ef-
fective virtual bonds that connect atoms P–C4 and atoms
C4−P �Fig. 2�, and their torsion angles along the backbone, �
and �. The angles in one “suite,” namely, the stretch between
two consecutive C4 atoms, are combined as a �� ,�� pair.
Here, we use suite instead of residue �the stretch between
two phosphorus atoms� as a basis for describing RNA chains.
There are two considerations: �1� RNA structures are deter-
mined largely by base interactions, in patterns that make the
relative positioning of successive bases the dominant factor
connecting local conformation with larger motifs. This rela-

FIG. 1. �Color online� A schematic diagram showing RNA secondary struc-
tures of hairpin, bulge, internal, and multibranch loops.

FIG. 2. �Color online� The virtual bond representation of RNA backbone.
The torsional angles � and � are calculated and used in the analysis of
backbone rotamers.
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tionship between successive bases is reliably and accurately
seen even at low resolution and therefore makes a good basis
for a robust coarse description of RNA conformation19; �2�
99% atomic steric clashes are between atoms on either side
of a phosphorus �and thus within a sugar-to-sugar suite� and
only 1% are between atoms on either side of the sugar �and
thus within a traditional residue�, indicating that the atoms
within a suite are most likely to be correlated.19 Following
Ref. 19 we use suite as the repeating units of RNA backbone.

In a k-state model, a RNA conformation is represented
by the sequence of the conformational state of the nucle-
otides, denoted as Sn= �s1 ,s2 , . . . ,sn�, where n is the length of
the sequence and si takes the �� ,�� values in one of the k
possible states of nucleotides. The virtual bond length is
fixed to 3.9 Å and the bond angle at P and C4 atoms are fixed
to the value of 105° and 95°, respectively. These values are
determined by a k-mean clustering analysis of nucleotide
conformations in our structural database, and are the same as
reported in a previous work by Cao and Chen.16

To obtain the optimal �� ,�� values to construct our
k-state models for RNA conformations, we calculate the tor-
sion angles for all structures in the database and obtain a
total of 2 480 pairs of �� ,�� values, each of which corre-
sponds to a point in a two dimensional �-� plot �Fig. 3�.
Then we apply the k-mean clustering method to these points
and identify the centers of the k clusters. The dissimilarity is
defined as the Euclidean distance between two data points
whose coordinates are �� ,��. Since the result of k-mean clus-
tering may depend on the initial placement of the center
positions, we start with many random different initial posi-
tions and select the one that minimize a D value defined as

D = �
i=1

k

�
j�Ci

��� j − �i�2 + �� j − �i�2,

where i is the index of the cluster Ci, k is the total number of

clusters, and ��̄i , �̄i� represents the center of cluster Ci. Note
that for both � and � angels, 0° and 360° are identified, and
therefore plots in Fig. 3 are embedded on a torus. The results
of k-mean clustering for k=4, 5, and 6 are shown in Fig. 3,
and the values of these centers are listed in Table I. Note the
first entry in each case corresponds the A-form conformation,
which accounts for a large fraction of date points in Fig. 3.
We use the cluster centers to represent the discrete k confor-
mational states of RNA nucleotides.

Note that we ignore base- and sequence-dependent infor-
mation in this study. As indicated in the results section, this

FIG. 3. �Color online� The set of
�� ,�� angle pairs of clusters in RNA
molecules and the centers of k-clusters
calculated by the k-mean clustering
method. The centers are marked by
stars. �a�, �b�, and �c� are for k=4, 5,
and 6 clusters, respectively. �d� shows
the distribution of Silhouette value
calculated for the 4-state clustering
procedure.

TABLE I. The values �in degree� of �� ,�� pairs of torsion angles for RNA
backbone rotamers in k-state models, where k=4, 5, and 6.

4-state model

� 217.3 122.0 338.2 205.6
� 170.0 163.4 159.7 342.7

5-state model

� 215.2 332.2 276.5 146.5 93.1
� 169.8 191.9 8.6 330.6 156.9

6-state model

� 215.0 254.0 96.5 338.3 330.3 134.0
� 169.9 332.4 162.4 189.5 57.1 348.4

125107-3 Loop entropy in RNA J. Chem. Phys. 128, 125107 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



approximation is sufficient to model the entropy of unpaired
nucleotides. It is straightforward to generalize this and to
introduce base-specific and sequence-specific information by
treating different nucleotides or di-nucleotides individually,
as we have done for proteins,21 provided the database con-
tains enough structural data.

To asses the clustering quality, we adopt the Silhouette
value that describes how well each data point is clustered.30

We define a�i� as the average dissimilarity of data point i to
all the others in the same cluster A, and d�i ,C� the average
dissimilarity of i to all data points in cluster C. The dissimi-
larity is defined as the Euclidean distance of �� ,�� between
data points. After computing d�i ,C� for all clusters C�A, we
select the smallest: b�i�=minC�Ad�i ,C�. The cluster B which
this minimum is attained is the second-best choice for i. The
Silhouette value s�i� can then be calculated as

s�i� =
b�i� − a�i�

max�a�i�,b�i��

and

s�i� � �− 1, + 1� .

A s�i� value close to +1 indicates that i is well classified, a
value close to 0 indicates i lies between two clusters, and a
value close to −1 indicates i is poorly clustered. Figure 3�d�
shows the distribution of Silhouette value for each data point
calculated using the 4-state clustering procedure. It can be
seen that most of them �69.8%� have a value larger than 0.7,
and a very small fraction �0.6%� have a value less than zero.
The 5-state and 6-state clustering procedures give similar
results thus are not presented. The distribution of Silhouette
values suggests that the clustering quality is generally good.

Using a real chain representation, Murthy et al. per-
formed grid search of all possible conformers using the cri-
teria of hard sphere steric exclusion, and developed a com-
prehensive conformational map of RNA rotamers, which
correlates well with data obtained from x-ray crystallography
of both large and small RNA molecules.31 Although we use
different representation for the RNA chain and the results
cannot be directly compared, some common features can be
seen. For example, the first peak ��I in their �-� plot and the
plateau region in their �-� plot shown in Ref. 31 correspond
to the central cluster in our �-� plot. This cluster corresponds
to the A-form conformation of RNA, and accounts for a large
fraction of the conformations of nucleotides in known RNA
structures.

C. Stem libraries of RNA hairpins and bulges

For RNA molecules, the conformation of a loop is con-
strained by the stem �also termed helix� it is connected to.
These constraints are characterized by specific allowed val-
ues of bond length, bond angle and torsion angle. Different
stem conformation will impose varying degree of constraint,
leading to different values of loop entropy. This effect is
especially pronounced for short loops. In experimental stud-
ies, as the conformation of a stem fluctuates at a finite tem-
perature, the measured entropy is effectively an average over
all possible stem conformations sampled within the experi-

mental time scale. To account for this effect and to facilitate
direct comparison with experimental results, we construct a
library of stem conformations to constrain the loop confor-
mations and to calculate average entropy values.

Specifically, we examine the RNA05 database and select
16 representative hairpin structures, with loop length equally
distributed from three to ten. We then map these structures to
our discrete models, collect the positions of the last two
nucleotide pairs in the stem that close the hairpin loop. The
coordinates of the nucleotide pairs are then stored in the stem
library. This stem library is used in the calculation of entro-
pies of hairpin loops, internal loops, and multibranch loops.
We find this size of library is sufficient for loop entropy
calculation, especially for long loops which we are mostly
interested in. We also construct a bulge stem library using
similar procedure, which is composed of 16 different helical
conformations that close a bulge. The bulge stem library is
used in the calculation of bulge loop entropy.

D. Loop entropy and enumeration

For a loop of length n, where n is the number of un-
paired nucleotides, its entropy is defined as

− �S�n�/kB = ln� �coil

�loop
� , �1�

where �coil is the number of all possible conformations of a
coil of length n, and �loop is the number of loop conforma-
tions that are compatible with the stem that closes the loop.
That is, the bond lengths, bong angles, and torsion angles
near the region of stem-loop connection are located in the
allowed regions.

Using the discrete k-state model, we can enumerate all
possible backbone loop conformations as self-avoiding
walks for moderate chain length, provided that the confor-
mations of the two stems this loop connects to are given.
This can be also used to study multibranched loops. Without
lost of generality, we take the three-way multibranch loop as
an example to illustrate how the enumeration procedure
works. Overall, we grow sequentially the three loops from
the 5� end to the 3� end, and add stems along the way when
needed. It is necessary to select a hairpin stem conformation
and decide on its oreintation for the growing chain to be
connected to it. Once the stem conformations and orienta-
tions are fixed, the loop entropy in the k-state model can be
calcuated exactly by enumeration. We start enumeration by
randomly choosing a hairpin stem from the stem library.
Starting from this stem, we grow the first loop by enumerat-
ing all possible conformations of specified length. We then
randomly select another hairpin stem with replacement from
the stem library, and then select one orientation from several
possible ones, translate and rotate it so it is connected to the
3� terminal of the first loop. Due to the discrete nature of the
model, the number of orientations that is compatible with the
3� terminal of the first loop is finite, usually a few. After
which we then grow the second loop, until it reaches the
specified length. We then add the third stem, and continue to
grow the third loop. After the third loop is grown, we count
the number of conformations whose 3� end is spatially com-
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patible with the first stem where the growth began and cal-
culated loop entropy using Eq. �1�. The chain is said to be
compatible if the values of the bond length and bond angle
are between 1 /1.03 and 1.03 times their value specified ear-
lier. The torsion angle in the 6-state model must be within
�60, 60, 40, 45, 30, 45� in mod Euclidean distance to the six
cluster centers on the plane of �� ,��, respectively. The final
entropy is obtained by averaging over several independent
runs of this process to account for the randomness in the
selection of stem and stem orientation. For short loops �n
�10�, there is a large variation in calculated loop entropy,
and it is necessary to repeat the process many times. How-
ever, the repetition needed decreases rapidly as loop length
increases from 1 to 10. For long loops where the number of
chain conformation is large, we find that the entropy calcu-
lated is independent of the stem conformation and orienta-
tion, and therefore few or no repetition is needed. In the
calculation of bulge entropy, we use the same procedure ex-
cept the library of bulge stem is used.

For hairpin loops, we can enumerate all possible loop
conformations for chains of length up to 21 using the 4-state
model, 18 for both 5- and 6-state models. However, as loop
length further increases, the number of conformations in-
creases exponentially and exhaustive enumeration becomes
infeasible. In this case, we develop an efficient sampling
method based on sequential Monte Carlo to overcome this
difficulty.

E. The sequential Monte Carlo method

The sequential Monte Carlo method has been applied in
previous studies.17,22,23 Here we give a brief description. The
idea is combining chain growth and sequential importance
sampling. During the growing process, one generates a set of
properly weighted conformations with respect to a target dis-
tribution and keeps the correct weights of the conformations.
The following scheme illustrates our algorithm:

1. Initialization. We set the initial sampling size to m1=1,
with weight w1

�1�=1. At step t−1, we have mt−1 partial
conformations with corresponding weights, denoted as
	�St−1

�j� ,wt−1
�j� � , j=1, . . . ,mt−1
.

2. Chain growth. For each partially grown conformation
St−1

�j� , we exhaustively test all possible attachments of
the next nucleotide, with a total of kt

�j� different possi-
bilities. This will generate no greater than k different

partial conformations of length t, S̄t
�j,l�= �St−1

�j� ,st�, with
temporary weights w̄t

�j,l�=wt−1
�j� . We denote all such

samples generated as 	�S̄t
�l� , w̄t

�l�� , l=1, . . . ,L
, where L
=� j=1

mt−1kt
�j�.

3. Resampling. If L�m, the upper bound of Monte Carlo
sample size, we keep all of the samples and their cor-
responding weights and set mt=L. If L	m, we use the
resampling procedure of Fearnhead and Clifford24 to
choose mt=m distinct samples with marginal probabili-
ties proportional to a set of priority scores �t

�l�. The
steps of this resampling procedure are as follows:

�a� Find the constant value c satisfying
�l=1

L min	1,c�t
�l�
=m.

�b� Choose a subset of distinctive members
J1 ,J2 , . . . ,Jm from the set 	1, . . . ,L
 so that the mar-
ginal probability for the l-th sample to be selected is
equal to p1=min	c�t

�l� ,1
. One way to achieve this
is to �i� draw U0�Unif�0,1�, and let Uj = j−U0, for
j=1, . . . ,m; and �ii� choose Jj = l if p0+ . . . + pl−1


Uj � p1+ . . . + pl, for l=1, . . . ,L and P0=0.

�c� Let St
�j�= S̄t

�Jj�, and update the new weight as wt
�j�

= w̄t
Ji /min	c�t

Ji ,1
.

4. Estimation. When the target loop length n is reached,
�coil is estimated as � j=1

mn wn
�j�I�Sn

�j��, where mn is the
number of samples at length n, wn

�j� is the importance
weight of samples Sn

�j�, and I� � is the identity function
of 1.

In order to illustrate the sequential Monte Carlo Method
more clearly, we give a flowchart in Fig. 4.

An advantage of the above resampling method over pre-
vious sequential Monte Carlo method25 and pruning-
enrichment approach26 is that it guarantees to generate dis-
tinctive conformations. The priority score �t�St� can be
understood intuitively as a measure of the chain’s “growth
perspective,” and is used here to encourage the growth of
chain St to specific directions. In this study we use a simply
priority score,

�t�St� =
1

1 + exp��r − R�/w�
,

where r= �rt−r0� is the distance between the nucleotides
grown at step t and the first stem where the growth began.
Here R=b�n− t�, and b=3.9 Å is the bond length, n the target
loop length, and w is a constant that controls the sharpness of

FIG. 4. The flowchart showing the SMC sampling algorithm.
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the function. This priority score gives high weights thus high
surviving probability to those chains that may reach r0 in
subsequent steps, and eliminate those chains that are impos-
sible to do so.

III. RESULTS

A. Effectiveness of discrete k-state model for RNA

To evaluate how well the discrete k-state model can rep-
resent RNA structures, we map an RNA structure in the con-
tinuous space to a structure in the discrete space, requiring
that the mapped structure has the least root mean square
deviation �RMSD� with respect to the structure in continuous
space. Here, we use a heuristic buildup algorithm first intro-
duced by Park and Levitt.27,28 We have mapped all 172 RNA
structures in our database to structures in the discrete space.
The chain length ranges from 2 to 156, with the exceptions
of a 23S rRNA, which has a length of 2 754, and a 16s rRNA
of length of 1 494. Using the optimized 4-, 5-, and 6-state
models, we find that the RMSD values are small, most of
which range from 0.2 to 4.0 Å, with seven exceptions rang-
ing between 4.0 and 5.0 Å. The RMSDs for the two very
long rRNAs are �4.5, �4.2, and �4.0 Å for the 4-, 5-, and
6-state models, respectively. We also find that the RMSD
distance depends weakly on the number of states, and the
average over all structures are 2.2, 2.2, and 2.1 Å for 4-, 5-,
and 6-state models, respectively. Overall, our k-state models
work well.

B. Effectiveness of sequential Monte Carlo sampling
method

To evaluate the performance of our sampling method, we
compare the estimated loop entropy values with the exact
values obtained by exhaustive enumerations. Figure 5 shows
the entropies of hairpin loops calculated using 4-, 5-, and
6-state models. The estimated values are essentially indistin-
guishable from the exact values for all 4-, 5-, and 6-state
models, indicating that our sampling method is accurate. The
advantage of our sampling method is that we are no longer
limited to short loops and can compute entropies of very
long loops.

It can also be seen that the entropy calculated by the
4-state model is much smaller than that by 5- and 6-state
model, and is also much smaller than that derived from ex-
periments, especially for long loops. This is likely due to the
lack of chain flexibility in 4-state model and the concomitant
difficulties in modeling the closure of the loops. Therefore,
we will dispense with entropy calculated using 4-state model
in the following discussions.

C. Loop entropies of RNA secondary structures

1. Entropy of RNA secondary structures
with short loops

We compare our estimated entropy values of hairpin,
bulge, and internal loops with experimentally measured val-
ues at short loop length �n�10, Fig. 6�. The model used in
the calculation is the 6-state model. The experimental data
are taken from Ref. 2.

As shown in Fig. 6, there is a general good agreement
between calculated and measured entropy values, although
the agreement is not perfect. One possible reason is that ex-
perimentally measured loop entropy can be sequence depen-
dence due to possible mismatched intraloop base stackings,
while such contributions to the entropy is ignored in our
calculations, similar to the study of Cao and Chen.16

We also compare our results with that of a recent theo-
retical model by Cao and Chen.16 Using virtual bond repre-
sentation for RNA backbones and enumeration of all pos-
sible self-avoiding walks on a diamond lattice model, Cao
and Chen calculated the entropy values for hairpin loops,
bulges, and internal loops.16 These entropy calculations are
shown to lead to impressively accurate predictions of the
thermal denaturation curves, the equilibrium folding/
unfolding pathways, and the native structures of RNA mol-
ecules. Comparison of the loop entropies calculated using

FIG. 5. �Color online� Comparison of loop entropies calculated by exhaus-
tive enumeration and estimated by sequential Monte Carlo �SMC� sampling
method using the 4-state, 5-state, and 6-state model. They are essentially
indistinguishable, suggesting that our sampling method works well.

FIG. 6. The calculated entropies of
hairpin, bulge and internal loops and
the corresponding experimental val-
ues. The model used in calculation is
the 6-state model. All the three figures
are plotted with the same scale, which
is also the same with that used in Ref.
16 to facilitate comparison with the
previous theoretical model.
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our 6-state model �Fig. 6� with that of Ref. 16, we find that
the agreement of our results with experiments is comparable
to that described in Ref. 16, indicating the usefulness of our
method in calculating RNA entropy important for predicting
RNA secondary structures.

2. Extrapolated entropy of RNA secondary structures
with long loops

The main focus of our study is to estimate entropy of
secondary structures with long loops. Our approach not only
gives comparable results of entropy at short length, but also
can estimate entropy values of long loops of arbitrary com-
plexity. We have calculated the entropy of hairpin, bulge,
internal loops, three-way, and four-way multibranch loops,
all with long loop length, which will be discussed in detail in
later sections.

Because there is no direct measurement of entropy of
long loops when n	9, we compare our results with a phe-
nomenological model that calculates loop entropy by ex-
trapolating measured entropy values at length nmax, where
nmax=9, 5, and 6 for hairpin, bulge, and internal loops, re-
spectively. This extrapolation model is based on the treat-
ment of Jacobson and Stockmayer,1,29

− �S37
� �n 	 nmax� = − �S37

� �nmax� + 1.75kB ln�n/nmax� .

�2�

3. Entropy of RNA hairpins with long loops

Figure 7 shows the calculated loop entropy for hairpin
loops of length of 3–50 and the corresponding extrapolated
values. For hairpin loops of length n	10, the estimated loop
entropy is in excellent agreement with extrapolated values,
regardless whether the 5-or the 6-state model is used. This
suggests that the extrapolation formula provides very accu-
rate estimation for the entropy of long hairpin loops. The
estimated values using the 5-state model is very similar to
that using the 6-state model, suggesting that our 5-state
model is sufficiently accurate for modeling RNA loop en-
tropy �Fig. 7�.

4. Entropy of RNA bulges with long loops

Figure 8 shows the estimated entropy values of bulge
loops and corresponding extrapolated values. In general, the
estimated entropy values agree with extrapolated values, es-
pecially for the 6-state model. The discrepancy is less than
0.5kB, corresponding to a free energy of 0.3 kcal /mol at
37 °C. This is well within experimental errors.1 However,
although the discrepancy is rather small, we find the calcu-
lated entropy decreases slightly faster than the extrapolated
values. To quantify this difference, we fit the calculated en-
tropy −�S�n� in Fig. 8 using a phenomenological model for
10
n
50. In this case, data at shorter length are not used,
as our interests are in the behavior of long loops. This leads
to the following empirical formula:

− �S�n� = − �S�10� + c · kB ln�n/10� , �3�

where c=1.85, which determines the decreasing slope of the
loop entropy as length increases. −�S�10� is used as a free
parameter, and the best fit gives a value of −�S�10�=9.2kB.
The coefficient c of the second term is larger than the value
of 1.75 in the model of Jacobson and Stockmayer. This larger
decreasing rate may be due to the stricter conformational
constraint imposed by the helix that close the bulge loop,
relative to the constraints in hairpin loops. In fact, the aver-
age end to end distance that is used to constrain loops, de-
termined from the atom positions stored in our hairpin and
bulge stem libraries, is 15.1 and 11.9 Å for hairpin and bulge
loops, respectively. This represents a significant difference.

5. Entropy of RNA long internal loops

Figure 9 compares the estimated and extrapolated en-
tropy values of long internal loops. In our calculation, the
entropy of loop of length 2n is calculated for a n by n inter-
nal loop, and the entropy of length 2n+1 is for a n by n+1
internal loop. This choice is made to eliminate possible
asymmetric size effect, which will be fully addressed in a
later section. The loop entropy values of n
6 determined by
experiment are also plotted along with extrapolated values.

Although the calculated entropy is in general agreement
with experiments for short loops �Fig. 6�, the calculated en-
tropies are significantly larger than the extrapolated values
for long internal loops �Fig. 9�. Since the calculated entropy

FIG. 7. Comparison of the hairpin loop entropies calculated by 5- and
6-state models and the extrapolated values �note that the values at n�9 are
determined by experiments�. The curve calculated by 6-state model is
smoother than that by 5-state model because the calculation are repeated
many times to ensure the relative standard error is less than 1%.

FIG. 8. Comparison of the bulge loop entropies calculated by 5- and 6-state
models and the extrapolated values �the values for n�5 are determined by
experiments�. The entropy calculated by 4-state model is not shown because
it is significantly smaller than the extrapolated value, similar to the case of
hairpin loop. The fitted curve using Eq. �3� is also shown
in �b�.
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at n=6 is very close to the experimental measurement �with
a discrepancy of 0.2kB, or 0.14 kcal /mol at 37 °C, Fig. 5�,
the large discrepancy for long loops is reflected by the small
slope of the curve of the estimated values. A fitting of data
between 10
n
50 using an empirical model gives

− �S�n� = − �S�10� + c · kB ln�n/10� , �4�

where c=1.55 and −�S�10�=9.5kB. The coefficient c of the
second term is smaller than the value 1.75 in the model of
Jacobson and Stockmayer, suggesting that as the length of
internal loop increases, the entropy decrease slower than
what would be expected from the Jackson–Stockmayer
model.

6. Entropy of multibranch long loops

Multibranch loops are nearly ubiquitous in RNA mol-
ecules and play central roles in forming RNA secondary
structures.5,6 However, their free energy and entropy are dif-
ficult to measure experimentally, due to possible coaxial
stacking effects and the difficulty in designing sequences
with desired phase transitions for measurement as the loop
lengths increases. Estimating their entropy is well-suited for
computational studies. Using the method described earlier,
we can calculate the loop entropy of three-way, four-way, or
more complicated multibranch loops. Figure 10 shows the
calculated entropy for three-way multibranch loops. In our
calculation, the entropy of loop of length 3n is calculated
from an n by n by n multibranch loop, the loop of length
3n+1 from a n by n by n+1 loop, and 3n+2 from a n by
n+1 by n+1 loop, respectively. It is straightforward to com-
pute average entropy values for other combinations.

The curve for the extrapolated entropy is calculated as2

− �S�n� = 4.6 + 0.4n + 0.1h, if n � 6

and

− �S�n� = 7.0 + 1.75kB ln�n/6� + 0.1h, if n 	 6,

where h is the number of helices.2 For three-way multibranch
loops, h equals 3.

As shown in Fig. 10, the estimated entropy is signifi-
cantly larger than the extrapolated value, and it increases less
rapidly as the loop lengths increase. One possible reason of
this discrepancy is that the experimentally used sequences
are relatively short, and there are non-negligible possibilities
of forming coaxial stacked helices, in which two helices are
separated by one or zero unpaired nucleotide. The coaxial
stacking will greatly decrease the number of possible confor-
mation of loops, hence reduces loop entropy.

It is possible that the experimentally determined free en-
ergy of initiation of multibranch loop is not the pure entropic
cost to close the loop, but may include the extra enthalpic
and entropic contributions from coaxial stacking. Since our
calculation corresponds to the entropy of longer multibranch
loops with symmetric length distributions, in this case the
coaxial stacking effect becomes impossible.

The estimated entropy of multibranch loops as shown in
Fig. 10 can be described by an empirical model,

− �S�n� = − �S�10� + c · kB ln�n/10� , �5�

where c=1.40 and −�S�10�=9.9kB. The coefficient c is
smaller than the constant c=1.75 for the hairpin loops, and is
also smaller than the value c=1.55 for the internal loops.

It seems that as the number of helices increases, the
entropy decreases more slowly as loop length increases. To
confirm this observation, we calculated the entropy of four-
way multibranch loops, and compared it with that of hairpin,
bulge, internal, and three-way multibranch loops �Fig. 11�. It
can be seen clearly that the slope of the entropy curve de-
creases as the number of helices increases. The coefficient c
is 1.75, 1.55, 1.40, and 1.23 for entropy of hairpin loop,
internal loop, three-way, and four-way junctions, respec-
tively. The entropy of bulge loop is special as it has the
largest slope, possibly due to the stricter constraints imposed
by the helical strand it is connected to. The reduced slope of
the entropy curves of internal, three-way, and four-way
multibranch loops is due to the fact that, in addition to the
constraints they impose on the loop conformation, the addi-
tional helices also impose constraints to the coil states, de-
creasing the value of ln �coil in Eq. �1� thus the slope. The
Jacobson and Stockmayer treatment fails in these cases be-
cause it uses the Gaussian approximation where a loop can
adopt any rotation angle and is not restricted by excluded
volume. This approximation ignores the constraints imposed

FIG. 10. Comparison of the three-way multibranch loop entropies calculated
by 5- and 6-state models and the values calculated by the empirical model
�see the text�. The fitted curve using the empirical model Eq. �5� is shown in
�b�.

FIG. 9. Comparison of the internal loop entropies calculated by 5- and
6-state models and the extrapolated values. The values for n�6 are deter-
mined by experiments. The fitted curve using the empirical model of Eq. �4�
is shown in �b�.
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by the additional helices, which clearly will deviate from the
Gaussian approximation. Overall, Fig. 11 shows that the tra-
ditional Jacobson and Stockmayer model only works well for
hairpin loops and need to be modified for bulge, internal, and
multibranch loops.

7. Effect of size asymmetry

We are also interested in the effect of size asymmetry on
loop entropy. We investigate this effect by calculating the
entropy for all possible combinations of loop length of inter-
nal loops of lengths up to n=50. The result is shown in Fig.
12. It can be seen that the loop entropy is largely determined
by the loop length, and the asymmetric distribution of loop

length only result in small changes in loop entropy, usually
in the order of 0.1kB or 0.06 kcal /mol at 37 °C. This sug-
gests that the two chains in an internal loop are independent
of each other, especially when loops are long. Moreover, the
asymmetric effect slightly increases the entropy thus the sta-
bility, whereas it was found to decrease the stability accord-
ing to experimental data.1

These findings are in contrast to experimental observa-
tions, where the asymmetric effect is thought to be large, and
a free energy penalty of �Gasymm

� ��n1−n2�� is usually intro-
duced to account for this effect ��Gasymm

� =0.48 kcal /mol,
according to Ref. 1�. The source of this discrepancy is likely
due to the fact that what is calculated here is purely the
entropic change due to asymmetric distributions of loop
lengths, whereas in experiments the asymmetric effect is par-
tially enthalpic in nature, arising from possible noncanonical
base pairing that tend to form between symmetric loops and
therefore make the two chains dependent on each other.6

IV. CONCLUSION

The estimation of free energy of RNA secondary struc-
tures is important for understanding RNA stability and fold-
ing. Among all physical factors contributing to RNA stabil-
ity, assessing conformational loop entropy is the most
challenging task for both experimental measurement and for
theoretical calculations. For example, there is no known ex-
perimental measurement of entropy for loops longer than 12
bases. In this work, we have developed optimized discrete
k-state models for representing RNA backbone structures,
which incorporate the excluded volume effect. Combined
with an efficient sequential Monte Carlo sampling method,
we have calculated the conformational entropy of various
RNA secondary structures with loops, including hairpin,
bulges, internal, and multibranched loops. For short loops,
entropy is calculated through exhaustive enumeration of self-
avoiding walks in the k-state space connecting the two bases
at one end of an RNA stem. The main focus of our study is
to compute entropy of long loops, which is achieved by us-
ing the sequential Monte Carlo sampling method.

Our results for short loops agree well with a recent the-
oretical study, and is also in good general agreement with
experimental results. For long loops, the calculated entropies
of hairpin loops are in excellent agreement with the
Jacobson–Stockmayer model, which extrapolates from ex-
perimental data. However, for internal loop and multibranch
loops, we find that the entropy value decreases less than
expected from the Jacobson–Stockmayer model as loop
length increases. It is because the additional helices impose
additional constraints thus distort the assumed Gaussian dis-
tribution in the Jacobson–Stockmayer model. For bulge
loops, the entropy decreases more, possibly due to the
stricter constraints imposed by the helical strand it is con-
nected to. This suggests that the bulge loop and more com-
plex secondary structures including internal loops and multi-
branched loops require additional modification beyond the
Jacobson and Stockmayer model. Based on estimated loop

FIG. 11. �Color online� Comparison of the calculated entropies of hairpin,
bulge, internal, three-way, and four-way multibranch loops. It can be seen
clearly that the slope of the entropy curve decreases as the number of helices
increases.

FIG. 12. �Color online� The loop entropy as a function of size asymmetry
�n1−n2�, calculated for all combinations of loop length of internal loops of
lengths n=n1+n2�50. The entropy of loops with odd number of n	11 are
not shown in the interest of clear presentation. The data points connected by
a line have the same loop length n.
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entropy, we have developed empirical formulae for entropy
calculations that work well for all these different secondary
structures with long loops.

We also studied the asymmetric size effect of loops and
find that loop entropy is predominantly determined by the
overall loop length, and the asymmetric division of indi-
vidual loop lengths has small effects on the overall entropy
of internal loops. Moreover, the asymmetric effect slightly
increases the entropy thus the stability. These findings are in
contrast to previous experimental observations. This discrep-
ancy suggests that entropy due to strictly asymmetric size
effect is small, and experimentally observed large asymmet-
ric effect is likely to be partially enthalpic in nature.

The approach we developed in this study is general. It
provides a basis for both structure representation and entropy
estimation. It can be applied to calculate the entropy of loops
associated with other RNA spatial structures, such as loops
in pseudoknots, loops with base triplets, and loops associated
with other tertiary contacts. The improved entropy estimation
will be useful for studying RNA stability and folding, and for
RNA structure prediction.
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