
Generating properly weighted ensemble of conformations of proteins
from sparse or indirect distance constraints

Ming Lin,1 Hsiao-Mei Lu,2 Rong Chen,3 and Jie Liang2,a�

1Department of Information and Decision Science, University of Illinois at Chicago, 845 S. Morgan St.,
Chicago, Illinois 60607, USA
2Department of Bioengineering, University of Illinois at Chicago, 845 S. Morgan St.,
Chicago, Illinois 60607, USA
3Department of Statistics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019,
USA

�Received 30 April 2008; accepted 16 July 2008; published online 2 September 2008�

Inferring three-dimensional structural information of biomacromolecules such as proteins from
limited experimental data is an important and challenging task. Nuclear Overhauser effect
measurements based on nucleic magnetic resonance, disulfide linking, and electron paramagnetic
resonance labeling studies can all provide useful partial distance constraint characteristic of the
conformations of proteins. In this study, we describe a general approach for reconstructing
conformations of biomolecules that are consistent with given distance constraints. Such constraints
can be in the form of upper bounds and lower bounds of distances between residue pairs, contact
maps based on specific contact distance cutoff values, or indirect distance constraints such as
experimental �-value measurement. Our approach is based on the framework of sequential Monte
Carlo method, a chain growth-based method. We have developed a novel growth potential function
to guide the generation of conformations that satisfy given distance constraints. This potential
function incorporates not only the distance information of current residue during growth but also the
distance information of future residues by introducing global distance upper bounds between residue
pairs and the placement of reference points. To obtain protein conformations from indirect distance
constraints in the form of experimental �-values, we first generate properly weighted contact maps
satisfying �-value constraints, we then generate conformations from these contact maps. We show
that our approach can faithfully generate conformations that satisfy the given constraints, which
approach the native structures when distance constraints for all residue pairs are given.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2968605�

I. INTRODUCTION

Three-dimensional structures of biomacromolecules
�such as protein, DNA, and RNA molecules� are essential for
understanding their biological functions. The primary
sources of structural information of biomacromolecules are
x-ray diffractions1 and nuclear magnetic resonance �NMR�
experiments.2,3 In NMR studies, the assessment of chemical
shifts of atomic nuclei with spins can provide information
about distances between specific pairs of atoms. In addition,
a number of biochemical techniques such as disulfide
linking4,5 and electron paramagnetic resonance labeling6,7

can also provide useful partial information about distances
between residues. When accurate values of distances be-
tween residue pairs are available, they can be represented by
a distance matrix, where an entry �i , j� of the matrix denotes
the distance between the corresponding two residues i and j.
In other cases, the distance information is inexact, but can be
represented by a contact map, which denotes whether the
distance of each residue pair is below or above a specified

distance threshold.
With distance information of various levels of details, a

challenging problem is to integrate all the distance con-
straints into global information about the properties of en-
semble structures of the biomacromolecule.2,8,9 When the
distance constraints are complete and accurate, the positions
of all residues can be obtained by carrying out a singular
value decomposition calculation.10,11 When the distance con-
straints are incomplete or inaccurate, one needs to solve an
optimization problem and find the structures that best repro-
duces these distance constraints.9,12,13 If the size of the mol-
ecule is large, this is a very challenging problem.

Several previous studies address the problem of generat-
ing protein conformations from contact maps.14,15 These ap-
proaches can be expanded to generate conformations when
only indirect or implicit distance constraints are available. In
Ref. 16, Vendruscolo et al. generated the conformations of
the transition state ensemble �TSE� important in protein fold-
ing studies. In this case, no explicit distance constraints be-
tween residue pairs are given. Rather, indirect information in
the form of �-value constraints is known for a subset of
residues. Here the �-value at a residue measured experimen-
tally is interpreted as the ratio of the average number of
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native contacts formed by the residue in the transition state
conformations to the number of contacts formed in the native
structure of ground state.

In this paper, we focus on protein structures and develop
a general method to obtain ensemble of conformations that
satisfy distance constraints given either in the form of an
incomplete set of distance bounds, a set of binary conditions
whether the distance is below or above a specific threshold,
or in the indirect form of experimentally measured �-values.
Our approach is based on the framework of sequential Monte
Carlo �SMC� method, a growth-based method in which resi-
dues are added to an existing partial chain one by one until a
conformation of full length is obtained.17–19 In addition to
generating structures, we can also estimate important physi-
cal properties of molecular ensembles. As the probabilities of
growing viable conformation samples become exceedingly
small because of strong distance constraints and the self-
avoiding requirement, an efficient sampling strategy be-
comes critical in order to obtain full chain conformations
consistent with all distance constraints.

This paper is organized as follows. In Sec. II, we intro-
duce a cubic lattice model and the incomplete and indirect
distance constraints we work with. We then discuss the gen-
eral approach of SMC method and a new growth potential
function. Results are presented in Sec. III.

II. MODEL AND METHOD

A. Protein model and distance constraints

1. Three-dimensional model for proteins

We use a three-dimensional cubic lattice model to repre-
sent a protein conformation. The sides of a cubic cell have
unit length �=1.3 Å. A length-n protein conformation is
represented by a connected chain xn= �x1 ,x2 , . . . ,xn�, where
the ith C� atom of the conformation is located at site xi

= �xi1 ,xi2 ,xi3� on the cubic lattice.18,20,21

For proteins molecules, the locations of C� atoms satisfy
certain constraints. We assume the C� atoms in our model
can only be placed on the lattice sites with the following
constraints. First, the Euclidean distance between neighbor-
ing residues xi−1 and xi is between 3.5 and 4.1 Å. Second,
the direction of the vector xi-xi−1 must be within 30° of four
canonical directional vectors, which are specifically deter-
mined by the residue type of residue i and the locations xi−1,
xi−2, and xi−3. These canonical vectors are derived from a
discrete four-state off-lattice model of proteins, which gives
four possible locations of xi for monomer i given the loca-
tions of xi−1, xi−2, and xi−3, and the type of residue i−1.
Details of obtaining optimal canonical directional vectors are
given in Ref. 22. Third, we enforce the self-avoiding con-
straint. Specifically, non-neighboring residues are not permit-
ted to be closer than 3.5 Å, which is the smallest distance of
non-neighboring residues observed in 646 representative
proteins from the Protein Data Bank �PDB�.

On average, there are about 23 candidate positions for
placing xi in our model, although the exact number depends

on the different relative positions of xi−3, xi−2, and xi−1, as
well as the type of the �i−1�th residue. Figure 1 provides an
illustration of this lattice model.

2. Direct distance constraints

Distance constraints for protein chain xn= �x1 , . . . ,xn�
�R3 are written in the following general form as

lij � �xi − xj� � uij for all �i, j� � D ,

where �xi−xj� is the Euclidean distance between residues i
and j; lij and uij are the lower and upper bounds of the
distance between residues i and j. Here lij can be 0 and uij

can be +� if only upper bound or lower bound is available,
respectively. D is a given set of �i , j� residue pairs, in which
such constraints are known. D is often a much smaller subset
of the complete set of all residue pairs. The problem of de-
termining the conformation xn= �x1 , . . . ,xn� according to
such distance constraints has been studied before.8,23 In this
paper, we focus on constraints of distance between C� atoms,
and we only consider the structure of C� chain. The general
principle can be applied to other types of distance con-
straints, and side chain repacking methods can be used to
generate more detailed protein structures.24,25

3. Indirect distance constraints and experimentally
measured �-values

An important class of studies on protein folding is to
characterize the properties of the TSE. TSE represents the
structures around the saddle point of the potential energy
surface, and these structures are often followed by a large
structural change in protein unfolding process.26–29

It is challenging to characterize TSE due to the complex-
ity of the folding and unfolding processes. Experimental

X
i−3 X

i−2
X

i−1

FIG. 1. Illustration of the cubic lattice model. We have set the cell unit
length to 1.8 Å instead of 1.3 Å here for clarity. Given the locations of xi−3,
xi−2, and xi−1, there are 21 positions �marked by “�” and “�”� satisfying the
first distance condition. Only nine positions �marked by “�”� among them
also satisfy the second direction condition. These positions all satisfy the
third self-avoidance condition.
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research on this problem focuses on the measurement of
�-value at individual residue position, defined as the ratio of
change in stability to the transition state upon mutation ver-
sus the change to the native folded state.27–31

�-value provides information about the native likeness
of TSE.32,33 For example, if �i, the �-value at residue i, is
close to 1, the transition state is thought to have almost the
same structure at residue i as the native state. If �i is close to
0, the transition state is likely to be in the denatured state in
this region. An important question therefore is to translate
�-value measurements into explicit conformational informa-
tion of protein structures in the TSE.16,31,34

Let �i
exp be the experimentally measured �-value at resi-

due i. Based on experimental observations, it is reasonable to
assume that changes in protein stability are proportional to
the change in the number of contacts in a protein structure.35

Based on this assumption, the calculated �-value �i
calc,

which relates to the protein structure, is defined as �i
calc

=Ci
TSE /Ni

N, where Ci
TSE is the average number of contacts

formed by residue i in the TSE and Ni
N is the number of

contacts formed by residue i in the native structure. In stud-
ies based on molecular dynamics simulations, Li and
Daggett31 showed that �i

calc is in good agreement with �i
exp.

Vendruscolo et al.16 further introduced a different definition
of �i

calc,

�i
calc =

Ni
TSE

Ni
N , �1�

where Ni
TSE is taken as the average number of native contacts

instead of all contacts of residue i in the TSE. In this case,
the TSE is defined as the set of conformations with �i

calc very
close to the corresponding experimental measured �i

exp at all
positions. An important question is therefore how to obtain
explicit conformations of TSE that satisfy these indirect dis-
tance constraints of �-values. A number of studies have
shown promising results.16,34

B. Generating conformations with various distance
constraints using SMC

In general, one can aim to obtain conformations that are
at the global minimum of an error function measuring devia-
tion in distance from the lower bounds and upper bounds of
the distance constraints,

E�xn� = �
i,j

�max2�lij − �xi − xj�,0� + max2��xi − xj�

− uij,0�� for all �i, j� � D , �2�

in which the distance constraints are incomplete and
inaccurate.9,12 Our goal is to generate a set of conformations
satisfying all distance constraints and following certain target
distribution ��xn�, for example, the uniform distribution of

all feasible conformations satisfying the distance constraints,
or the Boltzmann distribution associated with an energy
function. If the true energy function was known, it could be
used to estimate the thermodynamics properties of the en-
semble of protein conformations following the Boltzmann
distribution. In reality, one can approximate the unknown
true energy function with various empirically derived energy
functions, such as the Miyazaw–Jernighan potential
function,36 the geometric poetntial,37,38 and many other po-
tential functions as reviewed in Ref. 39.

Since our goal here is to minimize the error function
E�xn�, instead of approximating the true energy function, we
can set the energy function to be proportional to the error
function �Eq. �2��. More details of this target distributions we
use are described in Sec. III. Let xt= �x1 , . . . ,xt� be the vector
for the positions of residues from 1 up to t. We recursively
place residue t at position xt following a trial distribution
gt�xt 	xt−1�. The trial distribution proposes possible positions
with different probabilities for residue t to be placed under
the condition that positions x1 , . . . ,xt−1 for residues 1 to
t−1 are given. The joint trial distribution for a chain with t
residues at positions x1 , . . . ,xt is given by

gt�xt� = g1�x1�g2�x2	x1� ¯ gt�xt	xt−1� .

Following the principle of importance sampling,40–42 the
design of the trial distribution can accommodate different
types of bias, which allows great flexibility for improving
sampling efficiency. However, each final sample of full
length chain xn needs to be weighted to remove the bias so
the original target distribution ��xn� can be recovered. Spe-
cifically, we assign a weight

w�xn
�j�� = ��xn

�j��/gn�xn
�j��

to each conformation sample xn
�j�, j=1, . . . ,m, where gn�xn�

is the trial distribution of the full chain. Then the expected
mean value of physical property represented by a function
h�xn� of conformation xn following the target distribution
��xn� can be estimated by

E��h�xn�� 

� j=1

m
w�xn

�j��h�xn
�j��

� j=1

m
w�xn

�j��
.

We adopt the framework developed in Ref. 43 to gener-
ate sample conformations which minimizes the loss intro-
duced in the resampling step when choosing a number of
distinct samples from a larger sample set. It helps to maintain
the diversity of the samples. Let mt be the number of samples

094101-3 Properly weighted conformational ensemble J. Chem. Phys. 129, 094101 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



we retain in the tth iteration, mmax be the maximum value of
mt, the algorithm for generating samples are described in
Algorithm 1.

Algorithm 1 Generating conformation

Set m1=1, w1
�1�=1.0 and place the first residue at fixed x1

�1�.
for t=2 to n do

Lt=0;
�Lt: number of length t chains that can be obtained from samples

obtained at step t−1.�
for sample j=1:mt−1 do

Find all of the valid sites xt
�i,j� i=1, ¯ , lt

�j� for placing xt next to
partial chain xt−1

�j� .

�lt
�j�=number of available sites to place xt next to partial chain

xt−1
�j� �.

Generate lt
�j� number of t-length chain x̃t

�Lt+i�= �xt−1
�j� ,xt

�i,j��
w̃t

�Lt+i�=wt−1
�j� . �Temporary weights for uniform distribution.�

Lt=Lt+ lt
�j�.

end for
if Lt�mmax then

Let mt=Lt and ��xt
�j� ,wt

�j��� j=1
mt = ��x̃t

�l� , w̃t
�l���l=1

Lt .
else

Let mt=mmax.
for l=1 to Lt do

Assign a priority score �t
�l� for chain x̃t

�l� according to the
constraints.

end for

Find constant c such that �l=1
Lt min�c�t

�l� ,1�=mmax. �e.g. by binary
search.�

Draw r from uniform distribution U�0,1�.
for j=1:mmax do

Let rj = j−r.
Find integer Jj such that

�l=1
Jj−1min�c�t

�l� ,1��rj ��l=1
Jj min�c�t

�l� ,1�.
Select sample xt

�j�= x̃t
�Jj�.

Set weight wt
�j�= w̃t

�Jj� /min�c�t
�Jj� ,1�.

end for
end if

end for
for j=1:mn do

Calculate importance weight w�xn
�j��	wn

�j���xn
�j��.

end for

The key step in this algorithm is to construct high quality
priority scores �s

�l�, which works as the trial distribution
gt�xt 	xt−1� to guide the growth of the partial chains toward
more profitable regions.

In this algorithm, it is not necessary to require the
growth starts from the first residue x1. In fact, growth can
start from any place, as long as the newly placed monomer is
connected to the existing partial chain. For example, growth
can start in one direction from a position in the middle of the
primary sequence of the chain. After it reaches the end of the
chain, the growth process can go back to the starting residue
and continue to grow in the other direction of the primary
sequence. That is, the order of placing residues can be
�xk ,xk−1 , . . . ,x1 ,xk+1 , . . . ,xn� or �xk ,xk+1 , . . . ,xn ,xk−1 , . . . ,x1�
for any residue k located in the middle of the chain. The

steps of adding a new residue to existed partial chain are the
same as above. In this study, we choose the order of placing
residues so that the fragment of the first 20 residues to be
placed has the largest number of distance constraints.

C. Priority score

The choice of a good priority score �t used in Algorithm
1 is very important. A carefully designed �t can successfully
guide the growth of the conformation so that the full chain
will eventually obey all the distance constraints, hence in-
creasing the sampling acceptance rate. A difficulty in the
growth-based method is that when adding current residue,
the distance information of future residues cannot be directly
used. To solve this problem, the priority score we develop
consists of three components: growth potential from upper
bounds of the distance constraints, growth potential from ref-
erence points, and growth potential from lower bounds of the
distance constraints. The first two components of the priority
score incorporate the distance information of future residues.

1. Growth potential from upper bounds
of the distance constraints

Given the upper bounds for the distances between resi-
due pairs in a subset D of all residue pairs, we first develop
distance upper bounds 
ij between all residue pairs �i , j�,
i , j=1, . . . ,n.

Let q�k� be an upper bound of distances between two
residues that are k residues away in the protein primary se-
quence. For constructing the upper bounds q�k� for small
sequence separation k, we enumerate self-avoiding chains on
the discrete lattice model using the protein sequence of in-
terest. We have

q�k� = max
i

max
x�i,k�

��xi+k − xi�� ,

where x�i ,k� is a self-avoiding chain of length k starting at
residue i. In this study, we enumerate fragments of chains for
k=1, . . . ,5 at different starting positions i, and take the larg-
est as q�k�. When sequence separation k is large, enumera-
tion is infeasible. We approximate q�k� by k1q�5�+q�k2� if
k=5k1+k2, where k1�Z, k2=0 , . . . ,4. This is an upper
bound as it assumes the chain is attached at some residues
without angle constraint.

Consider a complete graph G with n vertices, each vertex
represents a residue. The length of edge between any two
vertices i and j is set to

eij = �min�uij,q�	i − j	�� , if �i, j� � D
q�	i − j	� , otherwise.

�
We can use the Floyd algorithm44 to identify the shortest
path pij between any two vertices i and j in this complete
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graph G. The distance upper bound 
ij between residues i
and j is then set to the total length of the shortest path pij.

After obtaining the distance upper bound 
ij and the cor-
responding path pij, we construct the potential function that-
contributes to the priority score as

f1�xt� = �
i�j,�i,j��P

h1��xi − xj�,
ij� , �3�

where P is a set of �i , j� pairs such that on the shortest
pathpij between i and j, the two ends xi and xj are in the
partial chain xt, but none of the residues between i and j are
in xt. This is to avoid double counting of the distance con-
straints. The function h1 is a loss function to measure the
violation of constraint �xi−xj��
ij. Usually, h1��xi−xj� ,
ij�
is set to zero when �xi−xj��
ij, and monotonically nonde-
creasing as �xi−xj�−
ij increases. Different types of h1�·� can
be chosen for different considerations, which we will discuss
in detail in later sections.

2. Growth potential from reference points

Given a partial chain xt, if the position of a future resi-
due j �xj �xt� is strongly constrained, e.g., there are more
than four residues in the existing chain xt having distance
constraints related to residue j, then residue j can only be
placed in a small spatial region. We generate candidate posi-
tion for xj on lattice sites within this small space. More spe-
cifically, if a future residue j has distance constraints,

likj � �xik
− xj� � uikj, k = 1, . . . ,K ,

where xik
, k=1, . . . ,K, are in the existing chain xt, and K

�5, we use Newton’s climbing method45 to find a position z
in R3 such that

z = arg min
x

F�x� = arg min
x

�
k=1

K

��xik
− x� − uikj�2,

in which z is obtained by iteratively performing z=z
− �F��z��−1F��z�. We then search the sites on the cubic lattice
around position z and choose the site x that minimizes

�
k=1

K

�max2�likj − �xik
− x�,0� + max2��xik

− x� − uikj,0��

as the candidate position for residue j. Denote the candidate
position as xj

�, we use it as a reference point to guide the
growth of the chain. The following potential function is used
to encode this:

f2�xt� = �
�i,j��P�

h2��xi − xj
��,
ij� , �4�

where P� is a set of �i , j� pairs such that on the shortest path

pij between i and j, xi is in the partial chain xt constructed so
far, xj

� is the reference point, and none of the residues be-
tween i and j are in xt. As before, h2 is the loss function to
measure the violation of constraint �xi−xj

���
ij.

3. Growth potential from lower bounds
of the distance constraints

This potential function penalizes the violation of lower
bound constraint,

f3�xt� = �
�i,j��S�D

h3��xi − xj�,lij� , �5�

where S is the set of residue pair �i , j� in which xi and xj

exist in the partial chain xt. Here h3 is the loss function to
measure the violation of constraint �xi−xj�� lij. Hence,
h3��xi−xj� , lij�=0, when �xi−xj�� lij, and is monotonically
nondecreasing as �xi−xj�− lij decreases.

4. Combined priority score

The combined priority score �t
�l� for chain x̃t

�l� is set as

�t
�l� = exp
−

�1f1�x̃t
�l�� + �2f2�x̃t

�l�� + �3f3�x̃t
�l��


t
� , �6�

where �1 ,�2, and �3 are coefficients of the three growth po-
tential functions, 
t is a temperaturelike variable. The choice
of loss functions h1, h2, and h3 in f1, f2, and f3, and coeffi-
cients �1 ,�2 ,�3 ,
t will be described in later sections.

D. Generating conformations from incomplete residue
distance constraints

In this section, we discuss how to use Algorithm 1 to
generate protein conformations with given constraints in the
form of small intervals of distances between a subset of resi-
due pairs. The distance constraints are represented as12,13

dij − �ij � �xi − xj� � dij + �ij for all �i, j� � D ,

where dij is the distance of residues i and j in the native
structure. The set D is assigned as follows: each non-
neighboring residue pair within short range distance �SRD�
in the native structure is selected in D with a certain prob-
ability, e.g., �20%, 40%,…, 100%� independently. The SRD
is selected as 10 Å for residue level structure following
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Ref. 13. All residue pairs with distance dij �10 Å are ex-
cluded from D. Variations �ij, �ij of the bounds are randomly
selected from uniform distribution U�0,1� independently, so
that the distance variation is under 1 Å, about 10% of the
true distance dij as in Ref. 13.

In this problem, the priority score in Algorithm 1 is set
for Eq. �6� with

h1�z,
� = h2�z,
� = ��z − 
�2, if z � 


0, if z � 
 ,
�

and

h3�z,l� = ��z − l�2, if z � l

0, if z � l ,
�

for f1, f2, and f3, and parameters are set as �1=1, �2=1,
�3=1, and 
t=0.5. Here z is the value of the corresponding
distance.

The loss functions are chosen so that the distance be-
tween any two residues i and j in the conformational sample
does not deviate too much from the given constrained inter-
val �lij ,uij�, in case that not all constraints can be perfectly
satisfied simultaneously. The loss functions h1, h2, and h3 are
concave downward functions of the distance �xi−xj�, which
increases rapidly as �xi−xj� departs the constrained interval
�lij ,uij�.

E. Generating conformations from contact map
of distance cutoff

We now describe how to generate conformations based
on a given incomplete contact map, where distances between
some residue pairs are known to be either above or below a
cutoff value in our calculation. We use 8.5 Å as the cutoff
value. This value has been used by Vendruscolo et al. in
Ref. 16.

The contact map of a length n polymer chain is a n�n
symmetric matrix C= �cij�n�n, where cij =1 if residues i and j
are in contact, and cij =0 otherwise. A given contact map is
equivalent to a set of distance constraints,

�xi − xj� � 8.5 Å for all cij = 1,

�xi − xj� � 8.5 Å for all cij = 0.

For this problem, we use

h1�z,
� = h2�z,
� = I�z − 
 � 0�

and

h3�z,l� = I�z − l � 0� ,

in Eqs. �3�–�5�, respectively, to construct the priority score in
Eq. �6�. Here I�·� is the indicator function: I�·�=1 if the state-
ment represented by �·� is true, 0 otherwise. Parameters in
Eq. �6� are taken as �1=1, �2=1, �3=0.8, and 
t=0.2.

The loss functions are chosen in order to keep the con-
tact map of the generate conformational samples as close to
the given target contact map as possible if not completely
satisfied. In particular, if the distance �xi−xj� violates the
distance constraint, the corresponding loss function increases
from 0 to 1 instantly.

F. Generating contact maps and conformations
from indirect distance constraints by �-values

In this section, we describe how to obtain contact maps
based on indirect distance constraints in the form of experi-
mentally measured �-values.

1. Generating contact maps from indirect distance
constraints

�-values of TSE and contact maps. For generating con-
formations of the TSE, our target distribution ��xn� is the
uniform distribution of all conformations xn satisfying the
�-value constraints,

�i
calc�xn� =

Ni
TSE

Ni
N � �i

exp, i � I = �I1, . . . ,IT� ,

where I represents the set of residues whose �-values have
been measured experimentally, and I1 , . . . , IT are the indexes
of these residues. By definition, �i

calc�xn� can be computed
when the conformation xn of the full chain is known. When
only information of partial chains xt−1 is available during
chain growth, it is difficult to construct an effective condi-
tional trial distribution gt�xt 	xt−1�.

Our approach is to translate the �-value constraints into
contact maps of equivalent distance constraints. These con-
tact maps provide more direct information on distance con-
straints for generating conformations. We then sample con-
formations following the contact map constraints, which will
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automatically satisfy all �-value constraints. We describe

briefly how to generate conformations from these �-value

derived contact maps in Sec. II F 2.

From �-values to contact maps. Because of the intrinsic

symmetry of the contact map C= �cij�n�n, we consider cij and

cji as the same entry in C. Let N be the set of residue pairs

�i , j� forming native contacts. By definition, the calculated

�-value �i
calc for residue i of a conformation only depends on

the values of cij in its contact map that are native contacts

formed by residue i. Let

Ci = �cij	�i, j� � N� .

The size of this set, 	Ci	, is the number of contacts formed by
residue i in native structure. Note that if �i , j��N, both Ci

and C j contain cij.
To generate contact map C satisfying the �-value con-

straints, we only need to decide which subset of native con-
tacts to preserve for residue i whose experimental �-value is
available. To satisfy the �-value constraint, there needs to be
	Ci	 ·�i

exp number of native contacts preserved for residue i in
the contact map. That is, we need to assign either 0 or 1 to
elements in Ci , i�I, such that there are exactly 	Ci	 ·�i

exp

number of “1” s in Ci. That is, for each generated contact
map we should have �cij�Ci

cij = 	Ci	 ·�i
exp, i�I. For simplic-

ity, we denote �i= 	Ci	 ·�i
exp in the subsequent discussion.

Now we generate contact map samples properly
weighted with respect to the uniform distribution of all con-
tact maps that physically satisfy the �-value constraints.
Each contact map sample C generated by importance sam-
pling via the use of a trial distribution g�C� is weighted by

v=1 /g�C�. Here g�C� is the probability to generate contact
map C.

A similar problem has been studied in Ref. 46 for gen-
erating 0–1 tables with fixed marginal sums. Although in our
problem, the contact map has to be symmetric and only part
of it needs to be filled, some techniques in Ref. 46 can be
used to improve the sampling efficiency.

Specifically, we proceed by assigning the proper num-
bers of “1’s” and “0’s” in the rows for residues with experi-
mental �-value measurement. That is, we fill 0’s and 1’s in
Ci, i�I, and repeat this position after position, until the rows
corresponding to all residues with experimental �-value
measurement are assigned. Let m� denote the number of
contact map samples we will generate, CI1:It

k denote the

partially filled kth contact map we have obtained thus far
after finishing positions I1 to It, and vt

�k� be the weight of
the kth contact map that has been partially filled up to posi-
tion It. The algorithm for generating contact maps from

�-value measurement is listed as Algorithm 2.

Algorithm 2 Generating contact map

for k=1 to m� do

CI1:I0

�k� =0” , v0
�k�=1

end for
for position index t=1 to T do

for sample k=1 to m� do
for s= t to T do

Divide CIs
into disjoint sets S0,Is

�k� , S1,Is

�k� , and Su,Is

�k� based on partial
contact map CI1:It−1

�k� , where S1,Is

�k� = �CIs,j 	already filled with 1�, S0,Is

�k�

= �CIs,j 	already filled with 0�, and Su,Is

�k� = �CIs,j 	unspecified�.
end for
repeat

for s= t to T do

if 	S1,Is

�k� 	��Is
then

Remove this sample. �Already too many “1”s.�
else if 	S1,Is

�k� 	=�Is
then

Fill all elements in Su,Is

�k� with 0.

Update S0,Ij

�k� , S1,Ij

�k� , Su,Ij

�k� , j� �t , ¯ ,T�.
end if

if 	S1,Is

�k� 	+ 	Su,Is

�k� 	��Is
. then

Remove this sample. �Already too many “0”s.�
else if 	S1,Is

�k� 	+ 	Su,Is

�k� 	=�Is
then

Fill all elements in Su,Is

�k� with 1.

Update S0,Ij

�k� , S1,Ij

�k� , Su,Ij

�k� , j� �t , ¯ ,T�.
end if

end for

until Su,It

�k� =0” , or none of S0,Is

�k� , S1,Is

�k� , Su,Is

�k� , s� �t , ¯ ,T� changes.
�This step must converge because the number of unspecified

positions decreases monotonically as the iteration proceeds.�
if Su,It

�k� =0” then

CIt

�k� is completed and let weight vt
�k�=vt−1

�k� .
else

Fill Su,It

�k� with �It
− 	S1,It

�k� 	 “1”s following CP-distribution.
�When there are unspecified entries in this row.�
Update weight vt

�k� by Eq. �8�.
end if

end for

Optionally resample38 ��CI1:It

�k� , vt
�k���k=1

m�

if many samples were
removed.
end for

Constrained Poisson (CP) distribution. The details of
CP distribution can be found in Ref. 47. Briefly, we sample
0’s and 1’s to fill each entry s1 , . . . ,s	S

u,It

�k� 	 of Su,It

�k� described in

Algorithm 2 with probability proportional to

g�s1, . . . ,s	Su,It

�k� 	� 	 �
j=1

	Su,It

�k� 	

pj
sj�1 − pj�1−sj ,

and the total number of assigned 1’s is �
j=1

	Su,It

�k� 	
sj =�It

− 	S1,It

�k� 	.
Here pj � �0,1stretchy=�true�� are the chosen parameters to
improve the sample survival probability of this distribution.

Parameters for conditional Poisson (CP) distribution.
For each entry sj �Su,It

�k� to be filled �whose corresponding
entry in the contact map is cIt,Jj

�, we assign the parameter pj

for the CP distribution as
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pj =�
�Jj

− 	S1,Jj

�k� 	

	Su,Jj

�k� 	
, if cIt,Jj

� Su,It

�k� � A

max��It
− 	S1,It

�k� 	 − �cIt,i
�Su,It

�k� �A
pi

	Su,It

�k� \ A	
,0.1� , if cIt,Jj

� Su,It

�k� \ A , �
where A= �cIt,It+1

,cIt,It+2
, . . . ,cIt,IT

� are entries recording exis-
tence of contacts between residue It and other future residues
with experimental �-values.

If Jj is a position with �-measurement but currently un-
specified, we assign pj as the ratio of the number of 1’s to be
assigned �Jj

− 	S1,Jj

�k� 	 and the number of unspecified positions

	Su,Jj

�k� 	 for residue Jj.

If Jj is a position currently unspecified but not a position
with known �-measurement, we assign pj as the ratio of the
number of 1 to be assigned �It

− 	S1,It

�k� 	, minus an expected

number �cIt,i
�S

u,It

�k� �Api of 1’s that will be assigned for future

positions with � values, and the number 	Su,It

�k� \A	 of unspeci-

fied positions without known �-values, or the value of 0.1,
which ever is larger. This choice of pj is expected to fill
�Jj

− 	S1,Jj

�k� 	 number of 1’s in 	Su,j
�k�	 for j� �It , It+1 , . . . , IT�.

Note that in this assignment, pi is guaranteed to have a value
between 0 and 1.

Realization of CP distribution. The overall idea for sam-
pling from the CP distribution is to take out �It

− 	S1,Is

�k� 	 num-

ber of elements from the set Su,It

�k� one by one without follow-

ing specific probability replacement. These elements will be
assigned as 1’s, while the remaining ones will be 0’s.46

Specifically, let aj = pj / �1− pj�. Suppose Su,It

�k� �i� are

the remaining elements after taking out i elements �i

=0,1 , . . . ,�It
− 	S1,Is

�k� 	−1�. Each sj �Su,It

�k� �i� will be selected
as next element to be taken out and assigned the value of 1
with probability

P�sj,Su,It

�k� �i�� =
aj · R��It

− 	S1,Is

�k� 	 − i − 1,Su,It

�k� �i� \ �sj��

��It
− 	S1,Is

�k� 	 − i� · R��It
− 	S1,Is

�k� 	 − i,Su,It

�k� �i��
,

where R�i ,S� is

R�i,S� = �
B�S,	B	=i

��
j�B

aj� . �7�

It is the summation of � j�Baj of all size i subsets B in S.
For an integer i and a subset S�Su,It

�k� , R�i ,S� can be
calculated using the recursive formula

R�i,S� = R�i,S \ �sj�� + aiR�i − 1,S \ �sj��

for any sj �S. The initial conditions for the recursion are
R�0,S�=1 for any S�Su,It

�k� and R�i ,S�=0 for any 	S	� i.
Updating sample weight. The weight associated with a

sample of contact map is updated as

vt
�k� = vt−1

�k� ·
R��It

− 	S1,Is

�k� 	,Su,It

�k� �

� j=1

	Su,It

�k� 	 aj
sj
�k� , �8�

where s1
�k� , . . . ,s

	S
u,It

�k� 	
�k�

is a realization of s1 , . . . ,s	S
u,It

�k� 	 for the

kth contact map and R�i ,S� is defined in Eq. �7�.

2. Generating conformations from contact map
samples derived from �-values

With a set of properly weighted samples of contact map
��C�k� ,vT

�k�� ,k=1, . . . ,m��, we draw a subset of it. The prob-
ability for each sample to be drawn is proportional to vT

�k�.
For each selected contact map, we use it as the target contact
map to generate conformations following Algorithm 1, using
the priority score described in Sec. II E. The set of the gen-
erated conformations form the TSE.
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FIG. 2. Box plot of expected to native structures rmsd expectations mea-
sured in Å of conformations following Boltzmann distribution of the error
function ��xn�	exp�−E�xn� /
	D	� for 189 proteins with length between 80
and 120. The boxes have lines at the lower quartile, median, and upper
quartile values. The lines extending from each end of the boxes are to show
the rest of the data. X axis is the percentage of native SRD pairs included in
the constraint set D.
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III. RESULTS

A. Result of generating conformations from
incomplete residue distance constraints

This section shows the result of generating protein con-
formations with given constraints in the form of small inter-
vals of distances for a subset of residue pairs as described in
Sec. II D.

Consider the Boltzmann distribution ��xn�	exp
�−E�xn� /
	D	�, where E�xn� / 	D	 is the error function defined
in Eq. �2� normalized by the number of constraints, 
 is a
temperaturelike parameter in the Boltzmann function. It re-
flects deviation from the lower and upper bounds of the dis-
tance constraints. Here we set 
=0.5. We use Algorithm 1 to
estimate the expected root mean square distance �rmsd� to
the native structure of conformations following this Boltz-
mann distribution. The algorithm is applied to 189 proteins
chosen from PDB, whose lengths are between 80 and 120.
The distance constraints are constructed for non-neighboring
residue pairs whose distances are less than 10 Å �SRD�. The
percentage of SRD pairs included in the given constraint set
D varies from 20% to 100%.

The growth priority score used in Algorithm 1 is de-
scribed in Sec. II D. We repeat the algorithm 20 times inde-
pendently with at most mmax=1000 samples being kept dur-
ing each computation. The corresponding estimated rmsd
expectations of distance constraint set D that includes differ-
ent percentages of SRDs are plotted in Fig. 2. The boxes in
the figure have lines at the lower quartile, median, and upper
quartile values of the estimated expectations of the 189 pro-
teins. We can see the corresponding expectation of rmsd be-
comes smaller as the percentage of the constraints increases.
This is expected, as the Boltzmann probabilities ��xn� of
conformations close to the native structure tend to be larger
as more distance constraints are available.

We can choose the conformation with the smallest error
function Eq. �2� from the generated conformation samples as
the recovered structure. In Fig. 3�a�, we plot the values of
normalized error function E�xn� / 	D	 of these recovered struc-
tures, compared to the values of normalized error function of
the fittest native structures �Fig. 3�b��. The fittest native
structure is the conformation in our discrete model, whose
rmsd to the native structure is the smallest. It is obtained by
a greedy growth method �Ref. 19� with a local minimal rmsd
to the native structure. Although the objective of our algo-
rithm is to generate conformations following the Boltzmann
distribution ��xn�	exp�−E�xn� /
	D	�, we still can find con-
formations with smaller error function values in terms of

violation of distance donstraints than the fittest native struc-
tures.

The rmsd’s of the recovered structures to native struc-
tures are plotted in Fig. 4. When the distance informations of
all SRD are provided, the recovered structures of 160 out of
the 189 proteins have rmsd to the native structures less than
3 Å. In general, the recovered structures approach native
structures as more distance constraints are incorporated. This
shows that the priority score �t we use introduces larger
probability to generate conformations close to the native
structure when more distance constraints are available.

We compare the difficulties of recovering structures
from distance constraints among different protein classes.
The rmsd’s of the recovered structures to native structures of
ten proteins of different classes are reported in Table I. Com-
pared to alpha helical proteins, the recovered structures from
incomplete distance constraints for beta proteins and alpha/
beta proteins have larger rmsd’s to the native structures.
Table II reports the normalized error function of the recov-
ered structures and the fittest native structures �in parenthe-
ses�. Although the recovered structure and the fittest structure
are both fixed, depending on the choice of the constraints at
different percentages, values of the error function normalized
by the number of constraints will be different. We also report
the number of violated distance constraints of the recovered
structures and the fitted native structures in Table III. The
results show that although the recovered structures violate
some of the distance constraints, values of the normalized
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1.5 FIG. 3. Normalized error function of the recovered
structure and the fittest structure. �a� Box plot of nor-
malized error function E�xn� / 	D	 of recovered structures
of 189 proteins with length of 80–120; �b� box plot of
normalized error function E�xn� / 	D	 of the fittest native
structures of 189 proteins with length of 80–120. The
boxes have lines at the lower quartile, median, and up-
per quartile values. The lines extending from each end
of the boxes are to show the rest of the data. X axis is
the percentage of native SRD pairs included in the con-
straint set D.
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FIG. 4. Box plot of rmsd’s measured in Å of recovered structures of 189
proteins with length of 80–120 to native structures. The boxes have lines at
the lower quartile, median, and upper quartile values. The lines extending
from each end of the boxes are to show the rest of the data. X axis is the
percentage of native SRD pairs included in the constraint set D.
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error function can be much smaller than the fittest native
structures. This is because the loss functions h1, h2, and h3

we use are concave downward functions, which focus on
preventing the distance between residues being far away
from the given distance constraints.

The relatively large number of constraint violation may
be due to certain limitation of our discrete model. There may
not exist any conformation on the lattice satisfying all of the
distance constraints. To address this issue, we construct a
different set of distance constraints using the fittest native
structure among the conformations of the discrete model,
which is obtained by a greedy method. The new set of dis-
tance constraints are

d̃ij − �ij � �xi − xj� � d̃ij + �ij for all �i, j� � D ,

where d̃ij is the distance of residues i and j in the fittest
native structure. In this case, there exists at least one confor-
mation, the fittest native structure, in the discrete model sat-
isfying all the distance constraints. Under this setting, the
normalized error function E�xn� / 	D	 of the recovered struc-
tures is plotted in Fig. 5, and the rmsd’s of the recovered

structures to the fittest native structures are plotted in Fig. 6.
Among 189 proteins, the recovered structures of 40 proteins
can match the fittest native structures perfectly when all SRD
pairs are in the constraint set D.

B. Result of generating conformations from contact
map of distance cutoff

This section shows the result of generating conforma-
tions based on a given contact map, where the distances be-
tween residue pairs are known to be either above or below a
cutoff value �8.5 Å�.16

We choose 20 proteins with length of 50–200 from the
Protein Data Bank and generate conformations from their
complete native contact map using Algorithm 1. We repeat
the computation ten times independently and at most mmax

=1000 samples are kept during each computation. The con-
formation with the smallest numbers of missing contacts
�residue pairs that form contact in the native structure but not
in the generated conformation� and extraneous contacts �resi-
due pairs that form contact in the generated conformation but
not in the native structure� is chosen as the recovered struc-

TABLE I. rmsd’s measured in Å of the recovered structures and the fittest native structures to native structures of ten proteins of different classes. Number
of all SRD pairs: the number of all residue pairs with distance less than 10 Å. % of SRD: the percentage of SRDs included in the constraint set D.

RMSD to native structure measured in Å

PDB
ID

Protein
class

Protein
length

# of all
SRD pairs

Fittest native
structure

Structure recovered from % of SRD

20% 40% 60% 80% 100%

2mhr All alpha 118 765 0.9 5.3 3.9 1.9 2.3 1.5
256b All alpha 106 752 1.0 9.6 3.7 1.5 1.2 1.4
1cmc All alpha 104 619 0.9 6.3 4.9 2.7 2.1 2.3
1btn All beta 106 749 1.5 6.1 6.5 4.0 4.1 2.3
1f7d All beta 118 796 1.4 7.9 8.4 8.0 5.1 4.5
1f86 All beta 115 816 1.2 5.5 5.3 3.4 2.6 2.3
2trx Alpha/beta 108 728 1.1 5.2 3.5 2.1 2.1 1.8
1bkf Alpha/beta 107 788 1.5 5.6 2.6 2.0 2.1 1.6
1lkk Alpha/beta 105 719 1.0 6.2 4.3 1.8 2.3 1.6
1puc Alpha/beta 101 455 0.9 10.6 8.9 7.1 7.5 4.2

TABLE II. Value of the normalized error function of the recovered structures and of the fittest native structures
�in parentheses� of ten proteins of different classes. % of SRD: the percentage of SRDs included in the
constraint set D.

Normalized error function

PDB
ID

Structure recovered from % of SRD

20% 40% 60% 80% 100%

2mhr 0.050 �0.108� 0.117 �0.105� 0.085 �0.122� 0.092 �0.136� 0.093 �0.140�
256b 0.060 �0.237� 0.049 �0.199� 0.077 �0.203� 0.085 �0.201� 0.083 �0.202�
1cmc 0.018 �0.211� 0.071 �0.196� 0.071 �0.164� 0.068 �0.165� 0.097 �0.161�
1btn 0.072 �0.842� 0.465 �0.648� 0.478 �0.650� 0.530 �0.678� 0.370 �0.696�
1f7d 0.147 �0.669� 0.293 �0.726� 0.260 �0.648� 0.343 �0.716� 0.200 �0.688�
1f86 0.144 �0.527� 0.217 �0.469� 0.330 �0.430� 0.339 �0.415� 0.198 �0.443�
2trx 0.044 �0.564� 0.102 �0.466� 0.196 �0.471� 0.120 �0.427� 0.129 �0.418�
1bkf 0.159 �0.526� 0.117 �0.564� 0.130 �0.691� 0.131 �0.667� 0.164 �0.584�
1lkk 0.264 �0.214� 0.146 �0.216� 0.128 �0.239� 0.128 �0.246� 0.121 �0.228�
1puc 0.009 �0.181� 0.083 �0.157� 0.103 �0.134� 0.069 �0.137� 0.068 �0.132�
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ture. The number of missed contacts, extraneous contacts,
and rmsd to native structures measured in angstroms of the
recovered structures are reported in Table IV. Figure 7 shows
rmsd of the recovered structures to native structures. Again,
we found that the recovered structures of alpha helical pro-
teins have smaller rmsd to the native structures.

C. Result of generating contact maps and
conformations from indirect distance constraints
by �-values

This section depicts the result of generating TSE from
�-value constraints.

We generate TSE of bovine acyl-coenzyme A-binding
protein, a length 86 protein with experimental �-values. The
PDB entry of the protein is 1nvl. The experimental �-values
are plotted in Fig. 8. More details of the experimental
�-values can be found in Ref. 48. We follow Ref. 16 and
define TSE as the conformations satisfying 	�i

calc−�i
exp	

�0.15 for all residue i with experimental measured �-value.

Hence, the target distribution is the uniform distribution of
all conformations satisfying these constraints.

We generate m�=10 000 contact map samples using Al-
gorithm 2, among which 1000 contact maps are chosen with
probability proportional to their corresponding weights. For
each chosen contact map, Algorithm 1 is used to generate
conformations. At most mmax=1000 conformations are gen-
erated for each contact map. Figure 8 reports �i

calc of the
generated TSE. It is seen that the generated TSE can faith-
fully reproduce the �-values. The average rmsd between
TSE and the native structure of 1nvl is 11.3 Å. The result
shows that the conformations of TSE can be far away from
the native structure.

IV. DISCUSSION

Obtaining molecular structures from incomplete and in-
accurate distance information provided by experiments is an
important problem. Several global optimization methods has
been applied to solve this problem,9,12–14 in which the goal is

TABLE III. The numbers of violations of distance constraints of the recovered structures and the fittest native
structures �in parentheses� of ten proteins of different classes. % of SRD: the percentage of SRDs included in
the constraint set D.

Number of violated distance constraints

PDB
ID

Structure recovered from % of SRD

20% 40% 60% 80% 100%

2mhr 67 �61� 158 �137� 224 �211� 288 �303� 383 �377�
256b 63 �74� 123 �143� 202 �231� 271 �313� 318 �372�
1cmc 36 �60� 92 �107� 150 �176� 211 �236� 281 �302�
1btn 62 �93� 188 �175� 267 �263� 386 �352� 427 �439�
1f7d 81 �83� 183 �184� 260 �294� 375 �383� 428 �463�
1f86 72 �96� 191 �210� 279 �302� 349 �384� 455 �504�
2trx 63 �79� 133 �156� 214 �233� 276 �313� 351 �398�
1bkf 84 �98� 160 �182� 237 �292� 311 �383� 414 �489�
1lkk 82 �79� 137 �158� 249 �242� 299 �327� 376 �402�
1puc 30 �47� 87 �88� 133 �134� 150 �180� 171 �216�
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FIG. 5. Box plot of normalized error function E�xn� / 	D	 of recovered struc-
tures of 189 proteins with length of 80–120 when distance constraints are
constructed based on the fittest native structures. The boxes have lines at the
lower quartile, median, and upper quartile values. The lines extending from
each end of the boxes are to show the rest of the data. X axis is the percent-
age of native SRD pairs included in the constraint set D.
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FIG. 6. Box plot of rmsd’s measured in Å of the recovered structures to the
fittest native structures of 189 proteins with length of 80–120 when distance
constraints are constructed based on the fittest native structures. The boxes
have lines at the lower quartile, median, and upper quartile values. The lines
extending from each end of the boxes are to show the rest of the data. X axis
is the percentage of native SRD pairs included in the constraint set D.
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to minimize some error function derived from the provided
distance information. In this study, we use SMC method to
recover protein structures.

Compared to global optimization methods, an important
advantage of our approach is that it can generate a set of
conformations that are properly weighted with respect to a
specified target distribution. Hence, in addition to recovering
structures, we can also provide estimate of important physi-
cal parameters of the molecular ensemble, including thermo-
dynamics properties such as energy and entropies under a
given energy function.18,19 In this paper, the average rmsd to
native structure for TSE conformations is a consistent esti-
mate of how close the native structure and TSE satisfying the
distance constraints indirectly provided by �-values are.

A difficulty in growth-based method, such as SMC

method, is that the distance information of future residues
cannot be directly used for placing current residue. To cir-
cumvent this problem, we develop a new growth potential
function that can incorporate the distance information of fu-
ture residues. In this potential function, we convert upper
bound constraints of distance for a subset of residue pairs to
global distance upper bound constraints of all possible resi-
due pairs. In addition, we introduce reference points of future
residues to be placed.

We have used this algorithm to generate protein confor-
mations from constraints in the form of small intervals of
distances between a subset of residue pairs, from contact
map, and from indirect distance constraints by �-values.
This algorithm can effectively recover native structures and
can generate conformations satisfying any given set of dis-

TABLE IV. List of proteins of different classes used to recover structures form complete native contact maps.
The number of all native contacts, the number of missed contacts, the number of false positive contacts, rmsd
to native structure in Å are also listed.

PDB Protein Protein Number of native Number of missed Number of extraneous rmsd
ID class length contacts contacts contacts �Å�

1ptq Small protein 50 164 8 9 1.7
1cse Small protein 63 172 10 11 2.6
1utg All alpha 70 206 6 3 2.5
1hyp All alpha 75 232 12 7 1.7
1lmb All alpha 87 280 8 5 2.0
1plc All beta 99 391 28 51 2.6
256b All alpha 106 363 17 7 1.9
2mcm All beta 112 414 36 36 2.3
2mhr All alpha 118 352 17 17 2.3
1dz3 Alpha/beta 123 413 22 15 3.4
1mdc All beta 131 474 40 22 2.3
1stm All beta 141 521 68 77 4.1
1mba All alpha 146 530 38 53 2.7
1byr Alpha/beta 152 641 52 42 1.6
4dfr Alpha/beta 159 598 49 49 2.3
3dfr Alpha/beta 162 578 45 65 2.6
1v37 Alpha/beta 171 672 60 58 2.3
1dgw All beta 178 617 65 52 3.9
1fvk Alpha/beta 188 664 58 36 2.0
1o7n All beta 193 622 77 85 3.7
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Protein length
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M
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(Å

)

Small protein
All alpha
All beta
Alpha/beta

FIG. 7. rmsd of structures recovered from complete native contact maps to
native structures for 20 proteins of different classes with length of 50–200.
X axis is the protein length, Y-axis is the rmsd value of generated confor-
mation that best fit the contact map to the native structure measured in Å.

FIG. 8. Comparison of the experimental �-values and calculated �-values
of the generated TSE of 1nvl. The filled circles represent the experimental
�-values, empty circles represent the calculated �-values of the generated
TSE.
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tance constraints. The conformations generated by this
method can also be used as the initial conformations for fur-
ther refinement.9–12

In this study, a discrete model for protein structures was
used for simplicity, at the price of model accuracy.22 We
expect further improvement by extending our model to con-
tinuous space, with additional steps of local move refine-
ment, as demonstrated in Refs. 14 and 49.
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