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Quantile momentum
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A stock portfolio based on momentum strategies buys
stocks that have recently performed well and sells (or shorts)
stocks that have recently performed poorly. The most com-
monly used measure of past performance (momentum) of a
stock is its average return over the previous 2 to 12 months.
In this paper, we propose a different set of measures of past
performance based on the quantiles of past returns and in-
vestigate the performance of momentum portfolios based on
such measures. We also introduce a robust version of the pro-
posed quantile momentum by locally smoothing data before
ranking. It is shown that the portfolios under these proposed
alternative momentum measures can have very different re-
turns from one another, as well as from the standard portfo-
lio based on the average. We also consider the correlations of
portfolio returns between the alternative strategies and their
combinations. A well known feature of momentum portfo-
lios is that they carry incidental β exposures depending on
whether the market has been rising or falling. A practical
matter for portfolio managers is the extent to which mo-
mentum can be improved by neutralizing the incidental β
exposures. We investigate how the various definitions of mo-
mentum are likely to affect the incidental β exposures in long
and short momentum portfolios.

Keywords and phrases: Momentum strategies, Beta-
sensitive Portfolio, Sharpe ratio, Quantile Momentum, Price
inefficiency.

1. INTRODUCTION

It has been widely documented that stock prices ex-
hibit momentum behavior. Stock momentum is loosely
defined as the observed behavior that a stock that has
performed well recently tends to continue to perform
well and a stock that has performed poorly recently
tends to continue to perform poorly. To gain excess
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return based on the momentum behavior, a momen-
tum strategy ranks the stocks according to their recent
performance and forms a portfolio that longs the top
ranked stocks and shorts the bottom ranked stocks (Levy
1967, Jegadeesh and Titman 1993, Jegadeesh and Titman
2001, Fama and French 1996, Moskowitz and Grinblatt
1999, Lewellen 2002, George and Hwang 2004,
Rachev, Jašić, Stoyanov, and Fabozzi 2007). The ex-
cess return of such strategies has been documented and
extensively investigated. It has been recognized that, after
discounting the incidental exposure due to confounding
risk factors such as size or value of the stock, momentum is
important and non-negligible.

Momentum was noted in academia as early as Levy
(1967) and celebrated in the form of a relative strength
indicator by equity traders for a long time. It is differ-
ent from long-term (three to five-year) or short-term (one
week or month) market over-reaction and mean-reversion,
where stock returns in the future are observed to be
negatively correlated with that in the immediate past
(Poterba and Summers 1988, Jegadeesh 1990, Lehmann
1990, Lo and MacKinlay 1990). A mean-reversion or con-
trarian strategy would buy the stocks that performed poorly
in the immediate past and sell the stocks that performed well
in the immediate past. The holding period and evaluation
period of the past are usually of the same length. Momen-
tum strategies buy the stocks that performed well in the
past for a period of intermediate length (say one year), but
the holding period is often short (say one month).

Jegadeesh and Titman (1993) used average returns in a
look-back window as a measure of momentum and formed
decile portfolios as well as a zero-cost momentum strategy
that buys the stocks in top deciles and sells those in the bot-
tom deciles. Based on the performance of different variations
of the strategy, including different length of the look-back
window and the length of holding periods, they found that
momentum portfolios consistently produce positive returns.

To explain the source of momentum profits, Jegadeesh
and Titman (1993) proposed two models. The first is a sim-
ple one-factor model requiring instantaneous stock exposure
to the factor. Under this model, three possible sources of mo-
mentum returns are identified: (i) cross-sectional dispersion
of expected returns, (ii) serial correlation of idiosyncratic
returns, and (iii) exposure to factor returns. For example,
if factor returns are positively correlated with momentum
then momentum portfolios will tend to pick up stocks with
large betas. An alternative assumption is to allow lagged
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response to market movements, such as lead-lag relation-
ship (Lo and MacKinlay 1990). By examining the betas,
market capitalization, serial correlation of market returns or
market model residuals, and the regression coefficient of mo-
mentum returns on squared factor returns, Jegadeesh and
Titman (1993) argued that idiosyncratic return is the most
probable source of momentum profits. The conclusion im-
plies market under-reaction to firm-specific news.

Fama and French (1996) also considered momentum.
They confirmed the findings of Jegadeesh and Titman
(1993) by forming decile portfolios based on performance
from the previous 12 to 2 months. Although their three-
factor model of size and value captures most of the CAPM
average-return anomalies, it misses momentum. Moskowitz
and Grinblatt (1999) argued that most of the momentum
profits comes from momentum behavior on the industry
level. Lewellen (2002) found that size and value portfolios
exhibit momentum as strong as that in individual stocks
and industries, and attributed momentum to excess stock
covariance.

A key component in constructing a momentum portfolio
is the momentum measure (MoM). It serves as a quantita-
tive measure of the recent performance of the stocks and is
used to rank the stocks. In most of the previous studies, the
average monthly return in a look-back window is used for
MoM. We denote it as MoM(Mean). The most commonly
used look-back window is from t-12 to t-2. The most recent
month is often excluded on account of short-term reversal,
see Jegadeesh and Titman (1993).

Other MoMs have been proposed. George and Hwang
(2004) considered momentum returns based on the dif-
ference between the 52-week high and the current price
of a stock. Ranking stocks on this difference and form-
ing corresponding decile portfolios, they found momen-
tum returns comparable with Jegadeesh and Titman (1993)
and Moskowitz and Grinblatt (1999). Recently, Rachev,
Jašić, Stoyanov and Fabozzi (2007) proposed ranking the
stocks using risk-adjusted performance measures such as the
Sharpe Ratio, STARR ratio and R-ratio. They found that
the portfolios based such MoMs outperform the benchmark
using MoM(Mean) in most situations.

The results of George and Hwang (2004) and Rachev,
Jašić, Stoyanov, and Fabozzi (2007) show that different mea-
sures of momentum produce different profitability and hence
there may be alternative mechanisms driving momentum.
For example, momentum profits may be partially due to
trader’s under-reaction to firm-specific news (Jegadeesh and
Titman, 1993). Alternatively there may be reluctance to
change prices when the price is close to its 52-week high,
as observed by George and Hwang (2004). However, there
are no clear indications of a universal cause.

In this paper, we investigate a new set of MoMs and study
the performance of momentum portfolios based on these
MoMs. Specifically we introduce quantile MoMs, which are
based on the quantiles of the returns in a look-back win-
dow. These MoMs produce rankings that are usually very

different than the one based on average returns. For exam-
ple, MoM(Max) measures the recent performance of a stock
by its maximum monthly return in the look-back window. A
momentum portfolio based on MoM(Max) buys the stocks
with the highest single month return in the look-back win-
dow and shorts the stocks whose highest single month return
is the smallest. Such a portfolio aggressively seeks stocks
that have had large single month gains in the past. These
stocks may not be ranked highly under a measure based on
average returns.

The rest of the paper is organized as follows. Section 2
formally introduces quantile momentum, discusses its prop-
erties and provides some perspectives under a simple CAPM
model. A more robust version of the quantile momentum is
also introduced. Empirical evidence is presented in section
3, with detailed consideration of the tuning parameters and
the correlations between the returns generated by the alter-
native strategies. Section 4 concludes the paper with a brief
summary.

2. QUANTILE MOMENTUM

2.1 Definition

We construct a quantile MoM as follows: Let
ri,t−1, . . . , ri,t−d be the (monthly) return of the i-th stock
in the previous d months (the look-back window). Define
MoM(Qθ) as

MoM(Qθ)i,t = Qθ(ri,t−2, . . . , ri,t−d),

the θ-th quantile of rt−2, . . . , rt−d. Here we omit rt−1 in the
definition to avoid the well documented reversal effect.

A long MoM(Qθ) momentum portfolio is constructed by
ranking the stocks according to MoM(Qθ) and buying the
top p percent of the top ranked stocks. A short MoM(Qθ)
momentum portfolio sells the bottom p percent of the stocks.
A long-short portfolio merges the two portfolios with equal
weights.

Two particularly interesting and more intuitively under-
standable quantile MoMs are MoM(Max) and MoM(Min),
corresponding to θ = 1 and θ = 0. MoM(Max) ranks the
stocks according to their best single month return in the
look-back window. Hence a short MoM(Max) portfolio effec-
tively adopts a minimax strategy. It shorts the stocks with
smallest maximum single month returns in the look-back
window. These stocks tend to be the ones with consistent
poor performance and small volatility. On the other hand,
a long MoM(Min) portfolio is maximin, buying the stocks
with largest minimum single month returns. Hence it is a
conservative and defensive strategy, picking the stocks that
were good in the worst cases. The long MoM(Max) portfolio
is super aggressive in that it buys the stocks that have had
large single month returns. The short MoM(Min) portfo-
lio is also aggressive, shorting stocks with the largest single
month loss.
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2.2 Incidental beta exposure

A well known feature of momentum portfolios is that they
carry incidental β exposure depending on whether the mar-
ket has been rising or falling. In rising markets, high β stocks
tend to do better than low β stocks. So if within the look-
back window the market was rising, the long-short momen-
tum portfolios based on the standard momentum definition
would have positive β. Conversely, in falling markets mo-
mentum portfolio will tend to have negative β. A practi-
cal issue for portfolio managers is the extent to which mo-
mentum can be improved by neutralizing these incidental
β exposures. In the following, we consider the incidental β
exposures of quantile momentum portfolios.

Similar to Jegadeesh and Titman (1993), we use a one
factor model to analyze momentum portfolios. Assume for
stock i, the return ri,t follows the one factor CAPM model

(1) ri,t = αi + βi(Mt − rf ) + ei,t

where Mt is the market return at time t, assumed constant
to all stocks. rf is the risk-free rate.

We first consider the long-short portfolio under
MoM(Max). When there is at least one large positive mar-
ket return Mt−s in the look-back window, the top ranked
stocks ranked by MoM(Max) will tend to be those with the
largest β. Conversely, the bottom ranked stocks are those
with the smallest β. Hence MoM(Max) ranking tends to be
similar to the β ranking. A long-short MoM(Max) portfo-
lio will have positive beta exposure and perform well when
the market return continues to be positive. In contrast, the
MoM(Mean) portfolio will be comparatively less β sensitive
because it depends on the average of the market returns,
which can be small even when there is one very large single
month positive market return in the look-back window. Note
that during the past 58 years there have been no cases that
S&P500 had negative returns for 11 consecutive months and
80% of the time the maximum single month market return
within a 11 month period is larger than 4%. Hence most
of the time the MoM(Max) portfolio carries a strong posi-
tive incidental beta exposure. On the other hand, there have
been only 35% of the time when the average return is larger
than 1.2% (4%/

√
11), during which MoM(Mean) portfolio

carries a strong positive incidental beta exposure.
In flat and small volatility market periods when mar-

ket returns in the look-back window are all around
zero, the MoM(Max) will be β neutral and be in-
fluenced mainly by αi + max(ei,t−2, . . . , ei,t−d). In this
case, MoM(Mean) is β neutral and ranks the stocks ap-
proximately by αi + mean(ei,t−2, . . . , ei,t−d). It is clear
that max(ei,t−2, . . . , ei,t−d) from MoM(Max) masks the α
ranking more severely than mean(ei,t−2, . . . , ei,t−d) from
MoM(Mean). Hence MoM(Mean) tends to reflect the alpha
ranking stronger than MoM(Max). Again, in the past 58
years there are less than 20% of the times when the maxi-
mum market return is less than 4% within a 11 month pe-
riod, but 55% of the times when the absolute average return

Table 1. Alpha and beta sensitivity of quantile momentum
portfolio

Market Condition

MoM(Max) L S

Top large β large α
Bottom small β small α
Top-Bottom β > 0 β ≈ 0, α > 0

MoM(Min) l s

Top small β large α
Bottom large β small α
Top-Bottom β < 0 β ≈ 0, α > 0

MoM(mean) + · −
Top large β large α small β
Bottom small β small α large β
Top-Bottom β > 0 β ≈ 0, α > 0 β < 0

Alpha and beta sensitivity characteristics of the top and bottom
decile portfolios and long-short portfolios at various market con-
ditions in the look-back window, including market with at least
one large positive return (L), flat market with a small maximum
market return (S), market with at least one large magnitude neg-
ative return (l), flat market with a small magnitude minimum
negative market return (s), large average market return (+), flat
market with small absolute average market return (·), large mag-
nitude negative average market return (−).

is less than 1.2% (4%/
√

11). Hence MoM(Mean) portfolio is
more often to have a strong incidental alpha exposure.

In a declining market when there is at least one monthly
market return that is positive and near zero, the MoM(Max)
portfolio remains α sensitive and β neutral. In contrast
MoM(Mean) will tend to buy stocks with small β and short
stocks with large β, hence having a negative beta exposure.
This happened about 8% of the time in the past 58 years.

Similar arguments hold for MoM(Min) portfolios and
mixed MoM(Min) and MoM(Max) portfolios. Table 1 sum-
marizes the relationship between incidental beta as a func-
tion of recent market performance for the various momen-
tum measures. We also report the frequency of each mar-
ket condition observed in the past 58 years (from January
1950 to September 2008) in Table 2 for reference. There are
several interesting observations from reading the two tables
jointly. For example, there are 36% of the time the market
is in the condition of “L · l”. This is a volatile condition in
which the maximum single month market return is over 4%
and the minimum return is less than −4%. However, the
average return is between −1.2% and 1.2%. In this market,
the portfolio based on MoM(Max) has positive β exposure,
that based on MoM(Min) has negative β exposure, and that
based on Mom(Mean) is β neutral. We also observe that
there are 17% of the time the market in the condition of
L + s, in which the MoM(Max) and MoM(mean) portfolios
have positive beta exposures while the MoM(Min) portfolio
is beta neutral and alpha sensitive. Such properties suggest
adaptive strategies in choosing different momentum portfo-
lios in different market conditions.
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Table 2. Frequency of market conditions from January 1950
to September 2008 using monthly S&P 500 returns

Mean Total
Max Min − · +

L
l 0.0719 0.3669 0.1741 0.6129
s 0 0.0576 0.1698 0.2274

S
l 0.0058 0.0576 0 0.0634
s 0 0.0863 0.0101 0.0964

Total 0.0777 0.5684 0.3540 1
Frequency of market conditions from January 1950 to Septem-
ber 2008 using monthly S&P 500 returns. Conditions include
maximum market return in a 11-month look-back window larger
than 4% (L), less than 4% (S), minimum market return less than
−4% (l), larger than −4% (s), average market return larger than
1.2% = 4%/

√
11 (+), less than −1.2% (−) and in between (·).

2.3 Locally smoothed quantiles

Quantile estimators with a small number of observations
can be sensitive to outliers such as one-time event, short-
lived rumors and other short term shocks. Its impact can
also be seen from a comparison between MoM(Max) and
MoM(Mean) under flat market conditions. In this case,
both MoMs reflect the α ranking. However, MoM(Mean)
estimates αi more accurately as the noises ei,t−d are aver-
aged. On the other hand, the difference between MoM(Max)
and αi is max(ei,t−2, . . . , ei,t−d) hence MoM(Max) tends
to choose the stocks with large volatility. To reduce this
problem while preserving the good properties of quantile
MoMs, we propose locally smoothed quantiles. Specifically,
let r∗i,t = k−1

∑k−1
s=0 ri,t−s be the smoothed return series with

smoothing window size k. For k < d, define

MoM(SQθ)i,t = Qθ(r∗i,t−2, . . . , r
∗
i,t−d+k−1)

Note that when k = d − 1, MoM(SQθ) reduces
to MoM(Mean) with look-back window size d. Hence
MoM(SQθ) with large k tends to perform similar to
MoM(Mean). When k = 1, MoM(SQθ) is the same as
MoM(Qθ).

3. EMPIRICAL PERFORMANCES

3.1 Data and trading strategies

We consider all stocks in CRSP with monthly returns.
The sample period is January 1980 to December 2006. To
be included in the universe at time t, a stock should have a
return for t−2 and a price for the end of t−13 and any miss-
ing values from t−12 to t−3 should only be due to missing
prices. To be included into a decile portfolio, a stock must
also have a market equity at the end of t−1. We form decile
portfolios using various MoMs. Traditionally decile portfo-
lios are constructed by grouping the ranked stocks into ten
slices of equal size, using order statistics as the breakpoints.
However, previous research such as (Fama and French 1996)

first determine the breakpoints using the order statistics
within NYSE stock universe, then group all stocks in the
CRSP universe into ten decile portfolios according to the
NYSE breakpoints. Hence the deciles are not necessarily of
equal size. To make our results comparable, we follow such
a convention.

We use MoM(Mean) based on a look-back window from
t − 2 to t − 12 as our benchmark. Conventional momentum
strategy uses MoM(Mean) to rank the stocks and form a
momentum portfolio by buying the stocks in top decile and
shorting/selling those in the bottom decile. For comparison,
we also consider the risk-compensated MoM based on the
Sharpe Ratio, denoted as MoM(SR).

In this study, we consider MoM(SQθ) with five different
θ’s, corresponding to θ = 0, 0.25, 0.5, 0.75 and 1, labelled
as MoM(SMin), MoM(SQ.25), MoM(SQ.50), MoM(SQ.75)
and MoM(SMax), respectively. We also consider smooth-
ing window size k from 1 to 7. In particular, when k = 1,
MoM(SQθ) is the original MoM(Qθ). They are labelled
as MoM(Min), MoM(Q.25), MoM(Q.50), MoM(Q.75) and
MoM(Max), respectively. To obtain a clearer picture of
the portfolio behavior, we separate the top decile and
bottom decile portfolios. For long-short portfolio, we long
the top decile portfolio and short the bottom decile port-
folio with equal weights. In addition, we also consider
equally weighted and value-weighted portfolios where the
selected stocks in the portfolios are given equal weights
or weighted by their corresponding market values, respec-
tively.

3.2 Performances

We evaluate the performance of the portfolios using the
annualized average monthly return, return variation and
Sharpe Ratio, with portfolios rebalanced at the beginning
of each month.

3.2.1. Impact of the smoothing window size

Figure 1 shows the annualized average portfolio returns
of long-short portfolios under various MoMs and smoothing
window size. It shows that the window size k is indeed an
important factor.

For the value-weighted portfolios in Figure 1(a) and 1(e),
we observe that the MoM(SQ.25) portfolio performs the
best with k between 3 and 6, and outperforms those us-
ing MoM(Mean) and MoM(SR). The best performance is
achieved by MoM(SQ.25) when k = 4. MoM(SMin) exhibits
sub-optimal performance for small smoothing window size
but superior to MoM(SQ.25) when k = 7.

For equally weighted portfolios shown in Figure 1(b)
and 1(f), the MoM(SQ.25) portfolio continues to outperform
those of MoM(Mean) and other MoMs for k from 2 to 5 ex-
cept MoM(SR).

We also observe that the equally weighted long-short mo-
mentum portfolio MoM(SR) outperforms all others on both
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(a) Annualized Return versus Smoothing Window Size
(VW)

(b) Annualized Return versus Smoothing Window Size
(EW)

(c) Annualized Volatility versus Smoothing Window
Size (VW)

(d) Annualized Volatility versus Smoothing Window
Size (EW)

(e) Sharpe Ratio versus Smoothing Window Size (VW) (f) Sharpe Ratio versus Smoothing Window Size (EW)

Figure 1. Plot of annualized return, volatility, and Sharpe Ratio versus smoothing window size (k) for different smooth
quantile momentum long-short value-weighted (VW) portfolios and equally weighted (EV) portfolios.

average return and Sharpe Ratio. It indicates that the risk-
compensated MoM works better for small stocks. This is
also supported by the MoM(SQ.50) portfolio that has sec-
ond largest Sharpe Ratio for k = 4 and k = 5. Note that
this is different from Rachev, Jašić, Stoyanov and Fabozzi
(2007). They found that for equally weighted long-short mo-
mentum portfolio, MoM(SR) underperforms MoM(Mean).

Possible reasons for the discrepancy may be multi-fold, in-
cluding the differences in sample frequency, look-back win-
dow, and holding duration.

For clear presentation, in the following we use k = 1 and
k = 4 in all MoM(SQθ) constructions, respectively. Results
based on other smoothing window sizes are available upon
request.
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Table 3. Annualized performances of quantile momentum portfolios

Weight Portfolio Statistics MoM(Mean) MoM(SR) MoM(Max) MoM(Q.75) MoM(Q.50) MoM(Q.25) MoM(Min) MaxMin MinMax 75/25 25/75

return 18.81% 18.94% 11.30% 16.09% 17.15% 17.26% 16.54% – – – –
T volatility 22.20% 17.98% 26.58% 25.72% 20.61% 16.36% 13.52% – – – –

SharpeR 0.622 0.775 0.237 0.431 0.590 0.749 0.854 – – – –
return 4.09% 6.36% 14.93% 9.98% 5.65% 3.53% 7.11% – – – –

VW B volatility 23.70% 19.95% 11.90% 16.08% 22.93% 26.67% 26.66% – – – –
SharpeR −0.039 0.068 0.834 0.310 0.028 −0.055 0.079 – – – –
return 14.73% 12.58% −3.62% 6.11% 11.51% 13.73% 9.42% 4.19% 1.61% 12.57% 7.28%

T-B volatility 22.32% 20.54% 23.25% 21.10% 19.18% 21.39% 22.22% 10.28% 11.08% 13.25% 16.57%
SharpeR 0.436 0.369 −0.371 0.053 0.339 0.408 0.199 −0.079 −0.306 0.571 0.138

return 22.77% 24.12% 17.07% 17.96% 22.20% 19.72% 16.84% – – – –
T volatility 23.32% 17.20% 26.91% 25.77% 22.09% 13.85% 9.24% – – – –

SharpeR 0.762 1.111 0.449 0.503 0.778 1.063 1.281 – – – –
return 11.97% 11.18% 13.06% 14.77% 11.53% 12.38% 13.48% – – – –

EW B volatility 28.10% 24.84% 10.00% 19.48% 28.69% 29.93% 29.63% – – – –
SharpeR 0.248 0.249 0.806 0.502 0.228 0.246 0.286 – – – –
return 10.80% 12.93% 4.01% 3.19% 10.66% 7.34% 3.36% 3.59% 3.78% 5.58% 4.95%

T-B volatility 18.33% 21.01% 21.32% 14.45% 18.58% 23.68% 25.63% 6.07% 5.92% 10.67% 16.29%
SharpeR 0.316 0.378 −0.046 −0.125 0.305 0.099 −0.064 −0.232 −0.205 0.055 −0.003

Annualized return, volatility, and Sharpe Ratio of equally weighted (EW) and value-weighted (VW) top (T) and bottom (B) decile
portfolios by different momentum measures (MoM) and long-short momentum portfolios of buying the top decile portfolio and
short the bottom portfolio of the same MoM (T-B) and combination of different MoMs, including MaxMin that buys the top decide
based on MoM(Max) and shorts the bottom decile based on MoM(Min), MinMax that buys the top decile based on MoM(Min)
and shorts the bottom decile based on MoM(Max), 75/25 that buys the top of decile based on MoM(Q.75) and shorts the bottom
decile of MoM(Q.25), and 25/75 that buys the top decile based on MoM(Q.25) and shorts the bottom decile based on MoM(Q.75).
The sample is monthly CRSP universal stocks from January 1980 to December 2006. The look-back period is from t-12 and t-2
and portfolios are rebalanced every month. NYSE breakpoints are employed to form the decile portfolios. To calculate the Sharpe
Ratio, the risk-free rate is assumed to be 5% per year.

Table 4. Correlations of long-short quantile momentum portfolios

Weight Variable MoM(Mean) MoM(SR) MoM(Max) MoM(Q.75) MoM(Q.50) MoM(Q.25) MoM(Min)

VW

MoM(Mean) 1.000 0.910 0.355 0.614 0.921 0.596 0.242
MoM(SR) 0.910 1.000 0.240 0.504 0.903 0.682 0.360
MoM(Max) 0.355 0.240 1.000 0.834 0.213 −0.409 −0.686
MoM(Q.75) 0.614 0.504 0.834 1.000 0.502 −0.133 −0.489
MoM(Q.50) 0.921 0.903 0.213 0.502 1.000 0.681 0.336
MoM(Q.25) 0.596 0.682 −0.409 −0.133 0.681 1.000 0.806
MoM(Min) 0.242 0.360 −0.686 −0.489 0.336 0.806 1.000

EW

MoM(Mean) 1.000 0.927 −0.106 0.621 0.936 0.666 0.464
MoM(SR) 0.927 1.000 −0.316 0.417 0.932 0.798 0.638
MoM(Max) −0.106 −0.316 1.000 0.664 −0.338 −0.774 −0.907
MoM(Q.75) 0.621 0.417 0.664 1.000 0.420 −0.109 −0.352
MoM(Q.50) 0.936 0.932 −0.338 0.420 1.000 0.826 0.650
MoM(Q.25) 0.666 0.798 −0.774 −0.109 0.826 1.000 0.948
MoM(Min) 0.464 0.638 −0.907 −0.352 0.650 0.948 1.000

Coefficients of correlation among different Long-Short momentum portfolios (T-B in Table 3), under both equally weighted (EW)
and value-weighted (VW) cases. Almost all correlations significantly differ from zero at 1%.

3.2.2. Performance and correlation of MoM(Qθ)

We report annualized return, volatility, and Sharpe Ra-
tios for the top and bottom decile portfolios and the long-
short portfolios in Table 3. We observe that the MoM(SR)
top decile portfolio outperforms that of MoM(Mean) in both
value-weighted and equally weighted portfolios by 13 bps
and 135 bps in average return, respectively. On the other

hand, risk-compensation improves the return of the value-
weighted bottom decile by 227 bps over that of MoM(Mean)
but is worse by 79 bps in the equally weighted portfo-
lios. Consequently, MoM(SR) improves the return of the
equally weighted long-short portfolio by 213 bps over that
of MoM(Mean), but is worse by 215 bps in value-weighted
portfolios.
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(a) MoM(Max) and MoM(Min) (VW) (b) MoM(Max) and MoM(Min) (EW)

(c) MoM(Q.75) and MoM(Q.25) (VW) (d) MoM(Q.75) and MoM(Q.25) (EW)

(e) MoM(SR) and MoM(Q.50) (VW) (f) MoM(SR) and MoM(Q.50) (EW)

Figure 2. Plot of 36 months moving median return series of long-short momentum portfolios.

Table 3 shows that MoM(Qθ) tends to have smaller re-
turns for the top decile portfolio but larger returns for the
bottom decile portfolio than MoM(Mean). However, we note
that MoM(Q.25) is the best among MoM(Qθ) for a value-
weighted portfolio and MoM(Q.50) is the best for an equally
weighted portfolio. This indicates that momentum portfo-
lios based on small θ may capture momentum information
better for value-weighted portfolios.

Table 4 reports coefficients of correlation among the
returns of long-short portfolios of different MoM(Qθ)
and the benchmarks. The different β characteristics of
MoM(Max) and MoM(Min) are well captured by their sig-
nificant negative correlations −0.907 and −0.686 for equally
weighted and value-weighted portfolios, respectively. Sim-
ilarly, MoM(Q.25) and MoM(Q.75) also have significant
but small negative correlations. The long-short portfolio of
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(a) MoM(Max) versus MoM(Min) (VW) (b) MoM(Max) versus MoM(Min) (EW)

(c) MoM(Q.75) versus MoM(Q.25) (VW) (d) MoM(Q.75) versus MoM(Q.25) (EW)

(e) MoM(SR) versus MoM(Q.50) (VW) (f) MoM(SR) versus MoM(Q.50) (EW)

Figure 3. Scatter plots of selected return series of long-short quantile momentum portfolios.

MoM(Mean) has high correlations with those of MoM(SR)
and MoM(Q.50) (that is, 0.910 and 0.921 for value-weighted
portfolios and 0.927 and 0.936 for equally weighted portfo-
lios), but small correlations with other MoM(Qθ) portfolios.

We also plot the relationship of long-short momen-
tum portfolios using different MoMs in Figures 2 and 3.
Smoothed returns series in Figure 2 shows clear neg-
ative correlations between MoM(Max) and MoM(Min).
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Table 5.

Weight Portfolio Statistics MoM(Mean) MoM(SR) MoM(Max) MoM(Q.75) MoM(Q.50) MoM(Q.25) MoM(Min) MaxMin MinMax 75/25 25/75

return 18.81% 18.94% 15.78% 16.82% 19.18% 19.91% 18.84% – – – –
T Volatility 22.20% 17.98% 25.77% 24.15% 22.19% 19.52% 17.89% – – – –

SharpeR 0.622 0.775 0.418 0.489 0.639 0.764 0.774 – – – –
return 4.09% 6.36% 10.76% 8.62% 5.21% 3.38% 3.98% – – – –

VW B volatility 23.70% 19.95% 17.33% 19.03% 22.36% 25.29% 26.03% – – – –
SharpeR −0.039 0.068 0.332 0.190 0.010 −0.064 −0.039 – – – –
return 14.73% 12.58% 5.02% 8.19% 13.97% 16.53% 14.86% 11.79% 8.08% 13.43% 11.29%

T-B volatility 22.32% 20.54% 21.98% 20.37% 19.65% 21.08% 21.45% 15.76% 19.15% 18.48% 19.84%
SharpeR 0.436 0.369 0.001 0.157 0.456 0.547 0.460 0.431 0.161 0.456 0.317

return 22.77% 24.12% 18.68% 19.98% 22.40% 22.65% 22.14% – – – –
T volatility 23.32% 17.20% 25.30% 24.16% 22.54% 19.82% 17.15% – – – –

SharpeR 0.762 1.111 0.541 0.620 0.772 0.891 1.000 – – – –
return 11.97% 11.18% 13.42% 12.25% 11.51% 11.31% 11.93% – – – –

EW B volatility 28.10% 24.84% 21.23% 25.12% 27.99% 29.33% 29.79% – – – –
SharpeR 0.248 0.249 0.397 0.288 0.233 0.215 0.233 – – – –
return 10.80% 12.93% 5.25% 7.73% 10.89% 11.35% 10.21% 6.75% 8.71% 8.67% 10.41%

T-B volatility 18.33% 21.01% 14.72% 15.27% 17.39% 20.75% 22.63% 11.64% 18.27% 14.44% 19.50%
SharpeR 0.316 0.378 0.017 0.179 0.339 0.306 0.230 0.150 0.203 0.254 0.277

Similar to Table 3, except all quantile MoMs are calculated using smoothed quantiles.

Table 6. Correlations of long-short smoothed quantile momentum portfolios (k = 4)

Weight Variable MoM(Mean) MoM(SR) MoM(Max) MoM(Q.75) MoM(Q.50) MoM(Q.25) MoM(Min)

VW

MoM(Mean) 1.000 0.910 0.685 0.835 0.915 0.833 0.717
MoM(SR) 0.910 1.000 0.592 0.754 0.867 0.856 0.778
MoM(Max) 0.685 0.592 1.000 0.907 0.694 0.380 0.165
MoM(SQ.75) 0.835 0.754 0.907 1.000 0.858 0.595 0.409
MoM(SQ.50) 0.915 0.867 0.694 0.858 1.000 0.864 0.720
MoM(SQ.25) 0.833 0.856 0.380 0.595 0.864 1.000 0.921
MoM(Min) 0.717 0.778 0.165 0.409 0.720 0.921 1.000

EW

MoM(Mean) 1.000 0.927 0.704 0.917 0.955 0.893 0.804
MoM(SR) 0.927 1.000 0.513 0.801 0.923 0.924 0.885
MoM(Max) 0.704 0.513 1.000 0.878 0.626 0.383 0.204
MoM(SQ.75) 0.917 0.801 0.878 1.000 0.904 0.740 0.602
MoM(SQ.50) 0.955 0.923 0.626 0.904 1.000 0.940 0.859
MoM(SQ.25) 0.893 0.924 0.383 0.740 0.940 1.000 0.972
MoM(Min) 0.804 0.885 0.204 0.602 0.859 0.972 1.000

Similar to Table 4, except all quantile MoMs are calculated using smoothed quantiles. All correlations significantly differ from zero
at 1%.

Scatter plots and straight line fits for selected re-
turn series are shown in Figure 3. We find that
MoM(Max) and MoM(Min) have a negative linear rela-
tionship and MoM(Q.25) and MoM(Mean) have a pos-
itive linear relationship. As indicated by the coeffi-
cient of correlation, the relationship between MoM(Q.75)
and MoM(Q.25) tends to be negative but insignifi-
cant.

Negative correlation of quantile momentum portfolios be-
tween left and right tails suggests ways of hedging and per-
formance optimization. In Table 3, we also report the per-
formance of mixed long-short portfolios that long the top
decile of one MoM measure and short the bottom decile of

another measure. We note that 75/25 has the highest Sharpe
Ratio 0.571 versus 0.436 of the long-short MoM(Mean) for
value-weighted portfolios.

3.2.3. Performance and correlation of MoM(SQθ) (k = 4)

We report similar statistics for the smoothed versions
of long-short momentum portfolios, MoM(SQθ) (k = 4)
in Tables 5 and 6. First we note that the most prof-
itable quantile momentum strategy MoM(SQ.25) outper-
forms the MoM(Mean) by 180 bps for value-weighted port-
folios and 55 bps for equally weighted ones. MoM(SQ.25)
has a larger Sharpe Ratio than MoM(Mean) by 0.111 for
value-weighted portfolios but slightly smaller for the equally

Quantile momentum 251



(a) MoM(SMax) and MoM(SMin) (VW) (b) MoM(SMax) and MoM(SMin) (EW)

(c) MoM(SQ.75) and MoM(SQ.25) (VW) (d) MoM(SQ.75) and MoM(SQ.25) (EW)

(e) MoM(Mean) and MoM(SQ.25) (VW) (f) MoM(Mean) and MoM(SQ.25) (EW)

Figure 4. Plot of 36 months moving median return series of long-short smooth quantile momentum portfolios (k = 4).

weighted ones. This shows that smoothed quantile mo-
mentum strategies improve the performances of momentum
portfolios.

Table 6 shows that smoothing also removes the neg-
ative correlation that was seen between MoM(Max) and
MoM(Min). One possible reason is that the distribution
of returns in the look-back window shrinks toward the

mean after smoothing. Consequently, the correlation be-
tween MoM(SMax) and MoM(SMin) increases as both are
more correlated with MoM(Mean). The change of this struc-
ture is also confirmed by Figures 4 and 5.

Furthermore, MoM(SQ.25) (k = 4) is approximately beta
neutral compared with MoM(Q.25). MoM(SQ.25) (k = 4) is
the best on average with less β-sensitivity.
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(a) MoM(SMax) versus MoM(SMin) (VW) (b) MoM(SMax) versus MoM(SMin) (EW)

(c) MoM(SQ.75) versus MoM(SQ.25) (VW) (d) MoM(SQ.75) versus MoM(SQ.25) (EW)

(e) MoM(Mean) versus MoM(SQ.25) (VW) (f) MoM(Mean) versus MoM(SQ.25) (EW)

Figure 5. Scatter plots of selected return series of long-short quantile momentum portfolios (k = 4).

4. CONCLUSION

In this paper, we introduce a new set of momentum
measures based on quantile and locally smoothed quan-
tile estimates. The distribution of recent returns contains

more information than the simple average and can lead
to alternative measures of momentum. The properties of
the proposed quantile MoMs are discussed under a simple
one-factor CAPM model. It is shown that MoM(Max) and
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MoM(Min) are more β dependent than the usual average
measure. We also propose a smoothed version of quantile
momentum MoM(SQθ), which tends to be less beta depen-
dent. Empirical performance based on the alternative MoMs
is presented. We find that some of the MoM(SQθ) portfo-
lios outperform the MoM(Mean) for both equally weighted
portfolios and value-weighted portfolios. The best long-short
portfolio is MoM(SQ.25) with a smoothing window size 4.
Our findings call for additional theoretical work to explain
the momentum anomaly. The new measures also suggest
new trading strategies for equity traders and fund managers
to exploit the momentum.
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