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\ X Supplementary materials for this article are available at http://pubs.amstat.Org/toc/jcgs/18/3. 

Variable Selection in Linear Regression With 

Many Predictors 

Airong Cai, Ruey S. Tsay, and Rong Chen 

With advanced capability in data collection, applications of linear regression analy 
sis now often involve a large number of predictors. Variable selection thus has become 

an increasingly important issue in building a linear regression model. For a given se 

lection criterion, variable selection is essentially an optimization problem that seeks the 

optimal solution over 2m possible linear regression models, where m is the total number 

of candidate predictors. When m is large, exhaustive search becomes practically impos 
sible. Simple suboptimal procedures such as forward addition, backward elimination, 

and backward-forward stepwise procedure are fast but can easily be trapped in a local 

solution. In this article we propose a relatively simple algorithm for selecting explana 

tory variables in a linear regression for a given variable selection criterion. Although the 

algorithm is still a suboptimal algorithm, it has been shown to perform well in extensive 

empirical study. The main idea of the procedure is to partition the candidate predictors 
into a small number of groups. Working with various combinations of the groups and it 

erating the search through random regrouping, the search space is substantially reduced, 
hence increasing the probability of finding the global optimum. By identifying and col 

lecting "important" variables throughout the iterations, the algorithm finds increasingly 
better models until convergence. The proposed algorithm performs well in simulation 

studies with 60 to 300 predictors. As a by-product of the proposed procedure, we are 

able to study the behavior of variable selection criteria when the number of predictors 
is large. Such a study has not been possible with traditional search algorithms. 

This article has supplementary material online. 

Key Words: Best subset; BIC; Grouping. 

1. INTRODUCTION 

Ever since its first rigorous treatment by Pearson (1896), linear regression has become 
one of the most commonly used statistical techniques and its inferences have been ex 
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tensively studied. In building a linear regression model, variable selection, which is also 

known as subset selection or model selection, is a crucial issue. Irrelevant predictors, if 

included in the model, may lead to erroneous inference and an increase in prediction er 

rors. Interpretation of the fitted model may also become difficult because of the presence of 

"junk" variables. Variable selection or certain dimension reduction methods become a ne 

cessity in the extreme case in which the number of observations TV is less than the number 

of candidate variables m. Due to recent advances in data collection and computing capa 

bility, modern statistical applications often involve a large number of candidate variables, 

making variable selection even more important for the purpose of building an effective 

regression model. 

All variable selection procedures require a selection criterion to start with. Well-known 

variable selection criteria in linear regression analysis include adjusted-R2, AIC (Akaike 
1973, 1974), Schwarz's BIC (Schwarz 1978), Mallows's Cp (Mallows 1973), and PRESS 

(Allen 1971). In addition, considerable efforts have been made by many researchers to 

obtain better criteria, by either modifying the existing ones or creating innovative new 

measures. Examples include Tibshirani and Knight (1999); Pauler (1998); Zheng and Loh 

(1997); Ronchetti and Staudte (1994); Rao and Wu (1989), and Shen and Ye (2002). 
Given a selection criterion, simple variable selection procedures such as forward selec 

tion, backward elimination, and stepwise procedure (Draper and Smith 1998) are available 

for linear regression analysis in many standard statistical software packages. Miller (1990) 

provided details of these procedures. By examining only a small portion of all possible sub 

set models, these procedures are easy and fast. But the selected model is often far from the 

optimal one. On the other hand, exhaustive subset search can always find the optimal model 

under a given criterion, but the complexity involved quickly becomes insurmountable as 

the number of explanatory variables increases. The "leaps and bounds" algorithm (Furnival 
and Wilson 1974) makes use of a regression-tree structure to facilitate faster search for the 

global optimum. Recently the regression-tree approach has also been implemented in the 

"branch-and-bound" algorithm in Gatu and Kontoghiorghes (2006) for best subset search. 

In both cases, the algorithms are still not fast enough when m is large, say m > 50. This dif 

ficulty leads to the development of a variety of advanced suboptimal search algorithms. For 

example, George and McCulloch (1993) proposed a Bayesian variable selection procedure 
via Gibbs sampling. Chatterjee, Laudato, and Lynch (1996) described Genetic Algorithms 
and discussed their applications for variable selection. A recent development of variable 

selection using rate distortion theory can be found in Jornsten (2007). Other examples of 

studying variable selection procedures include Miller and Ribic (1995); Mendieta, Boneh, 
and Walsh (1994); Aeberhard, de Vel, and Coomans (1993); Johnsson (1992); Ferri and 

Piccioni (1992); Mitchell and Beauchamp (1988), and Antoch (1986). 
In this article we propose a simple algorithm for searching the optimal subset of vari 

ables. The main idea of the algorithm is to use a grouping scheme to reduce computational 

complexity of the search. Exhaustive search among all possible combinations at the group 
level is used to identify the important variables. The remaining "less important" variables 

are then divided randomly into groups and the search process is iterated until convergence. 
The proposed algorithm is easy to implement and proved to be more effective than some 

existing search methods in simulation studies and real data analysis. The proposed algo 
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rithm is ad hoc by nature and does not guarantee to find the optimal solution. Our goal 
is to develop a simple algorithm that can find the "optimal" solution more frequently 

and, when it fails, find a better suboptimal solution than the existing methods available 

in the literature, for example, the Genetic Algorithm and simple forward-and-backward 

search. 

It is worth mentioning that we endeavor to develop a new search procedure under a given 
model selection criterion. Therefore, we focus on comparing search capability of the algo 
rithms instead of comparing model selection criteria. For illustrative purpose, Schwarz's 

BIC is used in this article to demonstrate the proposed search procedure. However, no spe 
cific property of BIC is used in the proposed algorithm. Other selection criterion, such as 

AIC or Cp, can be used. We also note that severe collinearity among the predictors often 

results in competing models with nearly equal BIC values. In this article we restrict our 

selves to the problem of finding the "best" model under a selection criterion (e.g., BIC) 
and do not venture into model averaging and other related issues. 

Information criteria such as AIC and BIC penalize the number of variables in a model. 

Recently, penalized least squares approaches have attracted much attention. Examples in 

clude the bridge regression (Frank and Friedman 1993), LASSO (Tibshirani 1996; Zou 

2006), LARS (Efron et al. 2004), SCAD (Antoniadis and Fan 2001), and Dantzig selector 

(Candes and Tao 2007). Some of these approaches enjoy attractive computational effi 

ciency, sparseness solutions as well as oracle properties. More references can be found in 

Donoho (2000) and Fan and Li (2006). Comparison between the information criteria and 

the penalized least squares approaches is beyond the scope of this article, though we will 

demonstrate with an example that such a comparison becomes possible using the proposed 

algorithm. 

The article is organized as follows. In Section 2 we briefly discuss the main idea of 

the proposed algorithm and show that it outperforms the Genetic Algorithm in a simula 

tion study. We then introduce the basic operations used in the proposed algorithm and give 
details of the algorithm. Section 3 conducts a simulation study and provides further com 

parisons of the proposed algorithm with several other procedures. Three nontrivial settings 
are used in the simulation. Section 4 uses the proposed algorithm to investigate perfor 
mance of the BIC criterion in linear regression analysis when the number of predictors is 

large. Such a study was not possible before. A brief comparison between the BIC criterion 

and LASSO is presented in Section 5. It is not a systematic comparison. Our goal is simply 
to demonstrate that the proposed algorithm makes such a comparison feasible when the 

number of candidate variables is large. 

2. A SEARCH ALGORITHM BASED ON GROUPING 

For ease in describing the proposed algorithm, we start with its basic concept and a 

comparison with the Genetic Algorithm. We then introduce two basic operations used in 

the proposed algorithm. Section 2.3 gives details of the proposed algorithm. 

This content downloaded from 128.6.218.72 on Sat, 20 Jun 2015 20:37:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


576 A. Cai, r. S. Tsay, and r. Chen 

2.1 Preliminaries 

2.1.1 The Basic Concept 

As mentioned earlier, it is impossible to carry out the naive exhaustive search among all 

possible regressions when the number of candidate predictors is large. To overcome this 

difficulty, the proposed algorithm divides the predictors into k + 1 nonoverlapping groups 
and performs exhaustive search on the group level. More specifically, given a grouping 
scheme of all explanatory variables, namely Group 0, Group 1,..., Group k, there exist 2k 

possible combinations among Group 1 to Group k at the group level. Each combination of 

the groups is then combined with Group 0 to form a subset of the predictors. This results 

in 2k different regression models with Group 0 being the intersection of all entertained 

models. To each of these 2k models, we apply some simple and fast procedure to obtain 
an improved suboptimal model and its corresponding BIC value. For instance, backward 

elimination can be used to remove one variable at a time until there is no improvement on 

the BIC value. We then order ascendingly the resulting 2k improved suboptimal models 

according to their BIC values and select the best one as the new Group 0. The variables not 

in the new Group 0 are then randomly divided into k new groups (new Group 1,..., new 

Group k), and the search procedure is iterated. Obviously, Group 0 plays an important role 

in the search algorithm as it contains variables tentatively identified as the important ones 

in the regression. The initial Group 0 can be constructed by using either prior information 

or random selection. It is worth mentioning that a variable may leave or reenter Group 0 

throughout the iterations. Whenever a better subset is found during the iterative procedure, 
it is saved as a new Group 0 for the next iteration. The search procedure stops when Group 0 

does not change for a certain number of consecutive iterations. The final Group 0 is the 

selected model. 

Note that the number of groups k should be properly chosen to balance between the 

number of groups and the size of each group. In particular, k should be kept relatively 
small so that it remains feasible to conduct an exhaustive search over the 2k possible com 

binations of groups. The total number of the available candidate explanatory variables does 

not directly affect the exhaustive search even though it influences the sizes of the groups. It 

is desirable to have a small group size. By working at the group level, efficient calculations 

for each group combination enable the proposed algorithm to search quickly over a large 
number of subset models and find the better ones (e.g., with lower BIC values) for further 

analysis. 

2.1.2 A Refinement 

To further improve the performance of the proposed algorithm, we keep q models with 

the smallest BIC values in each iteration to form q candidates of Group 0, instead of simply 

taking the one with the best BIC value. In other words, in each iteration of the search 

procedure, we entertain q grouping schemes. Each grouping scheme has its own Group 0 

and 2k possible subset configurations. In the next iteration a set of q candidates of Group 0 

is again selected, corresponding to the q suboptimal models with smallest BIC values 

among all q x 2k entertained models based on the q grouping schemes. This refinement 
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substantially expands the search space of the procedure. The effects of q and k on the 

performance of the algorithm are investigated and demonstrated in subsequent sections. 

The proposed algorithm is an iterative procedure of grouping variables and applying a 

simple and fast selection procedure to search for an improved suboptimal model given a 

combination of groups. It can have different variants depending on the simple selection 

procedure used. For example, if the forward-backward stepwise procedure is used, then we 

have an algorithm consisting of grouping and backward-forward selection. We denote such 

an algorithm by "GBF." Similarly, we use GBK and GFW throughout this article to denote 

"grouping and backward elimination" and "grouping and forward selection," respectively. 

2.1.3 A Simple Comparison 

Before formally introducing the proposed algorithm, we compare its performance with 

the well-known Genetic Algorithm (GA) in a simulation study. Scenario B of Section 3 

is used to generate 100 datasets, each having 60 explanatory variables and 1000 observa 

tions. Both the proposed algorithm (with backward elimination, i.e., GBK) and the Genetic 

Algorithm (denoted as GA with various settings) are applied to each dataset searching for 

the optimal model that minimizes the BIC value. Based on the minimum BIC values ob 

tained by the procedures for each dataset, we classify an algorithm as a "success" if its BIC 

value is no greater than those of all other algorithms. Finally the total number of successes 

based on 100 datasets is recorded. The algorithm with a higher frequency of successes 

is considered to have higher searching capability (or better performance). In addition, we 

also report the CPU time of each algorithm, observed on a Linux machine equipped with 

Intel(R) Xeon(TM) dual-processors (CPU: 1500 MHz; RAM: 1 GB). 
Table 1 shows the result of comparison. For the Genetic Algorithm, we employ different 

configurations of population size (pop) and number of generations (gen). For reference 

purposes, Table 1 also shows the result of the standard forward-and-backward stepwise 

procedure, denoted by "BF." It is seen from the table that the GBK procedure has the largest 
number of successes and outperforms all GA methods considered. The performance of GA 

improves as the population size increases, but the associated computing time also increases. 

Furthermore, for all of the 100 simulated datasets, GA methods never find a smaller BIC 

value than the proposed GBK algorithm. Surprisingly, the simple BF procedure is very fast 

with comparable performance to the GA methods. 

Table 1. Performance comparison between GBK and GA. The results are based on 100 datasets generated 
under Scenario B in Section 3. The sample size is N = 1000 and the number of predictors is m = 60. 
In the table, GA(k\, ?2) indicates a GA procedure with k\ as the population size and ki as number of 

generations, and GBK(?, q) denotes GBK with k groups and q grouping schemes. 

Procedure GBK(10,6) GA(300,200) GA(500,200) GA(1,000,400) GA(2,000,400) BF 

Number of successes 100 11 22 64 77 53 
CPU (seconds) 636 719 1,237 2,988 5,519 2 
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2.2 The Basic Operations 

In this subsection, we introduce two basic operations that are repeatedly used in the 

proposed algorithm. These operations focus on computational efficiency. 

(1) Simple Variable Selection (SVS): For a set of explanatory variables G and the de 

pendent variable Y, the operation of Simple Variable Selection, SVS(G), is defined 

as applying a simple and efficient variable selection procedure to G to select a linear 

regression model. The selection procedure considered includes backward-forward 

(BF), backward elimination (BK), and forward addition (FW). This operation pro 
duces two outcomes: a selected subset of G and its corresponding BIC value. We 

call the selected subset an "improved set" of G and denote it by ISET. For ease in 

referencing, the corresponding BIC value is denoted by IBIC. 

Some properties of SVS are given below: 

1. Given a set G of explanatory variables, different search procedures may result 

in different ISET and IBIC. For instance, for a given G, backward elimination 

tends to select a larger subset than forward addition does. 

2. Two different sets G\ and G2 of explanatory variables may produce the same 

improved set ISET and thus have the same IBIC value. 

3. SVS(G) does not necessarily produce the optimal subset which has the minimum 

BIC value among all possible subsets of G. The goal of SVS is to perform a quick 
and efficient selection, not to focus on the optimal selection. The improvement 
of model selection is achieved through iterations. 

4. Given a set G and a deterministic search procedure, SVS(G) produces unique 
ISET and IBIC. If a stochastic SVS is used, the unique result is not guaranteed. 

However, this should not have a significant impact on the performance of the 

proposed procedure. 

(2) Regrouping: Given a positive integer k, regrouping of the predictors in G, denoted 

by Rg(G), produces k nonoverlapping and nearly equal sized subgroups of variables 

{Gi,..., Gk) such that U?=i &i The subgroups are obtained by either a ran 

dom process or a set of specific rules. Our experience shows that random grouping 

works well. 

2.3 The Proposed Algorithm 

We now describe the proposed algorithm. Suppose that at the 7th iteration, we have q 

different grouping schemes: 

(Of'1. Gf''.G*'-"}. 
i = l,...,q, 

where q is a prespecified positive integer and the superscript i denotes the ith grouping 

scheme of the m explanatory variables. As mentioned earlier, for each /, group Gq 
^ 

contains variables that are likely to be important in the regression. 
We perform the following steps to complete the jth iteration. 
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1. For each / (/ = 1,..., q), consider all possible subsets gs C {1,..., k} for s = 

1,..., 2k and apply operation SVS to obtain the improved set 

ISET(i,s) =SVs(G(0jJ) (J G{tjJ)J 

and the corresponding improved BIC value IBIC(i, s). 
The total q x 2k possible combinations of (i,s) produce at most q x 2k pos 

sible improved sets ISET and their corresponding IBIC values. We identify the 

q distinct improved sets that have the smallest IBIC values and denote them as 

ISET*,ISET*. Use these selected q improved sets as the new Group 0 for the 

next iteration, namely, 

G</+U) =ISET*, i = l,...,q. 

2. For each / = 1,..., q, obtain the complement set of Gq7+1and perform the re 

grouping operation (Rg) on the complement set to form k random groups, that is, 

{G\j+Ui\G{kj+lJ)}=Rg(X\Gi0j+U)), 
where X denotes the set of all explanatory variables. 

At the completion of each iteration, we check whether there is any improvement on the 

smallest IBIC value from the previous iteration. If an improvement is found, we continue 

the iteration. The procedure is stopped if the smallest BIC value found does not improve 
in v consecutive iterations. The extra iterations are used to reduce the possibility of early 

stopping due to random regrouping. In our experience, v = 10 is sufficient in most of the 

cases. 

Note that the exhaustive search over all possible subsets of X is a special case of the 

proposed algorithm when k = ra, no = 0, and ni = 1 (i = 1,..., k), where n/ denotes 

the number of variables in group G/. Moreover, when no = 0, k = 1, and n\ = ra, the 

proposed algorithm is equivalent to performing a one-step selection using the specified 

simple variable selection procedure, that is, the SVS method. 

Regarding the stability of the selected model, we note that stepwise procedures are 

deterministic and, hence, always produce the same answer. However, the procedures are 

sensitive to addition or deletion of observations and variables. The proposed procedure 
should be more stable under the latter situation. On the other hand, in the case of limited 

sample size and severe collinearity among the predictors, the BIC criterion may not be 

stable, because there may exist multiple competing models with similar BIC values. 

3. SIMULATION STUDY 

In this section we investigate the performance of the proposed algorithm using simu 

lation and provide further comparison with other methods. We also study the effects of 

design parameters on the performance of the proposed algorithm, including the number of 

groups k and the number of grouping schemes q. 
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Three scenarios with different data generating models are used in our simulation to 

represent various degrees of difficulty in variable selection. They are chosen to provide 
information concerning the performance of the proposed algorithm under general working 
environment. In applying the proposed algorithm, we use three procedures in simple vari 
able selection, namely, the backward-forward stepwise regression, backward elimination, 
and forward selection, which are denoted by GBF, GBK, and GFW, respectively. We also 
include simple backward-forward (BF), backward elimination (BK), and forward addition 

(FW) procedures as references. Finally, the "leaps-and-bounds" algorithm is included in 
one of the scenarios when it is computationally feasible. For GBF, GBK, and GFW, we use 

q = 10 and k = 5 unless specified otherwise. 

For each of the three scenarios, 100 datasets are generated and various search procedures 
are compared. For a given dataset, a procedure is marked as a "success" if it finds a model 
whose BIC value is the minimum among those obtained by all procedures. The number 

of successes based over the 100 datasets is then recorded for each procedure. A procedure 
with a higher number of successes is considered to have higher searching capability and 

better performance. For each procedure, the associated computing time for processing the 

100 datasets is also reported. 

Scenario A: In this setting, the sample size is N = 150, and each data point is gen 
erated as follows. Let X* - N(0, 2) for j = 1,..., 60, e0 ~ N(0,4), and et ~ N(0, 2) for 

/ = 1,..., 6 and X*, eo, and ei are all mutually independent. The explanatory variables are 

then constructed as 

Xj 
= 

X*j+eo + ei for j = 1,..., 60 and i = floor((y 
- 

1)/10) + 1, 

where floor(jc) is the largest integer less than or equal to x. Thus, there are six clusters 

among the explanatory variables. The within- and cross-cluster correlation coefficients of 

the predictors are 0.75 and 0.5, respectively. The response variable Y is generated by 
4 13 

Y = 1 + Y.Xi + JI Xi + *21 + Xl2 + 
i = \ i = \\ 

where e ~ TV(0,100) and is independent of other predictors. Thus, Y depends on 9 of the 

60 predictors. 

Table 2 summarizes the simulation results for Scenario A. In this example we also ap 

plied the "leaps-and-bounds" algorithm denoted by "LB." The "leaps-and-bounds" is an 

optimal algorithm that performs a branch-and-bound search and guarantees to find the 

Table 2. Performance comparison of various algorithms based on 100 datasets under Scenario A. The sample 
size is Af = 150 and the number of candidate predictors is m = 60. 

Procedures LB GBF GBK GFW BF BK FW 

Number of successes 99 100 100 78 31 26 40 

Time used (seconds) 45,200 2,855 1,002 47 4.25 1.36 0.39 

This content downloaded from 128.6.218.72 on Sat, 20 Jun 2015 20:37:44 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Variable Selection in Linear Regression With Many Predictors 581 

global optimum. However, it requires extensive computation when the number of candi 

date variables is large. In this particular instance, because the true model only involves nine 

predictors, we restrained the LB method to search among the subsets of size less than 13 to 

make the procedure computationally feasible. From the table, we make the following obser 

vations. First, although the LB algorithm is capable of performing the exhaustive search, 
it requires extensive computation. Even with the model size restriction that dramatically 
reduces the search space, the LB algorithm is still nearly 16 times more computationally 

expensive than the GBF procedure. In addition, LB fails to find the optimal BIC in one of 

the 100 datasets because the optimal BIC for that particular dataset is achieved by a model 

with more than 12 predictors, exceeding the maximum subset size we set for the exhaustive 

search. Second, as expected, the proposed algorithms substantially outperform their simple 
counterparts by having much higher frequencies of successes, even though the simple pro 
cedures are extremely fast. Third, the proposed GBF and GBK algorithms perform equally 
well with the LB algorithm whereas the GFW algorithm fails in about 25% of the datasets. 

Finally, the GBK algorithm works the best as it achieves high performance with reasonable 

computing time. 

Scenario B: Here each data point is generated as follows. Let X* ~ 
N(0, 1) for 

j 
= 1,..., 60 and define 

Xj=X*j 
for j = l,..., 30, 

Xj 
= X* + 0.3X;_30 + 0.5X7_29 

- 
0.7X;_28 + 0.9X;_27 + UXy-26 

for j 
= 31,..., 40, 

Xj 
= X* + 0.3X;_30 + 0.5X7_29 + 0.7X;_28 

- 
0.9Xy_27 + l.lXy-26 

for j =41,..., 50, 

Xj 
= X* +0.3X;_30 

- 
0.5X,_29 +0.7X7-_28 +0.9X;-_27 + 1.1X;_26 

for j =51,..., 60. 

The response variable Y is given by 
60 

i=31 

where e ~ N(0,100) and is independent of all other explanatory variables. This setting is 
an extended version of that used in Fernandez, Ley, and Steel (2001). 

Each of the 100 datasets generated under this scenario has 300 observations. Because 
the true model involves 30 predictors, the LB algorithm is no longer practical and is omit 
ted. Table 3 gives the simulation results, from which we obtain essentially the same con 

clusions as those of Scenario A. Both the GBF and GBK algorithms have the highest fre 

quency of successes but the GBK algorithm uses less computing time. On the other hand, 
the performance of GFW is disappointing. All three newly proposed algorithms outper 
form their simple counterparts. Recall that Scenario B is also employed to obtain Table 1 
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Table 3. Performance comparison for various algorithms based on 100 datasets under Scenario B. The sample 
size is 300 and the number of candidate predictors is 60. 

Procedures GBF GBK GFW BF BK FW 

Number of successes 100 100 19 24 18 2 

Time used (seconds) 3,098 824 309 4.56 1.17 0.39 

which shows that GBK outperforms the Genetic Algorithm in both accuracy and comput 

ing efficiency. 

The Effect of Initial Group 0 

Based on prior discussions, Group 0 plays an important role in the proposed algorithm. 
It can be formed initially by using either prior information or random selection. Here we 

use Scenario B to study the performance of the GBK algorithm under various initializations 

of Group 0. More specifically, for each of the 100 datasets generated from Scenario B, the 

GBK algorithm with q) = (6, 30) is applied with initial Group 0 being (a) randomly 

selected, (b) an empty set, or (c) the set of variables selected by a Genetic Algorithm. 

Furthermore, to accommodate the stochastic nature of the proposed algorithm, five inde 

pendent runs of the GBK algorithm are carried out for each initialization of Group 0. An 

individual run of the GBK algorithm is considered to achieve convergence when there is 

no BIC improvement in 10 consecutive iterations. Table 4 contains the results. 

The table also gives the empirical distributions of the number of iterations for the 

500 runs of each initialization. Note that the number of iterations needed is greater than 10 

because of the stopping criterion used. From the table, we see first that different initializa 

tions of Group 0 have little impact on the performance of the GBK algorithm. Second, the 

GBK algorithm converges faster if the initial Group 0 consists of the variables selected by 
the GA. However, there are several datasets that require many more iterations. This result 

indicates that a more informed Group 0 can indeed speed up the convergence, but it does 

not necessarily have any significant impact on the final selection result. If the algorithm 
starts at a local mode, it may converge slowly because it needs to climb out of the local 

mode first. It is assuring that the GBK algorithm is capable of getting out of the local mode 

Table 4. Performance of the GBK algorithm under three different schemes of initialization for Group 0. The 

results are based on 100 datasets generated from Scenario B. The sample size is 300 and the number 

of predictors is 60. "GA" denotes using the variables selected by a Genetic Algorithm as the initial 

Group 0. 

j ... r Number of successes Iterations 
Initialization - - 

of Group 0 Runl Run 2 Run 3 Run 4 Run 5 12 13 14 15 16 >17 

Random 100 100 100 100 100 216 260 21 1 1 1 

Empty 100 100 100 100 100 158 321 21 0 0 0 
GA 100 99 100 99 100 420 43 23 4 5 5 
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that has trapped the GA algorithm. Finally, using the empty set as Group 0 seems to be a 

reasonable choice for the GBK algorithm. Overall, the simulation results indicate that the 

initialization of Group 0 does not have any significant impact on the performance of the 

algorithm, though it has some effect on the number of iterations needed. 

Scenario C: In this setting, data are generated as follows. Let 
{X*}^=i 

~ 
N(0, 1). 

The first 30 explanatory variables, X\,..., X30, are generated by Xj 
= X* + e where 

e ~ N(0, 1) and j = 1,..., 30. Hence the correlation among the predictors X/s is 0.5 for 

7 = 1,_, 30. Variables X31 to X^4 are generated by 

X30+7 
= 

0.3X7+0.5X7+1 
- 

0.7X7+2 + 0.9X7+3 + I.IX7+4 + <?30+7' * = 1,..., 34, 

where 230+7 are independent A/(0, 1). The response variable Y follows a linear regression 
model with X31 to X60 as the predictors, that is, 

60 
y = i + ?Xi+ , 

i=31 

where e ~ N(0, 302) and is independent of the explanatory variables. 

Furthermore, we generate some additional "junk" variables to be included in the set 

of predictors. We simulate 30 sets of coefficients </>ts (t = 1,..., 30; s = 1,..., 5) from 
a uniform distribution U(0.6, 1.2) and randomly assign a positive or negative sign to the 

coefficients. The coefficients are then renormalized so that Y?s=i 0*25 
= 4 for r = 1,..., 30. 

We then generate eight groups of junk variables by 

X^} =0*1X30+7 +0*2X31+7 +0*3X32+7 +0*4X33+7 +0*5X34+7 +ej\ 
where 

e(p 
are independent A/(0,0.52) for i = 1,..., 8; 7 = 1,..., 30 and t = (/ 

- 2 + 

7) (mod 30) + 1. If necessary, additional groups of junk variables can be obtained in the 
same manner. 

This is a difficult setting for variable selection. The variables used to generate F, re 

ferred to as the "important" variables, are linear combinations of some correlated variables, 
and the "junk" variables are linear combinations of the "important" variables in a rotated 
manner so that they have high collinearity. 

First, we let the set of predictors be {X31,..., X60, x\l\ ..., X3Q } and use sample size 
N = 10,000. Table 5 shows the comparison results. Based on results of Scenarios A and B, 
we focus on comparison between the GBK algorithm and the Genetic Algorithm (GA). 
Furthermore, for simplicity, we only employ the BF procedure as the reference point. From 
Table 5, the GBK algorithm continues to outperform the GA. The results also show that 
the performance of the GA improves with increasing population size and number of gen 
erations. But, similarly to that of Table 1, the improvement is at a slow rate. The one-step 
BF procedure is fast and has a comparable performance with GA (pop = 300, gen = 200). 

The Effects of q and k 

In the prior simulations, we fixed the number of random grouping schemes q and the 
number of groups k. These two design parameters may affect the performance of the pro 
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Table 5. Performance comparison between the GBK and GA under Scenario C. The sample size is N = 10,000 
and the results are based on 100 datasets. 

Procedures Number of successes Time used (seconds) 

GBK(4 = 10,* = 6) 100 515 
GA(pop 

= 300, gen = 200) 18 700 

GA(pop 
= 500, gen = 200) 21 1,218 

GA(pop = 1,000, gen = 400) 34 2,838 

GA(pop 
= 2,000, gen = 400) 59 5,343 

BF 17 2 

posed algorithm. To investigate their potential effects, we employ the GBK algorithm and 

datasets generated from Scenario C for further study. 
First we generated 100 datasets, each with sample size N = 10,000, from Scenario C 

with the predictors {X\,..., Xeo, x\l\..., X^}. Thus, there are 90 predictors. We let the 

number of random groups k be in {4, 5, 6, 7, 8} and the initial number of random grouping 
schemes q be in {5, 10,15, 20, 25, 30}. Two methods are used to govern the choice of q for 

each given k. In the first method, q^ 
= q is fixed throughout the process. In the second 

method, q^ decreases gradually over the selection iterations, for example, q^ 
= 

O.&q. 
The reason for using a decreasing q^ is that a large initial q would allow the proposed 

algorithm to entertain more subsets of the predictors at the beginning of the search, yet a 

smaller q^ could reduce the computation burden as the search becomes more advanced. 

Table 6 shows the results. For each q, there are two rows, one for fixed q and the other 

for decreasing q, starting at the stated values. From the table, we make several observa 

Table 6. Performance and efficiency of the GBK algorithm with different q and k under Scenario C. The sample 
size is 10,000 and the results are based on 100 datasets. For each q, there are two rows, one for fixed q 
value and the other for decreasing q value, starting at the stated value and decreasing by 10% for each 

iteration until reaching 1. The entries of the table show the number of successes out of 100 datasets, 
with total CPU time in seconds shown in parentheses. 

k 

q 4 5 6 7 8 

5 fixed 52 (263) 57 (451) 67 (846) 74(1,488) 78 (2,721) 
decreasing 33 (114) 43 (299) 45 (557) 65 (877) 72(1,414) 

10 fixed 65 (513) 72 (893) 86 (1,555) 90 (2,812) 91 (4,475) 
decreasing 58 (309) 70(600) 75 (1,023) 81 (1,930) 90(3,582) 

15 fixed 73 (751) 89 (1,287) 91 (2,291) 97 (4,733) 97 (7,631) 
decreasing 68 (628) 81 (939) 88 (1,440) 90(2,700) 94 (5,120) 

20 fixed 83 (1,039) 91 (1,733) 91 (3,055) 98 (5,405) 100 (9,893) 
decreasing 74 (898) 91 (1,126) 91 (2,049) 98 (3,800) 99 (7,229) 

25 fixed 85 (1,217) 94 (2,677) 95 (3,735) 95 (6,647) 99 (13,223) 
decreasing 79 (949) 90(1,620) 90 (3,013) 95 (6,057) 96 (10,037) 

30 fixed 85 (1,404) 96 (2,481) 98 (4,566) 98 (8,610) 99 (15,976) 
decreasing 83 (973) 95 (1,831) 97 (3,916) 98 (6,963) 99 (12,757) 
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tions. First, as expected, each row of the table shows that the performance of the GBK 

algorithm improves as the number of groups k increases, though at the expense of longer 
CPU time. Similarly, each column of the table also shows the same performance pattern as 

the number of grouping schemes q increases. Second, a large k only needs a moderate q 
for the algorithm to work well. On the other hand, a smaller k requires a much larger q 
for the algorithm to be effective. More importantly, there is no need to have large k and 

large q simultaneously. The proposed algorithm does not work well when both k and q are 

small. Third, in the case of fixed q, the combination of a moderate k and large q seems 

to be the best choice, for example, (k, q) = (5, 30). Such a combination performs well in 

variable selection and requires less computing time. Fourth, as expected, decreasing q can 

save computing time. But one must start with a relatively large q. For this particular ex 

ample, a moderate k with a large initial q, which decays gradually, works well; see the last 

row of Table 6. 

In summary, the results shown in Table 6 indicate that proper choices of q and k enable 

the proposed algorithm to achieve outstanding performance with reasonable efficiency. 
The computation time increases exponentially as k increases, but increases linearly with q. 
To improve the performance of the GBK algorithm, it seems more effective to increase k 

than q, though more computationally costly. In general, the values of k and q should be 

selected carefully to achieve a trade-off between effectiveness in variable selection and 

computational demand. For the two examples considered, (k, q) = (6, 30) seems to be a 

good combination. In addition, decreasing q values gradually helps to improve the effi 

ciency of the algorithm without sacrificing much of the performance. This is particularly 
so when both k and q are large. Obviously, the values of k and q should be adjusted 
based on the number of predictors and sample size. Our limited experience indicates that 

(k, q) = (8, 30) performs reasonably well in cases that involve 300 predictors. 

The Effect of the Stopping Criterion 

Let v be the number of consecutive iterations of no improvement needed to stop the al 

gorithm. Here we investigate the effect of v on the performance of the proposed algorithm. 
We randomly generate 100 datasets under Scenario C, each having 1,000 observations and 

90 predictors given by X = {Xi,..., X60, X^,..., X^}}. The GBK algorithm is then ap 

plied to each dataset with k = 8 and q = 30. For completeness, we use both a random 

subset and an empty set as the initial Group 0. The stopping criterion is v e {4, 6, 8,10}. 
Table 7 summarizes the simulation results. From the table, it is seen that the performance 
of the GBK algorithm is not sensitive to the choice of v. As expected, an increase in v 

tends to increase the computation time. The table further shows that the initialization of 

Group 0 is not critical. 

In general, variable selection is more difficult when the candidate set is large, when 

collinearity among the predictors is strong, and when the sample size is small. In such 

cases, there often exist a number of competing models with similar BIC values and many 
local modes. The simulation results show that the proposed algorithm works well, even in 

difficult cases. Its performance can be further improved by using larger k and q values, at 

the expense of long computation time. 
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Table 7. Performance of the proposed GBK algorithm with various v, that is, the number of consecutive itera 
tions without BIC improvement needed before termination. The results are based on 100 datasets from 
Scenario C with sample size N = 1,000 and 90 predictors. 

v_ _4_ _6_ 
8 10 

Initial Group 0 Random Empty Random Empty Random Empty Random Empty 

Number of successes 94 97 96 95 98 94 97 96 

Average time (seconds) 7,326 7,790 10,412 8,178 11,451 11,648 12,652 15,818 

4. EMPIRICAL PROPERTIES OF BIC WHEN THE 
NUMBER OF PREDICTORS IS LARGE 

A by-product of the proposed algorithm is that it enables us to study the properties 
of BIC (or other information criterion) when the number of predictors is large. It is well 

known that BIC is consistent (Haughton 1988). That is, under the assumption of a true 

model, the probability that BIC selects the "true" model converges to 1 as the sample size 

goes to infinity. Hence, given a set of predictors X and a sufficiently large sample size TV, 
the optimal model selected by BIC should converge to the true model. However, there has 

not been any study concerning the effect of a large number of "junk" variables in X on the 

performance of the BIC criterion. The GBK algorithm with its relatively good performance 
and efficiency enables us to conduct such a study. Specifically, we intend to gain a better 

understanding of the properties of BIC under difficult model selection conditions. 

Again we consider Scenario C. Using q = 30 and k = 7, we start with the ba 

sic set of predictors X = Geo = {Xi,...,X6oh and gradually add extra groups of 

"junk" variables to X, each group containing 30 variables. The extra predictors are 

added by one or two groups at a time. More specifically, the predictors X are in 

{Geo, Ggo, G120, ̂ 180^210, G270} so that it evolves to include more "junk" variables, 
where Gn are defined sequentially as 

G90 = Geo U {X<1},..., X?>], G120 = G90 U {xj2), ..., xf0}}, 
We then monitor the sample size needed for BIC to select the true variable set {X31,..., 

^60 } 
Table 8 shows the selection results as the set of predictors X expands from Geo to 

G270, under various sample sizes TV ranging from 20,000 to 391,875. In the table, "Diff" 

denotes 1000 x (BIC{0) 
- 

BIC(M)) with BIC(0) and BIC(M) being the BIC value of 

the true and selected model, respectively. Thus, a positive "Diff" value indicates that the 

selected model has a BIC value smaller than that of the true model. When the true model 

is identified, "Diff" is 0. A negative "Diff" would indicate that the GBK algorithm fails to 

find the optimal model in terms of the BIC criterion. It is assuring that there are no negative 
"Diff" values in the table. 

In the table, "Size" denotes the number of predictors in the selected model and the 

number in parentheses shows the number of true predictors in the selected model. For 

example, "30 (30)" means the selected model is the true model and "17 (10)" means that 
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Table 8. Variables selected by the GBK algorithm using the BIC criterion for different sample sizes N and 

different sets of predictors X from Scenario C, where "Diff" denotes the 1,000 x difference between 

the BIC values of the true model and the selected model, and "Size" p (h) shows the selected model 

has p predictors among which h variables are in the true model. 

g6q g90 Gl20 G180 G210 <J270 

N Diff Size Diff Size Diff Size Diff Size Diff Size Diff Size 

20,000 0.17 27 (27) 4.89 17 (10) 5.24 16 (11) 5.90 19 (7) 7.06 15 (9) 7.06 15 (9) 
30,000 0.00 30(30) 2.81 20 (14) 3.15 17 (12) 3.76 17 (8) 4.71 16 (8) 4.71 16(8) 
45,000 0.00 30(30) 1.33 21 (16) 1.92 17 (12) 2.26 16 (11) 2.44 16 (8) 2.74 19(5) 
67,500 0.00 30 (30) 0.60 21 (14) 0.82 21 (13) 1.11 18 (11) 1.32 19 (12) 1.58 20(9) 
101,250 0.00 30(30) 0.10 26 (22) 0.29 27 (20) 0.39 25 (15) 0.50 24 (15) 0.67 23 (16) 
151,875 0.00 30 (30) 0.00 30(30) 0.08 29 (24) 0.15 28 (22) 0.21 27 (19) 0.28 26(17) 
211,875 0.00 30(30) 0.00 30 (30) 0.00 30 (30) 0.07 29 (22) 0.07 29 (22) 0.08 28(20) 
271,875 0.00 30(30) 0.00 30 (30) 0.00 30(30) 0.00 30(30) 0.00 30(30) 0.01 29(21) 
331,875 0.00 30(30) 0.00 30 (30) 0.00 30 (30) 0.00 30(30) 0.00 30(30) 0.00 30(30) 
391,875 0.00 30(30) 0.00 30 (30) 0.00 30 (30) 0.00 30 (30) 0.00 30(30) 0.00 30(30) 

the selected model has 17 predictors; among them 10 are true predictors used to generate 
the response variable. A clear pattern emerging from the table is that the larger the number 

of candidate predictors is, the more observations are needed for BIC to identify the true 

model. For G60, it needs about N = 30,000 to identify the correct model, whereas for G270 
it needs more than 330,000 observations. Furthermore, when the sample size is smaller than 

needed, BIC tends to select a model that has a smaller number of variables than the true 

model and often contains "junk" variables. 

The table also shows that the GBK algorithm works consistently as seen from the fact 

that, for a fixed sample size A/, the "Diff" value increases as the number of candidate 

predictors increases. Note that if a procedure often converges to a local minimum, such a 

decreasing pattern is not guaranteed. 

5. COMPARISON OF BIC AND LASSO 

Although a careful and thorough comparison of variable selection criteria is beyond the 

scope of this article, we use Scenario C of the previous section and the proposed GBK 

algorithm to make a quick comparison between BIC and LASSO (Tibshirani 1996) similar 
to that in Zhang et al. (2007). The goal is to demonstrate that the proposed algorithm 

makes it possible to carry out such a comparison. Note that LASSO and other regularization 

procedures are based on the "sparseness" condition which is not required by BIC. In the 

following simulation we use 120 highly correlated candidate predictors. Among them 30 
are true predictors (in generating the response variable). This is a mild sparse situation. 

Specifically, 100 training datasets and one testing dataset are randomly generated from 

Scenario C with sample size 1,000 and 5,000, respectively, with the 120 predictors given 
by 

{Xi,..., x6u, x[l\..., x$, xf\..., x^}}. 
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For each training set, models are selected by employing BIC and LASSO and then applied 
to the testing set to compute out-of-sample prediction error rate PE as 

pE ^(Y-XPCY(Y-Xpc) 
Y'Y 

where (Y, X) denotes the testing dataset, and fic is the vector of coefficient estimates based 

on the selection criterion c, which is either BIC or LASSO. In particular, lasso *s obtained 

by minimizing 

(Y-Xp)'(Y-XP) 

subject to 

\p\f\<p\pfull\'\, 
where 1 = (1,..., 1/ is an m x 1 vector, /JyM// is the least squares estimate from the full 

model, and p e [0, 1] is a tuning constant that controls the size of the LASSO model (Tib 
shirani 1996; Zhang et al. 2007). 

Following Zhang et al. (2007), two models are selected by LASSO for each of the 

100 datasets with p = 0.2 and a p chosen from a fivefold cross-validation process, respec 

tively. The ratio of PE, namely PEbic/PEiasso> is then computed to measure the perfor 
mance of BIC and LASSO. Figure 1 presents the histogram of PEbic/PElasso f?r P = 0.2. 

From the figure, a majority of the PE ratios are less than 1 and only about 13% of PE are 

larger than 1. The result indicates that BIC outperforms LASSO when p is fixed at 0.2. 

251-1-1-,-1-1-1-,-1-1-1 
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Figure 1. Histogram: Ratio of prediction errors PEbicIPElasso- For LASSO, p = 0.2 is used. The result is 

based on 100 training datasets and one forecasting dataset generated from Scenario C. 
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Figure 2. Histogram: Ratio of prediction errors between BIC and LASSO, where p of LASSO is chosen by a 

fivefold cross-validation. The result is based on 100 training datasets and one forecasting dataset generated from 

Scenario C. 

When p is chosen by cross-validation, the BIC continues to perform better, even though 
the performance of LASSO is much improved; see Figure 2. Compared with Figure 1, the 

minimum PE ratio between BIC and LASSO increases from 0.23 to 0.74. In addition, the 

distribution of PE ratio is more concentrated around 1. The average model sizes selected 

by BIC is 14.9. On average, 7.02 of the selected variables are in the set of true predictors 

{X31,..., Xso}. On the other hand, LASSO selects 15.24 variables on average with 6.4 in 

the true set when p = 0.2 and selects 28.29 variables with 13.97 in the true set when p is 

chosen by cross-validation. 

SUPPLEMENTAL MATERIALS 

Main C++ code: (main.cpp, C++ file) 

Sample Parameter Setting File: (sample_par.txt, ascii file) 
Test data: (sample_data.txt, ascii file) 

Sample Output File: (sample_output.txt, ascii file) 
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