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Diffusion processes are widely used in engineering, finance, physics, and other fields. Usually continuous-time diffusion processes can be
observed only at discrete time points. For many applications, it is often useful to impute continuous-time bridge samples that follow the
diffusion dynamics and connect each pair of the consecutive observations. The sequential Monte Carlo (SMC) method is a useful tool for
generating the intermediate paths of the bridge. The paths often are generated forward from the starting observation and forced in some ways
to connect with the end observation. In this article we propose a constrained SMC algorithm with an effective resampling scheme guided by
backward pilots carrying the information of the end observation. This resampling scheme can be easily combined with any forward SMC
sampler. Two synthetic examples are used to demonstrate the effectiveness of the resampling scheme.
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1. INTRODUCTION

Diffusion processes are widely used in engineering, finance,
physics, and many other fields. In practice, a diffusion process
often is observable only at discrete time points. On the other
hand, for most nonlinear and non-Gaussian diffusion processes,
statistical inferences can be carried out much more easily with
continuous paths. Treating the problem as a missing-data prob-
lem, an effective solution for statistical inferences is to impute
the continuous path based on the observations observed at dis-
crete time points. Because of the Markovian nature of diffusion
processes, the imputation problem becomes one of generating
continuous paths of the underlying diffusion process that con-
nect two fixed endpoints (diffusion bridges). In this article we
propose a constrained sequential Monte Carlo (CSMC) algo-
rithm with resampling guided by backward pilots for efficient
generation of Monte Carlo samples of diffusion bridges.

Let a d-dimensional time-homogeneous diffusion process,
Vt, be the solution of a stochastic diffusion equation (SDE),

dVt = b(Vt; θ)dt + A(Vt; θ)dWt, (1)

where Wt = (wt,1, . . . ,wt,d)
T are d independent Brownian mo-

tions, b(Vt; θ) = (b1(Vt; θ), . . . ,bd(Vt; θ))T are the drift coeffi-
cients, A(Vt; θ) = {ai,j(Vt; θ)}d×d are the diffusion coefficients,
and θ is the parameter in the coefficients. For notational sim-
plicity, herein we use Vt instead of Vt, although Vt is a d-
dimensional vector.

The methods that we develop in this work can be easily ex-
tended to time-inhomogeneous processes, in which the drift co-
efficients and diffusion coefficients also may depend on the time
variable t. In addition, our methods also apply to jump diffusion
processes such as

dVt = b(Vt; θ)dt + A(Vt; θ)dWt + dZt,
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where Zt is a compound Poisson process, with the sampling
distribution slightly modified to accommodate jumps. An ex-
ample of the jump process is given in Section 3.2. For clarity,
here we concentrate on the diffusion process (1).

Without loss of generality, suppose that a diffusion process,
Vt, is observed at t = 0 and t = �. We are interested in gen-
erating bridge samples, V(j)

t , j = 1, . . . ,m, that connect the
two observations V0 and V� and follow the target distribution
π(Vt) = P(Vt | V0,V�; θ).

Beskos et al. (2006) proposed generating continuous sam-
ple paths exactly following the conditional distribution P(Vt |
V0,V�; θ) by generating “skeleton” samples of Brownian (or
Bessel) bridges that are accepted/rejected with a certain prob-
ability. This simulation method also provides an unbiased es-
timate of the transition probability density P(V� | V0, θ). This
method was shown to work well for many processes, although it
is limited to reducible processes, and sometimes the acceptance
rate can be very small for certain situations, especially when �

is large.
Several simulation methods based on the discrete-time ap-

proximation of diffusion process have been developed (Kloeden
and Platen 1992; Pedersen 1995; Elerian, Chib, and Shep-
hard 2001; Eraker 2001; Roberts and Stramer 2001; Brandt
and Santa-Clara 2002; Durham and Gallant 2002). In these
methods, the time interval [0,�] is divided into M small
intervals with equal length δ = �/M by the intermediate
points ti = iδ, i = 0, . . . ,M. Then the continuous diffusion
process Vt is approximated by the discrete-time process (Vt0 =
V0,Vt1 , . . . ,VtM−1 ,VtM = V�) following the distribution

P∗(Vt1, . . . ,VtM−1

∣∣ Vt0 = V0,VtM = V�; θ)
∝

M∏
k=1

P∗
δ

(
Vtk

∣∣ Vtk−1; θ
)
, (2)

where

P∗
δ

(
Vtk

∣∣ Vtk−1; θ
)

∼ N
(
Vtk−1 + b

(
Vtk−1; θ

)
δ,A

(
Vtk−1; θ

)
AT(

Vtk−1; θ
)
δ
)

(3)
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is the Euler approximation of the transition probability density
function Pδ(Vtk | Vtk−1; θ), N (μ,�) denotes Gaussian distrib-
ution with mean μ and covariance �, and the subscript δ of
the transition density denotes the time interval between tk−1

and tk. In what follows, we omit the subscript δ for simplicity.
When δ is small, (Vt0 ,Vt1 , . . . ,VtM ) can usually approximate
Vt well. We use P∗(·) to denote the approximated distribution
of the discrete-time process (Vt0 ,Vt1 , . . . ,VtM ). Other higher-
order approximations of the true transition probability density,
such as the Milstein approximation or Shoji and Ozaki (1998)’s
approximation, also can be used in (3).

Generating Monte Carlo samples from the target distribution
(2) can be done using Markov chain Monte Carlo (MCMC)
through a transition kernel whose equilibrium distribution is
the target distribution (Gilks, Richardson, and Spiegelhalter
1995; Robert and Casella 1999). However, for most diffusion
processes and for large M (to achieve approximation accuracy),
the mixing rate of MCMC can be very low. To avoid this prob-
lem, Roberts and Stramer (2001) and Elerian, Chib, and Shep-
hard (2001) proposed updating a block of the bridge sample in
one MCMC move, with the proposed move developed from a
Brownian bridge or an Ornstein–Uhlenbeck bridge, and Beskos
et al. (2008) proposed MCMC moves through solving stochas-
tic partial differential equations. Another limitation of MCMC
is its difficulty in estimating the normalizing constant of the
target distribution, which is P∗(VtM | Vt0; θ) for the target dis-
tribution (2).

In the present study we generate samples that are properly
weighted with respect to the target distribution (2) under the
framework of sequential Monte Carlo (SMC). In SMC, the
bridge samples start at the fixed Vt0 , then V(j)

t1 ,V(j)
t2 , . . . ,V(j)

tM−1

are generated sequentially until the complete bridge sam-
ples (Vt0 ,V(j)

t1 , . . . ,V(j)
tM−1

,VtM ) are obtained. The critical is-
sue here is how to utilize the information provided by the
end observation VtM when generating the intermediate states
(Vt1, . . . ,VtM−1).

An SMC approach for generating diffusion bridges was pro-
posed and studied by (Pedersen 1995; Brandt and Santa-Clara
2002; Durham and Gallant 2002). Their approaches have been
shown to be effective in some cases, but to fail in other cases.
Pedersen (1995) generated the bridge samples through diffusion
dynamics without considering the end constraint given by VtM ;
thus the generated bridge samples are often far away from VtM
at the end. Durham and Gallant (2002) used linear interpolation
to force the bridge samples to move toward VtM , but ignoring
the diffusion dynamics. In this article we propose an effective
resampling scheme in SMC. The resampling is guided by pilots
generated backward from the end observation, VtM , according
to the diffusion dynamics. This resampling scheme can be eas-
ily combined with other SMC sampling method, including the
samplers of Pedersen (1995) and Durham and Gallant (2002).

The rest of the article is organized as follows. Section 2 intro-
duces the proposed algorithm, with brief backgrounds on SMC,
the resampling scheme, the optimal resampling priority score
for the diffusion bridge problem, and the strategy of generat-
ing backward pilots to estimate the optimal resampling priority
scores. Section 3 presents two synthetic examples to demon-
strate the proposed algorithm. Section 4 concludes.

2. CONSTRAINED SEQUENTIAL MONTE CARLO
GUIDED BY BACKWARD RESAMPLING

In what follows, we use a simpler notation, vk = Vtk , to de-
note the intermediate states. The starting point, v0 = V0, and the
end point, vM = V�, are fixed. Again, we use vk instead of vk

even though vk is a d-dimentional vector.

2.1 Importance Sampling and Sequential Monte Carlo

In most cases, directly generating samples from high-dimen-
sional, constrained distributions (2) is difficult. Based on
the importance sampling principle (Marshall 1956; Robert

and Casella 1999; Liu 2001), we can draw samples v(j) �=
(v0, v(j)

1 , . . . , v(j)
M−1, vM), j = 1, . . . ,m, from a different sam-

pling distribution, Q(v | v0, vM; θ), and the proper weights of
the samples are computed as

w(j) =
∏M

k=1 P∗(v(j)
k | v(j)

k−1; θ)

Q(v(j) | v0, vM; θ)
.

When the target distribution, P∗(v | v0, vM; θ) ∝ ∏M
k=1 P∗(vk |

vk−1; θ), is absolutely continuous with respect to the sampling
distribution, Q(v | v0, vM; θ), and VarQ(w) < ∞,

1

m

m∑
j=1

w(j) = 1

m

m∑
j=1

∏M
k=1 P∗(v(j)

k | v(j)
k−1; θ)

Q(v(j) | v0, vM; θ)
(4)

is an unbiased estimator of the transition probability density
P∗(vM = V� | v0 = V0; θ), which is the normalizing constant
of

∏M
k=1 P∗(vk | vk−1; θ). The estimator is consistent, that is, it

converges to P∗(vM = V� | v0 = V0; θ) with probability 1 as
m → ∞. In addition, for any function h(v), if VarQ(wh) is also
finite, then

EP∗(h(v) | v0, vM; θ) �
∑m

j=1 w(j)h(v(j))∑m
j=1 w(j)

(5)

is a consistent estimator of the expectation of h(v) conditional
on the given end-points v0, vM . Note that the conditions for ob-
taining consistent estimators are based on standard importance
sampling principles (Robert and Casella 1999). It also applies to
other target distributions, such as when the underlying process
of the target distribution (2) is a jump diffusion process.

The performance of the importance sampling method de-
pends on the choice of the sampling distribution Q(v | v0, vM;
θ). When the sampling distribution is “perfect,” that is,

Q(v | v0, vM; θ) = P∗(v | v0, vM; θ),

the estimator (4) provides the exact value of P∗(vM | v0; θ). Al-
though directly generating samples from P∗(v | v0, vM; θ) and
calculating the weights is not feasible in most cases, an efficient
sampling distribution Q(v | v0, vM; θ) should be close to P∗(v |
v0, vM; θ). For the purpose of efficiency control, the chi-squared
divergence between P∗(v | v0, vM; θ) and Q(v | v0, vM; θ), de-
fined as ∫ [P∗(v | v0, vM; θ)]2

Q(v | v0, vM; θ)
dv − 1 = VarQ(w), (6)

is often used as a performance measure of the chosen sampling
distribution Q(v | v0, vM; θ) (Liu 2001). Here w = w/P∗(vM |
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v0; θ) is the standardized weight. Assuming that the samples
generated are independent, the mean squared error (MSE) of
estimator (5) can be approximated by (Kong, Liu, and Wong
1994; Liu 1996)

1

m

[
E2

P∗(h | v0, vM; θ)VarQ(w) + VarQ(wh)

− 2EP∗(h | v0, vM; θ)CovQ(w,wh)
]
. (7)

Although the minimization of this MSE depends on the func-
tion h(v), minimizing VarQ(w) [or, equivalently, E2

P∗(h | v0, vM;
θ)VarQ(w)] is a reasonable and convenient choice in many
cases, especially when the expectations of several functions h(·)
must be evaluated.

Elerian, Chib, and Shephard (2001) proposed using the
multivariate normal distribution or the multivariate Student t-
distribution as Q(v | v0, vM; θ). When M is large, directly con-
structing a good sampling distribution close to the target dis-
tribution P∗(v | v0, vM; θ) in such a high-dimensional space is
usually difficult.

In this article, we draw the samples under the SMC frame-
work, in which the sampling distribution

Q(v1, . . . , vM−1 | v0, vM; θ) =
M−1∏
k=1

rk(vk | vk−1; θ)

is the product of a sequence of conditional distributions. Here

vk
�= (v0, v1, . . . , vk, vM). At each step k, k = 1, . . . ,M − 1, we

generate v(j)
k from the conditional distribution rk(vk | v(j)

k−1; θ).
More precisely, a straightforward SMC implementation for
generating properly weighted bridge samples v(j) can be done
using the following algorithm:

Let m be the Monte Carlo sample size. For each j, j =
1, . . . ,m:

1. Let v(j)
0 = {v0, vM} and w(j)

0 = 1.
2. For k = 1, . . . ,M − 1,

(a) Draw v(j)
k from distribution rk(vk | v(j)

k−1; θ). Let v(j)
k =

{v(j)
k−1, v(j)

k }.
(b) Compute the corresponding weight of v(j)

k by

w(j)
k = w(j)

k−1

P∗(v(j)
k | v(j)

k−1; θ)

rk(v
(j)
k | v(j)

k−1; θ)
.

3. Let v(j)
M = v(j)

M−1 and w(j) = w(j)
M−1P∗(vM | v(j)

M−1; θ).

The advantage of SMC is that we need only consider construc-
tion of the low-dimensional conditional distributions rk(vk |
vk−1; θ), k = 1, . . . ,M − 1.

Pedersen (1995) proposed using the forward equation

rk(vk | vk−1; θ) = P∗(vk | vk−1; θ), (8)

so that w(j)
k ≡ 1 for k = 1, . . . ,M − 1, and w(j) = P∗(vM |

v(j)
M−1; θ). The procedure essentially involves generating the for-

ward path (v1, . . . , vM−1) only, conditioned on the starting point
v0. The path is then forced to connect to the endpoint vM at the
last step. Because the samples are generated without taking into
the account that they have to end at vM = V�, many of them will
have large “jumps” between v(j)

M−1 and the fixed endpoint vM . In

many cases, the performance of this simple sampling method is
not satisfactory.

Durham and Gallant (2002) suggested a different sampling
distribution,

rk(vk | vk−1; θ) ∼ N
(

vk−1 + vM − vk−1

M − k + 1
,

M − k

M − k + 1
A(vk−1; θ)AT(vk−1; θ)δ

)
. (9)

This proposal distribution includes a drift term that linearly con-
nects the current position vk−1 to the targeted endpoint vM ,
thereby forcing vk to move toward vM as k increases to M.
Stramer and Yan (2006) proved that this sampling distribution
is the “perfect” sampling distribution P∗(v | v0, vM; θ) when
both the drift coefficient b(vt; θ) and the diffusion coefficient
A(vt; θ) do not depend on vt. But this sampling distribution
might not be ideal for some applications, especially when the
drift coefficient depends strongly on vt or when the time inter-
val � is large.

Consider, for example, the Ornstein–Uhlenbeck process

dvt = θvt dt + dwt. (10)

Let θ = 0.2. Figure 1 shows 100 sample paths (without taking
into account the weight) generated from the true conditional
distribution P∗(v | v0 = 0, vM = 28.3) and from Durham and
Gallant (2002)’s sampling distribution (9), with time interval
� = 20 and M = 400 intermediate points. Clearly, the sam-
pling distribution (9) does not capture the intrinsic feature of
the underlying diffusion bridges, although with a sufficiently
large Monte Carlo sample size and proper weighting, the pro-
cedure is valid and can be used for inference. Elerian, Chib, and
Shephard (2001) documented similar findings.

2.2 Resampling and Optimal Resampling Priority Score

Resampling (Kong, Liu, and Wong 1994; Liu and Chen
1998; Liu 2001) is an important component in SMC to improve
efficiency. Its main purpose is to duplicate the “good” quality
partial samples and remove the “bad” quality partial samples
during the sequential buildup of the samples. It provides a way
to rejuvenate the samples to improve efficiency in future steps.
In our problem the target distribution P∗(v | v0, vM; θ) dictates
that the samples of v must connect two fixed points, v0 and
vM , thus imposing a very strong constraint on the sample path.
During the sequential buildup, if a partial sample path vk has
moved too far away from the end target vM and is unlikely to
become a valid bridge, then it would be wasting computational
resources to continue the buildup to complete the sample, be-
cause the complete sample would have very small weight and
make a negligible contribution to the weighted average used for
statistical inferences.

Resampling is done as follows. Suppose that we have ob-
tained samples {(v(j)

k ,w(j)
k ), j = 1, . . . ,m} at step k. The resam-

pling step creates a new set of samples, {(vnew(j∗)
k ,wnew(j∗)

k ),
j∗ = 1, . . . ,m}, by drawing samples from the current set
{v(j)

k , j = 1, . . . ,m} with replacement according to priority
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Figure 1. Samples of diffusion bridges generated from (a) the true conditional distribution and (b) Durham and Gallant (2002)’s sampling
method for diffusion process (10) with parameter θ = 0.2. M = 400 intermediate points are used.

scores {β(j)
k , j = 1, . . . ,m}, and adjusting the weights accord-

ingly so that (Liu and Chen 1998)

E

[
1

m

m∑
j∗=1

wnew(j∗)
k h

(
vnew(j∗)

k

) ∣∣∣ v(j)
k ,w(j)

k , j = 1, . . . ,m

]

= 1

m

m∑
j=1

w(j)
k h

(
v(j)

k

)
for any function h(·). The algorithmic steps are as follows:

1. Assign a priority score β
(j)
k > 0 to each sample v(j)

k . Nor-

malize the priority scores so that
∑m

j=1 β
(j)
k = m.

2. For j∗ = 1, . . . ,m,
(a) Randomly sample vnew(j∗)

k from the set {v(j)
k , j =

1, . . . ,m} with probabilities proportional to the pri-

ority scores {β(j)
k , j = 1, . . . ,m};

(b) If vnew(j∗)
k = v(j)

k , then set the new weight associated

with vnew(j∗)
k to be wnew(j∗)

k = w(j)
k /β

(j)
k .

3. Return the new set of weighted samples {(vnew(j∗)
k ,

wnew(j∗)
k ), j∗ = 1, . . . ,m)}.

Here the priority scores are normalized to
∑m

j=1 β
(j)
k = m, so

that the multiplicative constant in the weights does not change.
The priority scores serves as a measure of a sample’s “good-

ness.” In what follows, we develop the “optimal” priority score
for our diffusion bridge problem. Note that the resampling step
is designed to improve the efficiency of future steps, resampling
at step M − 1 is not needed according to Rao–Blackwellization
(Liu and Chen 1998). Thus we only develop the “optimal” pri-
ority score, βk, for step k = 1, . . . ,M − 2. Again, our goal is to
minimize VarQ(w) in (6).

Suppose that at step k (k ≤ M − 2), we have obtained sample
set {(v(j)

k ,w(j)
k ), j = 1, . . . ,m} from sampling distribution Qk(vk)

and the corresponding weight

wk =
∏k

s=1 P∗(vs | vs−1; θ)

Qk(vk)
.

Then, after a resampling step with priority scores β
(j)
k , the re-

sampled set can be considered as being generated from the sam-
pling distribution Qk(vk)βk, with new weight

wnew
k =

∏k
s=1 P∗(vs | vs−1; θ)

Qk(vk)βk
.

Suppose that the sampling distribution for generating the future
dimensions (vk+1, . . . , vM−1) is

∏M−1
s=k+1 rs(vs | vs−1, vM; θ). In

addition, if we do not consider the effect of future resampling
steps after step k, then we have

VarQ(w)

= E

[ ∏M
s=1 P∗(vs | vs−1; θ)

βkQk(vk)
∏M−1

s=k+1 rs(vs | vs−1, vM; θ)

]2

− (P∗(vM | v0; θ))2

=
∫ [∏M

s=1 P∗(vs | vs−1; θ)]2
βkQk(vk)

∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

dv1 · · · dvM−1

− (P∗(vM | v0; θ))2

=
∫ [∏k

s=1 P∗(vs | vs−1; θ)]2
βkQk(vk)

×
∫ [∏M

s=k+1 P∗(vs | vs−1; θ)]2∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

dvk+1 · · · dvM−1 dv1 · · · dvk

− (P∗(vM | v0; θ))2.

Thus VarQ(w) is minimized when

βkQk(vk)

∝
k∏

s=1

P∗(vs | vs−1; θ)

×
[∫ [∏M

s=k+1 P∗(vs | vs−1; θ)]2∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

dvk+1 · · · dvM−1

]1/2

.
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That is,

βk ∝ wk

[∫ [∏M
s=k+1 P∗(vs | vs−1; θ)]2∏M−1

s=k+1 rs(vs | vs−1, vM; θ)
dvk+1 · · · dvM−1

]1/2

.

(11)

In particular, when the sampling distribution
∏M−1

s=k+1 rs(vs |
vs−1, vM; θ) to generate the future dimensions (vk+1, . . . , vM−1)

is “perfect,” that is,

M−1∏
s=k+1

rs(vs | vs−1, vM; θ) = P∗(vk+1, . . . , vM−1 | vk, vM; θ)

=
∏M

s=k+1 P∗
s (vs | vs−1, vM; θ)

P∗(vM | vk; θ)
,

the corresponding “optimal” resampling priority score (11) be-
comes

βk = wkP(vM | vk; θ).

In this case, the priority score is proportional to the transition
probability from the current position vk to the fixed endpoint
vM , although evaluating this quantity faces the same difficulty
as in our original problem.

The optimal sampling distribution of Liu and Chen (1998)
provides another interpretation of this resampling priority
score. Under our setting, the optimal sampling distribution at
time k would be proportional to

P∗(vk | vk−1, vM) ∝ P∗(vk | vk−1; θ)P∗(vM | vk; θ).

One way to draw samples from this optimal distribution is to
use the first term to sample and the second term as the resam-
pling priority score.

2.3 Resampling Guided by Backward Pilots

A difficulty faced when obtaining the optimal priority score
assignment (11) is that the value of integration,

fk(vk; θ)
�=

∫ [∏M
s=k+1 P∗(vs | vs−1; θ)]2∏M−1

s=k+1 rs(vs | vs−1, vM; θ)
dvk+1 · · · dvM−1,

k = 1, . . . ,M − 2, (12)

is unknown. Here we use a separate SMC procedure to gen-
erate pilot samples (uk,uk+1, . . . ,uM−1,uM = vM) backward
from the fixed point uM and obtain an estimate of the function.

Specifically, at step k, k = M − 1, . . . ,1, we generate pilots

u(j)
k

�= (u(j)
M = vM,u(j)

M−1, . . . ,u(j)
k ), j = 1, . . . ,m∗ that are prop-

erly weighted by a(j)
k with respect to the distribution propor-

tional to

[∏M
s=k+1 P∗(us | us−1; θ)]2∏M−1

s=k+1 rs(us | us−1,uM; θ)
,

then fk(vk; θ) can be estimated through the weighted pilots
{(u(j)

k ,a(j)
k ), j = 1, . . . ,m∗}. The specific algorithmic steps are

as follows:

1. For k = M, let a(j)
M = 1, u(j)

M = vM , j = 1, . . . ,m∗.
2. For k = M − 1,M − 2, . . . ,1, for each j = 1, . . . ,m∗:

(a) Generate u(j)
k from a sampling distribution gk(uk |

u(j)
k+1; θ). The choice of gk(uk | u(j)

k+1; θ) is discussed
in Remark 2.

(b) Calculate the corresponding weight of u(j)
k by

a(j)
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(j)
M

[P∗(u(j)
M | u(j)

M−1; θ)]2

gM−1(u
(j)
M−1 | u(j)

M ; θ)

if k = M − 1

a(j)
k+1

[P∗(u(j)
k+1 | u(j)

k ; θ)]2

rk+1(u
(j)
k+1 | u(j)

k ,u(j)
M ; θ)gk(u

(j)
k | u(j)

k+1; θ)

if k ≤ M − 2.

(c) If k ≤ M − 2, then estimate the function fk(vk; θ)

in (12) using {(u(j)
k ,a(j)

k ), j = 1, . . . ,m∗} through any
kind of density estimator, such as

f̂k(v; θ) =
m∗∑
j=1

Kh
(
v − u(j)

k

)
a(j)

k ,

where Kh(·) is a kernel function with bandwidth h,
or a histogram estimator, with partition Dk,1 ∪ Dk,2 ∪
· · · ∪ Dk,nk of the state space of vk and

f̂k(v; θ) =
nk∑

l=1

f̂k,lI(v ∈ Dk,l),

where

f̂k,l = 1

m∗|Dk,l|
m∗∑
j=1

a(j)
k I

(
u(j)

k ∈ Dk,l
)
,

|Dk,l| is the volume of subspace Dk,l, and I(·) is the
indicator function.

(d) (Optional) Perform resampling to the backward pilots
{(u(j)

k ,a(j)
k ), j = 1, . . . ,m∗}, with priority score pro-

portional to a(j)
k if necessary (Liu and Chen 1998).

Figure 2 depicts the idea. Two forward (partial) bridge samples
(a) and (b) were generated up to time k = 100. The backward
pilots samples up to k = 100 are shown, as is the histogram
estimate of fk at k = 100 based on these backward pilot samples
(vertically) on the right side of the figure. It can be seen that
path (b), as a partial sample of the bridge, is a better sample,
because it has higher probability of connecting to the fixed end
compared with path (a).

Remarks.

1. The backward pilots u(j)
k , j = 1, . . . ,m∗ need to be gener-

ated only once from k = M − 1 to k = 1 before we gen-
erate the diffusion bridge samples. The function fk(·) for
all k = 1, . . . ,M − 2, are estimated in this process; thus
the extra computational burden for calculating fk(·) is lim-
ited. In addition, this stage serves as a general guidance
for resampling. A highly accurate estimation of the func-
tion fk(·) is not necessary, because resampling relies more
on the global picture. Accurate details of fk(·) will not im-
prove the resampling performance significantly; thus the
required number of backward pilots m∗ need not be large.
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Figure 2. Using the backward pilots to obtain the resampling prior-
ity score.

2. We choose the sampling distribution gk(uk | u(j)
k+1; θ) in

step 2(a) to be approximately proportional to P∗(u(j)
k+1 |

uk; θ). If we consider the forward sampling distribu-
tion

∏M−1
s=k+1 rs(us | us−1,uM; θ) as an approximation of∏M

s=k+1 P∗(us | us−1; θ), then fk(vk; θ) can be approx-

imated by
∫ ∏M

s=k+1 P∗(vs | vs−1; θ)dvk+1 · · · dvM−1.
Thus gk(us | uk+1; θ) ∝ P∗(uk+1 | uk; θ) is a reasonable
choice of sampling distribution for estimating fk(vk; θ).
In the Euler approximation, we have

uk+1 = uk + b(uk; θ)δ + A(uk; θ)εk,

where εk is d-dimensional Gaussian distribution N (0,

δId) and Id is the identity matrix. To approximate
P∗(u(j)

k+1 | uk; θ), we apply the Taylor expansion to b(uk;
θ) at point u∗(j)

k = u(j)
k+1 − b(u(j)

k+1; θ)δ and assume that

A(uk; θ) is constant, A(u∗(j)
k ; θ); we then have

u(j)
k+1 = (

Id + H
(
u∗(j)

k ; θ)
δ
)
uk + b

(
u∗(j)

k ; θ)
δ

− H
(
u∗(j)

k ; θ)
u∗(j)

k δ + A
(
u∗(j)

k ; θ)
εk,

where H(u; θ) is the Jacobi matrix of the drift coeffi-
cient b(u; θ). Thus, to make gk(uk | u(j)

k+1; θ) approxi-
mately proportional to P∗(uk+1 | uk, θ), we can let gk(uk |
u(j)

k+1; θ) ∼ N (μ
(j)
k ,�

(j)
k ), where

μ
(j)
k = (

�
∗(j)
k

)−1(
u(j)

k+1 − b
(
u∗(j)

k , θ
)
δ

+ H
(
u∗(j)

k ; θ)
u∗(j)

k δ
)
,

�
(j)
k = (

�
∗(j)
k

)−1A
(
u∗(j)

k ; θ)
AT(

u∗(j)
k ; θ)(

�
∗(j)
k

)−T
δ,

�
∗(j)
k = Id + H

(
u∗(j)

k ; θ)
δ.

3. When generating the bridge samples v(j), j = 1, . . . ,m, us-
ing the algorithm in Section 2.1, the “optimal” resampling
priority scores at step k should be set to

β
(j)
k ∝ w(j)

k

[̂
fk

(
v(j)

k ; θ)]−1/2
. (13)

4. In general, the backward pilot scheme can be used to esti-
mate any function of vk in the form of∫

ζ(vk, vk+1, . . . , vM−1, vM)dvk+1 · · · dvM−1,

including the transition probability (as a function of vk)

P∗(vM | vk; θ) =
∫ M−1∏

s=k

P∗(vs+1 | vs; θ)dvk+1 · · · dvM−1.

5. In step 2(c) of the algorithm, although the function f̂k(·)
estimated using the kernel estimator often has good prop-
erties, it can be computationally expensive to evaluate
when the Monte Carlo sample size m∗ is large. Our expe-
rience has shown that the histogram estimator is sufficient
in most cases.

3. EXAMPLES

3.1 Example 1

Beskos et al. (2006) considered diffusion process vt charac-
terized by the SDE

dvt = sin(vt − θ)dt + dwt, (14)

where sin(vt − θ) is the drift coefficient, θ is the parameter,
and wt is Brownian motion. This diffusion process actually ex-
hibits certain jump phenomena. When vt falls in the interval
(θ + 2kπ, θ + 2(k + 1)π), k ∈ Z, the drift function will pull the
process quickly toward θ + π + 2kπ . Figure 3 shows a realiza-
tion of the process with parameter θ = π .

3.1.1 Estimation of the Transition Density With Parame-
ter θ = π . We first consider the generation of the diffusion
bridges with two fixed endpoints at V0 and V30, using M = 400
intermediate time points. To simplify notation, we use SMC-0
to denote Durham and Gallant (2002)’s sampler (9) without re-
sampling, and SMC-1 to denote Durham and Gallant (2002)’s
sampler (9) with resampling steps according to the “optimal”
priority score (13). In SMC-1, we use the histogram estimator

for the function fk with partition
⋃

l Dl
�= ⋃

l[π
3 l + θ − π

6 , π
3 l +

θ + π
6 ), l ∈ Z, and m∗ = 300 backward pilots. The resampling

step is performed every 20 steps when generating the bridge
samples.

Figure 3. A realization of the process with sine drift coefficients
following equation (14), with θ = π . The vertical lines present obser-
vations with time interval � = 30.
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Figure 4 shows 100 samples of the diffusion bridge con-
necting four consecutive observations, (V0,V30,V60,V90) =
(0,1.49,−5.91,−1.17), using different sampling methods. The
samples under “perfect” sampling [Figure 4(a)] are obtained
by first generating 20,000 samples from SMC-0, then choosing
100 samples from these with probability proportional to their
corresponding final weights w(j). The samples of SMC-0 [Fig-
ure 4(b)] and SMC-1 [Figure 4(c)] are obtained by generating
100 samples using the corresponding methods. Here we do not
weight the samples, just to show the properties of the gener-
ated samples and the corresponding trial distributions. Clearly
the sampling distribution of SMC-1 is much closer to the “per-
fect” sampling distribution and captures the “jump” behavior of
the diffusion bridge. It is also interesting to note that the timing
of the jumps occurs almost uniformly within the time interval.
As there is no information other than the two end-points, the
uniformity of the jump timing is quite expected.

As in Durham and Gallant (2002), we use

EQ

[
log

(
1

m

m∑
j=1

w(j)

)
− log P∗(vM | v0; θ)

]2

as the measurement of the efficiency for different sampling
method. In fact, when v(j), j = 1, . . . ,m, are generated inde-
pendently, we have

EQ

[
log

(
1

m

m∑
j=1

w(j)

)
− log P∗(vM | v0; θ)

]2

≈ EQ

[
(1/m)

∑m
j=1 w(j)

P∗(vM | v0; θ)
− 1

]2

= 1

m
VarQ

[
w(j)

P∗(vM | v0; θ)

]
.

Thus this measurement can be treated as an approximation of
measurement (6) divided by the sample size m. For fair com-
parison, we adjust the sample size m so that different sampling
methods take about the same computational time.

Fixing parameter θ at π , for each pair of endpoints V0 and
V30, we repeat the estimation 100 times independently and cal-
culate

RMSE(V0,V30) =
[

1

100

100∑
i=1

(
log P̂∗(i)(V30 | V0, θ = π)

− log P(V30 | V0, θ = π)
)2

]1/2

,

as the performance measurement, where P̂∗(i)(V30 | V0, θ = π)

is the ith independent estimate of P∗(V30 | V0, θ = π). The
“true” value of log P(V30 | V0; θ = π) is obtained using Beskos
et al. (2006)’s exact sampling method with m = 10,000,000
Monte Carlo samples. With roughly equal computational time,
we used m = 3500 samples for SMC-0 and m = 1000 samples
for SMC-1. Note that the sampling distributions of SMC-0 do
not depend on the parameter, and that the samples can be lin-
early transformed to meet different fixed endpoints, although
the weight calculation depends on θ and the endpoints. Thus
the computational time for SMC-0 involves only the time to
evaluate

∏M
k=1 P∗(v(j)

k | v(j)
k−1; θ = π).

Table 1 reports the ratio of RMSE(V0,V30) of SMC-1 to
RMSE(V0,V30) of SMC-0. It can be seen that for most of the

Figure 4. Illustration of bridge samples of the sine drift process
generated using different sampling methods with M = 400 inter-
mediate points between two consecutive observations. The para-
meter is θ = π , and the observations are (V0,V30,V60,V90) =
(0,1.49,−5.91,−1.17). (a): The “perfect” sampling distribution. (b):
Durham and Gallant (2002)’s sampling method (SMC-0). (c): Durham
and Gallant (2002)’s sampling method with resampling steps (SMC-1).
In SMC-1, the resampling step is performed every 20 steps when gen-
erating the bridge samples. m∗ = 300 backward pilots are generated to
estimate the resampling priority scores.
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Table 1. The ratio of RMSE(V0,V30) for SMC-1 to RMSE(V0,V30) for SMC-0 for estimating log P(V30 | V0; θ = π)

for the diffusion process with sine drift

V0

RMSESMC-1(V0,V30)
RMSESMC-0(V0,V30)

−1.0π −0.8π −0.6π −0.4π −0.2π 0 0.2π 0.4π 0.6π 0.8π 1.0π

V30 = −4.8π 0.48 0.74 0.92 1.20 1.48 1.72 1.66 1.69 2.06 1.91 3.09
V30 = −4.2π 0.59 0.69 0.83 1.16 1.45 1.56 1.52 2.14 1.82 1.81 2.39
V30 = −3.6π 0.47 0.62 0.81 0.96 1.17 1.38 1.27 1.39 1.68 1.39 1.76
V30 = −3.0π 0.39 0.34 0.43 0.45 0.56 0.49 0.59 0.56 0.58 0.47 0.50
V30 = −2.4π 0.34 0.32 0.43 0.51 0.44 0.49 0.59 0.53 0.43 0.65 0.47
V30 = −1.8π 0.46 0.40 0.48 0.45 0.56 0.57 0.53 0.57 0.42 0.42 0.55
V30 = −1.2π 0.35 0.38 0.46 0.50 0.45 0.40 0.50 0.50 0.33 0.45 0.41
V30 = −0.6π 0.32 0.25 0.36 0.42 0.32 0.37 0.30 0.37 0.27 0.26 0.28
V30 = 0.0π 0.32 0.32 0.47 0.41 0.36 0.34 0.37 0.40 0.27 0.30 0.30
V30 = 0.6π 0.61 0.28 0.32 0.33 0.41 0.27 0.34 0.25 0.30 0.29 0.45
V30 = 1.2π 0.40 0.40 0.39 0.43 0.39 0.55 0.55 0.63 0.49 0.52 0.30
V30 = 1.8π 0.45 0.54 0.51 0.55 0.63 0.45 0.55 0.37 0.40 0.38 0.37
V30 = 2.4π 0.49 0.54 0.53 0.49 0.52 0.55 0.49 0.54 0.44 0.41 0.28
V30 = 3.0π 0.61 0.58 0.50 0.41 0.57 0.49 0.45 0.64 0.49 0.40 0.43
V30 = 3.6π 1.54 1.53 1.30 1.34 1.38 1.15 1.41 1.12 0.87 0.56 0.58
V30 = 4.2π 2.01 1.77 1.62 2.04 1.29 1.67 1.03 1.06 0.86 0.71 0.51
V30 = 4.8π 2.66 2.55 1.67 1.83 1.51 1.54 1.60 1.51 0.91 0.55 0.56

NOTE: The sample sizes (m = 3500 for SMC-0 and m = 1000 for SMC-1) are controlled, so the two methods have similar computational times.

(V0,V30) pairs, when V30 is not too far away from V0, SMC-1
has better estimation accuracy; however, when |V30 −V0| > 4π ,
SMC-0 outperforms SMC-1. In this case the process is re-
quired to jump more than two levels within a short time period,
� = 30. Simulation shows that such cases occur only 0.1% of
the time. Tables 2 and 3 report the RMSE(V0,V30) of SMC-
0 and SMC-1, respectively. They show that the RMSE(V0,V30)

of SMC-0 decreases slowly as |V30 −V0| increases, and that the
RMSE(V0,V30) of SMC-1 maintains a relatively small value
when V0 and V30 are close, but increases rapidly with increasing
distance between V0 and V30 when |V30 − V0| > 4π . It seems

that when there are several unidirectional jumps between the
two endpoints in a short time interval, the most likely paths are
those close to the straight line between the two endpoints. In
this case, the sampling distribution used by Durham and Gal-
lant (2002) (SMC-0) guides the sampling more forcefully to
reach the far-away target endpoint. In contrast, the resampling
approach (SMC-1) might require larger Monte Carlo sample
sizes of the backward pilots to obtain “good” resampling pri-
ority scores, because the backward pilots are generated without
considering the location of v0. To illustrate the variability of
the estimators, Figure 5 shows a boxplot of the estimation er-

Table 2. RMSE(V0,V30) using SMC-0 when estimating log P(V30 | V0; θ = π) of the diffusion process with sine drift,
with sample size m = 3500

V0

RMSESMC-0(V0,V30) −1.0π −0.8π −0.6π −0.4π −0.2π 0 0.2π 0.4π 0.6π 0.8π 1.0π

V30 = −4.8π 0.27 0.26 0.23 0.25 0.20 0.24 0.22 0.21 0.17 0.19 0.17
V30 = −4.2π 0.23 0.23 0.25 0.19 0.22 0.20 0.19 0.14 0.17 0.19 0.20
V30 = −3.6π 0.32 0.28 0.27 0.26 0.22 0.23 0.22 0.21 0.20 0.23 0.20
V30 = −3.0π 0.40 0.44 0.33 0.30 0.27 0.29 0.24 0.26 0.32 0.29 0.31
V30 = −2.4π 0.33 0.36 0.29 0.26 0.25 0.26 0.21 0.31 0.29 0.25 0.26
V30 = −1.8π 0.41 0.31 0.36 0.30 0.24 0.21 0.23 0.27 0.29 0.31 0.26
V30 = −1.2π 0.47 0.42 0.45 0.42 0.36 0.33 0.31 0.33 0.44 0.34 0.42
V30 = −0.6π 0.47 0.43 0.44 0.38 0.34 0.30 0.37 0.33 0.41 0.42 0.42
V30 = 0.0π 0.35 0.32 0.33 0.30 0.27 0.26 0.27 0.36 0.33 0.39 0.37
V30 = 0.6π 0.35 0.41 0.45 0.32 0.35 0.33 0.28 0.39 0.41 0.38 0.49
V30 = 1.2π 0.40 0.39 0.38 0.35 0.35 0.33 0.43 0.30 0.38 0.39 0.47
V30 = 1.8π 0.27 0.27 0.22 0.26 0.22 0.27 0.27 0.30 0.34 0.35 0.38
V30 = 2.4π 0.26 0.32 0.24 0.26 0.23 0.22 0.26 0.24 0.34 0.38 0.39
V30 = 3.0π 0.25 0.27 0.27 0.29 0.29 0.25 0.32 0.28 0.31 0.44 0.53
V30 = 3.6π 0.26 0.22 0.21 0.24 0.24 0.25 0.21 0.24 0.26 0.34 0.27
V30 = 4.2π 0.20 0.18 0.17 0.17 0.20 0.18 0.26 0.22 0.22 0.24 0.25
V30 = 4.8π 0.18 0.16 0.21 0.19 0.18 0.24 0.20 0.20 0.24 0.26 0.28
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Table 3. RMSE(V0,V30) using SMC-1 when estimating log P(V30 | V0; θ = π) of the diffusion process with sine drift,
with sample size m = 1000

V0

RMSESMC-1(V0,V30) −1.0π −0.8π −0.6π −0.4π −0.2π 0 0.2π 0.4π 0.6π 0.8π 1.0π

V30 = −4.8π 0.13 0.19 0.21 0.30 0.29 0.42 0.36 0.36 0.35 0.37 0.53
V30 = −4.2π 0.14 0.16 0.21 0.22 0.31 0.31 0.28 0.30 0.30 0.34 0.48
V30 = −3.6π 0.15 0.17 0.22 0.25 0.26 0.32 0.28 0.29 0.33 0.32 0.36
V30 = −3.0π 0.15 0.15 0.14 0.14 0.15 0.14 0.14 0.14 0.19 0.14 0.15
V30 = −2.4π 0.11 0.12 0.12 0.13 0.11 0.13 0.12 0.16 0.12 0.17 0.12
V30 = −1.8π 0.19 0.12 0.17 0.13 0.13 0.12 0.12 0.15 0.12 0.13 0.14
V30 = −1.2π 0.17 0.16 0.21 0.21 0.16 0.13 0.15 0.17 0.14 0.15 0.17
V30 = −0.6π 0.15 0.10 0.16 0.16 0.11 0.11 0.11 0.12 0.11 0.11 0.12
V30 = 0.0π 0.11 0.10 0.15 0.12 0.10 0.09 0.10 0.15 0.09 0.12 0.11
V30 = 0.6π 0.21 0.12 0.14 0.11 0.14 0.09 0.09 0.10 0.12 0.11 0.22
V30 = 1.2π 0.16 0.15 0.15 0.15 0.14 0.18 0.24 0.19 0.18 0.20 0.14
V30 = 1.8π 0.12 0.15 0.11 0.14 0.14 0.12 0.15 0.11 0.14 0.13 0.14
V30 = 2.4π 0.13 0.17 0.13 0.13 0.12 0.12 0.13 0.13 0.15 0.16 0.11
V30 = 3.0π 0.15 0.16 0.14 0.12 0.17 0.13 0.14 0.18 0.15 0.17 0.23
V30 = 3.6π 0.40 0.33 0.27 0.31 0.33 0.29 0.29 0.27 0.23 0.19 0.15
V30 = 4.2π 0.41 0.32 0.28 0.35 0.26 0.30 0.26 0.23 0.19 0.17 0.13
V30 = 4.8π 0.48 0.41 0.35 0.35 0.28 0.36 0.32 0.31 0.22 0.15 0.16

rors of the log transition density for a selected set of (V0,V30)

combinations. It can be seen that the error distribution is rela-
tively symmetric and well behaved; thus the RMSE accurately
reflects the performance of estimation methods. The log transi-
tion probability estimated by SMC-1 with m = 1000 samples is
plotted in Figure 6.

Figure 7 shows the sampled diffusion bridges for selected
pairs of (V0,V30) using the SMC-1 method. It is seen that
the process is stable around 0,2π,4π, . . . and transient around
π,3π, etc., and exhibits jump behavior after entering the tran-
sition zone, spending a very short time inside the transit zone.
Thus the process tends to remain in the stable zone if not re-
quired to move to another zone [panel (a)]. If the endpoint is in
the transit zone, then the process tends to stay in the stable zone
as long as it can, then move into the transit zone at the end to
meet the ending requirement [(b), (d), and (f)]. Panel (b) also
shows that the process is also able to jump to a different stable
zone and then come back to meet the boundary requirement at
the end. If the starting point and the ending point are both in
stable but different zones, then the jump will occur within the
time period and the timing will be almost uniform, except at the
beginning and the end [(c) and (e)].

3.1.2 Likelihood Function Estimation. The ability to esti-
mate the transition probability also allows us to estimate the
likelihood function. Given observations observed at discrete
time Vt0,Vt1 , . . . ,Vtn , the log-likelihood function is

L(θ) =
n∑

i=1

Li(θ) =
n∑

i=1

log P
(
Vti | Vti−1; θ

)
.

In what follows, we investigate the performance of the pro-
posed method for likelihood function estimation. We sim-
ulate 100 paths of the process in (14) with θ = π , each
with n = 101 observations and time interval � = 30 between
two observations. Thus the observations are observed at t =

0,30,60, . . . ,3000. The paths are simulated using Euler ap-
proximation with a very small time step (�/10,000). We com-
pare the efficiency of the exact sampling method proposed by
Beskos et al. (2006), SMC-0, and SMC-1.

We use the following measure of efficiency:

RMSE(θ) =
[

1

n

n∑
i=1

(̂Li(θ) − Li(θ))2

]1/2

.

Again, we obtain the “true” value of Li(θ) via the exact
sampling method with a Monte Carlo sample size of m =
10,000,000.

We report the average RMSE(θ) of the 100 simulated paths
for different methods in Table 4. For each method, its Monte
Carlo sample size m is chosen so that the methods take approx-
imately the same CPU time. From the table we can see that
SMC-1 performs the best for estimating L(θ) of all θ (the true
parameter is at θ = π ). Although the exact sampling method
Beskos et al. (2006) produces unbiased estimators of the tran-
sition density hence the likelihood function, its performance is
not satisfactory, due to the high rejection rate in the sampling
process.

In Figure 8 we plot the log-likelihood function of θ in
[0.76π,1.24π] with a grid of every 0.02π , based on one set
of observations at t = 0,30,60, . . . ,3000. The solid line is
the estimated log-likelihood function using SMC-1 with 1000
samples. For comparison, the dashed line plots the “true” log-
likelihood function using SMC-0 with 100,000 samples. The
diamond (θ̂ = 1.04π ) and the circle (θ̂ = 1.06π ) shown on the
plot are the MLE using the estimated (SMC-1) and the “true”
log-likelihood functions, respectively. We can see that the es-
timated log-likelihood function is close to the true one, but is
not smooth at places, due to randomness of the Monte Carlo
samples. However, the MLE is quite close to the “true” one. It
is possible to combine the proposed method with the smooth
particle filter (Pitt 2002) to obtain an improved estimation of a
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Figure 5. Boxplots of estimation errors in 100 independent estimations of log P(V30 | V0, θ = π) for the sine-drift example. The performance
of SMC-0 and SMC-1 is compared. V30 is 0 in (a), π in (b), 2π in (c), and 4π in (d).

smooth likelihood function. Further research on this direction
is needed.

3.2 Example 2

We next consider the jump diffusion process (Merton 1976;
Cox, Ross, and Rubinstein 1979; Aït-Sahalia 2004)

dvt =
(

α − λκ − σ 2

2

)
dt + σ dwt + dzt, (15)

which is often used for modeling stock prices. We set α = 0.08,
σ = 0.2, λ = 5, and zt as a Poisson process, with λ the mean
number of arrivals per unit time. In addition, when an Poisson
event occurs, zt produces a jump of size y that follows a normal
distribution with mean μy = 0 and standard deviation σy = 0.1;
κ = E(exp(y)−1) = 0.005. A realization of this process is plot-
ted in Figure 9.

For a small time interval δ, let

vt+δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vt +
(

α − λκ − σ 2

2

)
δ + wt+δ − wt + zt+δ − zt

if ≤ 1 jumps occur in [t, t + δ)

vt +
(

α − λκ − σ 2

2

)
δ + wt+δ − wt

if ≥ 2 jumps occur in [t, t + δ).

When we divide [0,�) into M small intervals and let J be the
index of the first small interval that more than 1 jump happens
in [Jδ, (J + 1)δ) (δ = �/M), we have P(J = k) ≤ C1δ

2. Thus

E(v� − v�)2 =
M−1∑
k=0

P(J = k)E[(v� − v�)2 | J = k] ≤ C2δ.

Then the process vt strongly converges to vt at the rate of
√

δ.
Here C1 and C2 are positive constants. Thus for this process,
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Figure 6. The log transition probability of the sine drift process estimated using SMC-1. The sample size is m = 1000.

we can approximate P(vk | vk−1) by

P∗(vk | vk−1)

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N
(

vk−1 +
(

α − λκ − σ 2

2

)
δ, σ 2δ + σ 2

y

)
with probability 1 − λδ

N
(

vk−1 +
(

α − λκ − σ 2

2

)
δ, σ 2δ

)
with probability λδ.

(16)

3.2.1 Transition Density Estimation. In this example, the
transition probability density P(V� | V0) depends only on the
time interval � and the difference, V� − V0, between the two
endpoints. We fixed V0 = 0 and considered the effect of differ-
ent durations of time period � = i/36, i = 1, . . . ,9 and different
ending points V�. To accommodate the different time periods,
we use different number of intermediate time points M for dif-
ferent �. Specifically, we use M = 100 for � = 1/36, M = 200
for � = 2/36,3/36,4/36, and M = 400 for � = 5/36 to 9/36.

To capture the jump behavior of the process, we extend
Pedersen (1995)’s sampler as

rk(vk | vk−1) = P∗(vk | vk−1), (17)

and Durham and Gallant (2002)’s sampler as

rk(vk | vk−1)

∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N
(

vk−1 + vM − vk−1

M − k + 1
,

M − k

M − k + 1
σ 2δ + σ 2

y

)
with probability 1 − λδ

N
(

vk−1 + vM − vk−1

M − k + 1
,

M − k

M − k + 1
σ 2δ

)
with probability λδ.

(18)

It can be verified that both the extended Pedersen (1995)
sampler and the extended Durham and Gallant (2002) sam-
pler satisfy the consistent condition VarQ(w) < ∞. For this ex-
ample, our numerical experiment shows that sampler (17) out-
performs sampler (18) with the same computational time. Thus
we use (17) as a benchmark (denoted by SMC-0). For the pro-
posed procedure SMC-1, we use the same sampling distribution
with the proposed resampling steps. Resampling is performed
every two steps, using the resampling priority score (13), with
m∗ = 500 backward pilots. Function fk is estimated by a sim-
ple histogram estimator with partition [0.04l,0.04(l + 1)), l =
0,±1,±2, . . . .

The sampling distribution for generating the backward pilots
is

gk
(
uk | u(j)

k+1

) ∝ P∗(u(j)
k+1 | uk

)
,

where P∗ is as specified in (16). More specifically, it is a mix-
ture Gaussian distribution of uk as follows:

gk
(
uk | u(j)

k+1

) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N
(

u(j)
k+1 −

(
α − λκ − σ 2

2

)
δ, σ 2δ + σ 2

y

)
with probability 1 − λδ

N
(

u(j)
k+1 −

(
α − λκ − σ 2

2

)
δ, σ 2δ

)
with probability λδ.

For � = 1/12, we plot 100 bridge samples generated by the
“perfect” sampling distribution, SMC-0, and SMC-1 in Fig-
ure 10 with five consecutive observations, (V0,V�,V2�,V3�,

V4�) = (0,−0.136,−0.25,−0.27,−0.293). It is seen that the
sampling distribution under SMC-1 is much closer to the “per-
fect” sampling distribution compared with that under SMC-0.
Thus SMC-1 is more efficient.
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Figure 7. Illustration of bridge samples of the sine drift process generated by SMC-1 for θ = π , V0 = 0 and different values of V30. The
resampling step is performed every 20 steps when generating the bridge samples. m∗ = 300 backward pilots are generated to estimate the
resampling priority scores.



832 Journal of the American Statistical Association, June 2010

Table 4. RMSE for estimating θ using the estimated log-likelihood
function under different methods, for the diffusion process with sine

drift with 100 simulated sample paths, each observed at
t = 0,30,60, . . . ,3000 (101 observations) with θ = π

RMSE(θ) Exact sampling SMC-0 SMC-1

m 80,000 3500 1000

θ = 0.0π 1.719 0.519 0.325
θ = 0.2π 1.488 0.497 0.291
θ = 0.4π 1.211 0.433 0.214
θ = 0.6π 0.901 0.397 0.157
θ = 0.8π 0.648 0.347 0.136
θ = 1.0π 0.588 0.331 0.122
θ = 1.2π 0.671 0.356 0.135
θ = 1.4π 0.870 0.399 0.165
θ = 1.6π 1.217 0.452 0.227
θ = 1.8π 1.573 0.507 0.299

Time (sec.) 0.490 0.478 0.470

NOTE: Row 2 reports the Monte Carlo sample sizes m used, and the last row reports the
average CPU time for estimating the needed log transition density.

For transition density estimation, we obtained

RMSE(�,V�) =
[

1

100

100∑
i=1

(
log P̂∗(i)(V� | V0 = 0)

− log P(V� | V0 = 0)
)2

]1/2

,

over 100 independent trials, for various �’s and different V�’s.
In this example, the true value of log P(V� | V0 = 0) can be cal-
culated analytically. Estimations obtained by SMC-0 and SMC-
1 are based on m = 5000 and m = 2000 Monte Carlo samples,

Figure 8. Estimated log-likelihood function using SMC-1 (solid
line) and the “true” log-likelihood function (dashed line), with a grid
points of every 0.2π , based on a simulated sample path observed at
t = 0,30,60, . . . ,3000 (101 observations). The corresponding MLEs
are shown as the diamond (θ̂ = 1.04) for SMC-1 and the circle
(θ̂ = 1.06) under the “true” log-likelihood function.

Figure 9. A realization of the jump diffusion process following
eq. (15) with α = 0.08, σ = 0.2, λ = 5, μy = 0, and σy = 0.1.

respectively. We plot RMSE(�,V�) for � = 1/36, � = 3/36,
and � = 9/36 in Figure 11(b), (d), and (f), along with the true
value of the transition density P(V� | V0 = 0) in (a), (c), and
(e). Figure 12 also shows the boxplot of estimation errors of
the transition density for a selected sets of V1/4 values, in 100
repeated experiments. Again the error distribution is relatively
well behaved.

Table 5 reports the overall performance measure

RMSE(�)
�=

[∫
RMSE2(�,V�)P(V� | V0 = 0)dV�

]1/2

,

while controlling the CPU time to be roughly the same for dif-
ferent methods. Clearly, SMC-1 is more efficient.

3.2.2 Estimation of the Realized Volatility. Another inter-
esting use of diffusion bridge samples is in estimating the re-
alized volatility (Hull and White 1987; Barndorff-Nielsen and
Shephard 2002; Zhang, Mykland, and Aït-Sahalia 2005) con-
ditional on the two endpoints. In this example, when properly

weighted samples of (v(j)
0 = V0, v(j)

1 , . . . , v(j)
M−1, vM = V�) are

obtained, we can estimate I(�,V�) = E(
∑M

s=1(vs − vs−1)
2 |

V0,V�) by

Î(�,V�) =
∑m

j=1 w(j) ∑M
s=1(v

(j)
s − v(j)

s−1)
2∑m

j=1 w(j)
. (19)

In fact, there is a better approach to resampling the prior-
ity score for this specific inference problem. The “optimal” re-
sampling priority score developed by (11) was designed only
to generate the “best” bridge samples and to minimize the vari-
ance of weight, VarQ w.

At step k (k ≤ M − 2), when constructing the priority score
β

(j)
k for estimating I(�,V�), we consider minimizing the vari-

ance of w(j)(
∑M

s=1(v
(j)
s − v(j)

s−1)
2)1/2 instead of minimizing

the variance of w(j) ∑M
s=1(v

(j)
s − v(j)

s−1)
2, which is the term

VarQ(wh) [or, equivelently, VarQ(wh)] in the MSE approxi-
mation (7). Again, given the forward sampling distributions
rs(vs | vs−1, vM; θ), s = k + 1, . . . ,M − 1, without considering
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Figure 10. Bridge samples generated using different methods for
the jump diffusion process with observe time interval � = 1/12.
The observations are V0 = 0, V1/12 = −0.136, V2/12 = −0.250,
V3/12 = −0.270, and V4/12 = −0.293. (a): The “perfect” sampling
distribution; (b): Extended Pedersen (1995)’s sampling method with-
out resampling (SMC-0); (c): Extended Pedersen (1995)’s sampling
method with resampling steps (SMC-1). In SMC-1, the resampling
step is performed every two steps when generating the bridge samples.
m∗ = 500 backward pilots are generated to estimate the resampling
priority scores.

the effect of future resampling after step k, the problem is equiv-
alent to finding β that minimizes

E

[
w2

M∑
s=1

(vs − vs−1)2
∣∣∣ V0,V�

]

= E

[( ∏M
s=1 P∗(vs | vs−1; θ)

βkQk(vk)
∏M−1

s=k+1 rs(vs | vs−1, vM; θ)

)2

×
M∑

s=1

(vs − vs−1)2
∣∣∣ V0,V�

]

=
∫ [∏M

s=1 P∗(vs | vs−1; θ)]2
βkQk(vk)

∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

×
M∑

s=1

(vs − vs−1)2 dv1 · · · dvM−1

=
∫ [∏k

s=1 P∗(vs | vs−1; θ)]2
βkQk(vk)

k∑
s=1

(vs − vs−1)2

×
∫ [∏M

s=k+1 P∗(vs | vs−1; θ)]2∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

dvk+1 · · · dvM−1 dv1 · · · dvk

+
∫ [∏k

s=1 P∗(vs | vs−1; θ)]2
βkQk(vk)

∫ [∏M
s=k+1 P∗(vs | vs−1; θ)]2∏M−1

s=k+1 rs(vs | vs−1, vM; θ)

×
M∑

s=k+1

(vs − vs−1)2 dvk+1 · · · dvM−1 dv1 · · · dvk.

Thus Var[w
√∑M

s=1(vs − vs−1)2] is minimized when

βk = wk

[
k∑

s=1

(vs − vs−1)
2

×
∫ [∏M

s=k+1 P∗(vs | vs−1; θ)]2∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

dvk+1 · · · dvM−1

+
∫ [∏M

s=k+1 P∗(vs | vs−1; θ)]2∏M−1
s=k+1 rs(vs | vs−1, vM; θ)

×
M∑

s=k+1

(vs − vs−1)
2 dvk+1 · · · dvM−1

]1/2

.

The backward pilot scheme described in Section 2.3 can be used
to estimate

f̂ (1)
k (vk; θ) �

∫ [∏M
s=k+1 P∗(vs | vs−1; θ)]2∏M−1

s=k+1 rs(vs | vs−1, vM; θ)
dvk+1 · · · dvM−1

and

f̂ (2)
k (vk; θ) �

∫ [∏M
s=k+1 P∗(vs | vs−1; θ)]2∏M−1

s=k+1 rs(vs | vs−1, vM; θ)

×
M∑

s=k+1

(vs − vs−1)dvk+1 · · · dvM−1.
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Figure 11. (a), (c), and (e) True transition density P(V� | V0 = 0) for the jump diffusion process with observation time intervals � = 1/36,
� = 1/12, and � = 1/4, respectively. (b), (d), and (f) The corresponding RMSE(�,V�) of estimating the transition densities using SMC-0
with m = 5000 samples and SMC-1 with m = 2000 samples.
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Figure 12. Boxplots of estimation errors of log P(V�=1/4 | V0 = 0) for the jump process, in 100 independent repeated experiments. We
compared the performance of SMC-0 and SMC-1. V1/4 is 0, 0.1,0.2, and 0.35 in (a), (b), (c), and (d), respectively.

Table 5. RMSE(�) of using SMC-0 and SMC-1 to estimate the
log-transition probability of the jump diffusion process

RMSE(�) of log-likelihood SMC-0 SMC-1

m 5000 2000

� = 1/36 0.187 0.129
� = 2/36 0.211 0.125
� = 3/36 0.193 0.113
� = 4/36 0.190 0.105
� = 5/36 0.236 0.119
� = 6/36 0.226 0.114
� = 7/36 0.218 0.111
� = 8/36 0.215 0.109
� = 9/36 0.211 0.108

Time (sec.) 0.209 0.203

NOTE: Row 2 is the Monte Carlo sample size (m), and the last row reports the average
CPU time of each evaluation of the log transition density.

Then the priority score is set as

βk ∝ wk

[
k∑

s=1

(vs − vs−1)
2̂f (1)

k (vk; θ) + f̂ (2)
k (vk; θ)

]1/2

. (20)

The SMC that uses the resampling priority score (20) is des-
ignated SMC-1*, whereas SMC-1 uses (11) as the resampling
priority score. The other settings in SMC-1* are the same as in
SMC-1. For a performance comparison, define

RMSEσ (�,V�) =
[

1

100

100∑
i=1

(̂
I(i)(�,V�) − I(�,V�)

)2

]1/2

,

over 100 independent estimates as the measurement of estimate
accuracy, where the “true” value of I(�,V�) = E(

∑M
s=1(vs −

vs−1)
2 | V0,V�) is obtained by using SMC-0 with m = 500,000

Monte Carlo samples. Values of RMSEσ (�,V�) for � = 1/36,
� = 3/36, and � = 9/36 are plotted in Figure 13. Figure 13
also shows the “true” value of E(

∑M
s=1(vs − vs−1)

2 | V0,V�). It
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Figure 13. (a), (c), and (e) Plots of the “true” values of E(
∑M

s=1(vs − vs−1)2 | V0 = 0,V�) of the jump diffusion process with observation
time intervals � = 1/36, � = 1/12, and � = 1/4, respectively. (b), (d), and (f) show the corresponding RMSEσ (�,V�) using SMC-0 with
m = 5000 samples, SMC-1 with m = 2000 samples, and SMC-1* with m = 2000 samples. In SMC-1 and SMC-1*, the resampling step is
performed every two steps when generating the bridge samples. m∗ = 500 backward pilots are generated to estimate the resampling priority
scores.
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Table 6. RMSEσ (�)’s for using different sampling methods to
estimate E(

∑M
s=1(vs − vs−1)2 | V0,V�) of the jump diffusion process

RMSEσ (�) (×102) SMC-0 SMC-1 SMC-1*

m 5000 2000 2000

� = 1/36 0.119 0.106 0.105
� = 2/36 0.177 0.135 0.132
� = 3/36 0.200 0.165 0.140
� = 4/36 0.211 0.163 0.152
� = 5/36 0.262 0.186 0.168
� = 6/36 0.272 0.196 0.177
� = 7/36 0.283 0.203 0.190
� = 8/36 0.296 0.212 0.191
� = 9/36 0.310 0.225 0.200

Time (sec.) 0.209 0.203 0.211

NOTE: Row 2 is the Monte Carlo sample sizes (m), and the last row reports the average
CPU time of each evaluation.

can be seen that the SMC methods with backward pilot-guided
resampling perform well, especially for longer time periods �

and when the difference between the two endpoints |V� − V0|
is large.

Table 6 reports the overall performance measurement, de-
fined as

RMSEσ (�) =
[∫

RMSE2
σ (�,V�)P(V� | V0 = 0)dV�

]1/2

,

under similar CPU time. It appears that the specifically de-
signed resampling priority scores indeed improve the perfor-
mance over the generic resampling priority scores.

4. CONCLUSIONS AND DISCUSSION

In this article we have proposed a resampling scheme un-
der the SMC framework for the purpose of generating samples
of diffusion bridges that connect the two observed ends of the
underlying diffusion process. This resampling scheme can be
easily combined with various sampling methods, including the
sampling methods of Pedersen (1995) and Durham and Gallant
(2002). The key idea is to use generated backward pilots to es-
timate the optimal resampling priority scores for adjustment of
the sampling distribution in the intermediate steps. The addi-
tional computational complexity for computing the “optimal”
priority scores is limited.

Although the two illustrating examples are on one-dimen-
sional diffusion processes, the algorithm is designed for multi-
dimensional processes. In such cases, the use of backward pilot
samples is still effective for exploring the intermediate space
through which the bridge paths are likely to pass. Certainly,
a larger number of such pilots is needed. However, the extra
computational burden remain limited, because the backward pi-
lots needs only be generated once and off-line, and a very ac-
curate estimation of the optimal priority score is not needed
to achieve effective resampling. Thus the requirement for the
number of backward pilots needed is not extremely demand-
ing. Nevertheless, dealing with the multidimensional processes
is much more difficult. If the process can be decomposed or
transformed so that there is a sequential structure between the
dimensions, then samples of the (lower-dimensional) marginal

and conditional process can be generated sequentially. For ex-
ample, let Vt = (Vt1, . . . ,Vtd). If for each k, the kth draft coeffi-
cient bk(Vt; θ) in (1) depends only on (Vt1, . . . ,Vtk), the first k
component of Vt, and the diffusion matrix A(Vt, θ) is of lower
triangle, with each nonzero element ai,j(Vt; θ ) depending only
on (Vt1, . . . ,Vtj), then the sample paths can be generated for Vt1
following

dVt1 = b1(Vt1; θ)dt + a1,1(Vt1; θ)dWt1.

Then, conditional on each sample path V(j)
t1 , the second compo-

nent, Vt2, can be generated following

dVt2 = b2
(
V(j)

t1 ,Vt2; θ
)

dt + a1,2
(
V(j)

t1 ,Vt2; θ
)

dW(j)
t1

+ a2,2
(
V(j)

t1 ,Vt2; θ
)

dWt2.

The rest of the components can be generated similarly. Further
research on this approach is needed.

Also note that the “optimal” priority scores might be differ-
ent for different objectives of generating diffusion bridge sam-
ples. In cases of parameter estimations, likelihood function es-
timates often are expected to be smooth and continuous (Pitt
2002). More research is needed to properly adjust our algorithm
to meet such a requirement.

[Received January 2009. Revised February 2010.]
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