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In this paper a class of nonparametric transfer function models is proposed to model nonlinear relation-
ships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional
forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The
nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the cor-
relation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA
structure improves the estimation efficiency in finite samples. The asymptotic properties of the estima-
tors are investigated. The finite-sample properties are illustrated through simulations and one empirical
example.
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1. Introduction

Linear transfer function models (Box et al., 1994) have been
extensively used to model the relationship between ‘output’ and
‘input’ time series. With one input Xt , it assumes the form Yt =
α(B)β(B)−1Xt + et , where Yt is the observed output series of inter-
est, et follows an ARMA process, and α(B), β(B) are polynomials of
the backshift operator B defined as BiXt ≡ Xt−i. Linear transfer func-
tion models have been well studied and proved to be successful in
many fields (e.g. Newbold, 1973; Tiao and Box, 1981; Tsay, 1985;
Poskitt, 1989; Liu and Hanssens, 1982). However, its linear nature
limits its applicability because many nonlinear features encoun-
tered in practice cannot bewell approximated by linearmodels. To
model nonlinear relationships between time series, Chen and Tsay
(1996) proposed the nonlinear transfer function model of the form
Yt = f (Xt−d, . . . , Xt−d−p; θ)+ Nt , where f (·) is a parametric func-
tion assuming the Volterra series representation, Nt is stationary
and modeled as an ARMA process.
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A problem common to nonlinear parametric models is that it
is difficult to justify the explicit parametric functional forms a
priori, because of the large number of candidate functions. Fol-
lowing the principle of ‘letting the data speak for themselves’,
nonparametric smoothing methods provide a more flexible alter-
native to model nonlinear time series (Lewis and Stevens, 1991;
Robinson, 1983; Auestad and Tjöstheim, 1990; Masry, 1996a,b;
Fan and Gilbels, 1996; Smith et al., 1998, e.g.,). To overcome the
‘curse of dimensionality’, various specially structured nonparamet-
ric models have been proposed, including the functional-coefficient
autoregressive (FAR) model (Chen and Tsay, 1993a; Cai et al., 2000),
the nonlinear additive autoregressive model (Chen and Tsay, 1993b),
the adaptive functional-coefficient model (Ichiruma, 1993; Xia and
Li, 1999; Fan et al., 2003), the single indexmodel (Härdle et al., 1993;
Carroll et al., 1997; Newey and Stoker, 1993; Heckman et al., 1998;
Xia et al., 2002) and the partially linear models (Härdle et al., 2000).
The literature about nonlinear and nonparametric time series anal-
ysis is vast, some reviews can be found in Tjøstheim (1994), Hädle
et al. (1997) and Fan and Yao (2003).
In this paper a class of nonparametric transfer function models

is proposed. Consider the model

Yt = f (Xt)+ et , (1)

where f (·) is an unknown and smooth function. The processes
{Xt} and {et} are assumed to be strictly stationary. The transfer
function f (·) is modeled via nonparametric smoothing and the
innovation process {et} is modeled as a stationary and invertible
ARMA(p, q) process, i.e., φ(B)et = θ(B)εt , where φ(B) = 1 −∑p
i=1 φiB

i, θ(B) = 1 −
∑q
j=1 θjB

j, φ = (φ1, . . . , φp)
τ and
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θ = (θ1, . . . , θq)
τ are unknown parameters and {εt} is a sequence

of independent random variables with mean 0 and variance σ 2.
Furthermore, {Xt} and {εt} are assumed to be independent, which
implies the independence between {Xt} and {et}. A multi-step
procedure is used to estimate both the transfer function and the
ARMA parameters.
By modeling the transfer function f (·) nonparametrically, the

model is flexible therefore may be used to model nonlinear re-
lationships of unknown functional forms. By modeling {et} as an
ARMA(p, q) process, the autocorrelation in the data is removed so
f (·) can be estimated more efficiently. Furthermore, the explicit
correlation structure can be used to improve the forecasting per-
formance.
The problem of estimating f (·) in (1) can be viewed as a re-

gression with correlated noise. Under certain mixing conditions,
the windowing-and-whitening effect (Hart, 1996) makes the lo-
cal smoothing method valid even when the correlation is ignored
(Zeger andDiggle, 1994;Wild andYee, 1996;Wuet al., 1998; Ruck-
stuhl et al., 2000). To take advantage of the correlation in the data,
Severini and Staniswalis (1994) proposed to estimate the covari-
ance matrix and incorporate the estimated covariance structure in
the kernel weights.
Recently Xiao et al. (2003); Su and Ullah (2006) considered

problems similar to the one considered in this paper. These stud-
ies are closely related, but major difference exists, especially in the
treatment of the noise {et}. In Xiao et al. (2003), {et} is assumed to
be a general linear process and is approximated by a truncated AR
process; in Su and Ullah (2006), {et} is modeled as a finite-order
nonparametric AR process. In this paper {et} is modeled explic-
itly as an ARMA(p, q) process. This parsimonious representation
allows us to improve the efficiency of estimation in finite samples.
It has special advantages overXiao et al. (2003)when thenoise can-
not be approximated with small-order AR models (e.g., seasonal
ARMA models or ARMA models with roots close to one in the MA
part). Comparing to the approach of Su andUllah (2006), an explicit
parametric form of the noise process allows faster convergence in
the estimation of the innovation structure, hence the ability of gen-
erating more accurate predictions using the model.
This paper is organized as follows. In Section 2, the estima-

tion procedure and the asymptotic properties of the proposed
estimatorwhen {et} follows anAR(p)process are presented. In Sec-
tion 3 the results for the AR(p) case are extended to the general
case when {et} follows an ARMA(p, q) process. Although AR(p) is a
special case of ARMA(p, q), different algorithms are used and dif-
ferent approaches are needed to prove the results. The pure AR
structure provides a better algorithm and simpler proof of the
asymptotic results. The performance of the proposed estimators
are studied through simulation and are compared with those of
Xiao et al. (2003) and Su andUllah (2006), the results are presented
in Section 4. The proposed procedures are applied in one real data
example and the results are presented in Section 5. Section 6 con-
tains summary and discussion. The technical proofs are given in
Appendix A. In the proof one important result of Yoshihara (1976)
is used and an account of this result is given in Appendix B.

2. Method for models with AR noise

2.1. The algorithm

When {et} is a stationary AR(p) process, model (1) can be writ-
ten as

Yt = f (Xt)+ et , φ(B)et = εt .

Under normal assumption and with observations {(Xt , Yt)}nt=1, the
maximum likelihood estimation for f (·) and φ boils down to the
following optimization problem:

inf
f ,φ

n∑
t=1

{
Yt − f (Xt)−

p∑
i=1

φi(Yt−i − f (Xt−i))

}2
, (2)

where the infimum is taken over all smooth function f and φ ∈ Rp

satisfies the stationary condition.
We first obtain a preliminary estimator for f (·) by local linear

regression, ignoring the correlation in {et}. Namely, f̃ (x) = ã0, and
(̃a0, ã1)minimizes

n∑
t=1

{Yt − a0 − a1(Xt − x)}2Kb(Xt − x), (3)

where Kb(·) = b−1K(·/b), K(·) is a kernel function inR, and b > 0
is a bandwidth. With simple algebra, we have

f̃ (x)− f (x)

=
1
nb

n∑
t=1

Wn

(
Xt − x
b

, x
)
{Yt − f (x)− ḟ (x)(Xt − x)}, (4)

where

Wn(t, x) = (1, 0)Sn(x)−1
(
1
t

)
K(t). (5)

In the above expression, Sn(x) is a 2× 2 matrix with si+j−2(x) as its
(i, j)th element, and

sk(x) =
1
n

n∑
t=1

(
Xt − x
b

)k
Kb(Xt − x). (6)

Let ẽt = Yt − f̃ (Xt) be the initial estimate of the innovation
series et . Define

X1 =

 ẽp ẽp−1 · · · ẽ1
ẽp+1 ẽp · · · ẽ2
· · · · · · · · ·

ẽn−1 ẽn−2 · · · ẽn−p

 , Y1 =

̃ep+1ẽp+2
· · ·

ẽn

 ,
and W = diag{

∏p
i=0w(Xt−i)}, where w(·) is a weight function

controlling the boundary effect in nonparametric estimation. The
following estimation procedure is used,

1. Specify an initial value φ = φ̃ defined as

φ̃ = (Xτ1WX1)−1Xτ1WY1. (7)

2. For given φ, let f̌j ≡ f̌ (Xj) = â0, where (̂a0, â1)minimizes

n∑
t=1

{
Yt − a0 − a1(Xt − Xj)−

p∑
i=1

φi
[
Yt−i − f̃ (Xt−i)

]}2

× Kh(Xt − Xj)
p∏
i=1

w(Xt−i), (8)

where Kh(·) = h−1K(·/h), and h > 0 is a bandwidth. Obviously
â1 is an estimator for ḟj ≡ f̌ (Xj).

3. Obtain φ̌ by minimizing

n∑
j=1

n∑
t=1

{
Yt − f̌j − ˇ̇f j(Xt − Xj)−

p∑
i=1

φi
[
Yt−i − f̃ (Xt−i)

]}2

× Kh(Xt − Xj)w(Xj)
p∏
i=1

w(Xt−i). (9)

Remark 1. In practice, we repeat Steps 2 and 3 above until conver-
gence. Note that in (8) and (9), the values of f̃ (Xt−i) are fixed at the
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initial estimate throughout the iterations. This setting guarantees
that the sum of squares is non-increasing in every iteration, hence
guarantees the convergence. Replacing f̃ with the newly estimated
function valuesmay improve the results, though convergence is no
longer guaranteed. Furthermore such a replacement is not neces-
sary at least asymptotically; see Theorem 2 below.

Remark 2. In practice, only those f̂ (Xj) with w(Xj) > 0 will be
calculated in order to eliminate the boundary bias. One may let
w(·) be an indicator function on, for example, the 80% inner sample
range of Xt .

Remark 3. There are two bandwidths b and h in the estimation
procedure. The asymptotic results below show that the bandwidth
h in the iteration step should be of the standard order of n−1/5.
However, the bandwidth at the preliminary step (3) should be
of smaller order b = o(h) but nb4 → ∞ (Condition A4 in
Appendix A). This requirement controls the bias in the preliminary
step of the estimation. In practice, standard bandwidth selection in
the iteration steps can be utilized. Experiments show that the final
results are usually not very sensitive to the choice of bandwidth b.
A fraction of the usual optimal bandwidth often works well.

Remark 4. In this paper {et} and {Xt} are assumed to be indepen-
dent. Otherwise the least squares-based estimators, such as local
polynomial estimators, might not be consistent. This assumption
essentially forbids the use of lagged Y ’s as explanatory variables.
When lagged Y ’s are needed on the right-hand side of the model,
alternative approaches are needed. For example, onemay consider
including enough lags ofY on theRHSof themodel so that the inno-
vation process becomes nearly uncorrelated and standard smooth-
ing methods can be applied. See also Xiao et al. (2003).

2.2. Asymptotic results

In the subsequent discussion, we denote the moments of the
kernel function by µi ≡

∫
uiK(u)du. Let

X2 =

 ep ep−1 · · · e1
ep+1 ep · · · e2
· · · · · · · · ·

en−1 en−2 · · · en−p

 , Y2 =

ep+1ep+2
· · ·

en

 .
Define the ‘‘idealized’’ estimator

φ̂Ideal = (X
τ
2WX2)−1Xτ2WY2,

where W is the boundary weight matrix defined in Section 2.1.
This would be the ‘idealized’ least square estimator of the AR
coefficients if {et} is observable. It has been shown (e.g. Brockwell
and Davis, 1991) that

√
n
(̂
φIdeal − φ

) D
−→ N

(
0,
E(Πpi=0w(Xt−i))

2

[E(Πpi=0w(Xt−i))]2
σ 2V(φ)−1

)
,

where V(φ) is a p × pmatrix and its (i, j)th element is Cov(ei, ej).
The following theorem links our estimator to φ̂Ideal.

Theorem 1. Let conditions (A1)–(A6) in Appendix A hold, and φ
satisfy the stationarity condition. Then as n→∞,
√
n
(̃
φ − φ̂Ideal

)
= op(1),

where φ̃ is the preliminary estimator defined in (7).

By Theorem 1, φ̃ shares the same asymptotic distribution of φ̂Ideal,
i.e.,

√
n
(̃
φ − φ

) D
−→ N

(
0,
E
(
Π
p
i=0w(Xt−i)

)2[
E
(
Π
p
i=0w(Xt−i)

)]2 σ 2V(φ)−1
)
. (10)

As for the nonparametric function f , the local linear estimator
defined by (8) may be expressed, for a generic x, as follows:

f̂ (x)− f (x) =
1
nh

n∑
t=1

W ∗n

(
Xt − x
h

, x, Xt−1, . . . , Xt−p

)
×
{
Ỹt − f (x)− ḟ (x)(Xt − x)

}
, (11)

where Ỹt = Yt −
∑p
i=1 φ̃i{Yt−i − f̃ (Xt−i)}, and

W ∗n (t, x, y1, y2, . . . , yp) = (1, 0)S
∗

n (x)
−1(1, t)τK(t)Πpi=1w(yi),

and S∗n (x) is defined in the samemanner as Sn(x) in (6)with Kb(Xt−
x) replaced by Kh(Xt − x)

∏p
i=1w(Xt−i) (See also (4)). Theorem 2

below indicates that the above estimator is asymptotically efficient
in the sense that the estimator admits the same (the first-order)
asymptotic distribution as if {Yt} would be defined by a simpler
model with i.i.d. noise.

Theorem 2. Let conditions (A1) to (A6) in Appendix A hold. For any
x in the support of Xt , it holds as n→∞ that

√
nh
{̂
f (x)− f (x)−

h2µ2
2
f̈ (x)

}
D
−→ N

(
0, σ (x)2

)
,

where

σ(x)2 =
σ 2
∫
K(u)2du
g1(x)

×

E
{[
W (Xt−1)W (Xt−2) · · ·W (Xt−p)

]2
|Xt = x

}
{
E
[
W (Xt−1)W (Xt−2) · · ·W (Xt−p)|Xt = x

]}2 , (12)

and g1(x) is the marginal density of Xt .

This theorem shows that the nonparametric transfer function
estimator f̂ (·) is more efficient than the ‘‘conventional’’ local poly-
nomial estimator which ignores the correlation in et . If the con-
ventional estimator is used, the asymptotic variance would have
the same form as (12), but with σ 2 replaced by the variance of et ,
which is strictly greater than σ 2 for a nontrivial AR(p) model. On
the other hand, the asymptotic bias is not affected by the correla-
tion structure. In fact the gain in efficiency of f̂ (·) over the conven-
tional estimator is larger with stronger autocorrelation in et .

3. Method for models with ARMA noise

Here we consider the case when {et} follows an ARMA(p, q)
process. The estimation shares the similar ‘‘pre-whitening’’ idea
with the AR(p) case and the asymptotic results are also similar.
However, the estimation method is different and the proof for the
asymptotic results requires different techniques.

3.1. The algorithm

Modeling {et} as a stationary, invertible ARMA(p, q) process,
model (1) becomes

Yt = f (Xt)+ et , et = φ−1(B)θ(B)εt .

Since {et} is assumed to be stationary and invertible, it admits
the linear process representations et = −

∑
∞

i=1 πiet−i + εt and
et =

∑
∞

i=0 ψiεt−i, where πi and ψi are absolutely summable,
i.e.,

∑
∞

i=0 |πi| < ∞ and
∑
∞

i=0 |ψi| < ∞ (Box et al., 1994). Let
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β = (φ1, . . . , φp, θ1, . . . , θq)
τ . f (·) and β are estimated by solving

the following nonlinear optimization problem

inf
f ,β

n∑
t=1

{
Yt − f (Xt)+

[
φ(B)
θ(B)
− 1

]
[Yt − f (Xt)]

}2
, (13)

where the infimum is taken over all smooth function f and all
β ∈ Rp+q satisfying the stationary and invertible conditions. The
three-step estimation procedure is described as follows:
1. Obtain an initial estimate f̃ (·) by local linear regression, ignor-
ing the serial correlation in {et} and using b as the bandwidth
(see Eq. (3) in the Section 2).

2. Given f̃ , obtain β̂ = (̂φ
τ
, θ̂
τ
)τ by minimizing

n∑
t=1

{
φ(B)
θ(B)

[
Yt − f̃ (Xt)

]}2
(14)

with respect to φ and θ.
3. Given β̂, let f̂j ≡ f̂ (Xj) = â0, where (̂a0, â1)minimizes

n∑
t=1

{
Yt − a0 − a1(Xt − Xj)+

[
φ(B)
θ(B)
− 1

] [
Yt − f̃ (Xt)

]}2
× Kh(Xt − Xj),

where Kh(·) = 1/hK(·/h), h is a bandwidth and h is of larger
order than b.

In practice, steps 2 and 3 may be iterated to improve the finite-
sample performance, with f̃ updated by the estimate of the
previous iteration. Given f̃ and (p, q), standard ARMA estimators
such as MLE and the least squares estimator (LSE) may be used.
In this study, we adopt a nonlinear estimation method which
has the same asymptotic distribution as MLE and LSE. A detailed
description of this method is given in Appendix A. This estimator
is used mainly because it has a closed-form expression, which
greatly simplifies the technical proof of the asymptotic properties.
We believe that the same asymptotic results hold when MLE or
LSE is used, but the technical proofs will be more involved. We
also find through simulation that the finite-sample performance
of this estimator is similar to that of the MLE (Table 4) when used
in nonparametric transfer function models. More details of this
nonlinear estimator can be found in textbooks such as Box et al.
(1994, Section 7.2) and Brockwell and Davis (1991, Section 8.11).

3.2. Asymptotic results

Similar to the AR(p) case, we construct the ‘‘idealized’’ estima-
tor β̂Ideal by treating {et} as observed and using the nonlinear ARMA
estimator mentioned above. It has been shown that (e.g. Brockwell
and Davis, 1991)
√
n
(
β̂Ideal − β

)
D
−→ N

(
0, σ 2V(β)−1

)
,

where

V(β) = E
(
U1Uτ1 U1Vτ1
V1Uτ1 V1Vτ1

)
, (15)

Ut = (Ut ,Ut−1, . . . ,Ut+1−p)τ , Vt = (Vt , Vt−1, . . . , Vt+1−q)τ . {Ut}
is an AR(p) process defined by φ(B)Ut = at and {Vt} is an AR(q)
process defined by θ(B)Vt = bt . Here both at and bt are white
noise processes. Obviously, when the model does not contain the
AR component (a pure MA (q) model), we have V(β) = E

(
V1Vτ1

)
.

Theorem 3. Let conditions (A1) to (A5) and (A6∗) in Appendix A
hold, φ satisfy the stationarity condition and θ satisfy the invertibility
condition. Then as n→∞, it holds that
√
n
(
β̃ − β̂Ideal

)
= op(1).

By Theorem 3, β̃ shares the same asymptotic distribution of
β̂Ideal, i.e.,
√
n
(
β̃ − β

)
D
−→ N

(
0, σ 2V(β)−1

)
,

where β = (φτ , θτ )τ , and V(β) is defined in (15).

Theorem 4. Let conditions (A1) to (A5) and (A6∗) in Appendix A
hold, {et} be a stationary and invertible ARMA(p, q) process. For any
x in the support of Xt , it holds as n→∞ that

√
nh
{̂
f (x)− f (x)−

h2µ2
2
f̈ (x)

}
D
−→ N

(
0, σ (x)2

)
,

where

σ(x)2 =
σ 2
∫
K(u)2du
g1(x)

,

and g1(x) is the marginal density function of Xt .

Theorems 3 and 4 show that similar results as those in the AR(p)
case continue to hold in the ARMA(p, q) case, despite the more
complicated correlation structure. Results similar to Theorems 2
and 4 are established by Xiao et al. (2003) and Su and Ullah (2006)
under different assumptions on et .

4. Numerical properties

In practice we must determine the ARMA orders p and q first.
Since et is not observable, we rely on ẽt ≡ Yt − f̃ (Xt) instead
to identify the model, where f̃ is the conventional local linear
regression estimator. A simulation is conducted to investigate the
performance of AIC, BIC and AICC in order determination based on
ẽt . In the simulation we set

f (Xt) = sin(4Xt)+ cos(2Xt), (16)

Xt = 0.3Xt−1 + at , and et = φ1et−1 + φ2et−2 + εt − θ1εt−1 −
θ2εt−2, where at are independentN(0, 0.32) random variables, and
εt are independent N(0, 0.52) variables. Sample sizes are set at
n = 100, 200 and 400. Two hundred samples are drawn from
each setting. The Gaussian kernel is used with the bandwidth b =
1.06sXn−9/40. For different φ, θ combinations, Table 1 reports the
percentage of times that the correct orders are identified by the
three criteria (AIC1, BIC1 and AICC1, respectively in the table). As
a comparison, the same model selection is done using the real
noise et in each replication and the percentages are also reported
in this table (AIC2, BIC2 and AICC2). As expected, BIC provides
the best performance. Overall the performance of those criteria is
satisfactory and is in linewith the casewhen the observations from
a time series are directly available. Therefore in the simulation
study for f̂ below the order for the ARMA model is assumed to be
known.
To investigate the finite-sample properties of the proposed

estimator f̂ , we continue to use the above setting but with {et}
restricted to three cases: ARMA(1, 1) model et = φet−1 + εt −
θεt−1, and two simple seasonal models et = φ4et−4 + εt and
et = εt − θ4εt−4, denoted as AR(1)4 and MA(1)4, respectively.
Different bandwidths b and h are experimented. Since the results
are not very sensitive with respect to the bandwidths, only those
with h = 1.06sXn−1/5 and b = 1.06sXn−9/40 are reported here.
The methods included in the numerical comparison are NPTF—
the proposed nonparametric transfer function method, XLCM—
the AR approximation approach of Xiao et al. (2003), SU—the
nonparametric AR approximation approach of Su and Ullah (2006),
and WHITE—the conventional local linear estimator treating et as
a while noise.
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Table 1
ARMA order selection.

φ1 φ2 θ1 θ2 n AIC1 AIC2 BIC1 BIC2 AICC1 AICC2

0.5
100 51.5 53.0 89.5 90.0 59.0 58.5
200 58.5 60.0 98.0 98.5 61.5 64.0
400 62.0 59.5 96.0 96.0 62.5 60.5

0.8
100 48.5 51.0 90.0 91.0 54.5 57.5
200 53.0 54.0 93.0 95.0 56.5 55.0
400 63.0 60.5 96.0 94.0 64.5 62.0

0.5 0.25
100 38.0 46.5 48.0 54.0 42.5 49.5
200 57.5 59.0 73.0 79.0 61.5 61.5
400 62.5 62.0 97.5 98.0 62.5 62.0

1.1 −0.4
100 47.5 58.5 62.5 88.0 49.5 62.0
200 52.5 58.0 87.5 95.5 57.5 61.0
400 46.0 57.5 91.0 97.0 48.5 61.5

0.5
100 74.5 75.5 95.0 97.0 77.5 78.0
200 68.0 70.0 97.0 97.5 70.0 71.0
400 72.0 71.5 98.5 97.5 72.5 72.0

0.8
100 70.0 58.5 94.5 89.5 73.5 62.0
200 70.5 71.5 98.0 97.0 71.0 72.5
400 74.0 76.5 99.0 99.0 75.0 76.5

0.5 0.25
100 54.0 61.0 47.0 60.0 56.0 64.5
200 74.0 72.0 82.0 84.0 75.5 74.5
400 73.5 71.5 98.5 99.5 73.5 71.5

1.1 −0.4
100 59.0 60.5 73.5 81.0 63.5 62.5
200 75.0 73.5 96.0 95.0 77.0 75.5
400 74.0 72.0 99.5 98.5 75.5 72.5

0.5 −0.8
100 23.5 31.5 49.0 64.5 28.5 36.0
200 25.0 28.0 75.5 85.0 28.5 34.5
400 25.0 29.0 93.0 95.0 28.5 30.0

0.5 −0.5
100 22.0 27.0 31.5 55.0 24.5 34.0
200 26.5 28.0 68.5 83.5 30.0 35.5
400 26.0 27.5 86.5 91.0 28.0 28.5

−0.5 −0.5 0.2 0.7
100 28.5 27.0 17.0 41.5 31.0 33.0
200 39.5 39.5 64.5 68.0 42.0 44.0
400 43.5 44.0 94.0 91.0 46.0 44.5

The average mean squares error MSE = n−1
∑
1≤t≤n{̂f (Xt) −

f (Xt)}2 over 200 replications are computed for all four methods.
Tables 2 and 3 report the simulation results, in which the entries in
the AMSE column stand for the average MSE of WHITE, the entries
in NPTF, XLCM and SU columns are the ratio of the corresponding
average MSE to the average MSE of WHITE. The means and
standard deviations of φ̂ and θ̂ from NPTF are also included. A
histogram of φ̂ and a plot of a typical simulation are given in Fig. 1.
Some findings from the simulation are summarized as follows:

(1) the NPTF estimator f̂ (·) is more efficient than the simple local
linear regression estimator WHITE. The stronger the autocorrela-
tion, the larger the gain in efficiency of f̂ (·); (2) the performance
of the estimators improves with the increase of sample size; and
(3) some of the ARMA estimates have large bias (e.g., (φ, θ) =
(0.5,−0.8) and (0.8,−0.8)) and larger sample sizes are needed to
improve the performance. Fig. 1 indicates that the sampling distri-
butions of φ̂ are close to the asymptotic normal distribution. In gen-
eral, NPTF, XLCM and SU aremore efficient thanWHITE.When {et}
follows an ARMAmodel with small |θ | (including pure ARmodels),
NPTF and XLCM have similar efficiency. However when |θ | is large,
NPTF is more efficient. For the seasonal models, NPTF has similar
gain in efficiency as in the non-seasonal models, while XLCM and
SU often fail to approximate {et} appropriately, leading to low ef-
ficiencies; see Table 3. Numerical results (not reported here) indi-
cate that for the cases with seasonal {et}, the efficiency of XLCM
improves as the AR order increases, though it is still not as efficient
as NPTF, partially due to the additional errors introduced in esti-
mating more parameters. On the other hand, SU is not as efficient
as NPTF and XLCM for {et} generated from ARMA models, as it is
designed for the models with nonlinear AR {et}.

The nonlinear estimator used in the ARMA(p, q) cases essen-
tially minimizes an approximation of the true sum of squares.
Although it has the same asymptotic distribution as the MLE and
the LSE, it might not be as efficient in finite samples. To better un-
derstand the consequence of the approximation, we compare the
performances of this nonlinear estimator (NLE inwhat follows) and
the MLE in step 2 of the proposed estimation procedure (Eq. (14)),
the results are summarized in Table 4. We can see that although
generally the MLE performs better than the NLE, the difference is
rather small, especially for larger sample sizes.

5. Example: River flow and rainfall

In this section we use the proposed method to analyze the
effect of daily rain fall on river flow of Kanna river (Japan) in year
1956. The effect of rainfall on river flow is usually highly nonlinear,
mainly because the soil moisture varies from rainy period to
dry period. This dataset was analyzed by Ozaki (1985) and later
used by Chen and Tsay (1996) as an example of the (parametric)
nonlinear transfer function (NLTF) model. For details of the data,
see Ozaki (1985) or Chen and Tsay (1996). The performance of the
nonparametric transfer function model is compared with those of
the NLTFmodel and the linear transfer functionmodel (LTF) in this
section.
Let Yt be river flow and Xt be rain fall. The time series plot

and the correlogram of Yt (not shown here to save space) indicate
certain non-stationarity (more detailed results, including the
omitted plots, can be found in Liu et al. (2005)). To formally test the
existence of a unit root, we perform the Augmented Dickey–Fuller
(ADF) test (Dickey and Fuller, 1981) using the following model:
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Table 2
Simulation results: AR(1) and MA(1) models.

φ θ n Mean (̂φ), sφ̂ Mean (̂θ ), ŝθ AMSE NPTF XLCM SU

−0.8
100 −0.795, 0.070 0.030 0.518 0.534 0.683
200 −0.801, 0.048 0.020 0.452 0.460 0.594
400 −0.804, 0.030 0.012 0.468 0.494 0.587

−0.5
100 −0.490, 0.090 0.019 0.799 0.824 0.998
200 −0.501, 0.065 0.012 0.768 0.781 0.961
400 −0.502, 0.047 0.007 0.775 0.784 0.945

−0.2
100 −0.191, 0.112 0.017 0.974 0.995 1.19
200 −0.203, 0.072 0.011 1.08 1.08 1.19
400 −0.195, 0.052 0.007 0.942 0.952 1.12

0.2
100 0.187, 0.111 0.020 1.00 1.02 1.18
200 0.191, 0.083 0.012 1.02 1.03 1.15
400 0.195, 0.050 0.008 1.08 1.08 1.21

0.5
100 0.486, 0.104 0.028 0.941 0.947 1.05
200 0.488, 0.071 0.018 0.922 0.927 1.02
400 0.495, 0.045 0.010 0.920 0.922 1.00

0.8
100 0.769, 0.079 0.092 0.858 0.861 0.893
200 0.787, 0.046 0.057 0.801 0.801 0.830
400 0.794, 0.036 0.031 0.812 0.813 0.839

−0.8
100 −0.747, 0.084 0.032 0.895 0.940 1.04
200 −0.756, 0.056 0.019 0.892 0.877 0.982
400 −0.774, 0.034 0.010 0.871 0.885 0.972

−0.5
100 −0.477, 0.091 0.024 0.965 0.989 1.09
200 −0.490, 0.066 0.014 0.964 0.976 1.05
400 −0.498, 0.047 0.009 0.945 0.969 1.06

−0.2
100 −0.193, 0.128 0.019 1.03 1.13 1.18
200 −0.194, 0.072 0.012 1.04 1.06 1.17
400 −0.200, 0.049 0.008 1.01 1.02 1.11

0.2
100 0.206, 0.112 0.017 0.969 1.08 1.24
200 0.204, 0.071 0.010 0.957 0.970 1.15
400 0.200, 0.049 0.007 0.959 0.984 1.13

0.5
100 0.494, 0.069 0.018 0.842 0.874 1.09
200 0.499, 0.045 0.011 0.797 0.841 1.03
400 0.494, 0.034 0.010 0.819 0.842 1.00

0.8
100 0.708, 0.094 0.022 0.768 0.761 0.965
200 0.722, 0.066 0.014 0.715 0.731 0.865
400 0.750, 0.043 0.008 0.706 0.727 0.866
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Fig. 1. φ = −0.2, n = 200. Left panel: histogram of φ̂, right panel: true (solid line) and estimated (dashed line) transfer function in a typical simulation.

Yt = α0 + α1t +
∑p
i=1 φiYt−i + εt , which can be re-written as

1Yt = β0 + β1t + γ Yt−1 +
∑p−1
i=1 γi1Yt−i + εt , where t denotes

time,1Yt−i ≡ Yt−i − Yt−i−1, i = 0, . . . , p − 1, γ =
∑p
i=1 φi − 1,

and γi = −
∑p
k=i+1 φk. The AR order p = 5 is selected by BIC. A

likelihood ratio test is conducted to test the hypothesis H0 : β0 =
β1 = γ = 0 against the general alternative. The value of the
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Table 3
Simulation results: ARMA(1, 1), AR(1)4 and MA(1)4 models.

φ θ n Mean (̂φ), sφ̂ Mean (̂θ ), ŝθ AMSE NPTF XLCM SU

0.2 −0.8
100 0.172, 0.140 −0.716, 0.115 0.037 0.812 0.872 0.946
200 0.192, 0.094 −0.736, 0.069 0.025 0.846 0.847 0.912
400 0.197, 0.058 −0.755, 0.045 0.014 0.779 0.820 0.867

0.5 −0.8
100 0.463, 0.130 −0.668, 0.117 0.079 0.809 0.806 0.855
200 0.487, 0.069 −0.693, 0.077 0.042 0.745 0.725 0.773
400 0.491, 0.048 −0.722, 0.048 0.022 0.716 0.730 0.789

0.8 −0.8
100 0.758, 0.083 −0.596, 0.126 0.289 0.767 0.790 0.818
200 0.782, 0.047 −0.633, 0.087 0.169 0.766 0.776 0.805
400 0.790, 0.029 −0.681, 0.056 0.092 0.714 0.731 0.741

0.2 −0.5
100 0.172, 0.167 −0.493, 0.163 0.032 0.922 0.957 0.992
200 0.179, 0.111 −0.506, 0.101 0.018 0.894 0.869 0.967
400 0.197, 0.075 −0.493, 0.070 0.011 0.870 0.900 0.951

0.5 −0.5
100 0.466, 0.122 −0.476, 0.126 0.052 0.879 0.918 0.910
200 0.488, 0.079 −0.467, 0.092 0.029 0.828 0.834 0.837
400 0.490, 0.052 −0.484, 0.053 0.016 0.763 0.785 0.845

0.8 −0.5
100 0.759, 0.074 −0.426, 0.112 0.189 0.787 0.790 0.829
200 0.782, 0.048 −0.452, 0.073 0.104 0.741 0.756 0.782
400 0.789, 0.031 −0.471, 0.053 0.065 0.730 0.749 0.763

φ4 θ4 n Mean (̂φ4), sφ̂4 Mean (̂θ4), ŝθ4 AMSE NPTF XLCM SU

−0.8
100 −0.762, 0.077 0.038 0.503 1.01 1.13
200 −0.784, 0.049 0.022 0.465 0.996 1.09
400 −0.791, 0.032 0.013 0.475 0.992 1.01

−0.5
100 −0.481, 0.093 0.021 0.834 1.02 1.20
200 −0.491, 0.069 0.012 0.831 0.997 1.16
400 −0.492, 0.047 0.008 0.819 1.00 1.15

0.5
100 0.493, 0.096 0.019 0.873 1.03 1.23
200 0.500, 0.072 0.012 0.905 1.03 1.18
400 0.492, 0.043 0.007 0.855 1.03 1.18

0.8
100 0.683, 0.090 0.024 0.887 1.08 1.21
200 0.715, 0.064 0.015 0.817 1.01 1.14
400 0.745, 0.038 0.008 0.785 0.994 1.12

Table 4
Performance of the MLE and the NLE in estimating φ and θ .

MLE NLE
φ θ n Mean (̂φ), sφ̂ Mean (̂θ ), ŝθ Mean (̂φ), sφ̂ Mean (̂θ ), ŝθ

0.8 −0.8
100 0.758, 0.078 −0.621, 0.110 0.754, 0.081 −0.603, 0.115
200 0.783, 0.047 −0.657, 0.086 0.783, 0.048 −0.636, 0.088
400 0.788, 0.031 −0.690, 0.058 0.788, 0.030 −0.681, 0.059

0.2 −0.5
100 0.194, 0.158 −0.487, 0.154 0.175, 0.163 −0.500, 0.146
200 0.180, 0.119 −0.499, 0.113 0.175, 0.119 −0.500, 0.110
400 0.200, 0.080 −0.492, 0.073 0.197, 0.080 −0.492, 0.073

test statistic is 4.40 with p-value between 0.05 and 0.10 (Table V
in Dickey and Fuller, 1981), which suggests that a unit root may
exist in the process. Similar analysis is performed on Xt and the
results show that it is stationary (details omitted). Based on the
above analysis, we take first-order difference Zt = Yt − Yt−1 and
consider the model

Zt = f (Xt , Xt−1, Xt−2)+ et . (17)

Note here a low-dimensional smoothing model is used instead of
an univariate smoothing model. Following the proposed estima-
tion procedures, f̃ (·) is first obtained by local linear regression as-
suming {et} i.i.d., thenweobtain the partial residual ẽt = Zt −̃f (Xt).
Based on ẽt , AIC, BIC and AICC are used to select fromARMAmodels
of orders up to 20. BIC identifies an ARMA(1, 1) model. However,
after this model is fitted to ẽt , the portmanteau test still shows au-
tocorrelation in the residuals. On the other hand, AIC and AICC se-
lect an ARmodel of orders 1, 4, 5, 6, and 14. Considering the ACF of
ẽt (Fig. 2), after some refinement, we select an AR model of orders
4, 5, 6, and 14. Although the BIC of this AR model is slightly higher
than that of the ARMA(1, 1) model, it does a better job in removing
the correlation in the residuals.

The bandwidth is selected via the generalized cross validation
(GCV) criteria (Craven and Wahba, 1979).

h = argmin
h

(Y− f̂)τ (Y− f̂)
n[1− tr(Sh)/n]2

,

where Sh is defined by the equation that f̂ = ShY, and Y is the
vector of observations. In order to compare with the parametric
models, the equivalent number of parameters defined as tr(Sh) is
also calculated. The resulting bandwidth is 6 and the equivalent
number of parameters is 31.2. The estimated AR parameters are
φ̂4 = 0.091, φ̂5 = 0.137, φ̂6 = 0.150, and φ̂14 = 0.076. The t-
ratios are calculated using the limiting distribution in Theorem 1
and are all greater than 2 in absolute value. The Ljung–Box statistic
QLB(12) = 9.95 suggests absence of serial correlation in the final
residuals. The ACF plot of the final residuals also indicates the
residual is roughly ‘‘white’’ (Fig. 3).
To study the forecasting performance of the NPTF model, the

following rolling forecasting scheme is employed: for each t =
180, 181, . . . , 365, data available at t are used to build the model
and make one-step ahead prediction and the forecasting error
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Fig. 2. Sample ACF plots of the partial residuals ẽt .

Yt+1 − Ŷt(1) is calculated. The squared forecasting errors are
averaged over t . The square-root of this average is referred to as
‘‘post-sample forecasting RMSE’’. To put the performance of the
NPTF model in perspective, the same rolling forecast is computed
using the parametric NLTF and the LTFmodels entertained by Chen
and Tsay (1996). The results are summarized in Table 5.
The above results show that the residual variance of the NPTF

model is the smallest among the three models. Although it uses
more parameters than the other two models, the gain in post-
sample forecasting justifies the use of this more sophisticated
model.
The one-step ahead forecast errors of the NPTF model and the

NLTFmodel are plotted against the forecasting origins in Fig. 4. The
performance of the LTF model is not as good as the NLTF and NPTF
models, so its errors are not plotted for clearer presentation. From
this figure it is clear that the NPTF model outperforms the NLTF
model most of the time.
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Fig. 3. Sample ACF plot of the final residuals.

Table 5
Within- and post-sample comparisons.

Models NPTF NLTF LTF

(Equivalent) Number of parameters 31.2 12 10
Residual variance 5.45 6.23 20.81
Forecasting RMSE 8.82 12.56 13.93

6. Summaries and discussions

In this paper a new method is proposed to model nonlinear
relationships between an input and an output time series. The
transfer function f (·) is modeled by nonparametric smooth-
ing and the innovation process {et} is modeled as a stationary
ARMA(p, q) process. The nonparametric feature of this model al-
lows us to model highly nonlinear relationships of unknown func-
tional forms, while modeling {et} as an ARMAmodel improves not

0 20 40 60 80 100 120 140 160 180 200
–80

–60

–40

–20

0

20

40

60

80

100

NPTF

NLTF

Fig. 4. The one-step ahead forecast errors of the NPTF model and the NLTF model.
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only the efficiency in estimating f (·) but also the forecasting per-
formance. The simulations and empirical study show good poten-
tial of this model in analyzing nonlinear time series.
There are some issues in the nonparametric transfer function

model that deserve further study. For example, in this study the
transfer function is univariate. It is easy, though tedious, to gen-
eralize the results to multi-dimensional cases, under the general
model Yt = f (X1t , . . . , Xpt) + et . However, such a direct general-
ization is often not practical in practice due to the ‘‘curse of dimen-
sionality’’. To solve this problem, more restrictive models, such as
the additive model, may be considered. Research addressing this
topic is ongoing.
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Appendix A. Technical proofs

In the proofs that follow, C > 0 denotes a generic constant
that may vary from line to line. Let g1(·) be the density function of
Xt and gi(xt1, . . . , xti) be the i-dimensional joint density function
of {Xt1, . . . , Xti}. The following assumptions are needed, of which
(A1) to (A5) are needed for both the pure AR(p) and the ARMA(p, q)
cases, (A6) is needed for the pure AR(p) case and (A6∗) is needed
for the ARMA(p, q) case.

(A1) {Xt} is β-mixing in the sense that

β(k) = E{ sup
B∈F∞k

|P(B)− P(B|X0, X−1, . . .)|} → 0

as k → ∞, where F
j
i is the σ -algebra generated by

{Xi, · · · , Xj} for i ≤ j. In addition,
∑
k≥1 kβ(k)

δ/(2+δ) < ∞
for some δ ∈ (0, 8).

(A2) The kernel function K(·) is compactly supported and
Lipschitz continuous. Additionally, we require µ0 =∫
K(u)du = 1, and µ1 =

∫
uK(u)du = 0, i.e, K(u) is a

second-order kernel.
(A3) f (·) has continuous second derivative f̈ (·), g1(·) is continu-

ous and bounded away from zero.
(A4) As n→∞, h = O(n−1/5), b = o(n−1/5), and nb4 →∞.
(A5) {Xt} and {εt} are two independent processes.
(A6) The weight functionw(·) is continuous on its compact sup-

port contained in {g1(x) > 0}.
(A6∗) Xt has bounded support [a, b]. The density functions g2(·, ·),

g4(·, ·, ·, ·) and g6(·, ·, ·, ·, ·, ·) are continuous and have
bounded first derivative.

The following lemma is needed to prove the theorems:

Lemma 1. As n→∞, it holds uniformly for x in any compact subset
of {g1(x) > 0} that

f̃ (x)− f (x) =
1

nbg1(x)

n∑
t=1

K
(
Xt − x
b

)
et

+
b2

2
µ2 f̈ (x)+ Op

[
Rn(x)

{(
log n
nb

)1/4
+ b

}]
,

where µ2 =
∫
u2K(u)du, and

Rn(x) =
1

nbg1(x)

{∣∣∣∣∣ n∑
t=1

K
(
Xt − x
b

)
et

∣∣∣∣∣
+

∣∣∣∣∣ n∑
t=1

(
Xt − x
b

)
K
(
Xt − x
b

)
et

∣∣∣∣∣
}
+ O(b2).

Proof of Lemma 1. It follows from Theorem 5.3 of Fan and Yao
(2003) that

sk(x) = g1(x)µk + Op

{(
log n
nb

)1/2
+ b2

}

uniformly for x ∈ A, where sk(x) is defined in (6),µk =
∫
ukK(u)du,

and A is any compact set contained in {g1(x) > 0}. Hence it holds
uniformly for x ∈ A that

Sn(x) = S(x)+ Op

{(
log n
nb

)1/2
+ b2

}
,

where S(x) = g1(x)diag(1, µ2).Write Y ∗t = Yt−f (x)− ḟ (x)(Xt−x).
It is easy to see from (5) that∣∣∣∣∣ n∑
t=1

{
Wn

(
Xt − x
b

, x
)
− g1(x)−1K

(
Xt − x
b

)}
Y ∗t

∣∣∣∣∣
=

∣∣∣∣∣(1, 0){Sn(x)−1 − S(x)−1} n∑
t=1

(
1,
Xt − x
b

)τ
K
(
Xt − x
b

)
Y ∗t

∣∣∣∣∣
≤
[
(1, 0){Sn(x)−1 − S(x)−1}2(1, 0)τ

]1/2
×

{∣∣∣∣∣ n∑
t=1

K
(
Xt − x
b

)
Y ∗t

∣∣∣∣∣
2

+

∣∣∣∣∣ n∑
t=1

Xt − x
b
K
(
Xt − x
b

)
Y ∗t

∣∣∣∣∣
2}1/2

≤
[
(1, 0){Sn(x)−1 − S(x)−1}2(1, 0)τ

]1/2
×

{∣∣∣∣∣ n∑
t=1

K
(
Xt − x
b

)
Y ∗t

∣∣∣∣∣+
∣∣∣∣∣ n∑
t=1

Xt − x
b
K
(
Xt − x
b

)
Y ∗t

∣∣∣∣∣
}

≤ Op

{( log n
nb

)1/2
+ b2

}1/2
×

{∣∣∣∣∣ n∑
t=1

K
(
Xt − x
b

)
et

∣∣∣∣∣
+

∣∣∣∣∣ n∑
t=1

Xt − x
b
K
(
Xt − x
b

)
et

∣∣∣∣∣+ O(nb3)
}
.

The last inequality follows from the fact that Yt = f (Xt)+ et , K(·)
has a compact support. Now the lemma follows from (4) and a
simple Taylor expansion. The proof is completed. �

Proof of Theorem 1. Since {et} is a stationary Gaussian AR(p)
process, it is also β-mixing with exponentially decaying mixing
coefficients.Put wt = w(Xt), let A = Xτ1WX1 and B = Xτ1WY1,
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where X1, Y1 andW are defined in Section 2.1. From (7) we have
φ̃ = A−1B, the (r, s)th element of A is

Ars =
n∑
t=1

[
Yt−r − f̃ (Xt−r)

] [
Yt−s − f̃ (Xt−s)

] p∏
k=0

wt−k

=

n∑
t=1

[
et−r + f (Xt−r)− f̃ (Xt−r)

]
×
[
et−s + f (Xt−s)− f̃ (Xt−s)

] p∏
k=0

wt−k

=

n∑
t=1

et−ret−s
p∏
k=0

wt−k + Ars1 + Ars2 + Ars3,

where

Ars1 =
n∑
t=1

{f (Xt−r)− f̃ (Xt−r)}{f (Xt−s)− f̃ (Xt−s)}
p∏
k=0

wt−k,

Ars2 =
n∑
t=1

et−r{f (Xt−s)− f̃ (Xt−s)}
p∏
k=0

wt−k,

Ars3 =
n∑
t=1

et−s{f (Xt−r)− f̃ (Xt−r)}
p∏
k=0

wt−k.

The rth element of B is

Br =
n∑
t=1

[
Yt − f̃ (Xt)

] [
Yt−r − f̃ (Xt−r)

] p∏
k=0

wt−k

=

n∑
t=1

[
et + f (Xt)− f̃ (Xt)

] [
et−r + f (Xt−r)− f̃ (Xt−r)

] p∏
k=0

wt−k

=

n∑
t=1

etet−r
p∏
k=0

wt−k + Br1 + Br2 + Br3,

where

Br1 =
n∑
t=1

{f (Xt)− f̃ (Xt)}{f (Xt−r)− f̃ (Xt−r)}
p∏
k=0

wt−k,

Br2 =
n∑
t=1

et{f (Xt−r)− f̃ (Xt−r)}
p∏
k=0

wt−k,

Br3 =
n∑
t=1

et−r{f (Xt)− f̃ (Xt)}
p∏
k=0

wt−k.

The theorem follows immediately from the two statements below:

(i) Br1 + Br2 + Br3 = op(
√
n), and

(ii) Ars1 + Ars2 + Ars3 = op(
√
n)

for all r, s = 1, 2, . . . , p.
Here only (i) is established. The proof for (ii) is similar and

simpler. By Lemma 1, we may write

Br1 = {Br11 + Br12 + Br13 + Op(nb4)}{1+ op(1)}, (18)

where

Br11 =
1
n2b2

∑
i,j,k

K
(
Xi − Xk
b

)
K
(
Xj − Xk−r
b

)
×

eiej
g1(Xk)g1(Xk−r)

p∏
l=0

wk−l

≡
1
n2b2

∑
i,j,k

ζ (ξi, ξj, ξk),

Br12 =
bµ2
2n

∑
i,k

ei f̈ (Xk−r)
g1(Xk)

K
(
Xi − Xk
b

) p∏
l=0

wk−l,

Br13 =
bµ2
2n

∑
i,k

ei f̈ (Xk)
g1(Xk−r)

K
(
Xi − Xk−r
b

) p∏
l=0

wk−l,

where ξi = (Xi, Xi−1, . . . , Xi−p, ei)
τ . Br11 is split into two sums Br111

and Br112 consisting of, respectively, the terms with different i, j, k
and the terms with at least two of i, j, k the same. To perform the
Hoeffding decomposition on the U-statistic Br111, put

κ(ξi, ξj, ξk) = ζ (ξi, ξj, ξk)+ ζ (ξi, ξk, ξj)+ ζ (ξj, ξi, ξk)

+ ζ (ξj, ξk, ξi)+ ζ (ξk, ξi, ξj)+ ζ (ξk, ξj, ξi).

Define

θ(P) =
∫∫∫

κ(ξi, ξj, ξk)dP(ξi)dP(ξj)dP(ξk);

κ̃1(ξi) =

∫∫
κ(ξi, ξj, ξk)dP(ξj)dP(ξk);

κ̃2(ξi, ξj) =

∫
κ(ξi, ξj, ξk)dP(ξk);

κ̃3(ξi, ξj, ξk) = κ(ξi, ξj, ξk).

Then κ(ξi, ξj, ξk) satisfies the following:(n
3

)−1 ∑
1≤i<j<k≤n

κ(ξi, ξj, ξk) =

3∑
c=0

(
3
c

)
U (c)n ,

where

U (0)n = θ(P),

U (1)n =
1
n

n∑
i=1

κ̃1(ξi)− θ(P),

U (2)n =
2

n(n− 1)

∑
1≤i<j≤n

κ̃2(ξi, ξj)−
2
n

n∑
i=1

κ̃1(ξi)+ θ(P),

U (3)n =
6

n(n− 1)(n− 2)

∑
1≤i<j<k≤n

κ̃3(ξi, ξj, ξk)

−
6

n(n− 1)

∑
1≤i<j≤n

κ̃2(ξi, ξj)+
3
n

n∑
i=1

κ̃1(ξi)− θ(P).

We can show the following:

κ̃1(ξi) = 0,

κ̃2(ξi, ξj) = b
2 eiejwiwjR(Xi, Xj)
g1(Xi)g1(Xj)

×{g2(Xi, Xj)+ g2(Xj, Xi)}{1+ O(b)},

where R(xi, xj) = E(w(Xk−1) · · ·w(Xk−i+1)w(Xk−i−1) · · ·w(Xk−p)|
Xk = xi, Xk−i = xj). Thus

U (1)n = −θ(P),

U (2)n =
2

n(n− 1)

∑
1≤i<j≤n

κ̃2(ξi, ξj)+ θ(P),

U (3)n =
6

n(n− 1)(n− 2)

∑
1≤i<j<k≤n

κ(ξi, ξj, ξk)−
6

n(n− 1)

×

∑
1≤i<j≤n

κ̃2(ξi, ξj)− θ(P)

=
6

n(n− 1)(n− 2)

∑
1≤i<j<k≤n

[κ(ξi, ξj, ξk)
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− κ̃2(ξi, ξj)− κ̃2(ξi, ξk)− κ̃2(ξj, ξk)] − θ(P)

≡
6

n(n− 1)(n− 2)

×

∑
1≤i<j<k≤n

κ3(ξi, ξj, ξk)− θ(P).

Combining the above results, we have

Br111 =
1
n2b2

∑
1≤i<j<k≤n

κ3(ξi, ξj, ξk)+
n− 2
n2

×

∑
1≤i<j≤n

κ̃2(ξi, ξj)/b
2.

It follows from Lemma 2 of Yoshihara (1976) (Appendix B) that for
any ε > 0,

P

{
1
n2b2

∣∣∣∣∣ ∑
1≤i<j<k≤n

κ3(ξi, ξj, ξk)

∣∣∣∣∣ > ε
√
n

}

≤
nε−2

b4
E

∣∣∣∣∣ 1n3 ∑
1≤i<j<k≤n

κ3(ξi, ξj, ξk)

∣∣∣∣∣
2

= O(n−1b−4)→ 0,

and

P

{
1
n

∣∣∣∣∣ ∑
1≤i<j≤n

κ̃2(ξi, ξj)/b
2

∣∣∣∣∣ > ε
√
n

}

≤ nε−2E

∣∣∣∣∣ 1n2 ∑
1≤i<j≤n

κ̃2(ξi, ξj)/b
2

∣∣∣∣∣
2

= O(n−1).

Thus Br111 = op(
√
n). Similar (but simpler) arguments may show

that Br112 = op(
√
n) (therefore Br11 = op(

√
n)), Br12 = op(

√
n)

and Br13 = op(
√
n). Note that Assumption A4 implies

√
nb4 → 0.

Now argument (i) holds due to (18). The proof is completed. �

Proof of Theorem 2. Define

Ỹt = Yt −
p∑
i=1

φ̃i
[
Yt−i − f̃ (Xt−i)

]
= Yt −

p∑
i=1

φi
[
Yt−i − f̃ (Xt−i)

]
+

p∑
i=1

(φi − φ̃i)
[
Yt−i − f̃ (Xt−i)

]
= f (Xt)+

p∑
i=1

φiet−i + εt −
p∑
i=1

φi
[
f (Xt−i)− f̃ (Xt−i)+ et−i

]
+

p∑
i=1

(φi − φ̃i)
[
f (Xt−i)− f̃ (Xt−i)+ et−i

]
.

By Theorem 1, φ̃ = φ + Op(n−1/2), the convergence rate is faster
than that for the nonparametric estimator f̂ (x). Therefore we may
treat φ̃ = φ in the proof, so Ỹt = εt + f (Xt) +

∑p
i=1 φi{̃f (Xt−i) −

f (Xt−i)}. By Theorem 5.3 of Fan and Yao (2003),

s∗k(x) = p1(x)µk + Op

{(
log n
nh

)1/2
+ h

}
,

where p1(x) = g1(x)E{w(Xt−1)w(Xt−2) · · ·w(Xt−p)|Xt = x}. From
Lemma 1 and (11), it holds that

f̂ (x)− f (x) =
1

nhp1(x)

n∑
t=1

K
(
Xt − x
h

) p∏
l=1

w(Xt−l)

{
εt + f (Xt)

+

p∑
k=1

φk [̃f (Xt−k)− f (Xt−k)] − f (x)− ḟ (x)(Xt − x)

}

=
1

nhp1(x)

n∑
t=1

K
(
Xt − x
h

) p∏
l=1

w(Xt−l)

×
{
εt + f (Xt)− f (x)− ḟ (x)(Xt − x)

}
+

b2µ2
2nhp1(x)

×

p∑
k=1

φk

n∑
t=1

K
(
Xt − x
h

) p∏
l=1

w(Xt−l)f̈ (Xt−k)

+
1

n2hbp1(x)

p∑
k=1

φk

n∑
i,j=1

K
(
Xi − x
h

)

×

p∏
l=1

w(Xt−l)K
(
Xj − Xi−k
b

)
ej

g1(Xi−k)
. (19)

By an ergodic theorem, the second term on the RHS of the above
expression is of the order Op(b2) = op(h2). To show that the third
termon the RHS is of the desired order, we prove it for some partic-
ular k, say k = 1, the same argument holds for all k = 1, 2, . . . , p.
Put

ζ (ξi, ξj) = K
(
Xi − x
h

) p∏
l=1

w(Xi−l)K
(
Xj − Xi−1
b

)
ej

g1(Xi−1)
,

where ξi = (Xi, Xi−1, . . . , Xi−p, ei). Denote the third term on the
RHS of (19) as J .

J =
φ1

n2bhp1(x)

n∑
i,j=1

ζ (ξi, ξj)

=
φ1

n2bhp1(x)

∑
1≤i<j≤n

[
ζ (ξi, ξj)+ ζ (ξj, ξi)

]
≡

φ1

n2bhp1(x)

∑
1≤i<j≤n

κ(ξi, ξj).

Then it holds that

J =
φ1

n2hbp1(x)

∑
1≤i<j≤n

{κ(ξi, ξj)− κ1(ξi)− κ1(ξj)}

+
φ1(n− 1)
n2p1(x)

n∑
i=1

κ1(ξi)/(hb), (20)

where

κ1(ξi) ≡

∫
κ(ξi, ξj)dP(ξj) = hb eiw(Xi)p2(x, Xi)/g1(Xi){1+ O(h)},

where p2(x, Xi)=E{w(Xj−2) · · ·w(Xj−p)|Xj= x, Xj−1= Xi}g2(x, Xi).
Denote the two terms on the RHS of (20) by J1 and J2, respectively.
By a CLT for mixing processes (e.g., Theorem 2.21(i) of Fan and Yao,
2003), J2 = Op(n−1/2) = op{(nh)−1/2}. By Lemma 2 in Appendix B
below,

P
{√
nh|J1| > ε

}
≤

φ21ε
−2nh

h2b2p1(x)2

× E

∣∣∣∣∣ 1n2 ∑
1≤i<j≤n

{κ(ξi, ξj)− κ1(ξi)− κ1(ξj)}

∣∣∣∣∣
2

= O{(nb2h)−1} → 0.
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Hence J1 = op{(nh)−1/2}. Note h2 = O{(nh)−1/2} under Assump-
tion A4. Now it follows from (19) that

f̂ (x)− f (x) =
1

nhp1(x)

n∑
t=1

K
(
Xt − x
h

) p∏
l=1

w(Xt−l)

×{εt + f (Xt)− f (x)− ḟ (x)(Xt − x)} + op

{
1

(nh)
1
2

}

=
1

nhp1(x)

n∑
t=1

K
(
Xt − x
h

) p∏
l=1

w(Xt−l)εt +
h2

2
µ2 f̈ (x)

+ op

{
1

(nh)
1
2

}
.

Now the theorem follows from, for example, Theorem 2.21(i) of
Fan and Yao (2003). The proof is completed. �

Proof of Theorem 3. In this paper a nonlinear estimation method
is used to estimate the ARMA parameters, detailed descriptions of
this method can be found in, for example, Box et al. (1994) and
Brockwell and Davis (1991). Here we briefly describe how this
method is applied in the proposed estimator. Given initial estimate
β0 = (φ

0
1 , . . . , φ

0
p , θ

0
1 , . . . , θ

0
q )
τ , we adopt the following notations

φ0(B)θ0(B)−1 =
∞∑
i=0

π0i B
i, θ0(B)−1 =

∞∑
i=0

ξ 0i B
i,

φ0(B)θ0(B)−2 =
∞∑
i=0

η0i B
i,

and we use the approximations

φ0(B)θ0(B)−1et =
t−1∑
i=0

π0i et−i,

θ0(B)−1et =
t−1∑
i=0

ξ 0i et−i,

φ0(B)θ0(B)−2 =
t−1∑
i=0

η0i et−i.

(21)

By a linear Taylor expansion at β0, we have

εt ≈
φ0(B)
θ0(B)

et −
p∑
i=1

1
θ0(B)

et−i1φi +
q∑
j=1

φ0(B)
θ20 (B)

et−j1θj,

where 1φi = φi − φ0i and 1θj = θj − θ
0
j . By the approximations

in (21), we have the following regression equation

t−1∑
i=0

π0i et−i =
p∑
j=1

t−j−1∑
i=0

ξ 0i et−j−i1φi −
q∑
j=1

t−j−1∑
i=0

η0i et−j−i1θi + εt .

Letm = max(p, q)+ 1,1β can be estimated by minimizing

n∑
t=m

{
t−1∑
i=0

π0i et−i −
p∑
j=1

t−j−1∑
i=0

ξ 0i et−j−i1φi

+

q∑
j=1

t−j−1∑
i=0

η0i et−j−i1θi

}2
with respect to 1φ and 1θ, β̂ = β0 + 1̂β serves as the estimate
of β. Therefore we minimize

n∑
j=1

n∑
t=m

{
Yt − a0 − a1(Xt − Xj)+

t−1∑
l=1

π0l ẽt−l

−

p∑
i=1

t−i−1∑
l=0

ξ 0l ẽt−i−l1φi +
q∑
i=1

t−i−1∑
l=0

η0l ẽt−i−l1θi

}2
Kh(Xt − Xj)

to estimate f (·) and β. Re-express the above inmatrix notation, for
initial estimate β0, let

Dτt =

(
∂εt(β0)

∂φ1
,
∂εt(β0)

∂φ2
, . . . ,

∂εt(β0)

∂φp
,
∂εt(β0)

∂θ1
,

×
∂εt(β0)

∂θ2
, . . . ,

∂εt(β0)

∂θq

)
,

where ∂εt(β0)/∂βi, i = 1, . . . , p + q means ∂εt/∂βi evaluated at
β0. By a Taylor expansion,

εt ≈ εt(β0)+ D
τ
t (β − β0) = εt(β0)+ D

τ
t1β,

where εt(β0) = θ0(B)−1φ0(B)et . Re-arranging terms, we have
εt(β0) = −D

τ
t1β + εt . An estimate of 1β can be obtained by

minimizing the sum of squares
∑n
t=1{εt(β0) + D

τ
t1β}2. Let D be

as shown in Box I. Let

u =
(
φ0(B)
θ0(B)

em,
φ0(B)
θ0(B)

em+1, . . . ,
φ0(B)
θ0(B)

en

)τ
.

By the sameapproximations in (21), the ‘regressor’matrix becomes
that in Box II, and

u =

(
m−1∑
i=0

π0i em−i,
m∑
i=0

π0i em+1−i, . . . ,
n−1∑
i=0

π0i en−i

)τ
.

The estimate of β can be obtained by β0+ 1̂βIdeal, where 1̂βIdeal is
the ‘‘idealized’’ estimator of1β obtained from ‘‘observations’’ {et}:

1̂βIdeal = (D
τD)−1Dτu.

The estimate of β based on the initial estimate of the innovation
process ẽt = Yt − f̃ (Xt), denoted by β̃, is obtained similarly as
β̃ = β0 + 1̃β, where 1̃β = (Dτ1D1)

−1Dτ1u1,D1 and u1 are defined
similarly as D and u, with et replaced by ẽt .
The proof of the theorem is complete by showing

(i) Dτ1D1 = DτD+ op(
√
n), and

(ii) Dτ1u1 = Dτu+ op(
√
n).

However, to save the spacewe have to omit the quite lengthy proof
here. For detailed proof, please see a technical report by Liu et al.
(2005). �
Proof of Theorem 4. Define

Ỹt = Yt +
t−1∑
i=1

π̃i[Yt−i − f̃ (Xt−i)]

= f (Xt)−
∞∑
i=1

πiet−i + εt +
t−1∑
i=1

πi[Yt−i − f̃ (Xt−i)]

+

t−1∑
i=1

(π̃i − πi)[Yt−i − f̃ (Xt−i)]

= f (Xt)+ εt −
∞∑
i=1

πiet−i +
t−1∑
i=1

πi[f (Xt−i)− f̃ (Xt−i)+ et−i]

+

t−1∑
i=1

(π̃i − πi)[f (Xt−i)− f̃ (Xt−i)+ et−i]

= f (Xt)+ εt −
∞∑
i=t

πiet−i +
t−1∑
i=1

πi[f (Xt−i)− f̃ (Xt−i)]

+

t−1∑
i=1

(π̃i − πi)[f (Xt−i)− f̃ (Xt−i)+ et−i].
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D = −



∂εm(β0)

∂φ1

∂εm(β0)

∂φ2
· · ·

∂εm(β0)

∂φp

∂εm(β0)

∂θ1

∂εm(β0)

∂θ2
· · ·

∂εm(β0)

∂θq

∂εm+1(β0)

∂φ1

∂εm+1(β0)

∂φ2
· · ·

∂εm+1(β0)

∂φp

∂εm+1(β0)

∂θ1

∂εm+1(β0)

∂θ2
· · ·

∂εm+1(β0)

∂θq

· · · · · · · · · · · · · · · · · · · · · · · ·

∂εn(β0)

∂φ1

∂εn(β0)

∂φ2
· · ·

∂εn(β0)

∂φp

∂εn(β0)

∂θ1

∂εn(β0)

∂θ2
· · ·

∂εn(β0)

∂θq



=



em−1
θ0(B)

em−2
θ0(B)

· · ·
em−p
θ0(B)

−
φ0(B)em−1
θ20 (B)

−
φ0(B)em−2
θ20 (B)

· · · −
φ0(B)em−q
θ20 (B)

em
θ0(B)

em−1
θ0(B)

· · ·
em−p+1
θ0(B)

−
φ0(B)em
θ20 (B)

−
φ0(B)em−1
θ20 (B)

· · · −
φ0(B)em−q+1
θ20 (B)

· · · · · · · · · · · · · · · · · · · · · · · ·

en−1
θ0(B)

en−2
θ0(B)

· · ·
en−p
θ0(B)

−
φ0(B)en−1
θ20 (B)

−
φ0(B)en−2
θ20 (B)

· · · −
φ0(B)en−q
θ20 (B)


.

Box I.

D =



m−2∑
i=0

ξ 0i em−1−i · · ·
m−p−1∑
i=0

ξ 0i em−p−i −
m−2∑
i=0

η0i em−2−i · · · −
m−q−1∑
i=0

η0i em−q−i

m−1∑
i=0

ξ 0i em−i · · ·

m−p∑
i=0

ξ 0i em−p+1−i −
m−1∑
i=0

η0i em−1−i · · · −
m−q∑
i=0

η0i em−q+1−i

· · · · · · · · · · · · · · · · · ·

n−2∑
i=0

ξ 0i en−1−i · · ·
n−p−1∑
i=0

ξ 0i en−p−i −

n−2∑
i=0

η0i en−2−i · · · −
n−q−1∑
i=0

η0i en−q−i


,

Box II.

By Theorem 5.3 of Fan and Yao (2003), we have

f̂ (x)− f (x) =
1

nhg1(x)

n∑
t=1

K
(
Xt − x
h

){
f (Xt)+ εt − f (x)

− ḟ (x)(Xt − x)+
t−1∑
i=1

πi[f (Xt−i)− f̃ (Xt−i)]

−

∞∑
i=t

πiet−i +
t−1∑
i=1

(π̃i − πi)[f (Xt−i)− f̃ (Xt−i)+ et−i]

}

=
1

nhg1(x)

n∑
t=1

K
(
Xt − x
h

){
f (Xt)− f (x)

− ḟ (x)(Xt − x)+ εt
}
+

1
nhg1(x)

n∑
t=2

K
(
Xt − x
h

)

×

t−1∑
i=1

πi[f (Xt−i)− f̃ (Xt−i)] −
1

nhg1(x)

×

n∑
t=2

∞∑
i=t

K
(
Xt − x
h

)
πiet−i +

1
nhg1(x)

×

n∑
t=2

t−1∑
i=1

(π̃i − πi)K
(
Xt − x
h

)
[f (Xt−i)− f̃ (Xt−i)+ et−i]

≡ S1 + S2 + S3 + S4.

By a Taylor expansion and Lemma 1, we can show that the
remainder term in S1 related to Rn(·) is ignorable andwe only need

to consider the leading term of S1:

1
nhg1(x)

n∑
t=1

K
(
Xt − x
h

)
εt +

h2

2
µ2 f̈ (x).

By Theorem 2.21 of Fan and Yao (2003), the proof is complete by
showing S2+S3+S4 is of order op{(nh)−1/2}. Again, the proof of this
theorem is quite lengthy, hence omitted here. For detailed proof,
please refer to Liu et al. (2005). �

Appendix B. A note on Lemma 2 of Yoshihara (1976)

Yoshihara (1976) is influential as it establishes asymptotic
properties of U-statistics for strictly stationary and β-mixing pro-
cesses. Its Lemma 2, which estimates the orders for the secondmo-
ments of residual terms in theHoeffding decomposition, appears to
have an error in presentation, since γ in (2.12) of Yoshihara (1976)
may be arbitrarily large by choosing δ′ > 0 arbitrarily small. (Note
that we may let δ′ > 0 arbitrarily small for, for example, indepen-
dent processes.) We state below a rectified version of the lemma,
which can be derived in the samemanner as the proof in the origi-
nal paper. All the notation and citation below are referred to Yoshi-
hara (1976).

Lemma 2 (Yoshihara, 1976). If there is a positive number δ such
that for r = 2 + δ (2.3) and (2.4) in Yoshihara (1976) hold, and∑
n≥1 nβ(n)

δ/(2+δ) <∞, then we have

E(U (c)n )
2
= O(n−2), 2 ≤ c ≤ m.

Note that we impose a stronger condition on the mixing coeffi-
cients β(n), and the rate O(n−2) is optimal.



Author's personal copy

164 J.M. Liu et al. / Journal of Econometrics 157 (2010) 151–164

References

Auestad, B., Tjöstheim, D., 1990. Identification of nonlinear time series: First order
characterization and order estimation. Biometrika 77, 669–687.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 1994. Time Series Analysis: Forecasting and
Control, 3rd ed.. Prentice-Hall, New Jersey.

Brockwell, P.J., Davis, R.A., 1991. Time Series: Theory and Methods, 2nd ed..
Springer-Verlag, New York.

Cai, Z., Fan, J., Yao, Q., 2000. Functional-coefficient regression models for nonlinear
time series. Journal of the American Statistical Association 95, 941–956.

Carroll, R.J., Fan, J., Gijbels, I., Wand, M.P., 1997. Generalized partially linear single-
index models. Journal of the American Statistical Association 92, 477–489.

Chen, R., Tsay, R.S., 1993a. Functional-coefficient autoregressive models. Journal of
the American Statistical Association 88, 298–308.

Chen, R., Tsay, R.S., 1993b. Nonlinear additive ARX models. Journal of the American
Statistical Association 88, 955–967.

Chen, R., Tsay, R.S., 1996. Nonlinear transfer functions. Journal of Nonparametric
Statistics 66, 193–204.

Craven, P., Wahba, G., 1979. Smoothing noisy data with spline functions. Numerical
Mathematics 31, 377–403.

Dickey, D.A., Fuller, W.A., 1981. Likelihood ratio statistics for autoregressive time
series with a unit root. Econometrica 49, 1057–1072.

Fan, J., Gilbels, I., 1996. Local Polynomial Modeling and its Applications. Chapman
and Hall, Suffolk.

Fan, J., Yao, Q., 2003. Nonlinear Time Series: Nonparametric and Parametric
Methods. Springer, New York.

Fan, J., Yao, Q., Cai, Z., 2003. Adaptive varying-coefficient linear models. Journal of
the Royal Statistical Society, Series B 65, 57–80.

Hädle, W., Lütkepohl, H., Chen, R., 1997. A review of nonparametric time series
analysis. International Statistical Review 65, 49–72.

Härdle, W., Hall, P., Ichimura, H., 1993. Optimal smoothing in single-index models.
The Annals of Statistics 21, 157–178.

Härdle, W., Liang, H., Gao, J., 2000. Partially Linear Models. Physica-Verlag,
Heidelberg.

Hart, J.D., 1996. Some automated methods of smoothing time-dependent data.
Journal of Nonparametric Statistics 6, 115–142.

Heckman, J., Ichimura, H., Smith, J., Todd, P., 1998. Characterizing selection bias
using experimental data. Econometrica 66, 1017–1098.

Ichiruma, H., 1993. Semiparametric least-squares (SLS) and weighted SLS estima-
tion of single-index models. Journal of Econometrics 58, 71–120.

Lewis, P.A.W., Stevens, J.G., 1991. Nonlinear modeling of time series using
multivariate adaptive regression splines (MARS). Journal of the American
Statistical Association 86, 864–877.

Liu, J.M., Chen, R., Yao, Q., 2005. Nonparametric transfer function models. Technical
Report, Georgia Southern University.

Liu, L.M., Hanssens, D.M., 1982. Identification of multiple-input transfer function
models. Communications in Statistics A11, 297–314.

Masry, E., 1996a. Multivariate local polynomial regression for time series: Uniform
consistency and rates. Journal of Time Series Analysis 17, 571–599.

Masry, E., 1996b. Multivariate regression estimation: Local polynomial fitting for
time series. Stochastic Processes and Their Applications 65, 81–101.

Newbold, P., 1973. Bayesain estimation of Box–Jenkins transfer function-noise
models. Journal of the Royal Statistical Society 35, 323–336.

Newey, W.K., Stoker, T.M., 1993. Efficiency of weighted average derivative
estimators and index models. Econometrica 61, 1199–1223.

Ozaki, T., 1985. Statistical identification of storage models with application to
stochastic hydrology. Water Resources Bulletin 21, 663–675.

Poskitt, D.S., 1989. A method for the estimation and identification of transfer
function models. Journal of the Royal Statistical Society B 51, 29–46.

Robinson, P.M., 1983. Nonparametric estimators for time series. Journal of Time
Series Analysis 4, 185–207.

Ruckstuhl, A., Welsh, A.H., Carroll, R.J., 2000. Nonparametric function estimation of
the relationship between two repeatedly measured variables. Statistica Sinica
10, 51–71.

Severini, T.A., Staniswalis, J.G., 1994. Quasi-likelihood estimation in semiparametric
models. Journal of the American Statistical Association 89, 501–511.

Smith, M., Wong, C.M., Kohn, R., 1998. Additive nonparametric regression with
autocorrelated errors. Journal of the Royal Statistical Society 60, 311–331.

Su, L., Ullah, A., 2006. More efficient estimation in nonparametric regression with
nonparametric autocorrelated errors. Econometric Theory 22, 98–126.

Tiao, G.C., Box, G.E.P., 1981.Modelingmultiple time serieswith applications. Journal
of the American Statistical Association 76, 802–816.

Tjøstheim, D., 1994. Nonlinear time series: A selective review. Scandinavian Journal
of Statistics 21, 97–130.

Tsay, R.S., 1985. Model identification in dynamic regression (distributed lag)
models. Journal of Business and Economic Statistics 3, 228–237.

Wild, C.J., Yee, T.W., 1996. Additive extensions to generalized estimation equation
methods. Journal of the Royal Statistical Society: Series B 58, 711–725.

Wu, C.O., Chiang, C.T., Hoover, D.R., 1998. Asymptotic confidence regions for kernel
smoothing of a varying coefficient model with longitudinal data. Journal of the
American Statistical Association 93, 1388–1402.

Xia, Y., Li, W.K., 1999. On single-index coefficient regression models. Journal of the
American Statistical Association 94, 1275–1285.

Xia, Y., Tong, H., Li, W.K., Zhu, L., 2002. An adaptive estimation of dimension
reduction space (with discussion). Journal of the Royal Statistical Society, Series
B 64, 363–410.

Xiao, Z., Linton, O.B., Carroll, R.J.,Mammen, E., 2003.Model efficient local polynomial
estimation in nonparametric regression with autocorrelated errors. Journal of
the American Statistical Association 98, 980–992.

Yoshihara, K., 1976. Limiting behavior of U-statistics for a stationary absolutely
regular process. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 35,
237–252.

Zeger, S.L., Diggle, P.J., 1994. Semiparametric models for longitudinal data
with application to CD4 cell number in HIV seroconverters. Biometrics 50,
789–699.


