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Characterizing the conformations of protein in the transition state ensemble (TSE) is important for
studying protein folding. A promising approach pioneered by Vendruscolo et al. [Nature (London)
409, 641 (2001)] to study TSE is to generate conformations that satisfy all constraints imposed by
the experimentally measured φ values that provide information about the native likeness of the tran-
sition states. Faísca et al. [J. Chem. Phys. 129, 095108 (2008)] generated conformations of TSE
based on the criterion that, starting from a TS conformation, the probabilities of folding and unfold-
ing are about equal through Markov Chain Monte Carlo (MCMC) simulations. In this study, we use
the technique of constrained sequential Monte Carlo method [Lin et al., J. Chem. Phys. 129, 094101
(2008); Zhang et al. Proteins 66, 61 (2007)] to generate TSE conformations of acylphosphatase of
98 residues that satisfy the φ-value constraints, as well as the criterion that each conformation has a
folding probability of 0.5 by Monte Carlo simulations. We adopt a two stage process and first gener-
ate 5000 contact maps satisfying the φ-value constraints. Each contact map is then used to generate
1000 properly weighted conformations. After clustering similar conformations, we obtain a set of
properly weighted samples of 4185 candidate clusters. Representative conformation of each of these
cluster is then selected and 50 runs of Markov chain Monte Carlo (MCMC) simulation are carried
using a regrowth move set. We then select a subset of 1501 conformations that have equal probabil-
ities to fold and to unfold as the set of TSE. These 1501 samples characterize well the distribution
of transition state ensemble conformations of acylphosphatase. Compared with previous studies, our
approach can access much wider conformational space and can objectively generate conformations
that satisfy the φ-value constraints and the criterion of 0.5 folding probability without bias. In con-
trast to previous studies, our results show that transition state conformations are very diverse and are
far from nativelike when measured in cartesian root-mean-square deviation (cRMSD): the average
cRMSD between TSE conformations and the native structure is 9.4 Å for this short protein, instead
of 6 Å reported in previous studies. In addition, we found that the average fraction of native contacts
in the TSE is 0.37, with enrichment in native-like β-sheets and a shortage of long range contacts,
suggesting such contacts form at a later stage of folding. We further calculate the first passage time
of folding of TSE conformations through calculation of physical time associated with the regrowth
moves in MCMC simulation through mapping such moves to a Markovian state model, whose transi-
tion time was obtained by Langevin dynamics simulations. Our results indicate that despite the large
structural diversity of the TSE, they are characterized by similar folding time. Our approach is gen-
eral and can be used to study TSE in other macromolecules. © 2011 American Institute of Physics.
[doi:10.1063/1.3519056]

I. INTRODUCTION

While protein native conformation provides the struc-
tural basis of its biological function, it is important to under-
stand how proteins fold to its native state.1–3 Protein folding
is a complex process that involves many different molecu-
lar and cellular machineries. Protein conformations are inher-
ently heterogeneous and, in many cases, misfolded proteins
can cause diseases such as Alzheimer’s disease, Parkinson’s
diseases, and type II diabetes.4 Characterizing the conforma-
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tions of transition state ensemble (TSE) of protein folding
has been a major focus in protein folding studies.5–9 Tran-
sition state ensemble are usually understood to be those con-
formations around the saddle point of the landscape of protein
folding.8 These conformations have about the same probabil-
ity to either fold or unfold. Because the transition states are
transient in nature, can contain a wide range of conformations,
and are often dynamic with significant amount of structural
fluctuations, it is challenging to study them with experimental
techniques.

An important approach to study TSE is the φ-value
analysis.10 By measuring the changes of free energy of
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activation and free energy of folding upon mutating a residue,
this technique provides a measure of the extent of forma-
tion of structure relative to denatured and native states of
the TSE. Experimental φ-value analysis can also provide
information on the degree of formation of secondary and
tertiary structures,11 backbone–backbone hydrogen-bonding
interactions,12 and movement around the transition state in the
folding energy landscape.13

Computational studies have also leaded to important in-
sight on how protein folds. Among these, lattice models
and molecular dynamics have been successfully applied to
study protein folding and to characterize partially unfolded
structures.14 Klimov and Thirumalai used exhaustive simu-
lations of lattice models with side-chains to study transition
state ensemble of two-state folders.15 Day and Daggett ran
multiple molecular dynamic simulations at different temper-
ature and solvent environment to study the folding/unfolding
transition state ensemble of chymotrypsin inhibitor 2.16 Ding
et al. reconstructed the TSE of the src-SH3 protein do-
main from molecular dynamic simulations.17 Prompers and
Brüschweiler combined molecular dynamics with NMR re-
laxation spectroscopy to study the dynamics of folded and
unfolded proteins.18 Zagrovic et al. found that the mean
structure averaged over unfolded ensemble of three different
folds small proteins are nativelike.19 Experimental informa-
tion, such as NMR residual dipolar couplings, can be used as
constraints to select unfolded state structures.20 Other infor-
mation from NMR spectroscopy can also be incorporated to
define partially folded intermediate states.21, 22 Richter et al.
provided a solution to solve overfitting and underfitting prob-
lems when calculating ensemble of structures with NMR
constraints.23

To generate explicit conformations of the TSE,
Vendruscolo et al. used information from experimental
φ values.24, 25 The φ value at individual residue position is
defined as the ratio of stability change to the transition state
upon mutation versus stability change of the native folded
state upon the same mutation.26, 27 φ values can be measured
experimentally and provide rich information about the native
likeness of protein structures in the TSE.28, 29 Following Li
and Daggett’s work,27 Vendruscolo et al. defined TSE as the
conformations that satisfy

φcalc
i

�= N TSE
i

N N
i

� φ
exp
i , (1)

for the i-th residue with experimentally measured φ-value
φ

exp
i . Here the calculated φ-value φcalc

i of residue i is defined
as the ratio of the number N TSE

i of native contacts formed
by the residue in the transition state, over the number N N

i
of contacts formed by the residue in the native state. Us-
ing Markov chain Monte Carlo method (MCMC) with crank-
shaft move, the authors generated a set of TSE conformations
based on this model for acylphosphatase (AcP), a protein with
98 residues.

Faísca et al.30 used a different approach of Pfold to iden-
tify conformations in the TSE based on the idea that the con-
formations in TSE have equal probability to either fold or
unfold.31 Starting from a random conformation, independent
Monte Carlo (MC) simulations are carried out. If in half of

these independent MC runs, the structure folds before un-
folds, the initial conformation is identified as a member in
the TSE.

In this work, we generate TSE conformations of AcP
with the combined constraints of experimental φ value as
studied by Vendruscolo et al.25 and the pFold criteria31 as im-
plemented by Faísca et al.30 We use constrained sequential
Monte Carlo to generate candidate conformations that satisfy
all φ-value constraints. Markov chain Monte Carlo simula-
tions are then carried out to each of the candidate conforma-
tions and select only the conformations with folding proba-
bility of 0.5. Our main contribution is that, through further
development of the technique of constrained sequential
Monte Carlo method first reported in Ref. 32, we ensure rig-
orous and efficient sampling of the whole space of TSE un-
der stringent constraints from both φ values and the pFold

model, without bias toward native conformations due to in-
adequate sampling in molecular dynamics simulation, or the
unsolved difficulty in assessing adequate mixing when apply-
ing Metropolis type of Monte Carlo sampling techniques.

This paper is organized as follows. In Sec. II, we de-
scribed our method to generate conformations in TSE for
the protein AcP. Findings and interpretations of the repro-
duced TSE are reported in Sec. III, followed by the conclusion
section.

II. MODEL AND METHOD

A. Generating candidate conformations of TSE

We first generate a set of candidate conformations of the
transition state ensemble of AcP that satisfy the constraints
of all experimentally measured φ values at different positions
of amino acid residues. Here we follow Vendruscolo et al.’s
model of φ-value constraints.25 Specifically, our goal is to
generate a proper set of conformations that are uniformly dis-
tributed in the model constrained space

�φ = {
xn :

∣∣φcalc
i − φ

exp
i

∣∣ < 0.15 for all i ∈ I
}
, (2)

where xn = (x1, . . . , xn) denotes a conformation of the pro-
tein, which has n residues. xi is the location of i-th residue,
φ

exp
i and φcalc

i are the experimentally measured φ value and
the calculated φ value of the i-th residue, respectively; I
is the set of residues whose φ values have been measured
experimentally.

We consider a three-dimensional cubic lattice model, in
which residues in conformation xn are located on the lattice
sites with a unit length of 1.3 Å and satisfy the self-avoiding,
bond-length, bond-angle, and torsion-angle constraints. It is
based on an off-lattice four-state model, and on average there
are 23 candidate positions for placing an additional residue to
a partial chain.32 Two residues are defined to be in contact if
the distance between them is less than 8.5 Å . Details of this
lattice model and constraints are described in Refs. 32 and 33.
In this lattice model for protein AcP, the conformation that is
closest to the native structure in terms of cRMSD has 88%
native contacts preserved.

We use the sequential Monte Carlo technique to gener-
ate AcP structures. It is a growth-based method that can gen-
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erate samples {(x( j)
n , w ( j)), j = 1, . . . , m} properly weighted

with respect to a given target distribution π (xn). The weights

are calculated as w ( j) �= w(x( j)
n ) = π (x( j)

n )/q(x( j)
n ), where

q(x( j)
n ) is the probability of generating the sample x( j)

n . If
this sampling distribution satisfying q(xn) > 0 for all xn

∈ {xn|π (xn) > 0}, any function h(xn) under the target distri-
bution π (xn) can be estimated by

Êπ

(
h(xn)

) =
∑m

j=1 w ( j)h
(
x( j)

n
)∑m

j=1 w ( j)
. (3)

In addition, the normalizing constant of the target distribution
π (xn) in any set �, namely, the partition function in the case
when the target distribution is the Boltzmann distribution, can
be estimated using∑

xn∈�

π (xn) ≈ 1

m

m∑
j=1

w ( j) · I(x( j)
n ∈ �

)
, (4)

where I(·) is the indicator function: I(·) = 1 if the statement
represented by (·) is true, 0 otherwise.

Lin et al.32 used a two-stage sequential Monte Carlo
method to efficiently generate conformation samples properly
weighted with respect to the uniform distribution in �φ , that
is, π (xn) ∝ I(xn ∈ �φ). At the first stage, 5000 contact maps
are sampled from the uniform distribution of all contact maps
satisfying the φ-value constraints. Here each sample is a real-
ization of a n × n symmetric contact map C = {ci j }n×n , where
ci j = 1 if residue i and residue j are in contact, and ci j = 0
otherwise. At the second stage, for each contact map sample,
1000 properly weighted conformational samples satisfying
this contact map are generated. For protein AcP, Fig. 1 shows
the experimentally measured φ values and the weighted aver-
age of the calculated φ values of the generated conformation
samples.

To reduce the number of candidate conformations, we
cluster similar conformations together. First, we arrange all
the conformations in a random order. Starting from an empty
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FIG. 1. Reproducing φ values of acylphosphatase (AcP). Experimentally
measured φ values (Ref. 34) and calculated φ values obtained from confor-
mation samples properly weighted with respect to the uniform distribution in
�φ are shown.

set, we add one conformation at a time to the current system
of clusters, from the first conformation to the last confor-
mation. For each conformation, it is compared with all the
current cluster representatives. If its cRMSD to any previous
clusters is larger than a cutoff value, it is regarded as being
a member of a new cluster; otherwise, it is grouped with the
nearest cluster. The cutoff value for clustering used in this
study is 2 Å. The weight of each cluster is the summation of
the weights of all conformations in that cluster, and the repre-
sentative structure of each cluster is chosen as the conforma-
tion with the largest weight in that cluster. For protein AcP, we
obtained a total 4185 clusters. The fraction of native contacts
preserved in these clusters is within a small range of 0.15,
namely, from 0.26 to 0.41. This is not surprising, because of
the strong φ-value constraints imposed.

B. Identifying conformations in TSE using Markov
chain Monte Carlo

1. pfold estimated by Markov chain Monte Carlo

In addition to the constraints from measured φ values,
we further adopt the pfold model introduced in Refs. 30 and
31 in which the transition state conformation will have about
equal probability to fold or unfold. According to Refs. 30 and
31, in a system with two stable states (the folded state and the
unfolded state), the folding probability, pfold of any conforma-
tion is defined as the probability that it will reach the folded
state before reaching the unfolded state. pfold can be regarded
as a measure of the kinetic distance between the given con-
formation and the folded state. It is therefore reasonable to
assume that the conformations in the TSE would have pfold

= 0.5. Starting from a specific conformation, Faísca et al.
calculates pfold of the conformation by recording the ratio of
runs of Markov chain Monte Carlo simulations that reach the
folded state before reaching the unfolded state.30 The con-
formations of TSE are then obtained by selecting those con-
formations with pfold = 0.5. We follow this strategy to com-
pute pfold for candidate conformations that satisfy the φ-value
constraints.

Briefly, we construct a Markov chain z(1)
n , z(2)

n , . . . ,

z(t)
n , . . . for the target equilibrium distribution π (zn) of

Boltzmann distribution by the Gō-potential as follows:36

Starting with z(1)
n = xn , where xn is one of the candidate con-

formations; at each step t , a random move selected from a
primitive move set is applied to z(t−1)

n to obtain a new confor-
mation znew

n . znew
n is accepted as z(t)

n with probability

min

{
1,

g
(
z(t−1)

n

∣∣znew
n

)
π

(
znew

n

)
g
(
znew

n

∣∣z(t−1)
n

)
π

(
z(t−1)

n
)}

,

and let z(t)
n = z(t−1)

n otherwise. Here g(znew
n | zold

n ) is the prob-
ability of moving from the current conformation zold

n to the
new conformation znew

n .

2. Regrowth move set

We use the primitive move set developed by Zhang
et al.37 in this study. The primitive move is to randomly
remove a fragment of the current conformation z(t−1)

n , and
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FIG. 2. Defining folded and unfolded states and selecting conformations with 0.5 probability of folding. (a) The thresholds (vertical dashed lines) of the fraction
of native contacts preserved for the folded and unfolded states. (b) Number counts of Markov chain Monte Carlo runs that reach the folded state for the set of
4185 conformations. Each point represents one conformation. Only the conformations between the two horizontal lines are included in TSE.

regenerate the removed fragment to obtain a new conforma-
tion znew

n . The fragment is regenerated using sequential Monte
Carlo under the constraint that the two ends of the fragment
are fixed. If the removed fragment is at the tail of the con-
formation, only one end is fixed. The starting position of the
fragment to be replaced is uniformly distributed along the
full chain, and the fragment length is uniformly distributed
between 5 and 12.

3. Folded and unfolded state

We assess whether a Markov chain {z(t)
n } at time t has

reached the folded state or unfolded state by criteria based on
the number of native contacts preserved in the conformation
z(t)

n . We set two thresholds Nfold and Nunfold for the number
of native contacts in a conformation. If the number of native
contacts preserved in z(t)

n is larger than Nfold, the conforma-
tion is considered to be folded. If it is less than Nunfold, the
conformation is considered to be unfolded.

The values of Nfold and Nunfold are determined as follows.
For Nfold, we sample uniformly from the set of near native
conformations (NNS) �NNS. Here we follow33 and define the
set of NNS as those within 3 Å in cRMSD from the native
structure. Nfold is defined as the threshold value of number
of native contacts, such that only 5% of the conformations in
�NNS have less than Nfold native contacts. For Nunfold, we sam-
ple uniformly from the set of denatured conformations �D,
defined as the set of conformations with >10 Å in cRMSD
from the native structure. Nunfold is defined as the threshold
value of number of native contacts, such that only 5% of the
conformations in �unfold have more than Nunfold native con-
tacts. Since the majority of the conformations in the set of all
possible conformations have cRMSD to the native structure
>12 Å , the choice of the value of 10 Å for deriving Nunfold is
not critical.

We use the sequential Monte Carlo method described in
Ref. 33 to generate sets of proper weighted conformations in

both �NNS and �D. Figure 2(a) shows the values of the two
thresholds for Nfold and Nunfold for protein AcP. They satisfy
Nfold/N = 0.65 and Nunfold/N = 0.15, where N is the num-
ber of contacts in the native structure.

4. The energy function in Markov chain Monte Carlo

In the Markov chain Monte Carlo runs, the energy func-
tion we use is the Gō-potential38

H (xn) =
∑

i> j+3

U (xi , x j ),

where U (xi , x j ) = −1 only if residue i and j are in contact,
namely, |xi − x j | < 8.5 Å, in both conformation xn and the
native structure. The equilibrium distribution of the Markov
chain {z(t)

n } is π (xn) ∝ exp{−H (xn)/τ }, where τ is the tem-
perature parameter. Here we use slightly different definitions
of the set of NNS and the set of denatured conformations,
based on Nfold and Nunfold

�∗
NNS

�= {xn | number of native contacts preserved in

xn is larger than Nfold},

�∗
denature

�= {xn | number of native contacts preserved in

xn is less than Nunfold}.
Following Ref. 30, the folding temperature is selected so that
the folded structures and the denatured structures have equal
probabilities in the equilibrium distribution. That is,∑

xn∈�∗
NNS

exp{−H (xn)/τ } �
∑

xn∈�∗
denature

exp{−H (xn)/τ }. (5)

For a specific given temperature τ , we again use the sequential
Monte Carlo technique to estimate the values of both sides of
Eq. (5).33 For protein AcP, the temperature is set to τ = 1.654,
which makes both sides of Eq. (5) equal.
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We carry out 50 Markov chain Monte Carlo runs for each
of the 4185 conformations that satisfy the φ-value constraints.
We then test the null hypothesis pfold = 0.5. This null hypoth-
esis is rejected if the statistical p value of the number of runs
that lead to the folded state is less than 5%. Or equivalently,
if the number of folded runs is less than 17 or larger than 33
among the 50 independent runs starting from xn , we reject the
null hypothesis that pfold = 0.5, and this conformation xn is
not included in the TSE. Otherwise, xn is included in the TSE.
Figure 2(b) shows the number of runs that lead to the folded
state for 4185 conformations. A total of 1501 conformations
are included in the TSE.

III. RESULTS

In this section, we study the physical properties of
conformations that form the TSE of the protein AcP using
the aforementioned procedure. The generated samples rep-
resenting the TSE of AcP consist of 1501 clusters of con-
formations, each conformation is associated with a properly
calculated weight with respect to the Boltzmann distribution
π (xn) ∝ exp{−H (xn)/τ }. As the weight obtained in Sec. II A
is with respect to the uniform distribution in the constrained
space �φ , they have been adjusted by a multiplication factor
exp{−H (xn)/τ }.

A. TSE can be far away from the native state

We plot the distribution of cRMSD between TS con-
formations and the native state and the distribution of the
fraction of native contacts preserved in TS conformations in
Fig. 3(a) and 3(b), respectively. The unweighted transition
state ensemble has a large variation, with the cRMSD ranging
from 6 to 14 Å and the fraction of native contacts preserved
varying from 0.28 to 0.38. In contrast, the transition state en-
semble weighted with respect to the Boltzmann distribution is
much more homologous—the majority of conformations have
a cRMSD of 9.4 Å and fraction of native contacts preserved
of 0.37. The difference between unweighted and weighted
TSE demonstrates that TS conformations are structurally di-
verse. Although the weighted TSE is much more homologous
than the unweighted one, the average cRMSD remains to be
large, compared with the value of 6 Å reported in a previous
work.25

This difference is likely due to the fact that our method
can access much wider conformational space in severely con-
strained space. As a result, TS conformations that are far away
from the native state are successfully identified, and are rep-
resented proportionately with correct importance weights that
adjusts the sampling bias for using a sampling distribution
that is different from the target distribution. The weight en-
sures that it neither exaggerates nor underestimates the im-
portance of these conformations in the TSE that are far away
from the native state. In fact, the characterizations of TSE are
accurate for conformations of any nature, including those that
are close to the native state.

To compare TS conformations with other conformations
satisfying φ-value constraints, we divide the 4185 candidate

conformations generated into three groups

�TSE = {xn|xn satisfies the φ-value constraints and with

pfold = 0.5},
�DS = {xn|xn satisfies the φ-value constraints and with

pfold < 0.5},
�NS = {xn|xn satisfies the φ-value constraints and with

pfold > 0.5}.
That is, if the number of folded runs among the 50 indepen-
dent Markov chain Monte Carlo simulations starting from xn

is between 17 and 33, the conformation xn is considered to
be in set of transition state ensemble �TSE. If the number of
folded runs is less than 17, xn is considered to be in set �DS

of denatured side (DS). If the number of folded runs is larger
than 33, xn is considered to be in set �NS of native side (NS).

We plot the distribution of cRMSDs between the con-
formations in these three sets and the native conformation in
Figs. 3(a), 3(c), and 3(e), and the distributions of the fraction
of native contacts preserved in these three sets in Figs. 3(b),
3(d), and 3(f).

It is not surprising to see that the conformations in �DS

have larger cRMSD to the native structure and less native
contacts preserved compared to the conformations in �TSE.
Similarly as expected, we find that conformations in �NS

have smaller cRMSD to the native structure and contain more
native contacts than �TSE.

Although it appears that many conformations with lower
RMSD have small weights as the weighted mean cRMSD is
larger [e.g., Fig. 3(e)], and there are low energy conformations
with large cRMSD that dominate in mean cRMSD calcula-
tion, we cannot conclude that in general conformations with
higher cRMSD have lower energy. The conformations gener-
ated are from a strongly constrained region with both φ value
and folding rate constraints imposed. As a result, energies of
conformations in this set are not significantly correlated with
cRMSD. Figure 4 shows the plot of energy and cRMSD of
the TSE conformations to the native state. There is little cor-
relation between energy and cRMSD of TSE. The estimated
correlation coefficient is −0.035, with a p-value of 0.173 for
a two-sided t-test of zero correlation.

It is informative to examine possible residual secondary
structures in the transition state ensemble. AcP protein con-
tains the following secondary structures: β1 (residues 7–13),
α1 (residues 22–33), β2 (residues 36–42), β3 (residues 46–53),
α2 (residues 55–66), β4 (residues 77–85), and β5 (residues
93–97).

Figure 5 shows the distribution of cRMSDs between
fragments of secondary structures in the weighted TSE and
in the native conformation. We find that although in general
that the native secondary structures are not well-preserved
in the TSE, fragments of native β-sheets are more enriched
in the TSE compared to α-helices. This is consistent with
a previous study.25

It has been suggested that the topology of the transition
state of AcP is defined by the relative positions of just three
“key” residues Y11, P54, and F94.25 We have carried out ad-
ditional study using only φ values at these three key residues
as constraints. We find that φ values of the other residues
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FIG. 3. The distributions of cRMSD values of conformations satisfying the φ-value constraints and the distributions of the fraction of native contacts preserved.
The distributions of cRMSDs for (a) the transitions state ensemble �TSE of 1,501 clusters of conformations, (c) the denatured-side ensemble �DS, and (e) the
native-side ensemble �NS to the native conformation of protein acylphosphatase at different cRMSD distance intervals, and the distributions of the fraction
of native contacts preserved at different intervals for (b) �TSE, (d) �DS, and (f) �NS. Both unweighted (white bar) and weighted (black bar) distributions are
shown.
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FIG. 4. Lack of correlation between energy and cRMSD of conformations
in the TSE.

can be largely recovered from conformations generated us-
ing constraints at the three key residues alone [Fig. 6(a)]. The
correlation coefficients between the calculated φ values of all
residues recovered using constraints at the three residue and at
24 residues is 0.79. However, the ensemble of conformations
generated have overall much larger cRMSD to the native con-
formations when only three constraints are used [Fig. 6(b)].

B. Correlation between point-wise distances
and φ values

We define the point-wise distance of residue i between a
conformation and the native conformation as the Euclidean
distance between the locations of residue i after optimal
rigid superposition of these two conformations. The average
point-wise distance of each residue between the weighted
TSE and the native state conformations is shown in Fig. 7.

For the 24 residues in AcP with experimentally mea-
sured φ values, the correlation between the φ values and the
corresponding point-wise distance is –0.574, with a p-value
= 0.0017 for testing zero correlation by a one-sided t-test.
The correlation between the calculated φ values of all residues
and the corresponding point-wise distances is –0.502, with a
p-value of 6.93 × 10−8. These observations can be rational-
ized by the physical models of the φ values. If φ value is large,
the structure of TSE around the residue is close to the native
state, and thus the corresponding point-wise distance is small
with many physical contact constraints reflected by the high
φ values. If the φ value is small, the structure of TSE around
the residue is disrupted, and the corresponding point-wise
distance is therefore large.

C. Contact order of TSE

Contact order has been widely used to study the correla-
tion of protein native structures and protein folding rate.39, 40

It is defined as the average residue separation of the contact.
We examine the distribution of all native contacts preserved in
the weighted TSE at different residue separations in Fig. 8(a).
For comparison, the distribution of residue separation for the
native conformation is also shown in Fig. 8(b).

We find that the average contact order of native contacts
preserved in the weighted TSE is 33.2, while the contact order
for the native state is 37.3. Our result shows that there are
less long range contacts in the TSE. That is, long range native
contacts often occur after protein chains departed from the
transition state.

Paci et al. provided a detailed study of contact order of
TSE for ten proteins.24 They added an energy term based on
RMSD in φ value to the energy function of molecular me-
chanics. The contact order of TSE reported here is somewhat
different. This is likely due to the difference in the potential
function used. Detailed information on how contact order of
TSE is related to protein folding rate can be found in Ref. 24.
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FIG. 5. The distributions of cRMSD between the secondary structures in the weighted TS conformations and in the native state of protein acylphosphatase.
(a) Helix α1 (residues 22–33, white bar) and helix α2 (residues 55–66, black bars); (b) Strand β3 (residues 46–53, white bar), strand β4 (residues 77–85, black
bars).
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FIG. 6. The recovery of overall φ-values and resulting larger cRMSD values of conformations generated with φ-values constrained only at three key residues
of Y11, P54, and F94. (a) Experimentally measured φ-values and calculated φ-values obtained from conformation samples satisfying the φ-value constraints
of three key residues only. (b) The distributions of cRMSD values of conformations satisfying the φ-value constraints of three key residues (white bar) and 24
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A study based on a modified concept called geometric con-
tact showed that both two-state and multistate protein fold-
ing rate are well correlated to the native state topology.40 A
detailed theoretical study we have carried out on enumerated
2D hydrophobic-hydrophilic (HP) sequences suggests that the
folding rate of model proteins of the same native state can dif-
fer by 1000, and the observed correlation of folding rate and
native state topology in real proteins may be a consequence
of evolutionary selection.41

D. The first passage time

We now estimate the first passage time (FPT), which is
defined as the average of time required for a conformation in
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FIG. 7. The average point-wise distances of residues between the weighted
TSE and the native conformation of protein acylphosphatase. The three cir-
cles are the three key residues identified by Vendruscolo et al. (Ref. 25) that
have large experimentally measured φ values. They have overall small point-
wise cRMSD values.

the transition state to fold into its native state. Because the
number of Markov moves required for a conformation to fold
depends on the specific details of the move set, it usually does
not reflect the true physical time required for folding. To ar-
rive at some estimations of the time required for a transition
state conformation to fold, we use Langevin dynamics sim-
ulation to estimate the true physical time that each Markov
move takes.

Given the number of residues (L = 5, . . . , 12) in the re-
grown fragment and the end-to-end distance r of the frag-
ment ends, we perform simulations to estimate the travel-
ing time between different fragment configurations that have
the same number of residues L and the same end-to-end
distance r . Here we discretize r into bins of intervals be-
tween r = 1.5 , 2.0 , 2.5 Å, . . . , according to the end-to-end
distance.

1. Simulation of physical movement of fragment

For a fragment x of length L and end-to-end distance
r , we run Langevin dynamics simulations to sample its con-
formations and calculate the transition time between different
conformational clusters. That is, we aim to provide physically
relevant time scale for each elementary Monte Carlo move
that transform the conformation of a fragment. Since our goal
is to assess the physical time of the movement or diffusion of
a fragment, we fix its two ends and measure the time required
to transform the conformation of the fragment from xL (t1) to
xL (t2). Here we use a simplified model, in which the residues
in the fragment are treated as connected beads, and they are al-
lowed to move freely in the space subjected to the constraints
imposed by other residue beads in the fragment through sev-
eral types of interactions, including the bond interaction, an-
gle interaction, and van der waals interaction. The motion of
the system is simulated using Langevin dynamics, where the
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FIG. 8. The fractions of preserved native contacts with different sequence separations of protein acylphosphatase for (a) the weighted TSE and (b) the native
conformation. Bin 1–11 correspond to sequence separations of 4, 5, 6–10, 11–20, 21–30, 31–40, 41–50, 51–60, 61–70, 71–80, and 81–90, respectively.

equation governing the motion of all residues in the fragment
is42

d2x(t)

dt2
= −γ

dx
dt

+ f (x, t) + αε(t), (6)

where x(t) is the position vector of the residues at time t , γ is
the friction constant, f (x, t) is the conformational force per
unit mass, and α is a constant defined as α = (2γ T/m)

1
2 , in

which T is the temperature, m is the mass, and ε(t) is the
Gaussian random force at time t , such that the autocorrela-
tion function 〈ε(t), ε(t ′)〉 = δ(t − t ′), where δ(t) is the delta
function. Here we have γ = 0.05τ−1, with τ = √

m · l · l/e
being the time unit of the simulation. m = 1 is the mass unit,
l = 3.8Å is the length unit, and e = 1 is the energy unit.
Veitshans et al. provided a discussion on the choice of the
value of the friction constant γ.43

For each combination of L and r , we start from a chain in
an extended initial conformation and an initial velocity vector
in Gaussian form, in which each of the 3L vector component
is sampled from the Gaussian distribution N (0, 1), which is
then scaled by a factor of

√
T . The simulation is run for 109

time steps, where each time step is set to 0.005
√

ma2/ε0, with
mass m = 1, length scale a = 3.8 Å, and the reference energy
scale ε0 = 1.

The first 2 × 108 steps are treated as the burning-in pe-
riod and the generated fragment conformations are discarded.
The fragment conformations beyond the burning period are
clustered as follows. Each time a conformation is sampled, it
is compared with all the cluster representatives generated in
previous steps. If its distance is more than a cut-off threshold
from all of the representatives, it is considered as the repre-
sentative of a new cluster; otherwise, it is grouped to its near-
est cluster. Here the distance between two fragments xL (t1) at
time t1 and xL (t2) at time t2 is calculated as

d (xL (t1), xL (t2)) =
[

1

L − 2

L∑
l=1

|xl(t1) − xl (t2)|2
]1/2

, (7)

in which |xl(t1) − xl(t2)| is the Euclidean distance between
the two position vectors xl(t1) and xl (t2) of the l-th residue.
The cutoff used in the clustering is 5 Å.

2. Markovian assumption and the estimation of
traveling time

Suppose S clusters are obtained. We treat each cluster as
a state, and use state i to denote the i-th cluster. The represen-
tative structure of state i is denoted as yi

L . Let I be the total
number of time steps of the trajectory beyond the burning-in
period, Ii be the observed number of state i , and Ii j be the ob-
served number of times that state i is immediately followed
by state j in the next time step. We define p̂i = Ii/I , which
represents the probability of the fragment to be in state i , and
p̂i j = Ii j/Ii , which represents the transition probability from
state i to j .

The average duration ξi that the state sequence of the
simulation trajectory {xL (t)} stays in state i can be estimated
as

ξi =
∞∑

k=0

k p̂ k
ii (1 − p̂i i ) = p̂i i/(1 − p̂i i ), (8)

where 1 − p̂i i represents the probability of the fragment
moves away from state i .

To estimate the average time ξ j i that the state sequence
enters state j ( j 
= i), then travels from state j to state i ,
we analyze the time trajectory. If the state sequence {xL (t)}
leaves state i at step t0 then re-enters state i at step t1, we
record the first time that {xL (t)} enters state j after t0 but
before t1 as t( j). The traveling time ξ̃ j i is then recorded as
t1 − t( j). As many ξ̃ j i can be recorded from one simulation
trajectory, we take its average value as the travel time ξ j i . An
illustration of counting ξ̃ j i is shown in Fig. 9(a).

If we assume sequence {xL (t)} obtained from simula-
tion after clustering is a Markov chain, we can alternatively
calculate ξ j i , j 
= i for each state i by solving the linear
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FIG. 9. Estimating the first passage time (FPT) to folded structure and correlation between FPT and fraction of native contacts among TSE. (a) An illustration
of counting the first passage time ξ̃ j i as t1 − t( j). (b) The average FPT of conformations in TSE of AcP. Each point represents a transition state conformation.

equations

1 +
∑
k 
=i

p̂ jkξki = ξ j i ,

with j = 1, . . . , i − 1, i + 1, . . . , S.

Figure 10 shows the frequency of different states in the
MD simulation and the comparison between the transition
time calculated through counting the simulated MD sequence,
namely, the counted traveling time, and that through solv-
ing the linear equations, namely, the calculated traveling
time. From Fig. 10 we observe that the ratio of the counted
and the calculated traveling times is close to one, except
for those states with very few observations. The generally
good agreement between these two approaches suggests that a
Markovian state model is reasonable for the majority of state
transitions.

3. Physical time for the regrowth moves

After obtaining the traveling time ξi j , the time each
Markov move takes is estimated as follows. Suppose the
Markov chain moves from the current fragment xold

L to a new
fragment xnew

L . First, we assign xold
L to the state i , whose

representative structure y(i)
L is the closest to xold

L in terms of
cRMSD. If the proposed move is rejected, this move takes
time ξi . If the move is accepted, we assign the new fragment
xnew

L to a new state j , in which y( j)
L − y(i)

L is the closest to
xnew

L − xold
L in terms of Euclidean distance. This successful

move takes time ξi j − ξi , as we assume that the fragment will
stay in state i on average ξi time before it moves to state j .

4. Conformations in TSE have diverse structures but
share similar characteristic folding time

Figure 9(b) plots the average FPT for each conformation
in the TSE against the fraction of native contacts in this con-
formation. The correlation coefficients between the folding

time and the fraction of native contacts preserved for the con-
formations in TSE is –0.068 (p-value of testing zero correla-
tion is 0.0041). Hence the folding time and the nativeness of
the conformation are not strongly correlated.

For unweighted TSE, the standard deviation of the av-
erage FPT between different conformations is 1.26 × 108

unit of time. For comparison, we computed the standard de-
viation of FPT for each conformation in different Markov
chain Monte Carlo runs, and the average is 3.77 × 108 unit
of time. For weighted TSE, these values are 1.98 × 108 and
2.59 × 108, respectively. We can see that the variation of the
average FPT for different TS conformations is small. In fact,
it is comparable with the variation of FPT in different Monte
Carlo runs starting with the same TS conformation. This re-
sult shows that, for the protein AcP, although the conforma-
tions in TSE are structurally diverse and far away from the
native state, they have very similar physical folding time. One
possible reason is that, as demonstrated by Fig. 3, all con-
formations in TSE have relative high energy, therefore these
conformations may quickly fold to conformations that have
low energy. As a result, these structurally diverse conforma-
tions demonstrate similar folding time. Figure 11(a) plots the
average first passage time of TS conformations in different
intervals of cRMSD distance to the native structure. It shows
that for TS conformations, the average first passage time does
not change much as the cRMSD distance to the native struc-
ture increases.

We compare the first passage time for the conformations
in �DS and �NS with the TS conformations. Note these groups
of conformations are defined by whether they will first fold or
unfold by the pfold criterion, without considerations of their
kinetic behavior. The distributions of the first passage time for
the conformations in these three sets are plotted in Fig. 11(b),
11(c), and 11(d). It is not surprising to observe that compared
with the conformations in TSE, the average folding time of
the conformations in �DS is longer, and the average folding
time of the conformations in �NS is shorter.
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FIG. 10. The agreement of counted and calculated traveling times between states. For the fixed number of residues L = 11 and the end-to-end distance r = 5 Å,
this figure shows: (a) The frequency of different states in the trajectory of the simulation; and the ratio of the counted traveling time to the calculated traveling
time for fixed destination state (b) 5, (c) 40, and (d) 75. Except for rarely observed states, counted and calculated traveling times agree well with each other.

IV. DISCUSSION AND CONCLUSIONS

In this study, we have further developed the constrained
sequential Monte Carlo method for sampling conformations
of transition state ensemble of protein folding. Our approach
can generate rigorously unbiased samples for a specified tar-
get distribution satisfying experimentally measured parame-
ters such as φ values, and can access a much wider space of
conformations compared to other methods, and hence lead to
generation of more diverse conformations. When combined
with Markov chain Monte Carlo with physically mapped tran-
sition time, we can generate explicitly conformations of the
TSE satisfying both the φ value measurement and the pfold

criterion.
Our method was applied to study the TSE of the pro-

tein acylphosphatase, which has 98 residues. We found that
the transition state conformations are diverse, and can be far
away from the native state. Although in general native sec-
ondary structures are not well-conserved, fragments of native

beta sheets are more enriched in the TSE than alpha helices. In
addition, we found that long range native contacts are formed
only after the formation of TSE. Despite the significant diver-
sity in structures, all TS conformations have similar folding
time.

As demonstrated by Cavalli et al.,44 there is a strong ten-
dency that the outcome of pfold analysis depends on the po-
tential function. It is expected that the Gō-potential may intro-
duce a strong bias toward the native state. This would enable
structures far away from the native state to have pfold = 0.5.
However, the finding of more heterogeneous nature of TSE
in this study is most likely due to the improved simulation
method employed, and possibly not so much as a consequence
of the Gō-potential used. The Gö approach is used in the study
of Vendruscolo et al.,25 in which the potential is a function of
RMSD deviation of φ value from the native state. The cur-
rent results are obtained under comparable settings with these
prior studies. Hence the more heterogeneous nature of the
TSE is indeed a novel finding of this study.
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FIG. 11. First passage time to folded structures and distance in cRMSD to the native structure. (a) The average first passage time of transition state conforma-
tions with different cRMSD distance to the native structure. For comparison, (b), (c), and (d) plot the distributions of the first passage time of the conformations
in �TSE, �DS, and �NS, respectively. Both unweighted (white bar) and weighted (black bar) distributions are shown.

A challenge in constrained sequential Monte Carlo sam-
pling is to identify an efficient approximating trial distribution
q(xn) in a high-dimensional and strongly constrained space.
To reduce the estimate variance, we use carefully designed
growth potential described in Ref. 32 to generate conforma-
tions. In addition, a large sample size (5, 000, 000) is used to
improve accuracy in estimation.

Since our goal is to access the wide conformational space
that satisfies all φ value constraints, we use the uniform distri-
bution in the constrained space as the target distribution π (x).
The growth potential is also designed for the uniform target
distribution, and is well suited for this purpose. Nevertheless,
when we reweight the conformations by Boltzmann factor un-
der the Gō-potential, weights of generated samples become
skewed. As Gō-potential models themselves are artificial con-
structs, it is appropriate to study the natural underlying shapes
of the transition state ensemble, which follow the uniform
distribution. With this goal in mind, the TSE conformations

are generated uniformly from the space with constrained φ

values.
In our clustering method, the choices of the representa-

tive structures are important because the distance of a con-
formation to the representatives is used for classification. Al-
though the clustering results may depend on the order in
which the conformations are generated, the representative
structures are always chosen as those with the largest weights
in the clusters, regardless of the ordering of the conforma-
tions. In addition, by carefully choosing the criterion of clus-
ter distance, conformations are all well separated. We there-
fore expect that our clustering method is not overly sensi-
tive to differences in the ordering of the conformations. To
confirm it, we carried out the following study. We first or-
der the conformations by their weights, then perform cluster-
ing sequentially from the largest weight conformation to the
smallest weight conformation. This approach resulted in 3897
clusters, compared to the 4185 clusters obtained with random
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FIG. 12. Effects of different ordering of conformations on clustering. (a) The distributions of cRMSD values of representative conformations of clusters
obtained when conformations are ordered by weights (white bar) and when they are randomly ordered (solid black). (b) The distributions of fractions of native
contacts for conformation clustering obtained using conformations ordered by weights (white bar) and using random ordered conformations (black bar). Overall,
these distributions are very similar.

ordering. Figure 12 reports the unweighted distributions of
cRMSD values and fractions of native contacts preserved for
clusters obtained under both ordering. It can be seen that the
two ordering produces very similar results.
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