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End-of-Day Stock Trading Volume
Prediction with a Two-Component
Hierarchical Model

SHUHAO CHEN, RONG CHEN, GARY ARDELL, AND BIQUAN LIN

oth human traders and algorithmic
trading engine designers have a pro-
found interest in the high-quality
prediction of the volume that will
be traded in the remainder of the trading
day. This volume represents the liquidity
against which orders can be transacted while
the available liquidity determines the market
impact of working any order. Indeed, with
inadequate liquidity, it may not be feasible
or it may be too expensive to execute a large
order in the remainder of the trading day.
The commonly used guaranteed execution
algorithms, such as the initiation price, face
the challenge of working parent orders across
the day. To minimize market impact, the
algorithm must keep its volume participation
rate as low as possible. On the other hand, the
algorithm must also ensure that its volume
participation rate is high enough in order to
complete the order within the day. Thus, it
is crucial to have an accurate prediction of
the volume in the remainder of the day to
effectively execute such algorithms.
Remainder day’s volume prediction
also plays an important role in analyzing
transaction cost. Berkowitz [1988] intro-
duced the concept of daily volume weighted
average price (VWAP) and used the differ-
ence between the average execution price
and the recorded VWAP to measure the cost
of each trade. Minimizing such cost is among
critical goals for institutional investors and

having better knowledge of reminder day’s
volume would definitely help to make an
efficient execution decision and, thus, favor-
able cost.

Recently, both academia and practitio-
ners have been pursuing better models fore-
casting the trading volumes. Lo and Wang
[2000] analyzed behavior of equity trading
volume using the capital asset pricing model
(CAPM). Hautsch [2002] modeled the
intraday volume activity based on volume
durations using autoregressive conditional
duration (ACD) models, which were origi-
nally introduced by Engle and Russell [1998].
Darolles and Le Fol [2003] proposed a meth-
odology of decomposing trading volume
and Bialkowski, Darolles, and Le Fol [2008]
extended the previous work into intraday
data, decomposing intraday trading volume
into two components: 1) reflects volume
change associated with market evolutions, and
2) represents stock-specific volume pattern. It
used the historical VWAP curve to estimate
the market component and the autoregres-
sive moving average (ARMA) and the self-
exciting autoregressive (SETAR) models to
estimate stock specific component.

Although our aim is to predict the
volume to be traded in the reminder of the
day, we instead investigate the total volume
accrued throughout the day, or the end-
of-day volume, for simplicity. Given the fact
that the volume that has been accumulated
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from the beginning of the day to the time of the predic-
tion is known to us, the two volumes are equivalent.

Intuitively, there are two sources of useful infor-
mation for projecting the end-of-day volume. Since we
have observed the partial volume observed up to the
time of prediction, and if the distribution of total volume
throughout the day is relatively stable and can be esti-
mated using historical data, then the total end-of-day
volume prediction can be made with the partial volume
and the estimated proportion it should assume for the
total volume. We call this method infraday prediction.
The second source of information is the dynamics of
daily volume changing over time. If such dynamics is
properly modeled, daily volume can be predicted as well.
We denote this method as daily prediction.

Since the intraday method utilizes the volume
accrued during the trading day while the daily method
uses daily volume series, those two methods provide
independent predictions. They can be improved by
combining both sources of information. In this article,
we propose a hierarchical model for such a combina-
tion. It extends to the stable seasonal pattern model of
Chen and Fomby [1999], where the model was used to
predict end-of-year total number of tourists. A similar
idea was used by Oliver [1999] as well. This approach is
different from that of Bialkowski, Darolles, and Le Fol
[2008] who decomposed the trading volume into two
components that reflect volume changes due to market
evolutions and the stock-specific volume pattern.

This article is organized as follows: In the next
section, the two-component hierarchical model is pre-
sented. Its prediction procedures and some extensions
are shown in the third section. The fourth section shows
an empirical study using Dow Jones Industrial Average
component stocks, comparing out-of-sample prediction
performance of different methods.

TWO-COMPONENT HIERARCHICAL MODEL

Consider a trading volume series ..., x , x

X, ... where t =1, 2, ..., n corresponds to tiiiffiérent
trading days and d denotes the number of trading periods
used each day. In this article, we use d = 13, corre-
sponding to thirteen 30-minute trading intervals of the
U.S. equity market. The end-of-day volume for day s
then given by y, = x, + ... +x, .
In Equation (1), we assume that the daily pattern is

stable across different days, which is to say that given the
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end-of-day volume total y, (x , x,,, ... x, ) are condition-

ally independent for t=1, 2, ..., n. Namely

’Xnd|y1""’yn]

X1y, (1)

PLX s X s ey X, s e
n

=[Iplx,,...

=1

where p[-]-] denotes the conditional density.

This assumption allows us to model the series ...,
X Xy oees Xy on with a two-component hierarchical
structure, shown in Equation (2).

plx,,....x,1y,],~M/(y,0) and
=M, (-5 B ()

where the intraday model M, is a (d — 1)-dimensional
distribution and the daily model M, is a time series model
for the daily volume series {y }. © and [} are parameters
to be estimated.

There are several important characteristics associ-
ated with this hierarchical model. First, it is assumed that
the dependency between different days is only through
the total volume {y }, not the individual observations
within the days. Second, given the total volume, the
intraday distribution of the total volume throughout the
day is the same. Third, the two models, one for intraday
distribution and the other for the daily volume series,
can be modeled separately. Those three properties are
ideal in terms of making intraday predictions of the
end-of-day volume.

In the following steps, we discuss the possible
models for M, and M,. Since {x,} is integer-valued,
one immediate choice for model M, is the multinomial
distribution, with the total being the daily total volume.
However, trading volume is often large enough to be
treated as a continuous variable. Treating it as a continuous
variable also provides the advantage of more flexibility
in the modeling of total volume series y. Nevertheless,
we still want its distribution to possess the proportional
interpretation of the multinomial distribution. Chen and
Fomby [1999] proposed a continuous analogue of the
multinomial distribution called the Gaussian multino-
mial distribution. Specifically, as shown in Equation (3),
a d-dimensional random variable (X, X5 -ons X)) 18 said
to follow Gaussian-multinomial(G-MN) distribution
(v, 9, ...,0,0%if
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plx, s x,(d=1)]~ NW,o°Y) and x,=y, - 2%
T
where 0<0, <1, Zj:l 0. =1and
0,7, 6,(1-0,) -66, -0,0,
ac| 1| wo| o e0-e) . es,
0,7, -0,0, -606,, .. 6,(1-96,)

Note that L and Y. do not depend on ¢, due to our
assumption of a stable daily pattern.

This distribution can be viewed as a continuous
version of the multinomial distribution. The mean and
correlation coefficient matrix are the same as the multi-
nomial distribution, except for the extra variance param-
eter 6. In the multinomial distribution, the variance
varies with the total volume in a relatively restricted
way. In the Gaussian multinomial distribution, the
variance is constant. It is possible to allow for varying
variance (depending on observable variables) similar to
the weighted regression setting or a GARCH type of
heteroscedasticity. Here we choose to assume constant
variance.

It can be shown that the Gaussian multinomial
distribution also has the combination property of the
multinomial distribution. For example, if (X5 coen ) ~
G—MN(y,9,,...,0,,07), then (x, +x,,x,,....x)~ G
—MN(y,6,+6,,...,0,06%. More critically, this property
implies that for 1 < k <d

k

k
Zx“, ~N(yky[,czyk(l—yk)), where v, =291

i=1 i=1

This feature allows us to estimate Y, much more
easily than estimating 0, ..., 0_in the high dimen-
sional space. The parameter 7, is of critical interest as
our prediction procedure involves only vy, instead of
the individual parameters 0, ..., 6,. In Equation (4), the
maximum likelihood estimator of y in our setting is

S T o
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with standard error G = [?k(l - ?L) / ny]]/z. The max-
imum likelihood estimator for G2 is

o i, =6y 3, —y)

n

In Equation (5), to model the daily volume
dynamics, we use a Gaussian model where

ply. 1y 1~ N(u,.o;) (5)

wherey  =(y_,...,y,), L, =f(y,_,0),and G, = g(y _,, 0).
This model includes all the standard autoregressive inte-
grated moving average (ARIMA) models of Box and
Jenkins [1976] and Brockwell and Davis [1986], with or
without GARCH errors (Bollerslev [1986]).

PREDICTION BASED ON THE
TWO-COMPONENT HIERARCHICAL MODELS

At a given time k of the trading day ¢, we are
interested in estimating the end-of-day volume y, using
volume accumulated up to time k, namely (x,, x,, ...,
x,) and the histor(i)cal daily volume series y_,, ..., y,.
Specifically, let x* =(x,,x,,,...,x,) and X, =(,)

t 1/ kxk?

where IV, =—-00 fori#jandv, = 0,(1-6). Then,

p[yr |er""’xtk,Yf—1]ocp[xﬂ""’xrk |YI]
X ply, 17,1~ NW,,.07,)

where

and

“y'9 T x 5
Lo = XA—:L"FM_; Gyzkz ;ﬂ"o'i'u_; G, (6)
| (o c ) (I-v,)o" o) "

Hence, the least squares prediction of y, is |, ,. In fact,
letting ¢, 2(52/6,2, Equation (6) can be written as
Equation (7)
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1 k c
“r:: xri+ ’ (1_7,)p',
¢ yk +1(1_7k)5, ; ’Yk +(1_’Y/\,)C, ¢
3ok,
A w, = mw )

k

ko
T X

Here, =7 and L are the predictions of the end-of-day
volume based on M, model alone and M, model alone,
respectively. The weights ® and 1-®, dictate the con-
tribution of models M, and M, to the prediction of the
total volume.

Note that, when the model for the total
volume series and the model for volumes within
the day have equal precision, that is, 6° =67, then
W, = T x, + 1=y ), =2 x + 20 0. Hence, the
adjustment procedure is simply to replace the predicted
contribution of the individual observations O by their
observed values x,. When ¢ < 1, Zf:]x“, bears more
weight in prediction, because the individual volume
observation has less variance (more accuracy) than the
daily volume model.

An alternative is to treat the combination weights
®, and 1-® in Equation (7) as unknown parameters.
If one assumes homoscedasticity in the daily volume
series, the weights are constant over time. They can be
estimated with least squares as if the daily total volume
follows a regression model with Zf;lx“. and L, as explana-
tory variables. This model has a nonparametric modeling
tlavor as it bypasses the assumptions of M, and M, and
optimizes the linear combination directly. We call this
model the regression approach. One can further extend
this model by including other informative variables in
the combination, such as market trading volume up to

period k.

EMPIRICAL STUDY

In this section, we apply the two-component hier-
archical model to the historical volume profile of the
30 selected stocks in the Dow Jones Industrial Average
from January 2010 to September 2010. Detailed results
are shown using the volume profile of Apple, Inc.! There
are 185 trading days in the study. We use the first 155
days for modeling and parameter estimation and the
last 30 days for out-of-sample prediction performance
comparison. Exhibit 1 shows the volume series of Apple,
Inc. The volumes to the left of vertical dash line are
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ExHIBIT 1
Apple, Inc., Volume Series

AAPL Stock Volume Series @
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used in fitting, while the right-side volumes are used
for prediction and testing purposes.

To avoid dealing with micro-structure noise and
for the ease of computation, we aggregate the minute-
by-minute volume data to 30-minute intervals with 13
periods per day. Here we use 1:00 p.m. as our time
for the end-of-day volume prediction, that is, we have
observed the trading volume up to 1:00 p.m. (thus,
k = 7) and want to estimate the end-of-day volume
using the accumulated volume that day and the historical
daily volumes before that day.

We use the Gaussian multinomial distribution for
Model M,. Exhibit 2 depicts the estimated 6, 1 <i< 13
for Apple, Inc., for the intraday distribution of the total
volume into the 13 intraday periods. Regularity of the

EXHIBIT 2
Intraday Volume Distribution of Different Stocks

Volume Curve of AAPL Volume Curve of IBM
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Note: (x-axis corresponds to the 13 trading periods and y-axis represents
the volume percentage 0. Volumes would accumulate to 100%.)
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pattern for different stocks is also demonstrated and veri-
fied. Furthermore, Exhibit 3 shows the estimates and
standard errors of ¥, X\ 6.

We fit the historical daily volume series using
Gaussian ARMA models and AR MA-GARCH models.
The autocorrelation function (ACF) and partial autocor-
relation function (PACF) of Apple, Inc.’s daily volume
series are shown in Exhibit 4. They appear to be quite
stationary. Further study using the extended autocorrela-
tion function of Tsay and Tiao [1984] and the adjusted
extended autocorrelation function of Chen, Min, and
Chen [2010] and the AIC criterion of Akaike [1974]
identifies an AR (2) model as an appropriate model for the
daily volume series of Apple, Inc. To include heterosce-
dasticity, we also model the error term of the AR(2)
model as a GARCH(2, 0) process, after carrying out
a model selection procedure. Exhibit 5 shows the esti-
mated parameters for AR (2) and AR (2)-GARCH(2, 0)
model.

The GARCH component is marginally significant.
We also fit other volume series individually and identify
the best ARMA and ARMA-GARCH models. They
are used as Model M, in the prediction exercises.

Given the estimated parameters of M, and M,, we
compare following six different prediction methods.

EXHIBIT 5
Fitting Results for Candidate ARMA Models

AR(2) AR(2)-GARCH(2, 0)

Value Sd Value Sd
Intercept  0.9966 0.0703 Intercept 0.3122 0.0680
AR1 0.4599 0.0714 ARI1 0.4863 0.1038
AR2  0.2239 0.0714 AR2 0.1844 0.0834
o’ 0.0943 GARO 0.0515 0.0100
GAR1 0.1711 0.1081
GAR2 0.4069 0.1886
Log Likelihood —44.35 | Log Likelihood —-36.54

1. ARMA:Prediction using the daily volume series
only, under the ARMA model,

2. GARCH: Prediction using the daily volume series
only under ARMA-GARCH model;

3. Intraday: Prediction using intraday model M,
only;

4. New-ARMA: Prediction using the new hierar-
chical model with ARMA as model M,;

5. New-GARCH: Prediction using the new
hierarchical model with ARMA-GARCH as
model M ;

6. Reg: Prediction using combination (7) with least
squares optimized weights.

We first show the detailed results

ExXHIBIT 3

Maximum Likelihood Estimates (standard errors) of the Gamma

of Apple, Inc. Exhibit 6 numerates the
estimated variance O, of the intraday
Gaussian—Multinomial distribution (M,)
and 67 for the ARMA model (M,) and

’Yl Yz Y3 74 ’Ys YG Y7 ’Yx ’Y‘)

yll YIZ

Estimate 0.165 0.280 0.363 0.434 0.490 0.537 0.580 0.630 0.681 0.741 0.813 0.888
0.011 0.013 0.014 0.015 0.015 0.015 0.015 0.014 0.014 0.013 0.012 0.010

Std. err.

the corresponding weights ® and 1-®,
in Equation (7). Note that we assume that
the ARMA models for M,, ¢ and ®_ are

EXHIBIT 4
ACF and PACEF for Apple, Inc.’s Daily Volume Series

ACF Result Table for Apple Inc.'s Historical Volume Series

ACF
00 02 04 06 08 10
P M

Patial ACF
0 02 04 06
N f N
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indeed independent of time . In this case,

the prediction provided by the daily series
is relatively more accurate (smaller variance), hence,
having a large weight in the combined prediction. The
estimated weights under least square criterion is also
presented and it tends to put relatively more weight on
intraday prediction, which is not optimal in this case.

EXHIBIT 6
Variance Comparison I

Intraday (6°) ARMA (¢7) w, 1-w, Regw, Regw,

th

6.41E+13

4.22E+ 13

0.48

0.52

0.77

0.23
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Exhibit 7 shows the estimated variance sz under
the ARMA-GARCH model for the 30 days in our pre-
diction period and its corresponding ratio ¢, comparing
to the estimated 6° listed in Exhibit 6. It does change
quite significantly, from 0. 3 to almost 3.

Exhibit 8 shows the predictions of ARMA,
GARCH, intraday, reg, new-ARMA and new-
GARCH, with the true observations marked as dots.
Day 28 is an unusual observation. The actual volume
is significantly larger than normal. The new prediction
method is able to capture such a large movement, while

ExHIBIT 7
Variance Comparison II

2

the daily model underpredicts and the intraday model
overpredicts.

Exhibit 9 shows the actual prediction of the volume
(in millions of shares) of the 30 day prediction period,
under different methods. The true observation, labelled

as real 1s shown at the bottom line for comparison.
Exhibit 10 summarizes the prediction performance
by showing the root-mean-squared prediction error

RMSE = \/E}':1 (Pred. — Tme{)2 5

EXHIBIT 8
Comparison of Different Prediction Methods

Comparison of different prediction methods

5e+07
I

Methods

T o, oo} t ¢} o¥c? t c; 0%/0? .
ama i
1 332E+13 193 11 603E+13 106 21 357E+13 1.80 5y qarch i
2 246E+13 260 12 471E+13 136 22 243E+13 2.64 g o e intraday
3 299E+13 214 13 255E+13 251 23 286E+13 224 3 - newarma
4 251E+13 256 14 3.84E+13 1.67 24 218E+13 294 g %_ —  newgarch
5 322E+13 199 15 272E+13 236 25 3.04E+13 2.11 °
6 254E+13 253 16 2.75E+13 234 26 486E+13 1.32 sy
7 343E+13 187 17 2.79E+13 230 27 270E+13 238 g &
8 2.65E+13 242 18 245E+13 262 28 858E+13 0.75 @ L
9 395E+13 1.62 19 2.15E+13 299 29 1.77E+14 0.36 ‘;?,—I , , | ‘ ,
10 3.10E+13 2.07 20 2.52E+13 2.54 30 7.23E+13 0.89 T 10 15 20 25 30
Day
EXHIBIT 9
Prediction Results from Various Methods (in millions of shares)
Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl0
ARMA 16.05 1530 1583 1932 20.62 18.10 18.88 16.55 15.84 20.93
GARCH 15.78 14.67 1548 19.22 20.15 1730 18.64 1574 1547 21.10
Intraday 15.68 12.39  13.00 2241 20.13 1570 21.65 1338 12.79 20.65
New-ARMA 1587 13.89 1446 20.82 2038 1694 2022 15.01 1436 20.80
New-GARCH 15.74 13.86 1449 2036 20.14 16.72 1995 1486 1422 20.92
Reg 1585 13.14 13.73 21.82 2035 1634 21.13 1419 1357 20.83
Real 1438 11.88 13.87 1994 20.31 1527 18.62 12.88 13.64 23.27
Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20
ARMA 18.01 1746 1549 17.72 1725 1589 1538 1576 16.09 19.70
GARCH 17.00 17.20 14.88 17.70 16.69 1549 15.03 1547 1575 19.69
Intraday 1448 17.49 13.20 1838 13.90 14.41 14.11 1483 13.60 15.72
New-ARMA 1630 17.47 1438 18.04 1562 15.17 1477 1531 1489 17.77
New-GARCH 15.56 17.35 1427 18.01 15.64 1508 14.68 1525 1505 18.26
Reg 1538 17.58 13.81 1833 1475 1484 1449 1513 1426 16.73
Real 1398 1642 11.68 1792 14.61 1325 12.83 13.80 14.12 21.09
Day 21 Day 22 Day 23 Day 24 Day 25 Day 26 Day 27 Day 28 Day29 Day 30
ARMA 1938 21.23 22.11 2041 23.73 2240 18.56 2722 2199 20.63
GARCH 18.77 21.06 21.62 19.79 23.64 21.63 1794 27.65 20.83 20.54
Intraday 20.36 22.81 17.79 2129 2520 2255 16.19 47.18 1547 2591
New-ARMA 19.86 22.00 20.02 20.83 2444 2247 1741 36.89 18.83 23.19
New-GARCH 1948 21.67 20.13 20.28 2427 22.11 17.28 4048 16.55 23.86
Reg 20.25 2257 18.89 21.20 25.00 22.64 1683 4282 17.07 24.83
Real 17.76 22.74 2251 19.22 27.14 2130 16.00 3575 1598 22.60
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In the following, we present the prediction per- the improvement is over 20%, some significantly

formance comparison for the 30 stocks in the Dow higher.
Jones Industrial Average Index. The first two columns 2. Although the ARMA-GARCH model may be
of Exhibit 11 provide the company information; the marginally better than ARMA model for mod-
following two columns store the ARMA and GARCH eling the daily volume series dynamics (as in the
orders of the daily volume series. Mean-squared predic- case of Apple, Inc. ), the ARMA model works
tion errors of the six prediction methods are then listed, almost as well as ARMA—-GARCH model in terms
followed by the ratio comparison statistics. of prediction.
‘We make the following observations: 3. The alternative combination method with the
least-squares-optimized weights outperforms the
1. In most cases, the new two-component hierar- intraday model alone and the daily series alone. Its
chical model performs much better than using the overall performance is not as good as the one based
intraday model alone and using the daily series on the hierarchical model.

dynamics alone. In more than half of the cases,

ExHIBIT 10
Root Mean Square Error from Various Methods

GARCH New-GARCH New-GARCH
ARMA GARCH Intraday New-ARMA New-GARCH Reg ARMA GARCH Intraday

15.85 13.76 15.62 9.72 9.72 11.95 86.84% 70.69% 62.24%

ExHIBIT 11

Prediction Comparison on Dow Jones Industrial Average Components Based on Prediction Mean Square Error
(in millions of shares)

ARMA GARCH GARCH New-GARCH New-GARCH New-GARCH
Company Symbol Orders Orders ARMA GARCH Intraday New-ARMA New-GARCH Reg ARMA New-ARMA GARCH Intraday
3M MMM 1,0 1,0 34 3.23 1.62 1.73 1.64 143 94.95% 95.05% 50.98% 101.80%
Alcoa AA 1,0 2,0 2833  21.58 12.45 11.75 10.55 10.9 76.18% 89.74% 48.87% 84.71%
American Express AXP 1,0 1,1 5.93 4.65 5.57 3.96 3.73 496  78.42% 94.28% 80.19% 66.99%
ATT T 1,1 1,0 1624  16.13 12.94 11.29 11.1 11.56  99.31% 98.27% 68.78% 85.74%
Boeing BA 1,1 1,1 6.34 6.08 3.64 3.07 3.27 2.8 95.93% 106.67% 53.81% 89.98%
Caterpillar CAT 1,1 1,1 7.36 6.49 54 4.43 4.36 474  88.07% 98.55% 67.26% 80.79%
Chevron Corporation CVX 1,1 1,1 5.08 4.76 3.84 3.14 2.92 332 93.84% 93.12% 61.32% 76.02%
Cisco Systems CSCO 1,0 1,0 40.18  31.66 349 23.55 229 28.57  78.79% 97.21% 72.33% 65.61%
Coca-Cola KO 1,0 0,0 7.51 7.51 4.88 3.81 3.81 4.01  100.00% 100.00% 50.78% 78.09%
DuPont DD 1,1 1,0 4.87 491 3.63 3.12 3.1 3.09 100.83% 99.40% 63.05% 85.23%
Exxon Mobil XOM 1,1 1,1 13.2 11.53 7.95 7.14 7.14 7.08  87.32% 100.04% 61.94% 89.84%
General Electric GE 2,0 0,0 53.57  53.57 31.28 24.82 24.82 23.53  100.00% 100.00% 46.33% 79.34%
Hewlett-Packard HPQ 1,1 1,1 27.03 2697 20.82 16.28 17.95 16.5 99.79% 110.26% 66.53% 86.21%
The Home Depot HD 1,1 0,0 9.05 9.05 7.8 6.28 6.28 6.94 100.00% 100.00% 69.37% 80.48%
Intel INTC 1,0 0,0 53.88  53.88 51.88 26.28 26.28 37.96  100.00% 100.00% 48.78% 50.66%
IBM IBM 1,1 1,1 4.05 3.32 3.73 2.79 2.53 325  81.90% 90.56% 76.24% 67.77%
Johnson & Johnson ~ JNJ 1,1 1,0 6.33 6.43 5.29 39 3.77 4.94 101.53% 96.64% 58.69% 71.38%
J.P. Morgan Chase JPM 1,1 2,0 25.91 17.45 17.37 12.92 11.41 1445  67.34% 88.32% 65.42% 65.70%
Kraft Foods KFT 1,0 2,0 8.95 6.7 5.48 4.29 4.36 456 7491% 101.42% 65.01% 79.52%
McDonald’s MCD 1,0 1,1 4.71 421 5.62 2.39 3.55 5.08  88.19% 148.64% 84.36% 63.13%
Merck MRK 1,1 1,1 8.31 6.58 6.46 5.53 5.37 531 79.15% 97.19% 81.65% 83.11%
Microsoft MSFT 1,0 1,1 40.50  37.43 51.02 35.37 37.1 46.32  92.41% 104.90% 99.11% 72.71%
Pfizer PFE 1,1 1,1 3556  35.36 21.79 20.07 19.46 18.7 99.41% 96.97% 55.05% 89.30%
Procter & Gamble PG 1,1 1,1 6.48 5.76 5.27 3.96 3.67 479  88.85% 92.77% 63.75% 69.65%
Travelers TRV 1,1 1,0 4.01 4.03 3.22 2.45 2.44 2.94 100.43% 99.40% 60.48% 75.67%
United Technologies ~ UTX 1,0 1,1 3.63 3.31 2.63 2.32 2.18 244 91.14% 94.13% 65.98% 82.95%
Corporation
Verizon vz 1,1 2,0 14.15 14.09 9.14 8.79 8.38 774 99.54% 95.36% 59.48% 91.71%
‘Wal-Mart WMT 1,1 1,1 9.13 835 6.21 5.15 4.98 525 91.40% 96.59% 59.62% 80.17%
Walt Disney DIS 1,1 2,0 6.92 4.86 5.66 4.30 3.27 483 70.21% 76.01% 67.27% 57.72%
Average 90.34% 98.67% 64.57% 77.65%
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4. The phenomenon observed on the 28th day of
the Apple, Inc., volume series is quite important.
It shows that the hierarchical model can indeed
effectively combine two independent sources of
information and produce a more accurate predic-
tion. This phenomenon is also observed in other
stocks as well.

5. The idea of including other factors, such as market
volume, in the combination has been tried, without
success. More research needs to be done to find
more appropriate factors.

In conclusion, our empirical study shows that the
proposed two-component hierarchical model and its
associated prediction method are effective in making
predictions of the end-of-day volume, and is more accu-
rate compared to that using the intraday model alone and
daily volume series alone.

ENDNOTES

'Arbitrarily chosen, not included in DJIA though.
2Apple, Inc., stock trades under AAPL on the
NASDAQ.
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