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Both human traders and algorithmic 
trading engine designers have a pro-
found interest in the high-quality 
prediction of the volume that will 

be traded in the remainder of the trading 
day. This volume represents the liquidity 
against which orders can be transacted while 
the available liquidity determines the market 
impact of working any order. Indeed, with 
inadequate liquidity, it may not be feasible 
or it may be too expensive to execute a large 
order in the remainder of the trading day. 
The commonly used guaranteed execution 
algorithms, such as the initiation price, face 
the challenge of working parent orders across 
the day. To minimize market impact, the 
algorithm must keep its volume participation 
rate as low as possible. On the other hand, the 
algorithm must also ensure that its volume 
participation rate is high enough in order to 
complete the order within the day. Thus, it 
is crucial to have an accurate prediction of 
the volume in the remainder of the day to 
effectively execute such algorithms.

Remainder day’s volume prediction 
also plays an important role in analyzing 
transaction cost. Berkowitz [1988] intro-
duced the concept of daily volume weighted 
average price (VWAP) and used the differ-
ence between the average execution price 
and the recorded VWAP to measure the cost 
of each trade. Minimizing such cost is among 
critical goals for institutional investors and 

having better knowledge of reminder day’s 
volume would definitely help to make an 
efficient execution decision and, thus, favor-
able cost.

Recently, both academia and practitio-
ners have been pursuing better models fore-
casting the trading volumes. Lo and Wang 
[2000] analyzed behavior of equity trading 
volume using the capital asset pricing model 
(CAPM). Hautsch [2002] modeled the 
intraday volume activity based on volume 
durations using autoregressive conditional 
duration (ACD) models, which were origi-
nally introduced by Engle and Russell [1998]. 
Darolles and Le Fol [2003] proposed a meth-
odology of decomposing trading volume 
and Bialkowski, Darolles, and Le Fol [2008] 
extended the previous work into intraday 
data, decomposing intraday trading volume 
into two components: 1) ref lects volume 
change associated with market evolutions, and 
2) represents stock-specific volume pattern. It 
used the historical VWAP curve to estimate 
the market component and the autoregres-
sive moving average (ARMA) and the self-
exciting autoregressive (SETAR) models to 
estimate stock specific component.

Although our aim is to predict the 
volume to be traded in the reminder of the 
day, we instead investigate the total volume 
accrued throughout the day, or the end-
of-day volume, for simplicity. Given the fact 
that the volume that has been accumulated 
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from the beginning of the day to the time of the predic-
tion is known to us, the two volumes are equivalent.

Intuitively, there are two sources of useful infor-
mation for projecting the end-of-day volume. Since we 
have observed the partial volume observed up to the 
time of prediction, and if the distribution of total volume 
throughout the day is relatively stable and can be esti-
mated using historical data, then the total end-of-day 
volume prediction can be made with the partial volume 
and the estimated proportion it should assume for the 
total volume. We call this method intraday prediction. 
The second source of information is the dynamics of 
daily volume changing over time. If such dynamics is 
properly modeled, daily volume can be predicted as well. 
We denote this method as daily prediction.

Since the intraday method utilizes the volume 
accrued during the trading day while the daily method 
uses daily volume series, those two methods provide 
independent predictions. They can be improved by 
combining both sources of information. In this article, 
we propose a hierarchical model for such a combina-
tion. It extends to the stable seasonal pattern model of 
Chen and Fomby [1999], where the model was used to 
predict end-of-year total number of tourists. A similar 
idea was used by Oliver [1999] as well. This approach is 
different from that of Bialkowski, Darolles, and Le Fol 
[2008] who decomposed the trading volume into two 
components that ref lect volume changes due to market 
evolutions and the stock-specific volume pattern.

This article is organized as follows: In the next 
section, the two-component hierarchical model is pre-
sented. Its prediction procedures and some extensions 
are shown in the third section. The fourth section shows 
an empirical study using Dow Jones Industrial Average 
component stocks, comparing out-of-sample prediction 
performance of different methods.

TWO-COMPONENT HIERARCHICAL MODEL

Consider a trading volume series … , x
t1
, x

t2
, … 

x
td
, … where t = 1, 2, … , n corresponds to different 

trading days and d denotes the number of trading periods 
used each day. In this article, we use d = 13, corre-
sponding to thirteen 30-minute trading intervals of the 
U.S. equity market. The end-of-day volume for day t is 
then given by y

t
 = x

t1
 + … +x

td
.

In Equation (1), we assume that the daily pattern is 
stable across different days, which is to say that given the 

end-of-day volume total y
t
, (x

t1
, x

t2
, … x

td
) are condition-

ally independent for t = 1, 2, … , n. Namely
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where p[⋅|⋅] denotes the conditional density.
This assumption allows us to model the series … , 

x
t1
, x

t2
, … , x

td
, … with a two-component hierarchical 

structure, shown in Equation (2).
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where the intraday model M
1
 is a (d − 1)-dimensional 

distribution and the daily model M
2
 is a time series model 

for the daily volume series {y
t
}. θ and β are parameters 

to be estimated.
There are several important characteristics associ-

ated with this hierarchical model. First, it is assumed that 
the dependency between different days is only through 
the total volume {y

t
}, not the individual observations 

within the days. Second, given the total volume, the 
intraday distribution of the total volume throughout the 
day is the same. Third, the two models, one for intraday 
distribution and the other for the daily volume series, 
can be modeled separately. Those three properties are 
ideal in terms of making intraday predictions of the 
end-of-day volume.

In the following steps, we discuss the possible 
models for M

1
 and M

2
. Since {x

tk
} is integer-valued, 

one immediate choice for model M
1
 is the multinomial 

distribution, with the total being the daily total volume. 
However, trading volume is often large enough to be 
treated as a continuous variable. Treating it as a continuous 
variable also provides the advantage of more f lexibility 
in the modeling of total volume series y

t
. Nevertheless, 

we still want its distribution to possess the proportional 
interpretation of the multinomial distribution. Chen and 
Fomby [1999] proposed a continuous analogue of the 
multinomial distribution called the Gaussian multino-
mial distribution. Specifically, as shown in Equation (3), 
a d-dimensional random variable (x

t1
, x

t2
, … , x

td
) is said 

to follow Gaussian-multinomial(G-MN) distribution 
(y

t
, θ

1
, … , θ

d
, σ2) if
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Note that µ and ∑ do not depend on t, due to our 
assumption of a stable daily pattern.

This distribution can be viewed as a continuous 
version of the multinomial distribution. The mean and 
correlation coefficient matrix are the same as the multi-
nomial distribution, except for the extra variance param-
eter σ2. In the multinomial distribution, the variance 
varies with the total volume in a relatively restricted 
way. In the Gaussian multinomial distribution, the 
variance is constant. It is possible to allow for varying 
variance (depending on observable variables) similar to 
the weighted regression setting or a GARCH type of 
heteroscedasticity. Here we choose to assume constant 
variance.

It can be shown that the Gaussian multinomial 
distribution also has the combination property of the 
multinomial distribution. For example, if (x

t1
, … , x

td
) ∼ 

G − MN(y, θ
1
, … , θ

d
, σ2), then (x

t1
 + x

t2
, x

t3
, … , x

td
) ∼ G 

− MN(y, θ
1
 + θ

2
, … , θ

d
, σ2). More critically, this property 

implies that for 1 ≤ k <d

x N yti
i

k

k t k k k i
i

k

= =
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This feature allows us to estimate γ
k
 much more 

easily than estimating θ
1
, … , θ

k
 in the high dimen-

sional space. The parameter γ
k
 is of critical interest as 

our prediction procedure involves only γ
k
, instead of 

the individual parameters θ
1
, … , θ

k
. In Equation (4), the 

maximum likelihood estimator of γ
k
 in our setting is
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t
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with standard error 
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In Equation (5), to model the daily volume 
dynamics, we use a Gaussian model where

	 p y y Nt t t t[ | ] ~ ( , )−1
2µ σ 	 (5)

where y
t−1

 = (y
t−1

, … , y
1
), 

 
m

t
 = f(y

t−1
, θ), and s

t
 = g(y

t−1
, θ). 

This model includes all the standard autoregressive inte-
grated moving average (ARIMA) models of Box and 
Jenkins [1976] and Brockwell and Davis [1986], with or 
without GARCH errors (Bollerslev [1986]).

PREDICTION BASED ON THE 
TWO-COMPONENT HIERARCHICAL MODELS

At a given time k of the trading day t, we are 
interested in estimating the end-of-day volume y

t
 using 

volume accumulated up to time k, namely (x
t1
, x

t2
, … , 

x
tk
) and the historical daily volume series y

t−1
, … , y

1
. 

Specifically, let x x x xt
k

t t tk
( ) ( , , , )= …1 2  and ∑ = ×k tj k kV( ) , 

where Vij i j= −θ θ  for i ≠ j and v
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(6)

Hence, the least squares prediction of y
t
 is m

t,k
. In fact, 

letting ct t= σ σ2 2/ , Equation (6) can be written as 
Equation (7)
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Here, Σi
k

ti

k

x=1

γ  and µ
t
 are the predictions of the end-of-day 

volume based on M
1
 model alone and M

2
 model alone, 

respectively. The weights ω
tk
 and 1−ω

tk
 dictate the con-

tribution of models M
1
 and M

2
 to the prediction of the 

total volume.
Note that, when the model for the total 

volume series and the model for volumes within 
the day have equal precision, that is, σ σ2 2= t , then 
µ γ µ θ µt k i

k
ti k t i

k
ti i k

d
i tx x, ( )= + − = += = = −Σ Σ Σ1 1 11 . Hence, the 

adjustment procedure is simply to replace the predicted 
contribution of the individual observations θ

i
µ

t
 by their 

observed values x
ti
. When c <  1, Σi

k
tix=1 , bears more 

weight in prediction, because the individual volume 
observation has less variance (more accuracy) than the 
daily volume model.

An alternative is to treat the combination weights 
ω

tk
 and 1−ω

tk
 in Equation (7) as unknown parameters. 

If one assumes homoscedasticity in the daily volume 
series, the weights are constant over time. They can be 
estimated with least squares as if the daily total volume 
follows a regression model with Σi

k
tix=1  and µ

t
 as explana-

tory variables. This model has a nonparametric modeling 
f lavor as it bypasses the assumptions of M

1
 and M

2
 and 

optimizes the linear combination directly. We call this 
model the regression approach. One can further extend 
this model by including other informative variables in 
the combination, such as market trading volume up to 
period k.

EMPIRICAL STUDY

In this section, we apply the two-component hier-
archical model to the historical volume profile of the 
30 selected stocks in the Dow Jones Industrial Average 
from January 2010 to September 2010. Detailed results 
are shown using the volume profile of Apple, Inc.1 There 
are 185 trading days in the study. We use the first 155 
days for modeling and parameter estimation and the 
last 30 days for out-of-sample prediction performance 
comparison. Exhibit 1 shows the volume series of Apple, 
Inc. The volumes to the left of vertical dash line are 

used in fitting, while the right-side volumes are used 
for prediction and testing purposes.

To avoid dealing with micro-structure noise and 
for the ease of computation, we aggregate the minute-
by-minute volume data to 30-minute intervals with 13 
periods per day. Here we use 1:00 p.m. as our time 
for the end-of-day volume prediction, that is, we have 
observed the trading volume up to 1:00 p.m. (thus, 
k = 7) and want to estimate the end-of-day volume 
using the accumulated volume that day and the historical 
daily volumes before that day.

We use the Gaussian multinomial distribution for 
Model M

1
. Exhibit 2 depicts the estimated θ

i
, 1 ≤ i ≤ 13 

for Apple, Inc., for the intraday distribution of the total 
volume into the 13 intraday periods. Regularity of the 

E x h i b i t  1
Apple, Inc., Volume Series

E x h i b i t  2
Intraday Volume Distribution of Different Stocks

Note: (x-axis corresponds to the 13 trading periods and y-axis represents 
the volume percentage θ. Volumes would accumulate to 100%.)
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pattern for different stocks is also demonstrated and veri-
fied. Furthermore, Exhibit 3 shows the estimates and 
standard errors of γ θk i

k
iΣ =1 .

We f it the historical daily volume series using 
Gaussian ARMA models and ARMA-GARCH models. 
The autocorrelation function (ACF) and partial autocor-
relation function (PACF) of Apple, Inc.’s daily volume 
series are shown in Exhibit 4. They appear to be quite 
stationary. Further study using the extended autocorrela-
tion function of Tsay and Tiao [1984] and the adjusted 
extended autocorrelation function of Chen, Min, and 
Chen [2010] and the AIC criterion of Akaike [1974] 
identifies an AR(2) model as an appropriate model for the 
daily volume series of Apple, Inc. To include heterosce-
dasticity, we also model the error term of the AR(2) 
model as a GARCH(2, 0) process, after carrying out 
a model selection procedure. Exhibit 5 shows the esti-
mated parameters for AR(2) and AR(2)–GARCH(2, 0) 
model.

The GARCH component is marginally significant. 
We also fit other volume series individually and identify 
the best ARMA and ARMA–GARCH models. They 
are used as Model M

2
 in the prediction exercises.

Given the estimated parameters of M
1
 and M

2
, we 

compare following six different prediction methods.

1. 	ARMA:Prediction using the daily volume series 
only, under the ARMA model;

2. 	GARCH: Prediction using the daily volume series 
only under ARMA–GARCH model;

3. 	Intraday: Prediction using intraday model M
1
 

only;
4. 	New-ARMA: Prediction using the new hierar-

chical model with ARMA as model M
2
;

5. 	New-GARCH: Prediction using the new 
hierarchical model with ARMA–GARCH as 
model M

2
;

6. 	Reg: Prediction using combination (7) with least 
squares optimized weights.

We first show the detailed results 
of Apple, Inc. Exhibit 6 numerates the 
estimated variance σ

2
 of the intraday 

Gaussian–Multinomial distribution (M
1
) 

and σt
2 for the ARMA model (M

2
) and 

the corresponding weights ω
tk
 and 1−ω

tk
 

in Equation (7). Note that we assume that 
the ARMA models for M

2
, c

t
 and ω

tk
 are 

indeed independent of time t. In this case, 
the prediction provided by the daily series 

is relatively more accurate (smaller variance), hence, 
having a large weight in the combined prediction. The 
estimated weights under least square criterion is also 
presented and it tends to put relatively more weight on 
intraday prediction, which is not optimal in this case.

E x h i b i t  3
Maximum Likelihood Estimates (standard errors) of the Gamma

E x h i b i t  4
ACF and PACF for Apple, Inc.’s Daily Volume Series

E x h i b i t  5
Fitting Results for Candidate ARMA Models

E x h i b i t  6
Variance Comparison I
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Exhibit 7 shows the estimated variance σt
2  under 

the ARMA–GARCH model for the 30 days in our pre-
diction period and its corresponding ratio c

t
, comparing 

to the estimated σ2 listed in Exhibit 6. It does change 
quite significantly, from 0. 3 to almost 3.

Exhibit 8 shows the predictions of ARMA, 
GARCH, intraday, reg, new-ARMA and new-
GARCH, with the true observations marked as dots. 
Day 28 is an unusual observation. The actual volume 
is significantly larger than normal. The new prediction 
method is able to capture such a large movement, while 

the daily model underpredicts and the intraday model 
overpredicts.

Exhibit 9 shows the actual prediction of the volume 
(in millions of shares) of the 30 day prediction period, 
under different methods. The true observation, labelled 
as real is shown at the bottom line for comparison.

Exhibit 10 summarizes the prediction performance 
by showing the root-mean-squared prediction error 

RMSE ed Truei
n

i i= −=Σ 1
2( ) .Pr

E x h i b i t  9
Prediction Results from Various Methods (in millions of shares)

E x h i b i t  7
Variance Comparison II

E x h i b i t  8
Comparison of Different Prediction Methods
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In the following, we present the prediction per-
formance comparison for the 30 stocks in the Dow 
Jones Industrial Average Index. The first two columns 
of Exhibit 11 provide the company information; the 
following two columns store the ARMA and GARCH 
orders of the daily volume series. Mean-squared predic-
tion errors of the six prediction methods are then listed, 
followed by the ratio comparison statistics.

We make the following observations:

1. 	In most cases, the new two-component hierar-
chical model performs much better than using the 
intraday model alone and using the daily series 
dynamics alone. In more than half of the cases, 

the improvement is over 20%, some significantly 
higher.

2. 	Although the ARMA–GARCH model may be 
marginally better than ARMA model for mod-
eling the daily volume series dynamics (as in the 
case of Apple, Inc. ), the ARMA model works 
almost as well as ARMA–GARCH model in terms 
of prediction.

3. 	The alternative combination method with the 
least-squares-optimized weights outperforms the 
intraday model alone and the daily series alone. Its 
overall performance is not as good as the one based 
on the hierarchical model.

E x h i b i t  1 0
Root Mean Square Error from Various Methods

E x h i b i t  1 1
Prediction Comparison on Dow Jones Industrial Average Components Based on Prediction Mean Square Error 
(in millions of shares)
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4. 	The phenomenon observed on the 28th day of 
the Apple, Inc., volume series is quite important. 
It shows that the hierarchical model can indeed 
effectively combine two independent sources of 
information and produce a more accurate predic-
tion. This phenomenon is also observed in other 
stocks as well.

5. 	The idea of including other factors, such as market 
volume, in the combination has been tried, without 
success. More research needs to be done to find 
more appropriate factors.

In conclusion, our empirical study shows that the 
proposed two-component hierarchical model and its 
associated prediction method are effective in making 
predictions of the end-of-day volume, and is more accu-
rate compared to that using the intraday model alone and 
daily volume series alone.

Endnotes

1Arbitrarily chosen, not included in DJIA though.
2Apple, Inc., stock trades under AAPL on the 

NASDAQ.
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