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Two-Stage Importance Sampling With Mixture
Proposals

Wentao LI, Zhiqiang TAN, and Rong CHEN

For importance sampling (IS), multiple proposals can be combined to address different aspects of a target distribution. There are various
methods for IS with multiple proposals, including Hesterberg’s stratified IS estimator, Owen and Zhou’s regression estimator, and Tan’s
maximum likelihood estimator. For the problem of efficiently allocating samples to different proposals, it is natural to use a pilot sample to
select the mixture proportions before the actual sampling and estimation. However, most current discussions are in an empirical sense for
such a two-stage procedure. In this article, we establish a theoretical framework of applying the two-stage procedure for various methods,
including the asymptotic properties and the choice of the pilot sample size. By our simulation studies, these two-stage estimators can
outperform estimators with naive choices of mixture proportions. Furthermore, while Owen and Zhou’s and Tan’s estimators are designed
for estimating normalizing constants, we extend their usage and the two-stage procedure to estimating expectations and show that the
improvement is still preserved in this extension.

KEY WORDS: Control variates; Normalizing constant; Pilot samples.

1. INTRODUCTION

Importance sampling (IS) is a very useful Monte Carlo
method for approximating analytically intractable integrals.
Normally IS technique is used to approximate two types of
integrals:

1. Z = ∫ π (x)dx, where π (x) is a nonnegative integrable
function.

2. μ = ∫ h(x)π∗(x)dx, where π∗(x) is a probability density
and h(x) is a real function.

The integral Z can be treated as the normalizing constant of
some probability density π∗(x). This type of integration arises
in many areas, including missing data analysis, marginal likeli-
hood calculation, estimation of free energies in physics (Gelman
and Meng 1998), and communication system (Smith, Shafi, and
Gao 1997). The second type of integral can be treated as the
expectation of h(x) under π∗(x). Applications of IS to this type
of integral are also popular in many areas including rare event
simulation (Denny 2001), reliability (Hesterberg 1995), compu-
tational finance (Owen and Zhou 1999), and computer graphics
(Veach and Guibas 1995).

The idea of IS for approximating Z is based on the identity∫
π (x)dx =

∫
π (x)

q(x)
q(x)dx,

where q(x) is a probability density, called the proposal or trial
density. Then Z can be treated as the expectation under density
q(x). With a sample (x1, . . . , xn) from q(x), Z can be approx-
imated by the sample average n−1∑π (xi)/q(xi). For approx-
imating μ, similar ideas hold. In this case, even when it is not
difficult to generate observations from π∗(x), IS estimator can
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have higher efficiency than using observations from π∗(x), by
appropriately choosing q(x) so that it takes the shape of both
h(x) and π∗(x) into account. In some applications, the improve-
ment can be of several orders of magnitude. One example is
given in Hesterberg (1995). In rare event simulation, h(x) is
an indicator function with support in the tail of π∗(x). A trial
distribution q(x) that focuses on the “important” part of the inte-
grand h(x)π∗(x) will be more efficient than generating samples
directly from π∗(x).

However, in practice it is usually challenging to implement
IS efficiently. One reason is that the complexity of the integrand
makes it difficult to find q(x) that covers all its important parts.
For example, when the integrand is multimodal, a unimodal q(x)
will not be efficient. Some of such multimodal integrand can be
found in Owen and Zhou (1999). Another well-known reason
is that when q(x) has a “lighter” tail than the integrand, that is,
π (x)/q(x) or h(x)π∗(x)/q(x) are unbounded, IS estimator can
have infinite variance. When there is a lack of knowledge of the
integrand in some regions, unexpected large values of integrand
may result in inaccurate results. See Ford and Gregory (2007)
for an example.

For both problems, a general remedy is to consider multiple
proposal distributions to address different aspects of the inte-
grand. For multimodal integrands, Oh and Berger (1993) used
a family of Student’s t distributions and Owen and Zhou (1999)
used a family of beta distributions to model each mode of inte-
grand individually. West (1993) and Givens and Raftery (1996)
used a kernel estimate of the integrand as the proposal, which
is a mixture of normal or t distributions. Even for a unimodal
target distribution, one can construct a mixture of two proposals
where one mimics the center of target and the other dominates
the tail. Such a construction was used in Giordani and Kohn
(2010), although in a different scenario. The requirement that
the tail of integrand needs to be dominated by the proposal
distribution can be met by including some heavy-tailed distri-
butions in the mixture as “protection.” For example, Hesterberg
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(1995) included the target distribution itself as one of the com-
ponents to provide an upper bound for the estimation variance,
and Owen and Zhou (2000) used uniform distribution to bound
the sample weights in a bounded domain case. Liang, Liu, and
Carroll (2007) divided the state domain into subregions and used
the mixture of truncated target distributions in all subregions as
the proposal, which leads to bounded importance weights. In
Bayesian analysis, the prior density of the parameters can serve
as the heavy-tailed component, as used in Ford and Gregory
(2007).

Given multiple potentially useful proposals, a straightforward
combination method is to use their mixture as the new proposal.
This method has two issues. One is that the mixture proposal
may contaminate the good components in the mixture. Owen
and Zhou (2000) showed that a mixture can lose efficiency by
several orders of magnitude if the original proposal is nearly per-
fect. Another problem is that the mixture proportions need to
be determined. Proper mixture proportions can increase the ef-
ficiency by an order of magnitude, as shown in Emond, Raftery,
and Steele (2001).

Owen and Zhou (2000) suggested a regression method to
combine multiple proposals using control variates to deal with
the contamination problem. Control variate is a useful technique
for variance reduction (Rubinstein and Kroese 2008). Owen and
Zhou’s method has the property that it will not perform worse
than using the best of component proposals individually, if the
sample size assigned to the best component is the same as in
the mixture case. Such a lower bound lessens the contamina-
tion problem. Tan (2004) proposed to use nonparametric max-
imum likelihood estimation (MLE) in place of regression and
showed that the MLE method is the most efficient among several
classes of estimators including those in Owen and Zhou (2000),
Hesterberg (1995), and Veach and Guibas (1995).

To determine appropriate proportions, Fan et al. (2006) and
Hesterberg (1995) followed some heuristic rules derived from
experience or interpretation of proposals. A more sophisticated
approach is to use a pilot study to determine the optimal propor-
tions via minimizing some criterion. The estimated proportions
are then used to generate the sample and construct the estima-
tors. The criterion was selected to be the asymptotic variance
of IS estimator with mixture proposal in Raghavan and Cox
(1998), and the variation coefficient of pilot sample in Oh and
Berger (1993). However, few theoretical properties have been
investigated.

In this article, we propose a similar two-stage procedure and
investigate its theoretical properties. In the first stage, pilot sam-
ple is drawn from a mixture proposal with predetermined pro-
portions. The optimal mixture proportions are then estimated
by minimizing the estimated asymptotic variance of Owen’s re-
gression estimator or Tan’s MLE based on control variates. In
the second stage, the sample is drawn from the mixture pro-
posal with the estimated proportions. Integral estimators are
constructed using all observations, including those from the pi-
lot stage. Then we establish a theoretical framework of such
a two-stage procedure. It is shown that under very weak con-
ditions, the integral estimators constructed by the two-stage
procedure are consistent and asymptotic normal with minimum
asymptotic variance over all mixture proportions. Therefore,
the two-stage procedure is adaptive toward using the optimal

mixture proportions. The optimal sample size used for the pilot
stage is also calculated in the sense of minimizing an approxi-
mated mean square error (MSE) in higher order. Furthermore,
we extend Owen’s regression estimator and Tan’s MLE to ratio
estimators (Rubinstein and Kroese 2008). When estimating μ,
if one can evaluate π∗(x) only up to a normalizing constant, a
ratio estimator is used, with the numerator being the estimated
unnormalized integral and the denominator being the estimated
normalizing constant. We show that the two-stage procedure for
this extension also has the desirable asymptotic properties.

The remainder of this article is organized as follows. Sec-
tion 2 reviews in detail some existing techniques related to IS.
Section 3 proposes the new two-stage procedure and establishes
its theoretical framework. Section 4 provides the extension of
Owen’s regression estimator and Tan’s MLE to ratio estimators
and their two-stage procedures. In Section 5, we demonstrate the
two-stage approach with several numerical examples including
estimation of a rare event probability and Value at Risk (VaR)
under a Bayesian GARCH model.

2. REVIEW OF IS TECHNIQUES

In Sections 2 and 3, we assume that all functions in integrals
(1) and (2) can be evaluated exactly. Since

μ =
∫

h(x)+π∗(x)dx −
∫

h(x)−π∗(x)dx,

where h(x)+ = h(x)1{h(x)≥0} and h(x)− = −h(x)1{h(x)<0}, the
estimation of μ can be achieved by estimation of these two
integrals, both with positive integrands. With this approach, μ

becomes a special case of Z and therefore we only consider
estimating Z in these two sections.

2.1 Mixture Importance Sampling

Assume observations {x1, . . . , xn} are taken iid from a pro-
posal distribution q(x). The integral Z = ∫ π (x)dx can be esti-
mated by

ẐIS = 1

n

n∑
i=1

π (xi)

q(xi)
. (1)

Under mild conditions, the asymptotic variance is
varq[π (x)/q(x)], where varq is the variance under distri-
bution q(x) (Robert and Casella 2004). The optimal proposal
is π (x)/Z, suggesting that the proposal q(x) should be chosen
to mimic the shape of π (x) so that the high- and low-density
regions of q(x) coincide with those of π (x). With such a
proposal, the majority of Monte Carlo sample from q(x) fall
in the high-density region of π (x), the importance region.
In some scenarios, more than one q(x) may be needed. For
example, for a multimodal π (x), it is helpful to use several
proposal distributions, each targeted at one importance region.
Suppose q1(x), . . . , qp(x) are p probability densities serving as
proposals. Given a mixture proportion vector α = (α1, . . . , αp)
satisfying

∑p
k=1 αk = 1, we can use the mixture distribution as

the proposal and estimate Z by

ẐMIS = 1

n

n∑
i=1

π (xi)

qα(xi)
, (2)
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where qα =∑p
k=1 αkqk(x) and {x1, . . . , xn} are generated from

qα . In addition, the variance of ẐIS also demands that the
ratio π (X)/q(X) has a finite variance. A mixture distribu-
tion certainly makes it easy to satisfy such a condition as
one can simply include a proposal distribution q1(X) having
var[π (X)/q1(X)] < ∞, such as a uniform distribution if the
domain is bounded. Such a proposal distribution sets an up-
per bound to the estimating variance and therefore plays the
role of “safeguard” in IS, which is the key idea of defensive IS
(Hesterberg 1988).

2.2 Stratified Sampling

Instead of generating samples directly from the mixture dis-
tribution as that in (2), stratified samples

{
xk1, . . . , xknk

}
can be

taken with deterministic size nk = αkn from the kth proposal
qk , which leads to the estimator in Hesterberg (1988)

ẐSIS(α) = 1

n

p∑
k=1

nk∑
i=1

π (xki)

qα(xki)
. (3)

Veach and Guibas (1995) considered the estimator
p∑

k=1

1

nk

nk∑
i=1

ωk(xki)
π (xki)

qk(xki)
, (4)

where {ωk(x)}pk=1 is a group of coefficient functions for the
sample weights and satisfies

∑p
k=1 ωk(x) = 1. They showed

that ẐSIS is a suboptimal choice in this large class. Raghavan
and Cox (1998) proposed a two-stage algorithm to construct
ẐSIS with estimated optimal mixture proportions in the sense of
minimizing the asymptotic variance.

2.3 Importance Sampling With Control Variates

One problem of using a mixture proposal distribution is the
possible loss of efficiency due to mixing of good proposal distri-
butions with poor ones (Owen and Zhou 2000). It is a premium to
pay for the insurance of valid IS, but can be reduced by combin-
ing importance sampling and control variates. Given an unbiased
estimator Xn of Z, improvement can be gained by constructing
a proper control variate vector Y and using Xn − βT (Y − E[Y ])
to estimate Z. The optimal β can be estimated using a regres-
sion approach to minimize asymptotic variance (Cochran 1977).
In Owen and Zhou (2000), combining ẐSIS and control vari-
ates g(x) = (q2(x) − q1(x), . . . , qp(x) − q1(x))T results in the
estimator

ẐReg(α) = 1

n

p∑
k=1

nk∑
i=1

π (xki) − β̂
T

α g(xki)

qα(xki)
, (5)

where

β̂α = ṽar

[
g(X)

qα(X)

]−1

c̃ovT

[
π (X)

qα(X)
,

g(X)

qα(X)

]
,

and ṽar and c̃ov denote the pooled-sample variance and co-
variance. There are two appealing properties of ẐReg. First, its
asymptotic variance is zero when π (x) is a linear combination
of the proposals. Second, ẐReg has smaller asymptotic variance
than every IS estimator constructed solely with qk with nk sam-
ples, k = 1, . . . , p. That is, ẐReg is always at least as good as
the best one among the individual proposals.

2.4 Likelihood Approach

All previous integration methods directly approximate the
target integrals. On the other hand, in Kong et al. (2003), Monte
Carlo integration is treated as a statistical inference problem
where the Monte Carlo sample serves as observations, the un-
derlying measure in target integral, usually Lebesgue measure
or counting measure, is treated as an unknown nonnegative
measure, and the Monte Carlo sample is modeled using a semi-
parametric model. Then by nonparametric maximum likelihood,
the unknown measure is estimated by a discrete measure with
the Monte Carlo sample as support, and the target integral is
estimated by the integration over the discrete measure. As an
example, with {x1, . . . , xn} generated identically and indepen-
dently from q1 under Lebesgue measure, the model assumes that
xi is distributed as q1(x)dν/

∫
q1(x)dν, where ν is an unknown

nonnegative measure. The nonparametric maximum likelihood
estimator of ν is

ν̂ ∝ P̂ ({x})
q1(x)

,

where P̂ has the support on {x1, . . . , xn} with mass n−1 at each
point. Then Z = ∫ q(x)dν can be estimated by∫

q1(x)dν̂∫
q(x)dν̂

= 1

n

n∑
i=1

q(xi)

q1(xi)
.

This is the same as the IS estimator with proposal distribution
q1(x).

Given multiple proposals q1, . . . , qp and control variates
g(x), Tan (2004) proposed to restrict the measure ν in the set
{ν :

∫
qk(x)dν = ∫ q1(x)dν, k = 1, . . . , p}. The nonparamet-

ric MLE of ν under such a restriction is

ν̂ ∝ P̂ ({x})
qα(x) + ζ̂

T g(x)
,

where

ζ̂ = argmax
ζ

p∑
k=1

nk∑
i=1

log
[
qα(xki) + ζ T g(xki)

]
,

and the integral estimator is given by

ẐMLE(α) = 1

n

p∑
k=1

nk∑
i=1

π (xki)

qα(xki) + ζ̂
T g(xki)

. (6)

It is shown that ẐReg is a first-order approximation of ẐMLE

and hence has the same asymptotic efficiency. The estimator
ẐMLE also achieves the highest asymptotic efficiency among the
class of estimators in the form of

p∑
k=1

1

nk

nk∑
i=1

ωk(xki)
π (xki) − βT

k (xki)g(xki)

qk(xki)
, (7)

where ω1(x), . . . , ωp(x) and β1(x), . . . ,βp(x) satisfy
that ωk(x) = 0 when qk(x) = 0,

∑p
i=1 ωk(x) = 1 and∑p

i=1 ωk(x)βk(x) = b for some constant vector b, and therefore
dominates the class of estimators in (4).

Because ẐReg and ẐMLE dominate the other estimators, we
will only discuss the two-stage procedure for these two es-
timators. Furthermore, there is another important benefit of
using ẐReg and ẐMLE in that their asymptotic variance is a

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 1

6:
30

 2
8 

Ja
nu

ar
y 

20
14

 



Li, Tan, and Chen: Two-Stage Importance Sampling With Mixture Proposals 1353

convex function of α and hence can be easily minimized. See
Remark 1.

3. TWO-STAGE PROCEDURE

3.1 The Algorithm

Suppose p proposal distributions q1, . . . , qp are given and the
sample size is budgeted at n. Let � = [δ, 1 − δ]p, where δ is
some constant close to 0. The following algorithm is proposed
to select mixture proportions α and construct estimators:

1. First stage: Given a p-dimensional vector γ satisfying∑p
k=1 γk = 1, generate n0 independent stratified observa-

tions {xi}n0
i=1 from qγ (x) =∑p

k=1 γkqk(x), that is, n0γk

observations from qk(x), k = 1, . . . , p. Obtain α̂ by min-
imizing

σ̂ 2
Z(α) = 1

n0

n0∑
i=1

[
π (xi) − β̂

T

α g(xi)
]2

qα(xi)qγ (xi)
, (8)

where

β̂α =
(

1

n0

n0∑
i=1

g(xi)g(xi)T

qα(xi)qγ (xi)

)−1 (
1

n0

n0∑
i=1

π (xi)g(xi)

qα(xi)qγ (xi)

)

and g(x) = (q2(x) − q1(x), . . . , qp(x) − q1(x))T , with re-
spect to α over �.

2. Second stage: Generate n − n0 independent stratified ob-
servations {xi}ni=n0+1 from qα̂(x) =∑p

k=1 α̂kqk(x). Esti-
mate integral Z by Ẑ(̃α) with all n observations, where

α̃ = n0

n
γ + n − n0

n
α̂ (9)

and Ẑ(̃α) can be either ẐReg(̃α) or ẐMLE(̃α).

Some rationale and implementation remarks are as follows:

(i) Criterion of selecting α: In the first stage, the optimal α

is estimated using the n0 samples and it is desirable to
select α that gives the smallest asymptotic variance of
the final estimator. Let varα denotes the variance taken
with respect to qα(x). We set the following conditions:

(C1) The union of supports of qk(x) contains the support
of π (x).

(C2) αi > 0 for i = 1, . . . , p.
(C3) varα [π (X)/qα(X)] < ∞ for some α ∈ �.

Owen and Zhou (2000) and Tan (2004) showed that,
under the above conditions, ẐReg(α) and ẐMLE(α)
are asymptotic normal and have the same asymptotic
variance

σ 2
Z(α) = varα

[
π (X) − βT

α g(X)

qα(X)

]

=
∫ (

π (x) − βT
α g(x)

)2
qα(x)

dx − Z2, (10)

where

βα = varα

[
g(X)

qα(X)

]−1

covT
α

[
π (X)

qα(X)
,

g(X)

qα(X)

]
=
(∫

g(x)g(x)T

qα(x)
dx

)−1 (∫
π (x)g(x)

qα(x)
dx

)
.

Conditions (C1) to (C3) are satisfied when we have at
least one proposal component dominating the tail of
π (x). With the sample {xi}n0

i=1 from the pilot stage,
σ 2

Z(α) + Z2 is estimated by the IS estimator σ̂ 2
Z(α) in

(8) and the optimal α is obtained by minimizing σ̂ 2
Z(α).

(ii) Optimization range for α: The purpose of restricting
α in [δ, 1 − δ]p for some small δ is to avoid unreli-
able estimators of σ 2

Z(α) or βα . When αi = 0 for some
i,
∫

π (x)2/qα(x)dx can be infinite if qi is the only
proposal that dominates certain part of π (x)’s tail, or∫

g(x)g(x)T /qα(x)dx and
∫

π (x)g(x)/qα(x)dx can be
infinite if qi is the only proposal that dominates some
other proposals. In this case, if αi is too close to 0, the
estimator σ̂ 2

Z(α) or β̂α is unreliable. Experience shows
that δ = 0.001 is a reasonable choice.

(iii) Choice of the initial proportions γ : γ is preferred to be
close to the optimal proportion vector α∗. If there is no
any prior knowledge about α∗, it is recommended to use
γ with equal components in the first stage so that pilot
sample is generated from each proposal equally.

(iv) Ẑ in second stage: Instead of using n − n0 observations
to construct the estimator Ẑ(̂α), we use all n observations
to construct the estimator Ẑ(̃α) where the mixture pro-
portions α̃ account for the proportions of the combined
sample.

3.2 Theoretical Properties

Let α∗ be the minimizer of σ 2
Z(α) under restriction α ∈ �.

We assume the following additional conditions:

(C4) n0 = o(n) and n0 → ∞ as n → ∞.
(C5) π (x) is not a linear combination of q1(x), . . . , qp(x).
(C6) α∗ is in the interior of �, that is, α∗ ∈ (δ, 1 − δ)p.

Condition (C4) ensures α̃ converges to α∗. Condition
(C5) is necessary since if π (x) is a linear combination of
q1(x), . . . , qp(x), σ 2(α) will be 0 for all α1. Some discussions
of condition (C6) are given in Remark 7.

3.2.1 First-Order Properties

Theorem 1. Under conditions (C1) to (C5), ẐReg(̃α) and
ẐMLE(̃α) are consistent and

√
n
(
ẐMLE(̃α) − Z

) L−→ N
(
0, σ 2

Z(α∗)
)

and
√

n
(
ẐReg(̃α) − Z

) L−→ N
(
0, σ 2

Z(α∗)
)
.

Therefore, the two-stage procedure achieves the minimum
asymptotic variance that Owen and Zhou’s and Tan’s esti-
mators can achieve among all possible mixture proportions.
Furthermore, since ẐReg(α) and ẐMLE(α) are better than the
stratified sampling estimator ẐSIS(α), the two-stage procedure
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outperforms all estimators introduced in Section 2 in asymptotic
variance. The proof is given in Appendix A.

Remark 1. It is important to point out that σ 2
Z(α) and its

estimator σ̂ 2(α) are strictly convex by Lemma 1 in Appendix
A. This guarantees a unique solution and applicability of con-
vex optimization algorithms in the pilot stage. This property,
or equivalently the strict convexity of the function σ 2(α, β) =
varα[(π (X) − βT g(X))/qα(X)], also ensures the consistency
and asymptotic normality with convergence rate

√
n0 of random

proportion vector α̂ under mild conditions, by asymptotic theory
for M-estimation with a convex criterion function (Haberman
1989). Therefore, larger n0 gives more reliable α̂.

Remark 2. For ẐSIS(α), the optimal mixture proportions are
the ones that make the mixture proposal qα the closest to the tar-
get distribution π . Therefore, knowledge about the target density
surface can help to find an approximate choice of α. However,
the optimal mixture proportions α∗ for σ 2

Z(α) sometimes can
be counterintuitive. For instance, in Example 1(B2) of Section
5, the target distribution is a mixture of a normal distribution
and a t distribution, with mixing probability 0.8 and 0.2, respec-
tively. When the same normal distribution is used as one of the
proposal distributions, its optimal mixture proportion is only
0.1%. This is because, for ẐReg(α) and ẐMLE(α), the numera-
tor of σ 2

Z(α) involves βα , a function of α, which complicates
the determination of the optimal proportions. Hence, an auto-
matic selection for mixture proportions becomes necessary for
ẐReg(α) and ẐMLE(α).

Remark 3. If α̃ in (9) can be replaced by some other random
proportion vector, as long as it is consistent to α∗ as n → ∞,
the same asymptotic results hold. For example, one can choose
the mixture proportions of the second stage so that the com-
bined sample (of both the pilot stage and second stage) is as
close to the estimated optimal proportion vector α̂ as possible.
For example, if n0γk < nα̂k for all k = 1, . . . , p, one can use
(nα̂ − n0γ )/(n − n0) in the second stage, which results in the
combined sample having the exact estimated optimal proportion
α̂. In this case, actually one should use n0 as large as possible
until it violates the above condition.

Remark 4. Similar asymptotic properties for ẐMIS(̃α) and
ẐSIS(̃α) are presented in Lemma 3 in Appendix A. They are
always inferior to the control variate based estimators and hence
of less interest.

3.2.2 High-Order Properties. Theorem 1 shows that the
selection of the pilot sample size n0 does not affect the first-
order property of ẐReg(̃α) and ẐMLE(̃α) as long as n0 = o(n)
and n0 → ∞. Therefore, an optimal choice of n0 needs to be
determined by higher-order properties of ẐReg(̃α) and ẐMLE(̃α).
Consider the convergence rate of α̃ − α∗, a weighted average
of γ − α∗ and α̂ − α∗ with weights n0/n and 1 − n0/n. Since
γ − α∗ is biased, one would want to have a smaller n0. However,
a large n0 makes α̂ − α∗ closer to 0, at the rate O(1/

√
n0).

Therefore, the optimal n0 is chosen to balance the effects of
these two rates. The following proposition gives the higher-
order asymptotic expansions of Z̃Reg(̃α) and Z̃MLE(̃α).

Proposition 1. Under conditions (C1)–(C6), Z̃Reg(̃α) and
Z̃MLE(̃α) can be expanded as Ẑ∗ + o(n0/(n

√
n)) + o(1/(n0

√
n))

and Ẑ∗ = Z + g1(̃α) + g2(̃α), where

g1(̃α) = 1

n

n∑
i=1

π (xi) − βα∗g(xi)

qα∗ (xi)
−
∫

π (x) − βα∗g(x)

qα∗ (x)
qα̃(x)dx,

and

g2(̃α) = O

(
n0

n
√

n

)
+ O

(
1

n0
√

n

)
.

The explicit forms of g2(̃α) are tedious and therefore pre-
sented in the Appendices. The selection of optimal n0 is based
on minimizing the MSE of Ẑ∗, which is an approximation of
the MSE of ẐReg(̃α) and ẐMLE(̃α). Such an approximation of
moments, as the criterion of second-order optimality, has been
widely used in higher-order asymptotic theory, for example,
Rothenberg (1984).

Theorem 2. Under conditions (C1)–(C6) and

(C7)
∫

π (x)4/qα(x)4dx < ∞ for some α ∈ �,

it holds that

E[Ẑ∗ − Z] = O

(
1

n

)
and var[Ẑ∗ − Z]

= 1

n
σ 2

Z(α∗) + O
(n0

n2

)
+ O

(
1

nn0

)
.

Therefore, MSE[Ẑ∗] − n−1σ 2
Z(α∗) = O( n0

n2 ) + O( 1
nn0

).

The above result gives the approximate mean squared error
with higher-order terms beyond the usual asymptotic variance
n−1σ 2

Z(α∗). The order can be attributed to three sources of vari-
ability. See the Appendices for details. One source of variabil-
ity is due to using the pilot sample with mixture proportions
γ 	= α∗, which leads to terms of order O(n0/n2). The second
source is the variability of estimator α̂, which is of the order
O(1/(nn0)). The third source is the variability of estimating βα∗ ,
which is the optimal coefficient of control variates, in σ 2

Z(α∗).
In ẐReg(̃α), the estimator of βα∗ is β̂α̃ . In ẐMLE(̃α), a similar
estimator is used, as can be seen from the proof of Theorem
1. This variability is of the order O(1/(n

√
n)), which is also

O(n0/n2) + O(1/(nn0)) because 2/
√

n ≤ n0/n + 1/n0 by the
inequality 2ab ≤ a2 + b2.

Remark 5. By minimizing the order of difference, the opti-
mal n0 is O(

√
n) and hence MSE[Ẑ∗] − n−1σ 2

Z(α∗) is of order
O(1/(n

√
n)). The asymptotic rate shows that how n0 should

change with the total sample size n. In practice, another consid-
eration of selecting n0 is the coverage of the target distribution
with pilot samples. A poor coverage can lead to poorly estimated
asymptotic variance and result in inaccurate α̂. Our experience
shows one should choose n0 at least

√
n and possibly larger ac-

cording to the complexity of problem and the quality of proposal
distributions. On the other hand, one can assess α̂ by estimat-
ing its standard error after the pilot stage. If the standard error
is larger than some criterion, such as 10% of α̂, one can add
additional pilot samples. The standard error formula is given in
Appendix B.

Remark 6. One essential fact leading to Theorem 2 is α̃ −
α∗ = O(1/

√
n0) + O(n0/n). Therefore, when α̃ is replaced by
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some other construction that is consistent but with different rate
(e.g., Remark 3), the orders in Theorem 2 may change.

Remark 7. When some coordinates of α∗ are on the boundary
of [δ, 1 − δ], the exact second-order property is complicated.
However, it is still reasonable to use the same n0 as indicated in
Theorem 2. For example, when α∗

1 is on the boundary, α̂, as an
M-estimator, will converge to α∗ with a rate faster than or equal
to O(1/

√
n0) (Geyer 1994). In the proof of Theorem 2, when

the convergence rate of α̂1 changes from O(1/
√

n0) to O(1/nε
0)

with ε ≥ 1
2 , the second order O(n0/n2) + O(1/(n0n)) changes

to O(n0/n2) + O(1/(n2ε
0 n)). Then by choosing n0 = O(

√
n),

MSE[Ẑ∗] − n−1σ 2
Z(α∗) is still O(1/(n

√
n)) and the accuracy of

ẐReg(̃α) and ẐMLE(̃α) remains the same.

4. EXTENSION TO RATIO ESTIMATORS

4.1 Extension of IS Techniques to Ratio Estimators

As mentioned in Section 1, the integral (2) can be estimated
by the ratio estimator

μ̂IS =
1
n

∑n
i=1 h(xi)π (xi)/q(xi)

1
n

∑n
i=1 π (xi)/q(xi)

, (11)

(Liu 2008; Rubinstein and Kroese 2008). By the delta method,
it is easy to show that the asymptotic variance of μ̂IS is

varq

(
h(x)π (x) − μπ (x)

q(x)

)
. (12)

In the sense of minimizing (12), the optimal choice of q(x)
is the probability density proportional to |h(x)π (x) − μπ (x)|.
Therefore, it is preferred to choose q(x) that mimics the shape
of |h(x)π (x) − μπ (x)|. Similar to estimating the normalizing
constant, multiple proposals may be needed and the techniques
in Section 2 may be beneficial.

Given p proposal distributions q1(x), . . . , qp(x) and mix-
ture proportions {αk}pk=1 satisfying

∑p
k=1 αk = 1. Observa-

tions {xk1, . . . , xknk
} are generated from proposal qk with size

nk = αkn for each k. In Hesterberg (1995), the mixture IS and
stratified sampling were applied to μ̂IS by using the mixture pro-
posal qα in numerator and denominator separately as follows:

μ̂SIS =
1
n

∑p
k=1

∑nk

i=1 h(xi)π (xki)/qα(xki)
1
n

∑p
k=1

∑nk

i=1 π (xki)/qα(xki)
.

Control variates and likelihood approach can also be applied
to μ̂IS. With the same control variates g(x) as in (8), μ can be
estimated by the following:

μ̂Reg =
1
n

∑p
k=1

∑nk

i=1
h(xki )π(xki )−β̂

T

1 g(xki )
qα (xki )

1
n

∑p
k=1

∑nk

i=1
π(xki )−β̂

T

2 g(xki )
qα (xki )

,

μ̂MLE =
1
n

∑p
k=1

∑nk

i=1
h(xki )π(xki )

qα (xki )+ζ̃
T g(xki )

1
n

∑p
k=1

∑nk

i=1
π(xki )

qα (xki )+ζ̃
T g(xki )

,

where

β̂1 = ṽar

(
g(X)

qα(X)

)−1

c̃ovT

(
h(X)π (X)

qα(X)
,

g(X)

qα(X)

)
and

β̂2 = ṽar

(
g(X)

qα(X)

)−1

c̃ovT

(
π (X)

qα(X)
,

g(X)

qα(X)

)
ζ̃ = argmax

ζ

p∑
k=1

nk∑
i=1

log
[
qα(xki) + ζ T g(xki)

]
.

Remark 8. The optimality of the above estimators can be seen
by extending the optimality results of ẐReg in Owen and Zhou
(2000) and ẐMLE in Tan (2004) from scalar case to vector case.
Specifically, under conditions (C1)–(C3) for π (x) and h(x)π (x),
the two estimators⎛⎜⎜⎜⎜⎝

1

n

p∑
k=1

nk∑
i=1

h(xki)π (xki) − β̂
T

1 g(xki)

qα(xki)

1

n

p∑
k=1

nk∑
i=1

π (xki) − β̂
T

2 g(xki)

qα(xki)

⎞⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎝
1

n

p∑
k=1

nk∑
i=1

h(xki)π (xki)

qα(xki) + ζ̃
T g(xki)

1

n

p∑
k=1

nk∑
i=1

π (xki)

qα(xki) + ζ̃
T g(xki)

⎞⎟⎟⎟⎟⎠
can be shown to be consistent and asymptotic normal with the
minimum covariance matrix among all estimators in the form
of ⎛⎜⎜⎜⎜⎝

1

n

p∑
k=1

nk∑
i=1

h(xki)π (xki)

qα(xki)

1

n

p∑
k=1

nk∑
i=1

π (xki)

qα(xki)

⎞⎟⎟⎟⎟⎠−
(

βT
1

βT
2

)
1

n

p∑
k=1

nk∑
i=1

g(xki)

qα(xki)

for arbitrary real vectors β1 and β2. Here A ≥ B means A − B

is nonnegative definite for two square matrices A and B. Then
by the delta method, it is straightforward to show the optimality
of μ̂Reg and μ̂MLE. Their asymptotic variances are identical and
equal to

σ 2
μ(α) = 1

Z2
varα

(
h(X)π (X) − μπ (X) − βT

α g(X)

qα(X)

)
, (13)

where

βα = var

(
g(X)

qα(X)

)−1

covT

(
h(X)π (X) − μπ (X)

qα(X)
,

g(X)

qα(X)

)
.

4.2 Two-Stage Procedure For Ratio Estimators

Take μ̂Reg and μ̂MLE as functions of α and denote by μ̂Reg(α)
and μ̂MLE(α). The two-stage procedure in Section 3 can be
applied here:

1. First stage: Given initial proportion γ = (γ1, . . . , γp) sat-
isfying

∑p
k=1 γk = 1, generate n0 independent stratified
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sample {xi}n0
i=1 from qγ (x). Obtain α̂ by minimizing

τ̂ 2(α) = 1

n0

n0∑
i=1

[
h(xi)π (xi) − μ̂π (xi) − β̂αg(xi)

]2
qα(xi)qγ (xi)

, (14)

where

μ̂ = 1

n0

n0∑
i=1

h(xi)π (xi)

qγ (xi)

/
1

n0

n0∑
i=1

π (xi)

qγ (xi)
,

and

β̂α =
(

1

n0

n0∑
i=1

g(xi)g(xi)T

qα(xi)qγ (xi)

)−1

×
[

1

n0

n0∑
i=1

(h(xi)π (xi) − μ̂π (xi)) g(xi)

qα(xi)qγ (xi)

]
,

with respect to α over �.
2. Second stage: Generate n − n0 independent stratified ob-

servations {xi}ni=n0+1 from qα̂(x). Estimate integral μ

by μ̂Reg(̃α) or μ̂MLE(̃α) with all n observations, where
α̃ = n0/n · γ + (n − n0)/n · α̂.

In the first stage, τ̂ 2(α) is the Monte Carlo estimate of
Z2σ 2

μ(α). Similar to the results in Section 3.3.1, μ̂Reg(̃α) and
μ̂MLE(̃α) for μ have proper asymptotic results and the case for
two proposal distributions is stated below.

Theorem 3. Under conditions (C1)–(C5) with π (x) replaced
by h(x)π (x) − μπ (x), μ̂Reg(̃α) and μ̂MLE(̃α) are consistent and

√
n
(
μ̂Reg(̃α) − μ

) L−→ N
(
0, σ 2

μ(α∗)
)

and √
n (μ̂MLE(̃α) − μ)

L−→ N
(
0, σ 2

μ(α∗)
)
,

where α∗ is the minimizer of σ 2
μ(α).

4.3 Consideration of Selecting Component
Proposal Distributions

In this article, we focus on finding the optimal mixture weights
to construct a mixture proposal distribution for IS, assuming that
the set of component proposals to be included in the mixture
has been preselected. Since the proposed mixture proportion
determination automatically discriminates the high-quality pro-
posals from the poor ones, our procedure in a way alleviates the
difficulty of selecting the set of proposal distributions. It also
allows a larger set of proposals to be considered as the pro-
cedure serves as a selection tool. Nevertheless, preselection of
the proposals is extremely important as it provides the basis for
efficient inference of optimal mixture weights. This is an area
of active research. Here we provide some remarks and practical
guidance.

Consider the asymptotic variances of ẐReg(̃α), ẐMLE(̃α),
μ̂Reg(̃α), and μ̂MLE(̃α) in (10) and (13). Owen and Zhou (2000)
and Tan (2004) showed that when π (x) is a linear combination
of the component proposals, σ 2

Z(α) = 0 for any α. Therefore
for estimating Z, it is preferred that the component proposals
have a linear combination close to the shape of π (x). This can
be achieved by using proposals that separately approximate the
modes and tails of π (x). Alternatively, one can decompose π (x)

into a linear combination

π (x) =
r∑

k=1

ckπk(x). (15)

Then the component proposals can be obtained by approximat-
ing each πk(x). Owen and Zhou (2000) gave some illustrations
of this strategy.

For the ratio estimator, it can be shown similarly that when
h(x)π (x) − μπ (x) is a linear combination of the component
proposals, σ 2

μ(α) = 0 for any α. Therefore, the strategy used for
estimating Z can be used here as well. In particular, we can find
a decomposition

h(x)π (x) − μπ (x) =
r∑

k=1

ckh(x)πk(x) −
r∑

k=1

μc∗
kπ

∗
k (x)

and find component proposals to approximate the individual
terms. If h(x) takes negative values, additional terms corre-
sponding to h(x) = h+(x) − h−(x) will be needed. Example 3
in Section 5 provides an illustration of this approach.

Another consideration is the tail requirement. For estimating
Z, qα∗ (x) needs to have heavier tail than π (x); and for estimat-
ing μ, qα∗ (x) needs to have heavier tail than h(x)π (x) − μπ (x).
In cases where π (x)’s tail decreases exponentially, the require-
ments can be satisfied by including some Student’s t distribu-
tions or other heavy-tailed distributions in the set of component
proposals (Geweke 1989).

Oh and Berger (1993) and West (1993) proposed adaptive
procedures to find better proposal distributions. Liang, Liu, and
Carroll (2007) proposed a stochastic approximation procedure
to partition the sample domain and used truncations of the target
distribution in the subregions as component proposal distribu-
tions. The normalizing constant of each component is estimated
in a pilot stage. These procedures can be used here for finding
the component proposals in our setting. In fact, the pilot stage of
our proposed procedure can also be used as well. The estimated
optimal mixture weights from the pilot stage may provide hints
on potentially useful proposals to be considered. For example,
a large weight for a component proposal that mainly covers the
tail in one direction may suggest to use additional proposals to
cover the more extreme part of the tail in that direction. How-
ever, caution should be exercised when considering the removal
of a proposal distribution because of its small weight, since it
may be used to serve as a defensive proposal that guarantees
finite variance of the IS estimator.

5. EMPIRICAL STUDIES

Here, we present several examples to illustrate the per-
formance of the proposed procedure. In all examples, the
standard restricted optimization algorithm BFGS (Broyden-
Hetcher-Goldfarb-Shanno) (Battiti and Masulli 1990) is used
in the pilot stage to find α̂.

Example 1. Let φ(x; σ ) be the normal density with mean 0
and standard error σ , and ψk(x) be the density of t distribution
with degree of freedom k. In this example, we consider two
target distributions and two sets of proposal distributions. The
combination is listed in Table 1. The case (A1) represents the
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Table 1. Parameter settings of four cases in Example 1

Proposal distributions

q1 =∏10
i=1 ψk(xi)

and q2 =∏10
i=1 φ(xi ; σ )

k = 1 k = 1 k = 1 k = 2
Target distribution σ = 1.1 σ = 0.4 σ = 1 σ = 1∏10

i=1 φ(xi ; 1) (A1) (A2)
0.2
∏10

i=1 ψ4(xi) + 0.8
∏10

i=1 φ(xi ; 1) (B1) (B2)

situation that one of the proposal distribution, q2(x), is a good
approximation to π∗(x) by itself, and q1(x), being a product of
Cauchy distributions, is a relatively poor proposal. We expect
that the two-stage procedure will be helpful to decrease the
contamination of q2(x). The case (A2) represents the situation
that both proposals are not good approximation to the target and
an appropriate proportion is not immediately clear. Both (B1)
and (B2) represent the situation that one of the proposals, q2(x),
is a good approximation to the center of the target, but with a
lighter tail, and the other proposal, q1(x), has a heavier tail, for
protection. The case (B1) uses a more conservative protection
(Cauchy) and (B2) is more aggressive (t2).

We compare five methods. The first three methods generate
independent and stratified observations {xi}ni=1 from qα0 (x) =
α0q1(x) + (1 − α0)q1(x), where α0 = (0.5, 1 − 0.5). The last
two methods generate independent and stratified observations
{xi}n0

i=1 from qα0 (x) and {xi}ni=n0+1 from qα̃(x), where α̃1 =
α0n0/n + α̂1(n − n0)/n and α̂1 is obtained by the corresponding
method. Since the simulation results of regression method are
nearly identical to the likelihood approach, we only list MLE
and 2MLE here. Specifically, the methods are as follows. For
simplicity, only formulas for estimating Z are listed.

UIS (Unprotected Importance Sampling): This is estimator (1)
with q(x) = q2(x).

SIS (Stratified Importance Sampling): This is estimator (3) with
α = α0.

MLE (MLE method): This is estimator (6) with α = α0.

2SIS (Two-Stage Stratified Importance Sampling):

1

n

n∑
i=1

π (xi)

qα̃(xi)
, where

α̂1 = argmin
α

(
α1ṽar1

[
π (x)

qα0 (x)

]
+ (1 − α1)ṽar2

[
π (x)

qα0 (x)

])
and ṽark denotes the sample variance with the subset of
{xi}n0

i=1, which comes from qk(x). This is the method used
in Raghavan and Cox (1998).

2MLE (Two-Stage MLE): This is our proposed method.

The results are shown in Table 2 for estimating Z and μ.
Simulation is replicated for 1000 times independently with n =
4000 and n0 = 400 in each simulation. We report the means of
Ẑ or μ̂, the means of α̂ and the MSE

nV̂ = n

1000

1000∑
i=1

(Ẑi − Z)2 or
n

1000

1000∑
i=1

(μ̂i − μ)2,

where Z and μ are theoretical values.
It is seen that, in (A1), where q2 is a good proposal by itself,

2SIS and 2MLE choose α1 close or equal to the smallest allowed
value (0.001) for q1, which minimizes its contamination, and
achieves the same efficiency as UIS (using the good proposal
only). They are more efficient than SIS and MLE, which use
equal proportions for both proposal distribution.

In (A2), both 2SIS and 2MLE choose α̂1 = 0.98, giving much
higher proportion to the heavy-tail t proposal. It is seen that the
normal proposal has a much lighter tail (σ = 0.4) than that
the target (σ = 1). In this case, q1(x) is the better proposal.
UIS, which uses q2(x) exclusively, does not have finite vari-
ance. Comparing to one stage MLE, the two-stage procedure
reduces MSE by about 43% and 34% for estimating Z and μ,
respectively.

In (B1) and (B2), UIS has the largest variance as expected.
By using control variates, 2MLE and MLE perform much better
than SIS and 2SIS. With the estimated mixture proportions,
2MLE reduces MSE by 10% and 30% for estimating Z in (B1)
and (B2), respectively, comparing the one-stage MLE. Note that
2MLE obtains a larger estimated optimal proportion for q1(x)
in (B2) than in (B1). Intuitively this is because q1(x) in (B2)
is “closer” to the target integrand. In estimating μ, 2MLE and

Table 2. Comparison of methods for Example 1, with each column for one setting

Z μ

Method (A1) (A2) (B1) (B2) (A1) (A2) (B1) (B2)

α̂1 UIS 0 0 0 0 0 0 0 0
SIS 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
2SIS 0.001 0.98 0.21 0.13 0.001 0.93 0.40 0.37
MLE 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
2MLE 0.004 0.98 0.72 0.999 0.001 0.91 0.42 0.30

nMSE UIS 0.16 9.4 × 103 3.0 0.47 0.19 1.2 × 103 66 68
SIS 0.45 28 0.15 0.16 0.34 3.2 0.38 0.27
2SIS 0.15 16 0.087 0.028 0.20 2.1 0.37 0.26
MLE 0.27 28 0.041 0.0094 0.34 3.2 0.37 0.16
2MLE 0.15 16 0.037 0.0066 0.20 2.1 0.35 0.15

NOTE: α̂1 is the mean of 1000 estimated mixture proportions and MSE is mean square error of integral estimators.
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Table 3. Comparison between finite sample and asymptotic results

Z μ

(A1) (A2) (B1) (B2) (A1) (A2) (B1) (B2)

α̂1 0.004 0.98 0.72 0.999 0.001 0.91 0.42 0.30
α∗

1 0.001 0.98 0.77 0.999 0.001 0.999 0.42 0.30
nV̂ 0.150 15.5 0.037 0.0066 0.20 2.06 0.35 0.15
σ 2(α∗) 0.155 15.9 0.035 0.0061 0.19 1.97 0.36 0.15

NOTE: α∗
1 is the mixture proportion giving the minimum asymptotic variance, V̂ is the

sample variance of integral estimators, and σ 2(α∗) is the minimum asymptotic variance.

MLE perform better than SIS and 2SIS, but the two-stage 2MLE
and one-stage MLE are similar, since the estimated optimal
proportions are close to 0.5.

To check the convergence properties of 2MLE, in all four
cases we report, in Table 3, a comparisons between the theo-
retical minimum asymptotic variances and the sample variance
of 2MLE, as well as a comparison between the optimal propor-
tions and the average estimated proportions. It is seen that both
of them are quite close to the optimal values.

Example 2. Consider a rare event problem in Hesterberg
(1995). Let X be a three-dimensional random variable with
independent components (X1, X2, X3) and

X = (X1, X2, X3) = max(0, Y 1 + 10d − Z1 − Z2

− max(500, 3000 − Y 2 − 40d)),

where Y 1 ∼ N ((1600, 1650, 1600), 1002I3), Y 2 ∼ N ((1600,

1700, 1600), 1002I3), Z1 ∼ �(10013, (5, 6, 7)) with
�(scale,shape) denoting the gamma distribution, Z2 has density
proportional to ex/100Ix∈(0,300), and d = max(0, 60 − t), where
t ∼ N ((54, 52, 55), 52I3). Denote the density of X to be
f (x) =∏3

j=1 fj (xj ). The targets of interest are

P = P

[
3∑

i=1

Xi > 1200

]
and

μ = E

[
80 · max

(
3∑

i=1

Xi − 1200, 0

)]
.

The true value of P is about 0.003 and therefore the prob-
ability measures the area in the tail of f (x). Hesterberg
(1995) used ẐSIS to estimate P and μ and constructed the
proposal distributions by exponential tilting, using q(x) =
c(β)exp(

∑3
j=1 βjxj )f (x) with parameters β = (β1, β2, β3).

Seven proposals are constructed by setting β = c · (I1, I2, I3),
where Ij is binary and c is set so that E[

∑3
i=1 X′

i] is equal to
some predetermined value, where (X′

1, X
′
2, X

′
3) follows q(x).

Including f (x) as another proposal component, there are eight
proposal components. Hesterberg (1995) provided preset mix-
ture proportions for these proposals, listed in Table 4.

Here, we compare the proposed two-stage procedure with the
estimator used in Hesterberg (1995) for estimating both P and μ.
The results are listed in Table 5. Again, simulation is replicated
1000 times independently with n = 4000 and n0 = 400 in each
simulation. We report the sample means and variances of P̂ and
μ̂, and the means of the mixture proportion α̂i for i = 1, . . . , 8.

Table 4. Parameters setting of the mixture proposal

Proposal (I1, I2, I3) E[
∑3

j=1 X′
i] αi

q1(x) = f (x) 0.5
q2(x) (1, 0, 0) 1416 0.0035
q3(x) (0, 1, 0) 1266 0.028
q4(x) (0, 0, 1) 1616 0.0005
q5(x) (1, 1, 0) 1482 0.236
q6(x) (1, 0, 1) 1832 0.018
q7(x) (0, 1, 1) 1682 0.0635
q8(x) (1, 1, 1) 1898 0.151

NOTE: Each qi (x) is proportional to exp(
∑3

j=1 βj xj )f (x), where β = c · (I1, I2, I3) and c
is selected such that the expectation is equal to the corresponding expectation, for example,
1416. αi is the mixture proportion for qi (x). Here (X′

1, X
′
2, X

′
3) has density qi (x).

Comparing to SIS, it is seen that while the means are the same,
2MLE reduces the variance by 47% for estimating P and 44%
for estimating μ. When comparing the proportion set selected
by 2MLE and the predetermined proportion set used by SIS, it
is seen that some of the proposal considered to be important for
SIS is also determined important by 2MLE, such as q5(x) and
q8(x). The major difference is that SIS puts too much proportion
on q1(x), while 2MLE only selects a very small proportion for
it, indicating that only a small proportion is needed for q1(x) to
guarantee the bounded estimating variance.

Example 3. In this example, we examine the performance
of 2MLE on estimating VaR using a Bayesian GARCH(1,1)
model for S&P500 index series. Given a probability p and a time
horizon d, VaR is the value that a portfolio would encounter a
loss greater than or equal to, with probability p over the horizon.

Suppose at time T , we have historical log returns y =
{y1, . . . , yT }. Let R( yd ) =∑d

k=1 yT +k be the cumulative return
in the next d periods, where yd = (yT +1, . . . , yT +d ) and denote
F yd

as the cumulative distribution function (CDF) of R. Then
the d days ahead VaR is defined as

VaRp = inf
{
x ∈ R|F yd

(x) ≤ p
}
.

VaR is a widely used measure of market risk (Duffie and Pan
1997; Jorion 1997). To obtain the CDF F yd

, we model the return
series using GARCH model (Engle 1982; Bollerslev 1986), a
commonly used model for return series and modeling volatility
dynamics. Specifically, we use a Bayesian GARCH(1,1) model
with normal innovations (Geweke 1994; Bauwens and Lubrano
2008),

yt = εth
1/2
t , εt

iid∼ N (0, 1), ht = φ0 + φ1y
2
t−1 + βht−1,

where φ0 ≥ 0, φ1 ≥ 0, and β ≥ 0 and φ1 + β < 1 to ensure
stationarity. Following Geweke (1994), the prior distributions
of logφ0 and (φ1, β) are selected to be N (a0, σ

2
a ) and U (φ1 ≥

0, β ≥ 0, φ1 + β < 1). Here φ0 is transformed to have the real
line as domain, and (φ1, β) follows a uniform distribution in the
stationary domain. The hyperparameters a0 and σ 2

a are set to be
1 and 2, respectively. We also use the sample variance for h2

0 for
simplicity.

The Bayesian approach has the advantage of taking into ac-
count of parameter estimation variability in the estimation of
VaR. Due to the complexity, Monte Carlo method is used. Since
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Table 5. Comparison between two methods of Example 2

Mixture proportions

Method Mean Var α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8

P SIS 3.4×10−3 3.0×10−8 0.500 0.0035 0.028 0.0005 0.236 0.018 0.064 0.151
2MLE 3.4×10−3 1.6×10−8 0.001 0.0040 0.038 0.0009 0.420 0.051 0.170 0.310

μ SIS 41 1.8 0.500 0.0035 0.028 0.0005 0.236 0.018 0.064 0.151
2MLE 41 1.0 0.001 0.002 0.021 0.0003 0.380 0.040 0.150 0.410

NOTES: SIS is the method of Hesterberg (1995) and 2MLE is our method. μ̂ and P̂ are the means of 1000 point estimators, α̂i are the average mixture proportions, and V̂ is the sample
variance of 1000 estimators.

VaR is largely a tail property, an appropriate implementation of
IS may significantly improve the efficiency. Although VaR is
not in the form of integral, it can be estimated easily by empir-
ical quantiles from the Monte Carlo samples. Note that, CDF
and probability are in the form of integral. Related literatures
about estimating VaR using IS can be found in Hoogerheide and
Van Dijk (2010), Glasserman, Heidelberger, and Shahabuddin
(2000), and Dunkel and Weber (2007).

The two-stage algorithm is tested to estimate VaR with
p = 0.05 and 0.01 and horizons 1, 2, and 5 days, corresponding
to 4-, 5-, and 8-dimensional problem, as there are three parame-
ters in the GARCH(1,1) model. Denote θ = (logφ0, φ1, β). For
each VaR, following the strategy discussed in Section 4.3, we
construct the proposal distributions based on the asymptotic
variance of the empirical posterior CDF at VaR

σ 2
p(α) =

∫ [(
1{R( yd )≤VaR}( yd ) − p

)
π ( yd , θ ) − βT

α g( yd , θ )
]2

qα( yd , θ )
× dyd dθ , (16)

where π ( yd, θ ) =∏T +d
k=1 p(yk|yk−1, θ )p(θ), p(yk|yk−1, θ ) is

the innovation density and p(θ ) is the prior density of θ .
Expression (16) is not the variance of the VaR estimator.

However, Hoogerheide and Van Dijk (2010) showed that the
asymptotic variance of V̂aRp can be approximated by σ 2

p(α)
times a constant, which does not depend on the proposal den-
sity. Since it is difficult to sample from π ( yd , θ ) directly, we
approximate it by the mixture of

q1( yd , θ ) =
T +d∏
k=1

p(yk|y1:k−1, θ )qN (θ)

and

q2( yd , θ ) = q∗(yT +d |yT +d−1, θ )
T +d−1∏

k=1

p(yk|y1:k−1, θ )qN (θ),

where qN (θ) is the normal distribution with the mean vector
being the MLE θ̂ and the covariance matrix �N being the neg-
ative inverse Hessian matrix of π ( y, θ ) at θ̂ , inflated by a con-
stant to allow a wider coverage. We use q∗(yT +d |y1:T +d−1, θ ) ∼
N (−h

1/2
T +d , hT +d ) for the proposal q2( yd , θ ). It tries to cover the

tail (large loss on the last day of the horizon). Similar proposals
can be constructed by considering other potential situations of
large loss, but only this one is included in the current example.

With the approximation of π ( yd , θ ), the heavier tail compo-
nents can be constructed by modifying the tails of q1 and q2.
Then the following two proposals are included as the heavier

tail components:

q3( yd , θ ) =
T +d∏
k=1

p(yk|y1:k−1, θ )qt (θ)

and

q4( yd , θ ) = q∗(yT +d |y1:T +d−1, θ )
T +d−1∏

k=1

p(yk|y1:k−1, θ )qt (θ),

where qt (θ) is the product of three location-scale generalization
of t1 densities with the means being θ̂ and the squared scale
parameters being the diagonal elements of �N , and q∗ is the
same as in the construction of q2. Since π ( yd , θ )/q3( yd , θ ) =
p(θ )/qt (θ) and p(θ ) is the prior distribution with exponentially
decreasing tail, q3( yd , θ ) has heavier tail than π ( yd, θ ). Simi-
larly, q3 and q4 have heavier tail than q1, q2, and proposals below,
and therefore only mixture proportions for q3 and q4 need to be
restricted.

To incorporate the integrand as discussed in Section 4.3, we
further extend q1( yd , θ ) and q2( yd , θ ) to include

q5( yd , θ ) ∝ 1{yT +d≤VaR0.05−
∑d−1

k=1 yT +k}(yT +d )q1( yd , θ )

and

q6( yd , θ ) ∝ 1{yT +d≤VaR0.05−
∑d−1

k=1 yT +k}(yT +d )q2( yd , θ ),

Here the truncation is done only on yT +d , instead of the
more accurate but computationally expensive truncation of∑d

k=1 yT +k ≤ VaR0.05 under joint normal distribution.
The estimation of VaR0.01 can be done simultaneously by

including the following component proposals:

q7( yd , θ ) ∝ 1{yT +d≤VaR0.01−
∑d−1

k=1 yT +k}(yT +d )q1( yd , θ )

and

q8( yd , θ ) ∝ 1{yT +d≤VaR0.01−
∑d−1

k=1 yT +k}(yT +d )q2( yd , θ ).

Overall, q1( yd , θ ) to q8( yd , θ ) are used as component pro-
posal distributions.

Since our objective is to estimate VaR0.05 and VaR0.01 simul-
taneously, in the pilot stage we estimate the optimal mixture
proportions by minimizing the sum of variances of the two
estimators. Since q5, . . . , q8 involve the unknown VaR0.05 and
VaR0.01, the first stage sampling is modified as follows.

1. Generate pilot samples from q1 to q4 with sample size
n0/8 each.

2. Estimate VaR0.05 using the pilot samples from step 1. Re-
place VaR0.05 in q5 and q6 with the estimate and generate
pilot samples from them, with sample size n0/8 each.
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Table 6. Comparison between MLE and 2MLE in Example 3

p = 0.05 p = 0.01

Horizon Method V̂aR V̂ V̂aR V̂

1 day MLE −1.332 14e-5 −1.894 20e-5
2MLE −1.333 3.8e-5 −1.895 4.6e-5

2 days MLE −1.886 5.1e-4 −2.773 12e-4
2MLE −1.886 1.5e-4 −2.771 3.5e-4

5 days MLE −2.997 17e-4 −4.432 5.9e-3
2MLE −2.996 5.4e-4 −4.424 1.8e-3

NOTE: V̂aR is the average of 300 point estimators and V̂ is the sample variance of 300
estimators.

3. Estimate VaR0.01 using the pilot samples from steps 1 and
2. Replace VaR0.01 in q7 and q8 with the estimate and
generate pilot samples from them, with sample size n0/8
each.

4. Obtain α̂ by minimizing τ̂ 2
0.05(α) + τ̂ 2

0.01(α), where τ̂ 2
p(α)

is the estimator for σ 2
p(α) using all samples in the first

three steps.
Here, we compare the two-stage procedure 2MLE with the

one-stage MLE with equal mixture proportions. The log returns
of S&P500 index from September 28, 2010 to July 13, 2011 are
used, with total 200 observations. The simulation is replicated
for 300 times independently with n = 4 × 106 and n0 = 8 × 104

in each simulation. δ is selected to be 0.001.
The summary of estimation results and the estimated mixture

proportions α̂ are listed in Tables 6 and 7. From Table 6, it is
seen that 2MLE’s Monte Carlo variance is about 23%–32% of
the variance of MLE, while there is almost no difference in the
mean. Table 7 shows that the two-stage algorithm assigns most
of the mixture proportions to q3 and q4, which indicates that
these two heavy-tail component proposals are more important
than the others. This is probably because q1 and q2 do not

Table 7. Summary of mixture proportions estimated from stage 1

VaR α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8

1 day 1e-3 8e-4 3.4e-1 6.2e-1 9e-3 1.7e-2 8e-3 2e-3
2 days 1e-3 1e-3 3.5e-1 6.0e-1 2.4e-2 3e-3 9e-3 2e-3
5 days 1e-3 6e-4 4.3e-1 5.4e-1 2.0e-2 8e-4 4e-3 5e-4

NOTE: The average over 300 simulations are reported. α̂1 to α̂8 correspond to the mixture
proportions assigned to q1 to q8.

cover the high-density area of target distribution sufficiently,
resulted in the preference to q3 and q4. Compared with MLE,
the optimization in the pilot stage of 2MLE requires additional
computing time, which is about 20% more in practice.

Finally, we report some interesting insights on the compari-
son between MLE and 2MLE. By multiplying a scaling constant
c2 to the covariance matrix �N used in the proposal q1, all the
related component proposals are made either more dispersed
for c > 1 or more concentrated for c < 1. Since σ 2

p(α) is pro-
portional to the estimation variance of VaR and the proportion
does not depend on the proposal density, the trajectories of esti-
mated σ 2

p(α∗) and σ 2
p(α0) as function of c are given in Figure 1

to illustrate how the quality of proposal distribution affect the
performance of 2MLE and MLE.

It is seen that 2MLE is always better than MLE. Most inter-
estingly, it shows that the performance of both methods depends
on the quality of the proposal distributions, but 2MLE is much
less sensitive to the proposal distributions and has more ro-
bust performance than MLE. This is due to 2MLE’s ability to
automatically adjust mixture proportion for the most efficient
estimation. The simulation results (not shown here) show that,
when c is small, 2MLE tends to assign most of the mixture
proportions to the heavy tail q3 and q4. This insight reinforces
the notion that the two-stage approach not only improves upon
the one-stage approach, but also alleviates to some extent the
difficulty of selecting proposal distributions.
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Figure 1. The left figure gives trajectories of estimated σ 2
p (α∗) and σ 2

p (α0), corresponding to MLE and 2MLE methods, respectively, with
respect to the scaling constant c. c ranges from 0.1 to 4. For each c, the theoretical variances are estimated using one Monte Carlo sample, and
the average over 10 replicates is reported. The right figure gives the trajectory of ratio of estimated σ 2

p (α∗) over estimated σ 2
p (α0).
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6. SUMMARY

In this article, we proposed a two-stage procedure to select
the optimal mixture proportions for the regression estimator in
Owen and Zhou (2000) and MLE estimator in Tan (2004), and
established the corresponding theoretical framework. The two-
stage procedure significantly improved the existing methods
in four aspects. First, the proposed estimator is asymptotically
the best among all the estimators proposed in Owen and Zhou
(2000), Tan (2004), and Raghavan and Cox (1998). Second, the
criterion function of our pilot stage optimization is convex in its
arguments, and therefore it is guaranteed that the optimization
converges to the global minimum. Third, since there is no sim-
ple intuition in selecting the proportions for Owen and Zhou’s
(2000) regression estimator and Tan’s (2004) MLE estimator,
the proposed automatic procedure makes it much easier and
safer to use mixture distributions for IS. Finally, the automatic
determination of the mixture proportion alleviates the difficulty
of choosing the set of proposal distributions to be considered
in the mixture, as it serves as a selection and discrimination
tool and hence allows users to include more potential proposal
distributions for consideration.

APPENDIX A. PROOF OF RESULTS

For simplicity, we only consider two proposal distributions.
Then α = (α1, 1 − α1) and γ = (γ1, 1 − γ1). The proofs can
be extended to the case of more than two proposals. To be-
gin with, we establish the consistency of α̂ = (̂α1, 1 − α̂1).
Note that α̂1 is equivalently a component of the bivariate M-estimate
(̂α1, β̂) = argmin α,βn−1

0

∑n0
i=1 m(xi ; α, β), where m(x; α1, β) =

[π (x) − βg(x)]2/[qα(x)qγ (x)]. Let M(α1, β) = ∫ m(x; α1, β)qγ (x)dx

and (α∗
1 , β

∗) = argmin α1,β M(α1, β). Meanwhile, M(α1, β) and σ 2
Z(α)

are strictly convex functions.

Lemma 1. It holds that

(̂α1, β̂)
P−→ (α∗

1 , β
∗),

(̂α1, β̂) = (α∗
1 , β

∗) − 1

2
√

n0
V −1Û + op

(
1√
n0

)
,

where V and Û are given in Lemma 2. Then α̃ = (̃α1, 1 − α̃1)
P−→

(α∗
1 , 1 − α∗

1 ). Meanwhile, M(α1, β), σ 2
Z(α), and σ̂ 2(α) are strictly con-

vex functions.

Proof. Note that m(x; α, β) is convex since its Hessian matrix

D2m(x; α1, β) = 2g(x)2

qα(x)qγ (x)

⎛⎜⎜⎜⎝
(π (x) − βg(x))2

qα(x)2

π (x) − βg(x)

qα(x)

π (x) − βg(x)

qα(x)
1

⎞⎟⎟⎟⎠
is a positive semidefinite matrix. Then the consistency of (̂α1, β̂)
can be proved by verifying conditions 1–3 in Haberman (1989)
for M-estimators by convex minimization. First, the parameter set
� = [δ, 1 − δ] × R of (α1, β) is convex and closed. Second, (α∗

1 , β
∗)

is unique. By Durrett (1996, Appendix 9), the differentiation and inte-
gration in M(α, β) can be exchanged so that

D2M(α1, β)

=

⎛⎜⎜⎜⎝
2
∫

[π (x) − βg(x)]2 g(x)2

qα(x)3
dx 2

∫
[π (x) − βg(x)] g(x)2

qα(x)2
dx

2
∫

[π (x) − βg(x)] g(x)2

qα(x)2
dx 2

∫
g(x)2

qα(x)
dx

⎞⎟⎟⎟⎠ .

For any bivariate vector v, vT {D2M(α1, β)}v ≥ 0 and the equal-
ity holds only when π (x) ≡ c1q1(x) + c2q2(x) for some c1 and c2. By
condition (C5), D2M(α1, β) is positive definite. Therefore, M(α1, β) is
strictly convex and (α∗

1 , β
∗) is unique. Third, let W = (δ, 1 − δ) × R.

By condition (C3), M(α1, β) < ∞ for any (α1, β) ∈ W .
The expansion of (̂α1, β̂) can be found in the proof of Haberman

(1989, Theorem 6.1) by verifying his conditions 7 and 10. First,
D2M(α∗

1 , β
∗) is positive definite as mentioned above. Second, the gra-

dient of m(x; α1, β) satisfies E|Dm(x; α1, β)|2 < ∞. Therefore, the
convergence of (̃α1, 1 − α̃1) holds because α̃ = γn0/n + α̂(n − n0)/n

and n0 = o(n).
Finally, with the strict convexity of M(α1, β), which is stated above,

the strict convexity of σ 2
Z(α) can be seen by the facts that σ 2

Z(α) =
min

β
M(α1, β) and

min
β

M(λα1 + (1 − λ)α2, β)

= min
β1

min
β2

M(λα1 + (1 − λ)α2, λβ1 + (1 − λ)β2)

for any α1, α2 and λ ∈ [0, 1]. The strict convexity of σ̂ 2(α) can be
proved similarly. �

The following expansion of (̂α1, β̂) will be used in the higher-order
calculation of ẐReg(̃α) and ẐMLE(̃α).

Lemma 2. It holds that

(̂α1, β̂) = (α∗
1 , β

∗) + 1

2
√

n0
V −1Û − 1

2n0
V −1

× {
(V̂ − √

n0V )V −1Û + Ŵ
}+ op

(
1

n0

)
,

where Ŵ is a random variable of order Op(1),

Û =

⎛⎜⎜⎜⎜⎝
1√
n0

n0∑
i=1

(π (xi) − β∗g(xi))2g(xi)

qα∗ (xi)2qγ (xi)

1√
n0

n0∑
i=1

2(π (xi) − β∗g(xi))g(xi)

qα∗ (xi)qγ (xi)

⎞⎟⎟⎟⎟⎠ ,

V =

⎛⎜⎜⎝
∫

[π (x)−β∗g(x)]2 g(x)2

qα∗ (x)3
dx

∫
[π (x)−β∗g(x)] g(x)2

qα∗ (x)2
dx∫

[π (x) − β∗g(x)] g(x)2

qα∗ (x)2
dx

∫
g(x)2

qα∗ (x)
dx

⎞⎟⎟⎠,

and

V̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
n0

n0∑
i=1

[π (xi) − β∗g(xi)]
2 g(xi)2

qα∗ (xi)3qγ (xi)

1√
n0

n0∑
i=1

[π (xi) − β∗g(xi)] g(xi)2

qα∗ (xi)2qγ (xi)

1√
n0

n0∑
i=1

[π (xi) − β∗g(xi)] g(xi)2

qα∗ (xi)2qγ (xi)

1√
n0

n0∑
i=1

g(xi)2

qα∗ (xi)qγ (xi)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. Note that Û = n
−1/2
0

∑n0
i=1 Dm(xi ; α∗

1 , β
∗), V̂ = n

−1/2
0∑n0

i=1 D2m(xi ; α∗
1 , β

∗), and V = ∫ D2m(x; α∗
1 , β

∗)dx. Then by Tay-
lor expansion around (α∗

1 , β
∗) on n−1

0

∑n0
i=1 Dm(xi ; α̂1, β̂) = 0 and the

convergence of (̂α1, β̂), we have

0 = − 1√
n0

Û + 2√
n0

V̂

(
α̂1 − α∗

1

β̂ − β∗

)
+ 1

n0
Ŵ + op

(
1

n0

)
,
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then (
α̂1 − α∗

1

β̂ − β∗

)
= 1

2
√

n0
V −1Û − 1

n0
V −1

{
(V̂ − √

n0V )

· √
n0

(
α̂1 − α∗

1

β̂ − β∗

)
+ Ŵ

}
+ op

(
1

n0

)
.

The expansion of (̂α1, β̂) follows by substituting (̂α1 − α∗
1 , β̂ − β∗)

to the right-hand side (RHS) of the above equation. �
The combined sample {x1, . . . , xn} can be split into four

parts by distributions q1 or q2 and first or second stages.
Denote Ijk to be the index set of observations from the jth
stage and qk , that is, I11 = {1, . . . , n0γ1}, I12 = {n0γ1 + 1, . . . ,

n0}, I21 = {n0 + 1, . . . , n0 + �(n − n0)̂α1�}, I22 = {n0 + �(n −
n0)̂α1� + 1, . . . , n}, where �x� means the largest integer smaller
than x, and njk to be the size of Ijk . Here, we can use for the index,
where �x� is the largest integer smaller than x, to define Ijk . But for
investigating the asymptotic behavior, the difference can be ignored.
We will use the decomposition

Gnτ (x)

=
√

n0

n

⎧⎨⎩
2∑

k=1

√
γk · √

n1k

⎛⎝ 1

n1k

∑
i∈I1k

τ (xi) −
∫

τ (x)qk(x)dx

⎞⎠⎫⎬⎭
+
√

n − n0

n

⎧⎨⎩
2∑

k=1

√
α̂k · √

n2k

⎛⎝ 1

n2k

∑
i∈I2k

τ (xi)−
∫

τ (x)qk(x)dx

⎞⎠⎫⎬⎭
≡
√

n0

n

{√
γ1G11τ (x) + √

γ2G12τ (x)
}

+
√

n − n0

n

{√
α̂1G21τ (x) +

√
α̂2G22τ (x)

}
. (A.1)

The following lemma shows the convergence of ẐSIS with α̃ as mixture
proportion.

Lemma 3. For any integrable function h(x) satisfying varα[h(X)/
qα(X)] < ∞ for every α1 ∈ [δ, 1 − δ], it holds that

1

n

n∑
i=1

h(xi)

qα̃(xi)
P−→
∫

h(x)dx,

√
n

(
1

n

n∑
i=1

h(xi)

qα̃(xi)
−
∫

h(x)dx

)
L−→ N

(
0,

2∑
k=1

α∗
k vark

[
h(X)

qα∗ (X)

])
.

where vark denote the variance under distribution density qk(x).

Proof. We only need to prove asymptotic normality since it implies
the consistency. Using decomposition (A.1), we have

√
n

(
1

n

n∑
i=1

h(xi)

qα̃(xi)
−
∫

h(x)dx

)

=
√

n0

n

{√
γ1G11

(
h(x)

qα̃(x)

)
+ √

γ2G12

(
h(x)

qα̃(x)

)}
+
√

n − n0

n

{√
α̂1G21

(
h(x)

qα̃(x)

)
+
√

α̂2G22

(
h(x)

qα̃(x)

)}
(A.2)

The asymptotic normality will be implied by showing that the first
two terms in (A.2) are of order op(1) and the remaining is asymptotic
normal.

For the first two terms, we prove that the collection of func-
tions {h(x)/qα(x)}α1∈[δ,1−δ] is a Donsker class under either proba-
bility measures q1 or q2 by verifying the three conditions in van
der Vaart (2000, Example 19.7). In fact, the parameter α is in a
bounded set; |h(x)/qα1 (x) − h(x)/qα2 (x)| ≤ |m(x, α1, α2)| · |α1 − α2|
for every α1, α2, where m(x, α1, α2) = h(x)g(x)/(qα1 (x)qα2 (x)), and

∫ |m(x, α1, α2)|2qk(x)dx < ∞. By van der Vaart (2000, Lemma 19.24)
and Lemma 1, we have G1k(h/qα̃) = G1k(h/qα∗ ) + op(1), k = 1, 2.
Then by Central Limit Theorem and n0 = o(n), the first two terms in
(A.2) are of order op(1).

For the last two terms, similarly, we argue that G2k(h/qα̃) =
G2k(h/qα∗ ) + op(1) by a modification of van der Vaart (2000, Lemma
19.24) to handle random sample size. In fact, the key condition for his
results, namely, weak convergence of G2k(h/qα∗ ), is guaranteed by van
Der Vaart and Wellner (1996, Theorem 3.5.1). Then by the indepen-
dence between α̂1 and observations in {xi}n

i=n0+1 and an extension of
Chow and Teicher (2003, sec. 9.4), we have

(
G21(h/qα̃)

G22(h/qα̃)

)
L−→ N

⎛⎜⎜⎝0,

⎛⎜⎜⎝ var1

[
h(X)

qα∗ (X)

]
0

0 var2

[
h(X)

qα∗ (X)

]
⎞⎟⎟⎠
⎞⎟⎟⎠

and by Slutsky’s theorem,
√

α̂1G21( h(x)
qα̃ (x) ) + √

α̂2G22( h(x)
qα̃ (x) )

L−→
N (0,

∑2
k=1 α∗

k vark[ h(X)
qα∗ (X) ]). Therefore the lemma holds. �

In the above proof, only the consistency of α̃ is used. If α̃ is replaced
by other consistent mixture proportion, the convergence properties still
hold.

Corollary 1. For any α satisfying α
P−→ α∗, it holds that

1

n

n∑
i=1

h(xi)

qα(xi)
P−→
∫

h(x)dx,

√
n

(
1

n

n∑
i=1

h(xi)

qα(xi)
−
∫

h(x)dx

)
L−→ N

(
0,

2∑
k=1

α∗
k vark

[
h(X)

qα∗ (X)

])
.

We also need the convergence of ζ̃ in ẐMLE(̃α), where ζ̃ =
argminζ

∑n
i=1 log[qα̃(xi) + ζ T g(xi)].

Lemma 4. The following convergence properties for ζ̃ hold:

ζ̃
P−→ 0 and

√
ñζ

L−→ N

(
0,

∑2
k=1 α∗

k Vark [g(X)/qα∗ (X)](∫
g(x)2/qα∗ (x)dx

)2
)

.

Proof. The random variable
√

ñζ is the minimizer of convex func-
tion ψ(s) =∑n

i=1 log(qα̃(xi) + g(xi)s/
√

n). By verifying the condition
of Hjort and Pollard (1994, basic corollary), we have the expansion

√
ñζ = n−1/2

∑n
i=1 g(xi)/qα̃(xi)∫

g(x)2/qα∗ (x)dx
+ op(1)

and then the convergence of ζ̃ follows by Lemma 3. By Taylor expan-
sion around 0, we have

ψ(s) =
n∑

i=1

log (qα̃(xi)) +
{

1√
n

n∑
i=1

g(xi)

qα̃(xi)

}
s

−
{

1

2n

n∑
i=1

g(xi)2

qα̃(xi)2

}
s2 + Rn(s),

where

Rn(s) =
{

1

3n
√

n

n∑
i=1

g(xi)3

qξ (xi)3

}
s3

and ξ1 is between α̃1 and α̃1 + s/
√

n.

For fixed s, ξ
P−→ α∗ by α̃

P−→ α∗. Then Rn(s)
P−→ 0 by Corollary 1,

and condition of Hjort and Pollard (1994, basic corollary) holds. �
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Proof of Theorem 1. By Taylor expansion of n−1
∑n

i=1 g(xi)/
(qα̃(xi) + ζ̂ g(xi)) = 0,̂ζ can be expanded as

ζ̂ =
1
n

∑n
i=1 g(xi)/qα̃(xi)

1
n

∑n
i=1 g(xi)2/qα̃(xi)2 + ζ̂ · 1

n

∑n
i=1 g(xi)3/(qα̃(xi) + ζ̇ g(xi))3

≡ Sg/Sgg, where ζ̇ is between 0 and ζ̃ .

By Taylor expansion, we have

ẐMLE(̃α) = 1

n

n∑
i=1

π (xi)

(̃α1 + ζ̃ )q1(xi) + (̃α2 − ζ̃ )q2(xi)

= Sπ − (S−1
gg Sπg − β∗) Sg, (A.3)

where

Sπ = 1

n

n∑
i=1

π (xi) − β∗g(xi)

qα̃(xi)
, Sπg = 1

n

n∑
i=1

π (xi)g(xi)

(qα̃(xi) + ζ̈ g(xi))2
,

and ζ̈ is between 0 and ζ̃ .

Since α̃
P−→ α∗, ζ̃

P−→ 0, and qα̃(xi) + ζ̇ g(xi) = qα̃+(ζ̇ ,−ζ̇ )(xi), we have

Sπ
P−→ Z,

√
n(Sπ − Z)

L−→ N

(
0, varα∗

[
π (X) − β∗g(X)

qα∗ (X)

])
,

√
nSg

L−→ N

(
0, varα∗

[
g(X)

qα∗ (X)

])
,

Sπg
P−→ covα∗

[
π (X)

qα∗ (X)
,

g(X)

qα∗ (X)

]
and

Sgg
P−→ varα∗

[
g(X)

qα∗ (X)

]
.

by Lemma 3 and Corollary 1. Then plugging the above results in (A.3),
Slutsky’s theorem gives that

ẐMLE(̃α)
P−→ Z and

√
n
(
ẐMLE(̃α) − Z

)
L−→ N

(
0, varα∗

[
π (X) − β∗g(X)

qα∗ (X)

])
.

Similarly, the consistency and asymptotic normality of ẐReg(̃α) hold
by the decomposition

ẐReg(̃α) = 1

n

n∑
i=1

π (xi) − β̂α̃g(xi)

qα(xi)

= Sπ −
[

ṽar

(
g(X)

qα̃(X)

)−1

c̃ov

(
π (X)

qα̃(X)
,

g(X)

qα̃(X)

)
− β∗

]
· Sg.

�
Proof of Proposition 1. Denote Gnτ (x) = √

n[n−1
∑n

i=1 τ (xi) −∫
τ (x)qα̃(x)dx]. By (A.3) and Taylor expansion around α∗

1 , we have

ẐMLE(̃α) − Z

= 1√
n

{
Gn

π (x) − β∗g(x)

qα̃(x)

}
+ 1√

n

{
Gn

g(x)

qα̃(x)

}
(S−1

gg Sπg − β∗)

= 1√
n

{
Gn

π (x) − β∗g(x)

qα∗ (x)

}
+ 1√

n

{
Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2

}
× (̃α1 − α∗

1 )

+ 1√
n

{
Gn

(π (x) − β∗g(x))g(x)2

qα∗ (x)3

}
(̃α1 − α∗

1 )2

+ o

(
1√
n

(
n0

n
+ 1√

n0

)2
)

+ 1√
n

{
Gn

g(x)

qα∗ (x)

}
(β̃ − β∗) + o

(
1

n

)
,

where

β̃ =
1
n

∑n
i=1 π (xi)g(xi)/qα̃(xi)2∫

g(x)2/qα∗ (x)dx

{
2 −

1
n

∑n
i=1 g(xi)2/qα̃(xi)2∫
g(x)2/qα∗ (x)dx

}
.

Note that S−1
gg Sπg − β∗ = β̃ − β∗ + o(1/

√
n) by Taylor expansion.

The expansion of α̂1 in Lemma 2 can be plugged into the above equa-
tion. After some algebra and note that 1/

√
n ≤ n0/n + 1/n0 by the

inequality 2ab ≤ a2 + b2, we obtain the expansion of ẐMLE(̃α) as
follows:

Z + 1√
n

Gn

π (x) − β∗g(x)

qα∗ (x)

+ n0

n
√

n

{
Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2

}
(γ1 − α∗

1 )

+ 1√
n0

√
n

·
{
Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2

}
An0

+ 1

n0
√

n

{
Gn

(π (x) − β∗g(x))g(x)2

qα∗ (x)3
· A2

n0

− Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2
· Bn0

}
+ 1

n

{
Gn

g(x)

qα∗ (x)

} {√
n(β̃ − β∗)

}+ o

(
n0

n
√

n

)
+ o

(
1

n0
√

n

)
≡ Z + g1(̃α) + g2(̃α) + o

(
n0

n
√

n

)
+ o

(
1

n0
√

n

)
, (A.4)

where

An0 = (1, 0) · V −1Û/2,

Bn0 = (1, 0) · V −1
(
(V̂ − √

n0V )V −1Û/2 + Ŵ
)
,

g1(̃α) = 1√
n

Gn

π (x) − β∗g(x)

qα∗ (x)

and

g2(̃α) = n0

n
√

n

{
Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2

}
(γ1 − α∗

1 )

+ 1√
n0

√
n

·
{
Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2

}
An0

+ 1

n0
√

n

{
Gn

(π (x) − β∗g(x))g(x)2

qα∗ (x)3
· A2

n0

− Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2
· Bn0

}
+ 1

n

{
Gn

g(x)

qα∗ (x)

} {√
n(β̃ − β∗)

}
.

The expansion of ẐReg(̃α) follows similarly, except the definition of
β̃ is changed to

β̃ = c̃ov [π (X)/qα̃(X), g(X)/qα̃(X)]∫
g(x)2/qα∗ (x)dx

{
2 − ṽar [g(X)/qα̃(X)]∫

g(x)2/qα∗ (x)dx

}
.

�
Proof of Theorem 2. The calculation of moments of Ẑ∗ involves

calculating the moments of (A.4) including

E

[(
1

n

n∑
i=1

h1(xi)

qα∗ (xi)
−
∫

h1(x)

qα∗ (x)
qα̃(x)dx

)k1

(
1

n0

n0∑
i=1

h2(xi)

qα∗ (xi)
−
∫

h2(x)

qα∗ (x)
qγ (x)dx

)k2

(β̃ − β∗)k3

]

for functions h1(x) and h2(x), k1 = 1, 2, k2 = 0, 1, 2, and k3 =
0, 1, 2,

From (A.4), note that the calculation of E[Ẑ∗ − Z] involves calcu-
lating the cases of k1 = 1. For (k1, k2, k3) = (1, 1, 0) and (1, 2, 0), by
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plugging in the decomposition

1

n

n∑
i=1

h1(xi)

qα∗ (xi)
−
∫

h1(x)

qα∗ (x)
qα̃(x)dx

= n0

n

(
1

n0

n0∑
i=1

h1(xi)

qα∗ (xi)
−
∫

h1(x)

qα∗ (x)
qγ (x)dx

)

+ n − n0

n

(
1

n − n0

n−n0∑
i=1

h1(xi)

qα∗ (xi)
−
∫

h1(x)

qα∗ (x)
qα̂(x)dx

)
, (A.5)

the expectations are of order O(1/n) and O(1/(n0n)), respectively,
by the law of iterated expectations conditioning on {xi}n0

i=1. For
(k1, k2, k3) = (1, 0, 1), the expectation is of order O(1/n) by the
inequality 2ab ≤ a2 + b2 and the fact E[

√
n(β̃ − β∗)]2 < ∞. For

(k1, k2, k3) = (1, 0, 0), the expectation is 0. Therefore, E[Ẑ∗ − Z] =
O(1/n).

From (A.4), note that the calculation of var[Ẑ∗ − Z] involves
calculating the cases of k1 = 2. For (k1, k2, k3) = (2, 0, 0), (2, 1, 0),
and (2, 2, 0), the expectations are of order O(1/n), O(n0/n2), and
O(1/(n0n)), respectively, by (A.5) and the law of total variance con-
ditioning on {xi}n0

i=1. For(k1, k2, k3) = (2, 0, 1) and (2, 0, 2), the expec-
tations are of order O(1/(n

√
n)) and O(1/n2), respectively, by the in-

equality 2ab ≤ a2 + b2 and the fact E[
√

n(β̃ − β∗)]4 < ∞. The other
terms are dominated by O(n0/n2) + O(1/(n0n)). Therefore by noting
that 1/

√
n ≤ n0/n + 1/n0,

var
[
Ẑ∗ − Z

] = 1

n
var

[
Gn

π (x) − β∗g(x)

qα∗ (x)

]
+ O

(
1

nn0

)
+ O

(n0

n2

)
.

Again by (A.5) and the law of total variance conditioning on {xi}n0
i=1,

some algebra gives that

1

n
var

[
Gn

π (x) − β∗g(x)

qα∗ (x)

]
= 1

n
σ 2

Z(α∗) + n0

n2

{
varγ

(
π (x) − β∗g(x)

qα∗ (x)

)
− σ 2

Z(α∗)

}
+ 1

n

(
1− n0

n

){
var1

(
π (x)−β∗g(x)

qα∗ (x)

)
−var2

(
π (x) − β∗g(x)

qα∗ (x)

)}
× E(̂α1 − α∗

1 ) (A.6)

≈ 1

n
σ 2

Z(α∗) + O
(n0

n2

)
+ O

(
1

nn0

)
.

Therefore, var[Ẑ∗ − Z] = 1
n
σ 2

Z(α∗) + O(n0/n2) + O(1/(nn0)). �
The proofs of Proposition 1 and Theorem 2 reveal the sources of the

higher orders O(n0/n2) and O(1/(nn0)) in MSE[Ẑ∗] − n−1σ 2
Z(α∗).

These two orders come from three sources, which can be seen by
investigating each term in (A.4) and (A.6). One source is due to using
pilot samples, which leads to terms

n0

n
√

n

{
Gn

(π (x) − β∗g(x))g(x)

qα∗ (x)2

}
(γ1 − α∗

1 ) in (A.4)

and
n0

n2

{
varγ

(
π (x) − β∗g(x)

qα∗ (x)

)
− σ 2

Z(α∗)

}
in (A.6),

and results in the order O(n0/n2). When γ = α∗, these two terms are
equal to 0 and thus they are derived from the difference between γ

and α∗. Another one is the variability of random coefficient of control
variates, which leads to the term

1

n

{
Gn

g(x)

qα∗ (x)

} {√
n(β̃ − β∗)

}
in (A.4).

This variability results in the order O(1/(n
√

n)), which is also
O(n0/n2) + O(1/(nn0)) when n0 = √

n, because 2/
√

n ≤ n0/n +

1/n0. The other source is the variability of estimated mixture pro-
portion α̃, which leads to all other terms in (A.4) and (A.6) except the
previous three terms and n−1σ 2

Z(α∗). This variability results in the order
O(1/(nn0)).

For the asymptotic properties of μ̂Reg(̃α) and μ̂MLE(̃α), the proof
differs in two aspects with that of ẐReg(̃α) and ẐMLE(̃α). One is the M-
estimator α̂ contains an estimated parameter μ̂ in the criterion function.
The other one is the ratio form of μ̂Reg(̃α) and μ̂MLE(̃α).

Lemma 5. α̂1
P−→ α∗

1 as n → ∞ for α̂1 defined in (14).

Proof. α̂1 can be equivalently obtained as a component of the
bivariate estimator (̂α1, β̂) = argmin α1,β∈� n−1

0

∑n0
i=1 ρ(x; α1, β, μ̂),

where ρ(x; α1, β, μ) = [h(x)π (x)−μπ (x)−βg(x)]2

qα (x)qγ (x) and � = [δ, 1 − δ] × R.

The proof of consistency of (̂α1, β̂) contains two steps.
First, although the domain of β is unbounded, β̂ stays in a compact

set almost surely when n → ∞, because

|β̂|=
∣∣∣∣∣∣

1
n0

∑n0
i=1

(h(xi )π (xi )−μ̂π (xi ))g(xi )
qα̂ (xi )qγ (xi )

1
n0

∑n0
i=1

g(xi )2

qα̂ (xi )qγ (xi )

∣∣∣∣∣∣≤
1
n0

∑n0
i=1

(
|h(xi )π (xi )|

qγ (xi ) + |μ̂π (xi )|
qγ (xi )

)
2
δ

1
n0

∑n0
i=1

g(xi )2

(q1(xi )+q2(xi ))qγ (xi )

and the RHS converges to a constant almost surely since μ̂ →
μ almost surely. Then the consistency of (̂α1, β̂) and the min-
imizer (̂α′

1, β̂
′) restricted in some compact set C ⊂ �, that is,

argmin α1,β∈Cn−1
0

∑n0
i=1 ρ(x; α1, β, μ̂), are equivalent since P ((̂α1, β̂) ∈

C) → 1.
Second, the consistency of (̂α′

1, β̂
′) and the minimizer with μ̂ re-

placed by μ, that is, argmin α1,β∈C n−1
0

∑n0
i=1 ρ(x; α1, β, μ), are equiv-

alent because

sup
α1 ,β∈C

∣∣∣∣∣ 1

n0

n0∑
i=1

ρ(x; α1, β, μ̂) − 1

n0

n0∑
i=1

ρ(x; α1, β, μ)

∣∣∣∣∣
≤ (μ̂2 − μ2) max

α1,β∈C

1

n0

n0∑
i=1

π (xi)2

qα1 (xi)qγ (xi)

+ (μ̂ − μ) max
α1 ,β∈C

2

n0

n0∑
i=1

(h(xi)π (xi) − βg(xi))π (xi)

qα1 (xi)qγ (xi)

→ 0 almost surely,

and the argument similar to van der Vaart (2000, Theorem 5.7). Then
since the consistency of argmin α1,β∈C n−1

0

∑n0
i=1 ρ(x; α1, β, μ) holds

by replacing π (x) in Lemma 1 by h(x)π (x) − μπ (x), the consistency
of (̂α1, β̂) follows. �

Proof of Theorem 3. The consistency and asymptotic normality of
μ̂MLE(̃α) follow the extension of proof of Theorem 1 to random vector

√
n

⎧⎪⎨⎪⎩ 1

n

n∑
i=1

(
h(xi)π (xi)/qα̃+ζ̃

π (xi)/qα̃+ζ̃

)
−

⎛⎜⎝
∫

h(x)π (x)/qα∗ (x)dx∫
π (x)/qα∗ (x)dx

⎞⎟⎠
⎫⎪⎬⎪⎭

and the delta method. The proof for μ̂Reg(̃α) is similar. �
APPENDIX B. VARIANCE MATRICES FOR α̂

Denote

Ijkl =
∫

(π (x) − β∗T g(x))j g(x)g(x)T

qα∗ (x)kqγ (x)l
dx,

A = I230 − I120I
−1
010I120, B = I010 − I120I

−1
230I120,

C = I441 − 2I331I
−1
010I120, and D = I331 − 2I221I

−1
010I120.

When estimating Z, (̂α2, . . . α̂p) has the asymptotic variance matrix

1√
n0

(
A−1CA−1 − 2I−1

230I120B
−1DA−1

)
.
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When estimating μ, similar expression can be obtained by replacing
π (x) in Ijkl by (h(x) − μ)π (x).

[Received March 2012. Revised June 2013.]
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eds. E. Gröller and L. Szirmay-Kalos, Goslar, Germany: Eurographics As-
sociation, pp. 351–357. [1351]

Ford, E., and Gregory, P. (2007), “Bayesian Model Selection and Extraso-
lar Planet Detection,” in Statistical Challenges in Modern Astronomy IV
(Vol. 371), eds. G. J. Babu and E. D. Feigelson, San Francisco, CA: Astron.
Soc. Pacific, p. 189. [1350]

Gelman, A., and Meng, X. (1998), “Simulating Normalizing Constants: From
Importance Sampling to Bridge Sampling to Path Sampling,” Statistical
Science, 13, 163–185. [1350]

Geweke, J. (1989), “Bayesian Inference in Econometric Models Using Monte
Carlo Integration,” Econometrica: Journal of the Econometric Society, 57,
1317–1339. [1356]

——— (1994), “Bayesian Comparison of Econometric Models,” Working Paper
No. 532, Federal Reserve Bank of Minneapolis. [1358]

Geyer, C. (1994), “On the Asymptotics of Constrained M-Estimation,” The
Annals of Statistics, 22, 1993–2010. [1355]

Giordani, P., and Kohn, R. (2010), “Adaptive Independent Metropolis-Hastings
by Fast Estimation of Mixtures of Normals,” Journal of Computational and
Graphical Statistics, 19, 243–259. [1350]

Givens, G., and Raftery, A. (1996), “Local Adaptive Importance Sampling for
Multivariate Densities With Strong Nonlinear Relationships,” Journal of the
American Statistical Association, 91, 132–141. [1350]

Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000), “Variance Reduc-
tion Techniques for Estimating Value-at-Risk,” Management Science, 46,
1349–1364. [1359]

Haberman, S. (1989), “Concavity and Estimation,” The Annals of Statistics, 17,
1631–1661. [1354,1361]

Hesterberg, T. (1988), “Advances in Importance Sampling,” Ph.D. dissertation,
Department of Statistics, Stanford University. [1352]

——— (1995), “Weighted Average Importance Sampling and Defensive Mix-
ture Distributions,” Technometrics, 37, 185–194. [1350,1351,1355,1358]

Hjort, N., and Pollard, D. (1994), “Asymptotics for Minimisers of Convex Pro-
cesses,” Statistical Research Report, Department of Mathematics, University
of Oslo. [1362]

Hoogerheide, L., and Van Dijk, H. (2010), “Bayesian Forecasting of Value at
Risk and Expected Shortfall Using Adaptive Importance Sampling,” Inter-
national Journal of Forecasting, 26, 231–247. [1359]

Jorion, P. (1997), Value At Risk: The New Benchmark for Controlling Market
Risk, Chicago: McGraw-Hill. [1358]

Kong, A., McCullagh, P., Meng, X., Nicolae, D., and Tan, Z. (2003), “A Theory
of Statistical Models for Monte Carlo Integration,” Journal of the Royal
Statistical Society, Series B, 65, 585–604. [1352]

Liang, F., Liu, C., and Carroll, R. J. (2007), “Stochastic Approximation in Monte
Carlo Computation,” Journal of the American Statistical Association, 102,
305–320. [1351,1356]

Liu, J. (2008), Monte Carlo Strategies in Scientific Computing, New York:
Springer Verlag. [1355]

Oh, M., and Berger, J. (1993), “Integration of Multimodal Functions by Monte
Carlo Importance Sampling,” Journal of the American Statistical Associa-
tion, 88, 450–456. [1350,1351,1356]

Owen, A., and Zhou, Y. (2000), “Safe and Effective Importance Sam-
pling,” Journal of the American Statistical Association, 95, 135–143.
[1351,1352,1353,1355,1356,1361]

——— (1999), “Adaptive Importance Sampling by Mixtures of Products of
Beta Distributions,” Technical Report No. 1999-1, Department of Statistics,
Stanford University. [1350]

Raghavan, N., and Cox, D. (1998), “Adaptive Mixture Importance Sam-
pling,” Journal of Statistical Computation and Simulation, 60, 237–260.
[1351,1352,1357,1361]

Robert, C., and Casella, G. (2004), Monte Carlo Statistical Methods, New York:
Springer Verlag. [1351]

Rothenberg, T. (1984), “Approximating the Distributions of Econometric Esti-
mators and Test Statistics,” in Handbook of Econometrics (Vol. 2), eds. Z.
Griliches and M. D. Intriligator, Amsterdam: North Holland, pp. 881–935.
[1354]

Rubinstein, R., and Kroese, D. (2008), Simulation and the Monte Carlo Method,
Hoboken, NJ: Wiley. [1351,1355]

Smith, P., Shafi, M., and Gao, H. (1997), “Quick Simulation: A Review of Im-
portance Sampling Techniques in Communications Systems,” IEEE Journal
on Selected Areas in Communications, 15, 597–613. [1350]

Tan, Z. (2004), “On a Likelihood Approach for Monte Carlo Inte-
gration,” Journal of the American Statistical Association, 99, 1027–
1036. [1351,1352,1353,1355,1356,1361]

van der Vaart, A. (2000), Asymptotic Statistics, Cambridge: Cambridge Univer-
sity Press. [1362,1364]

van der Vaart, A., and Wellner, J. (1996), Weak Convergence and Empirical
Processes, New York: Springer Verlag. [1362]

Veach, E., and Guibas, L. (1995), “Optimally Combining Sampling Tech-
niques for Monte Carlo Rendering,” in Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, pp. 419–
428. [1350,1351,1352]

West, M. (1993), “Approximating Posterior Distributions by Mixture,” Journal
of the Royal Statistical Society, Series B, 55, 409–422. [1350,1356]

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 1

6:
30

 2
8 

Ja
nu

ar
y 

20
14

 


	Two-Stage Importance Sampling With Mixture Proposals
	INTRODUCTION
	REVIEW OF IS TECHNIQUES
	Mixture Importance Sampling
	Stratified Sampling
	Importance Sampling With Control Variates
	Likelihood Approach

	TWO-STAGE PROCEDURE
	The Algorithm
	Theoretical Properties

	EXTENSION TO RATIO ESTIMATORS
	Extension of IS Techniques to Ratio Estimators
	Two-Stage Procedure For Ratio Estimators
	Consideration of Selecting Component&break; Proposal Distributions

	EMPIRICAL STUDIES
	SUMMARY
	APPENDIX A. PROOF OF RESULTS
	APPENDIX B. VARIANCE MATRICES FOR &walpha;


