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A Latent Source Model to Detect Multiple Spatial
Clusters With Application in a Mobile Sensor Network

for Surveillance of Nuclear Materials
Jerry Q. CHENG, Minge XIE, Rong CHEN, and Fred ROBERTS

Potential nuclear attacks are among the most devastating terrorist attacks, with severe loss of human lives as well as damage to infrastructure.
To deter such threats, it becomes increasingly vital to have sophisticated nuclear surveillance and detection systems deployed in major
cities in the United States, such as New York City. In this article, we design a mobile sensor network and develop statistical algorithms
and models to provide consistent and pervasive surveillance of nuclear materials in major cities. The network consists of a large number
of vehicles on which nuclear sensors and Global Position System (GPS) tracking devices are installed. Real time sensor readings and GPS
information are transmitted to and processed at a central surveillance center. Mathematical and statistical analyses are performed, in which
we mimic a signal-generating process and develop a latent source modeling framework to detect multiple spatial clusters. A Monte Carlo
expectation-maximization algorithm is developed to estimate model parameters, detect significant clusters, and identify their locations and
sizes. We also determine the number of clusters using a modified Akaike Information Criterion/Bayesian Information Criterion. Simulation
studies to evaluate the effectiveness and detection power of such a network are described.

KEY WORDS: AIC and BIC criteria; Cluster detection; EM algorithm; Likelihood inference; MCMC algorithm; Nuclear detection and
surveillance.

1. INTRODUCTION

Since the attacks of September 11, 2001, homeland security
has garnered increased attention of ordinary people and it has
become one of the top priorities of the United States govern-
ment. Among all the possible attacks by terrorists, nuclear attack
is potentially the most devastating, and the global proliferation
of nuclear weapon technology has made the threat increasingly
serious. The U.S. government has made significant efforts to
curb nuclear proliferation. In spite of many accomplishments,
no effort can give full assurance against a clandestine delivery
of a nuclear weapon for a terrorist attack. The graveness of such
a cataclysmic possibility is apparent. As part of the effort, the
Domestic Nuclear Detection Office (DNDO) within the Depart-
ment of Homeland Security (DHS) was established in 2005 to
improve the nation’s capability to detect and collect informa-
tion on unauthorized attempts to import, possess, store, develop,
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or transport nuclear or radiological material for use against the
United States. The DNDO, in partnership with the National Sci-
ence Foundation (NSF), has supported the Academic Research
Initiative (ARI) program in frontier research at academic in-
stitutions focusing on detection systems, individual sensors, or
other research that is potentially relevant to the detection of
nuclear weapons, special nuclear material, radiation dispersal
devices, and related threats. The Center for Discrete Mathemat-
ics and Theoretical Computer Science (DIMACS) of Rutgers
University, through the involvement of the DHS University Cen-
ter of Excellence, for Command, Control, and Interoperability
(CCICADA), which is based at DIMACS, has led a multi-
institution research project on nuclear detection supported by
DNDO and this article describes one of the research thrusts of
this project.

This article focuses on one of the aspects of detecting nuclear
materials using a fleet of mobile radiation sensors in metropoli-
tan areas. Major cities are attractive targets for terrorists because
of their dense population and economic importance. However,
a major city spreads throughout a large geographic area and is
difficult to monitor and patrol. It is important to develop effec-
tive detection and surveillance methods to overcome or mitigate
such difficulties. Throughout the article, we will use the generic
term “nuclear detection” to include detection of any radiation-
emitting materials of concern. Often, the nuclear and radio-
logical materials of particular concern are radiation dispersion
devices (RDDs), more commonly known as dirty bombs, and
special nuclear materials (particularly highly enriched uranium
and weapons-grade plutonium) that could provide the fissile
material for a nuclear weapon.

When a hidden stationary or moving nuclear source emits
radioactive energy to its immediately surrounding area, a sensor

© 2013 American Statistical Association
Journal of the American Statistical Association

September 2013, Vol. 108, No. 503, Applications and Case Studies
DOI: 10.1080/01621459.2013.808945

902

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 1

6:
32

 2
8 

Ja
nu

ar
y 

20
14

 

mailto:jcheng1@rwjms.rutgers.edu
mailto:mxie@stat.rutgers.edu
mailto:rongchen@stat.rutgers.edu
mailto:froberts@dimacs.rutgers.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1080/01621459.2013.808945


Cheng et al.: A Latent Source Model to Detect Multiple Spatial Clusters 903

for nuclear detection within a certain range of the source would
be activated and send out warning signals (though it is also
possible for a sensor to send a false alarm). If there are multiple
sensors nearby, a cluster of activated sensors will be formed
around the source. The cluster is often visible when plotted on
a map, and it can in turn help reveal the location of the hidden
source with high accuracy. This consideration translates the
hidden source detection problem into a visible cluster detection
problem. Statistically, we inspect the entire region of interest,
and test whether one or more spatial clusters exist in the region
and whether or not the spatial clusters are statistically significant
against random false alarms and noise in the signals. The center
of the detected cluster is often used as an estimate of the location
of the nuclear source.

Traditionally scan statistics are used to detect a clus-
ter of events in spatial data (Glaz and Balakrishnan 1999;
Balakrishnan and Koutras 2001; Glaz, Naus, and Wallenstein
2001; Fu and Lou 2003). The most commonly used scan statis-
tic is the maximum number of events within a fixed size window
that scans through the study area. Based on scan statistics, a gen-
eralized likelihood ratio test has been developed to test the null
hypothesis that all signals are uniformly distributed in the area
(the case of no cluster) (Naus 1966). Other scan statistics and
related likelihood-based tests for localized temporal or spatial
clustering have been developed, often using a range of fixed
window sizes or a range of fixed number of cases (Dembo and
Karlin 1992; Kulldorff and Nagarwalla 1995; Su, Wallenstein,
and Bishop 2001; Naus and Wallenstein 2004). Scan statistics
methods have also been developed under the Bayesian frame-
work (Lawson 1995; Gangnon and Clayton 2000; Denison and
Holmes 2001; Gangnon and Clayton 2003).

Scan statistics procedures are very effective in detecting a
single significant cluster, and they also have had some success
in detecting multiple clusters of fixed sizes. But they are not par-
ticularly suitable for detecting multiple clusters of varying sizes
(see, e.g., Xie, Sun, and Naus 2009). In recent years, several
model-based procedures have been developed to detect multi-
ple clusters of varying sizes. For instance, Demattei, Molinari,
and Daures (2006, 2007) proposed a stepwise regression model
combined with model selection procedures to locate and deter-
mine the number of clusters. This method relies on a weighted
least-square formulation, although the response variable (gaps
between incidents) is typically non-Gaussian. Xie, Sun, and
Naus (2009) developed a latent source cluster model for tempo-
ral data, which uses standard likelihood inference for detecting
multiple clusters. Sun (2008) extended the approach to spatial
data. Based on likelihood inference, the latent source model ap-
proach is more efficient in detecting clusters of varying sizes
than the weighted least-square approaches.

Another class of statistical methods for detecting a cluster
of events is the “disease mapping” type of approaches both in
Bayesian and frequentist paradigms; see, for example, Lawson
(1995), Waller et al. (1997), Ghosh et al. (1999), Knorr-Held and
RaBer (2000), and Diggle, Rowlingson, and Sun (2005). These
approaches consider intensity functions (i.e., local density es-
timates of intensities) and they do not directly make inference
about clusters. To detect clusters, the “disease mapping” ap-
proaches rely on a certain choice of threshold, which is often

subjective. In addition, Dirichlet process (DP) models (Ferguson
1973; Lo 1984; Escobar and West 1995; Neal 2000; Teh et al.
2006; McCullagh and Yang 2008) have been developed and
applied in clustering problems. As a Bayesian nonparametric
density estimation method, DP is another potentially powerful
approach for cluster detection and would be an interesting re-
search topic for further study. Our approach is more parametric
in nature.

In this article, we design a mobile sensor network for surveil-
lance of nuclear materials in a metropolitan area. The network
consists of a large number of moving vehicles, such as taxi-
cabs, police cars, fire trucks, and other participating private and
public vehicles, on which nuclear sensors and Global Position
System (GPS) tracking devices are installed. Real time sensor
readings are processed at a central surveillance center, where
the data are analyzed to detect significant clusters of signals
that might indicate the locations of nuclear sources. We further
develop and expand the latent source model method developed
by Xie et al. (2009) and Sun (2008) and use likelihood in-
ference to detect multiple clusters simultaneously in a region.
Instead of only considering positive signals and treating the neg-
ative ones as background, our model uses the information from
both positive and negative signals and achieves higher power
in detecting sources. This method is suitable to analyze signals
from the proposed mobile sensor framework and reduce false
alarms.

Note that it is often difficult to model accurately the move-
ments of the nuclear sources and the sensors, since it is difficult
to model or track the destination and intention of each driver or
terrorist. In our data analysis, we do not consider motion models
for either the nuclear sources (i.e., terrorist movement) or the
sensors (i.e., the movements of taxicabs, etc.), and the statisti-
cal analysis is performed based on data collected at each fixed
time point. A sequence of data analyses in consecutive times
(e.g., every 30 sec or every 1 min, say) can then form a dy-
namic surveillance—just like the movement in a movie, which
is formed from stationary film frames. This approach is robust
against potential model misspecification of the movements of
the nuclear sources and the sensors. It is applicable to detect
both stationary and moving sources.

The rest of the article is arranged as follows. Section 2 be-
gins with a prototype of a mobile sensor network and considers
related models for nuclear intensity, sensor reading, and detec-
tion. Section 3 provides a latent source model, a likelihood-
inference-based methodology, and an EM/Markov chain Monte
Carlo (MCMC) algorithm to detect clusters and make infer-
ence based on information (sensor signals and their locations)
collected at each fixed time point. The section concludes with
an additional development in detection using mixed-type sen-
sors. Section 4 describes simulation studies on several practical
scenarios, where detection power of the network is estimated
under various sets of parameters. In this section, to generate
data that simulate city traffic, we introduce a movement model
with a constraint that vehicles can only travel on street grids,
though the data analysis is based on the development in Sec-
tions 2 and 3 and does not depend on the movement model. Sec-
tion 5 concludes the article with discussion and future research
directions.
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2. NUCLEAR DETECTION USING A MOBILE
SENSOR NETWORK

2.1 Mobile Sensor Network Prototype

Proactive monitoring and detection via pervasive surveillance
is crucial to detect and thwart malicious attacks in major cities.
Here, we propose a prototype of a mobile sensor network as
follows:

(i) Inexpensive nuclear sensors and GPS tracking devices
are mounted on a large number of vehicles, such as
police cars, taxicabs, fire trucks, buses, and other partic-
ipating vehicles.

(ii) The sensors and GPS devices constantly send detec-
tion signals and location information to a central com-
mand center. These signals are marked onto a map of a
metropolitan area under surveillance.

(iii) Real time analysis is performed at the command center
using sophisticated statistical algorithms including the
latent source modeling method discussed in this article
to detect and pinpoint nuclear sources.

(iv) Sensors and the control center are periodically serviced
and calibrated to ensure validity and accuracy.

The advantage of a mobile network over a static surveil-
lance network is multifold. First, due to mobility, the failure
of a portion of the sensors will not have significant impact on
the surveillance coverage, while any sensor failure in a static
network will create blind spots. Second, the locations of blind
spots in a static network are unknown since a failed sensor often
would send in negative signals. On the other hand, the blind
spots of a mobile network (where vehicles cannot reach) can
be covered with a small number of static sensors. Third, mobile
sensors may not need to be highly reliable and of large range,
due to their mobility, while static sensors would need to be
more reliable and powerful to maintain the coverage. Since our
sensors are vehicle mounted, their size and power requirements
will not be high. Hence, inexpensive sensors could be deployed.
Fourth, mobile sensors can be inspected and calibrated during
vehicle inspection and routine maintenance, while static sensors
can only be serviced by visits of maintenance personnel to their
physical locations. Fifth, it is almost impossible to tamper with
a mobile sensor network, while a static network can be an easy
target.

Due to these attractive characteristics, there have been many
studies and applications of sensor networks in military and civil
applications, including surveillance, smart homes, and remote
environment monitoring (Akyildiz et al. 2002a, 2002b). Much of
the research is devoted to sensor placement, sensor reorganiza-
tion, and communications. In the area of radiation detection, the
idea of using a network of mobile sensors has been adopted and
tested by the Radiation Laboratory at Purdue University 2008.
They used a network of cell phones with GPS capabilities to de-
tect and track radiation. The noise and false positive detection
problems were tackled by setting and tuning solid-state devices.
A multisensor nuclear threat detection problem was studied in
Hochbaum (2009) using a combinatorial network flow algo-
rithm, in which the main research objective is the development
of a fast algorithm for detection with mobile sensors (such as
taxicabs) instead of the efficient use of data information. In this

article, we use a latent source modeling method for source de-
tection. This statistical approach is effective at detecting true
signals against random errors and thus reducing false alarms.

2.2 Nuclear Intensity, Sensor Reading,
and Detection Models

In this article, we consider the source as a portable nuclear
device transported by an individual via vehicles or bags (FEMA
2008). As nuclear radiation emits from a source, its total energy
denoted as E remains constant due to the Energy Conservation
Law. Following Wein et al. (2006) and many others, we assume
that radiation travels in spherical waves. Let z(ρ) be the nuclear
energy intensity at distance ρ from the source, therefore,

z(ρ) = E

4πρ2
≡ c

ρ2
,

where c ≡ E/4π is a constant factor related to the total energy
of the source. The radiation intensity decreases by the inverse
square of distance to the source.

In the following, we establish the behavior of a signal detec-
tion sensor based on the above physical principle. We assume all
sensors are independent, following an identical model related to
their locations. Suppose a nuclear detection sensor is triggered
when the radiation intensity it receives exceeds a certain thresh-
old. For low-cost sensors that can be economically distributed
in large quantity, numerical readings are often not very accurate.
Instead a binary signal mechanism is cheaper to design with low
cost of maintenance. As a result, a binary sensor outcome model
obtained by thresholding (Stroud and Saeger 2003; Boros et al.
2009; Elsayed et al. 2009) is adopted here. Specifically, let R
denote the reading status of the sensor with a value of 1 for a
positive reading and 0 otherwise. We describe R with a threshold
model:

R = 1{z(ρ)≥h} = 1{c/ρ2≥h}, (1)

where h is a threshold for detection and 1{.} is the indicator
function. That is, if the intensity z(ρ) at the sensor location is
greater than or equal to the threshold h, the sensor reports a
detection; otherwise the sensor reports a negative reading.

In the case when there are multiple nuclear sources, their
energy levels and positions will jointly determine the reading
status of a sensor. Let � be the number of sources and cγ be the
energy factor of the γ th source. When sources have different
energy spectra, they will activate a sensor independently. In this
case, the threshold model is

R = 1{maxγ∈{1,...,�} zγ (ργ )≥h} = 1{maxγ∈{1,...,�} cγ /ρ2
γ ≥h}, (2)

where ργ is the distance of the γ th source to the sensor and
zγ (ργ ) is its corresponding intensity. When the sources assume
the same energy spectrum, intensities from all sources at the
sensor location are aggregated: ztotal = ∑�

γ=1 cγ /ρ2
γ . Then the

reading R can be determined by

R = 1{ztotal≥h} = 1{∑�
γ=1 cγ /ρ2

γ ≥h}. (3)

As with any detection device, a nuclear sensor may not be
100% accurate. A sensor might display positive readings when
there is no nuclear source nearby (false positive), or fail to de-
tect a real source (false negative). This is unavoidable even for
expensive and highly accurate sensors and in particular for our
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study with a massive number of relatively inexpensive sensors.
The sensor errors can be from the variability in the manufac-
turing process, routine wear and tear, missing scheduled main-
tenance and calibrations, and other malfunctions. In addition,
random traces of weak environmental nuclear signals can also
trigger false alerts. Furthermore, wireless signals from a mobile
sensor to the control center may incur transmission errors. We
use two parameters, sensitivity η and specificity ζ , to measure
the average performance of a sensor device.

Specially, let D be the binary indicator of a sensor signal, with
a value of 1 for a positive detection and 0 otherwise. We have

η = P (D = 1|R = 1) and ζ = P (D = 0|R = 0). (4)

The terms 1 − η and 1 − ζ correspond to false negative rate
(FNR) and false positive rate (FPR), which are quality charac-
teristics of a sensor. Then the probability of a positive detection
is

P (D = 1) = P (D = 1|R = 1)P (R = 1)

+P (D = 1|R = 0)P (R = 0)

= ηP (R = 1) + (1 − ζ )(1 − P (R = 1))

= (1 − ζ ) + (ζ + η − 1)P (R = 1). (5)

Under the perfect scenario where both η and ζ are 1, P (D =
1) is the same as P (R = 1). Realistically, both of them are less
than 1. It is noted that η and ζ may depend on the source and its
energy spectra. Furthermore, both of them are fixed and often
unknown constant parameters for any given nuclear source.

2.3 Detection of Nuclear Sources and the Statistical
Problem of Cluster Detection

The sensor physical reading models (1)–(5) about sensor read-
ings in Section 2.2 can be connected to the latent source clus-
ter detection problem in statistics. For instance, with a single
source, the threshold model (1) can be expressed as R = 1{I },
where I = {ρ ≤ (c/h)1/2} is a sphere, or a circle on a two-
dimensional map, centering at the nuclear source and with a
radius (c/h)1/2. From (4) the ratio of the probabilities of a pos-
itive reading inside and outside the set I is

α = P (D = 1|I )

P (D = 1|Ī )
= P (D = 1|R = 1)

P (D = 1|R = 0)
= η

1 − ζ
. (6)

Assume that η + ζ > 1 (which is a condition satisfied by almost
all commercially available detection devices), we have α > 1.
Thus, formula (6) states that a sensor is α times more likely to
report a positive signal (D = 1) inside I than outside I. This
statement matches exactly the underlying concept of a spatial
cluster in many statistics developments, which is defined as an
area within which an incident of interest is more likely to happen
(i.e., with a higher probability of happening per unit of area)
than outside of the area (Kulldorff and Nagarwalla 1995;
Gangnon and Clayton 2000; Xie et al. 2009). Here, an inci-
dent of interest is an alert signal with D = 1. Thus, the sensor
reading models presented in this section link us to a statistical
cluster detection problem.

A similar connection can be explored in the presence of mul-
tiple nuclear sources at different locations. The motivation for
simultaneous detection of multiple sources is the fact that it is
possible for terrorists to plant multiple nuclear materials in an

urban region at the same time but at different places. Such a
plot may induce more severe damage and make prevention and
rescue efforts more difficult.

3. LATENT SOURCE MODELING PROCEDURES
FOR SOURCE DETECTION

Assume that there are k stationary or moving nuclear sources
in a given two-dimensional rectangular region, I = (0, L) ×
(0,W ), where L is the length and W is the width. Suppose
that the jth source (j = 1, . . . , k) is located at oj and has a
strength that can be effectively detected by a sensor within a
distance of rj . If the distance of a sensor to oj is less than rj ,
the sensor would generate a positive reading (subject to false
negative errors). Denote by cluster Ij the circle centering at oj

with radius rj . Also define a 2 × k matrix O = (o1, . . . , ok) and
a vector r = (r1, . . . , rk) as the collection of locations and sizes
(radii) of clusters. For simplicity, we assume in this article that
these k clusters are not overlapping; see sec. 6 and chap. 5 of
Cheng (2010) for discussions of overlapping cases. Outside the
k clusters, a sensor is far away from nuclear sources and would
have a negative reading (subject to false positive errors).

We treat O and r as latent random variables and assume that
cluster centers follow a density function ψo(·; λo) and radii a
density function ψr (·; λr ). Here, λo and λr are unknown param-
eters jointly denoted by λ = (λo, λr ), while ψo and ψr are their
density functions, respectively. We use a uniform distribution
on I for ψo(·; λo) and a truncated exponential distribution for
ψr (·; λr ). Other choices for ψr (·; λr ) are inverse Gamma or log-
normal distributions (see, e.g., Sun 2008). Let �k be the set of
(O, r) such that the k clusters specified by (O, r) are nonover-
lapping. Given that there are k nonoverlapping clusters, the joint
conditional likelihood function of (O, r) is

fλ(O, r|k) =
∏k

j=1{ψo(oj ; λo)ψr (rj ; λr )}1{(O,r)∈�k}
Cλ,k

, (7)

where Cλ,k is the normalization constant for the truncated den-
sity.

Assume that there are N sensors. Let yi , a two-dimensional
vector, be the location of the ith sensor (i = 1, . . . , N ), and δi be
its detection status indicator with value of 1 if the sensor sends a
positive signal and 0 a negative one. Let Y = {y1, . . . , yN } and
δ = {δ1, . . . , δN }. Also, extending (4) to multiple sources, we
define the sensitivity related to the jth cluster ηj for j = 1, . . . , k

and specificity ζ as

ηj = P (δi = 1|yi ∈ Ij ) and ζ = P

⎛⎝δi = 0|yi /∈
k⋃

j=1

Ij

⎞⎠
for i = 1, . . . , N. (8)

Let η = (η1, . . . , ηk). As in the case of a single source, we treat η
and ζ as unknown parameters to be estimated. Here, each of the
k elements in η reflects a sensitivity related to a particular source,
while we retain a single parameter ζ because it relates to the
region outside of all the k clusters. Under (8) and extending (6),
the ratio of the probabilities of a positive reading inside Ij and
outside of all clusters (i.e., the background) is αj = ηj/(1 − ζ ).
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Given the locations O and the sizes (radii) r of the clusters
corresponding to the k sources, (y1, δ1), . . . , (yN, δN ) are an
independently identically distributed (iid) sample of size N from
a density function,

fη,ζ (y, δ|O, r, k) = fη,ζ (δ|y, O, r, k)f (y|O, r, k)

= fη,ζ (δ|y, O, r, k)f (y)

= [ζ 1−δ(1 − ζ )δ]1{y/∈⋃k
j=1 Ij }

×
k∏

j=1

[
ηδ

j (1 − ηj )1−δ
]1{y∈Ij }

f (y), (9)

where f (y) is the density function of the sensor location, which
is assumed to be unrelated to the sources. We consider a hypoth-
esis testing problem—H0: η1 = · · · = ηk = 1 − ζ versus H1: at
least one ηj �= 1 − ζ . Note that under the null hypothesis H0,
the joint density function in (9) is reduced to ζ 1−δ(1 − ζ )δf (y).
In this case, the sensor detection indicator is independent of the
sensor’s location, implying that there is no source in the region.

For given k clusters, the proposed latent source model can be
expressed using a hierarchical structure,

Level 1: yi , δi |O, r ∼ Model (9), for i = 1, 2, . . . , N ;
Level 2: oj |λo ∼ ψo(·) and rj |λr ∼ ψr (·),

for j = 1, 2, . . . , k and (O, r) ∈ �k. (10)

If further imposing prior distributions on the parameters η, ζ , and
λ, we obtain a corresponding Bayesian model with an additional
third level to (10):

Level 3: ζ ∼ πζ (·), λo ∼ πλo
(·), λr ∼ πλr

(·),
and ηj ∼ πη(·), for j = 1, 2, . . . , k, (11)

where πη, πζ , πλo
, and πλr

are the priors for ηj , ζ , λo, and λr ,
respectively. If flat priors are used, the results from the likeli-
hood inference using hierarchical model (10) are often the same
as or similar to the ones using the Bayesian hierarchical model
(11). We also note that there are other formulations for the same
detection problem, for example, those using Poisson assump-
tions or Bayesian state-space models. Here, we use the current
formulation to turn the nuclear detection problem into a formal
statistical testing problem without involving thresholding.

To simplify our inference, we first treat the number of clusters
k as given and known; Section 3.2.2 provides modified Akaike
Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) to determine k when it is unknown. Alternatively
in the Bayesian approach, some authors such as Rodriguez,
Sunson, and Gelfand (2008) directly used a nested DP prior
to place a collection of distributions on different clusters. The
approach allows for simultaneously clustering groups and ob-
servations within groups, and the groups are clustered by their
entire distribution, rather than by particular features of the dis-
tribution. Its outcomes may be sensitive to a particular choice of
the Dirichlet prior and caution should be applied. This is an in-
teresting approach and its potential use in our problem requires
further study.

The proposed latent source model is connected to the mod-
els considered in the scan statistic literature, though ours is
significantly different. Our setting is very different from the
typical epidemiology setting for the use of scan statistic, such as
Glaz, Naus, and Wallenstein (2001) and Sun (2008), where the

population density is high and the disease is rare (comparing
to population). In their case, even in the center of the disease
cluster, the ratio of positives to the population density is ex-
tremely small. Hence, the distribution of negatives is essentially
the same inside or outside the cluster. Under such a setting, the
negative signals can be ignored. In our case, we do not have a
dense population of sensors. Within the detection region of the
source, the FNR is not very high, so there is a significant differ-
ence, in terms of negative signals, inside or outside the detection
region. As a result, we cannot ignore the negative signals in our
study.

We develop our inference framework based on the hierarchi-
cal model (10) with known k. From this model, the conditional
joint distribution function of (y1, δ1), . . . , (yN, δN ), when given
k, O, r, and (O, r) ∈ �k , is

fη,ζ (Y, δ|O, r, k)

=
N∏

i=1

fη,ζ (yi , δi |O, r, k)

= exp

⎧⎨⎩
k∑

j=1

Zj log ηj +
k∑

j=1

Z∗
j log(1 − ηj )

+
⎛⎝n∗ −

k∑
j=1

Z∗
j

⎞⎠ log ζ +
⎛⎝n −

k∑
j=1

Zj

⎞⎠ log(1 − ζ )

+
N∑

i=1

log f (yi)

}
, (12)

where Zj = ∑N
i=1 δi1{yi∈Ij }, Z∗

j = ∑N
i=1(1 − δi)1{yi∈Ij }, n =∑N

i=1 δi , and n∗ = ∑N
i=1(1 − δi) are the number of positive

readings inside the jth cluster, the number of negative read-
ings inside the jth cluster, the total number of positive readings,
and the total number of negative readings, respectively. With ob-
serving (Y, δ, k), the observed likelihood function of the above
model is

l(θ) = fθ (Y, δ, k) =
∫

. . .

∫
fθ (Y, δ, O, r, k)dOdr, (13)

where θ = (η, ζ,λ) and the integrand is the joint density of the
complete data (Y, δ, O, r, k):

fθ (Y, δ, O, r, k)

= fη,ζ (Y, δ|O, r, k)fλ(O, r, k)

= exp

⎧⎨⎩
k∑

j=1

Zj log ηj +
k∑

j=1

Z∗
j log(1 − ηj )

+
⎛⎝n∗ −

k∑
j=1

Z∗
j

⎞⎠ log ζ +
⎛⎝n −

k∑
j=1

Zj

⎞⎠ log(1 − ζ )

+
N∑

i=1

log f (yi)

}
k∏

j=1

{ψo(oj )ψr (rj )}1{(O,r)∈�k}.

3.1 Estimation of Model Parameters and Locations
of Clusters

3.1.1 Monte Carlo EM Algorithm for Model Estimation.
Since the log-likelihood l(θ ) from (13) involves multiple

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 1

6:
32

 2
8 

Ja
nu

ar
y 

20
14

 



Cheng et al.: A Latent Source Model to Detect Multiple Spatial Clusters 907

integrations, it is difficult to compute its value and its first and
second derivatives directly. We instead implement a Monte
Carlo expectation-maximization (MC-EM) algorithm (see, e.g.,
Tanner 1993, sec. 4.5) where we treat (Y, δ, O, r, k) as the com-
plete data and (Y, δ, k) as the observed data. The steps of the
algorithm are as follows.

Step 0. Set s = 0 and select a set of starting parameter values
θ (0) = (η(0), ζ (0),λ(0)).

Step 1 (E-step). Calculate the conditional expectation of the
complete log-likelihood function, given the observed
observations and θ = θ (s):

Q
(
θ |θ (s)) = Q1

(
η, ζ

∣∣η(s), ζ (s)
) + Q2

(
λ
∣∣λ(s)

)
,

(14)

where

Q1
(
η, ζ |η(s), ζ (s))

=
k∑

j=1

E
{
Zj |Y, δ, k, η(s), ζ (s)

}
log ηj

+
k∑

j=1

E
{
Z∗

j |Y, δ, k, η(s), ζ (s)
}

log(1 − ηj )

+
⎛⎝n∗ −

k∑
j=1

E
{
Z∗

j |Y, δ, k, η(s), ζ (s)
}⎞⎠ log ζ

+
⎛⎝n −

k∑
j=1

E
{
Zj |Y, δ, k, η(s), ζ (s)

}⎞⎠
× log(1 − ζ ),

Q2
(
λ
∣∣λ(s)

)
=

k∑
j=1

E
{
log ψo(oj )|Y, δ, k, λ(s)

o

}
+

k∑
j=1

E
{
log ψr (rj )|Y, δ, k, λ(s)

r

}
.

Step 2 (M-step). Update the parameter estimates: θ (s+1) =
(η(s+1), ζ (s+1),λ(s+1))′, by maximizing the Q1(η,

ζ |η(s), ζ (s)), and Q2(λ|λ(s)) functions: (η(s+1),

ζ (s+1)) = argmax Q1(η, ζ |η(s), ζ (s)), and λ(s+1) =
argmaxQ2(λ|λ(s)).
Stop if ‖θ (s+1) − θ (s)‖ is very small (the criterion that
we have used is less than ε(‖θ s‖ + ε) with ε = 10−3).

Step 3. Increase s by 1 and go back to Step 1.

The conditional expectations in the E-step of the EM algo-
rithm do not usually have explicit form. To solve this problem,
we use a Monte Carlo method. In particular, we use Gibbs and
importance sampling methods to generate clusters one at a time.
That is, we generate samples of the jth cluster from its full con-
ditional distribution given the rest of the clusters:

fθ ((oj , rj )|(ol , rl), l = 1, . . . , k, l �= j, Y, δ, k)

∝ fθ (Y, δ, O, r, k)

∝
(

ηj

1 − ζ

)Zj
(

1 − ηj

ζ

)Z∗
j

ψλo
(oj )ψλr

(rj )1{(O,r)∈�k}. (15)

Since it is still difficult to directly generate samples from (15),
we adopt an importance sampling approach. With that, it is easy
to simulate a (oj , rj ) from ϕλo

(oj )ϕλr
(rj ). Specifically, we sim-

ulate a large number, say S, of random deviates (oj , rj )[s](s =
1, . . . , S) from the prior distribution ϕλo

(oj )ϕλr
(rj ). For each s,

compute weight

ws =
(

ηj

1 − ζ

)Z
[s]
j
(

1 − ηj

ζ

)Z∗
j

[s]

1{(O[s],r[s])∈�k},

where Z
[s]
j , Z∗

j
[s], and 1{(O[s],r[s])∈�k} are calculated with

(O[s], r[s]) = {(oj , rj )[s], (ol , rl), l = 1, . . . , k, l �= j}. We then
choose one (oj , rj ) among the S sets (oj , rj )[1],...,(oj , rj )[S]

with respective probabilities (p1, . . . , pS), where ps =
ws/

∑S
s=1 ws . The sample set {(oj , rj ) : j = 1, . . . , k} forms

a Gibbs sample that is used to calculate the conditional expec-
tations in the E-step.

3.1.2 Identification of Cluster Regions. In nuclear detec-
tion, a primary goal is to identify regions of the sources de-
termined by the centers and radii: {(oj , rj ) : j = 1, . . . , k}.
Their conditional expectations given (Y, δ, k) (similar to
“posterior means” in the context of Bayesian statistics) are
E{oj |Y, δ, k}|θ=θ̂ and E{rj |Y, δ, k}|θ=θ̂ , where θ̂ is obtained
from the MC-EM algorithm. They can be estimated by their
sample means or medians if their distribution is not symmetric.

3.2 Likelihood Ratio Test and Determination
of the Unknown Number of Clusters

3.2.1 Likelihood Ratio Test of Significant Clusters. For a
fixed k, we obtain k clusters from the aforementioned estimation
procedures. An interesting problem is to check whether any
of the k sources is significant, or equivalently, to determine
whether any of the detected sources is due to random noise in the
context of nuclear detection. In particular, we test a hypothesis
about the parameter set (η, ζ ), that is, H0: η1 = · · · = ηk =
1 − ζ versus H1: at least one ηj �= 1 − ζ . We propose to use the
log-likelihood ratio test statistic

�(Y, δ, k)

= log

⎧⎨⎩
max
H1∪H0

fθ (Y, δ, k)

max
H0

fθ (Y, δ, k)

⎫⎬⎭
= log

∫ ∫
fη̂,̂ζ (Y, δ|O, r, k)fλ̂(O, r|k)dOdr + log Cλ̂,k

−
[
n log n + n∗ log n∗ − (n + n∗) log(n + n∗)

+
N∑

i=1

log f (yi)

]
,

where θ̂ = (̂η, ζ̂ , λ̂)T are the nonrestricted maximum-likelihood
estimations (MLEs; under H1

⋃
H0) estimated from the afore-

mentioned MC-EM algorithm, and Cλ̂,k
is the normalization

constant in the truncated density (7) under the MLE λ̂. This
test statistic also involves multiple integrations and it is
difficult to evaluate. We again use a Monte Carlo method.
In particular, we note that fλ(O, r|k)/fλ(O, r, k) = 1/Cλ,k

and, given λ, fλ(O, r|k) is easy to simulate from. We use a
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rejection sampling approach to simulate M sets of samples, say,
(O(l), r(l)), l = 1, . . . ,M , from fλ(O, r|k), with fλ(O, r, k) be-
ing the candidate distribution. The acceptance rate of this rejec-
tion sampling method is Cλ,k , and its empirical acceptance rate,
say r, can be used to estimate Cλ,k . Thus, we approximate � by

�∗ = log

[
1

M

M∑
l=1

fη̂,̂ζ (Y, δ|O(l), r(l), k)

]
+ log r

−
[
n log n + n∗ log n∗ − (n + n∗) log(n + n∗)

+
N∑

i=1

log f (yi)

]
. (16)

Since the parameters λ = (λo, λr ) are nuisance parameters
in the test and they only exist under the alternative hypothesis
H1, the likelihood test statistic does not follow the asymptotic
chi-squared distribution, and the usual chi-squared test is no
longer valid (Davies 1977, 1987). Following the suggestion of
(Davies 1987), we consider a simulation-based Monte Carlo
testing approach (Dwass 1957). Specifically, we sample L sets of
k clusters under the null hypothesis (no true sources in the study
region) and compute for each set the test statistic according to
(16). When L is large, the empirical distribution of these values
provides a good approximation to the theoretical distribution of
the test statistics �∗ under the null hypothesis. We thus obtain
the critical value from the L values for our simulation-based
Monte Carlo test.

3.2.2 Determination of the Unknown Number of Clusters.
The previous estimation and testing procedures are for a given
number of sources k. In reality, k is unknown and needs to be de-
termined from the observed data. We treat this as a model selec-
tion problem, and use the AIC criterion (Akaike 1974) and BIC
criterion (Schwarz 1978), two widely used approaches, for such
a purpose. However, when a model selection problem involves
missing (or latent) variables, a direct application of the usual
AIC or BIC criterion can be problematic; see Claeskens and
Consentino (2008). Our numerical studies (not reported in the
article) also confirm this observation. Claeskens and Consentino
(2008) proposed a modified AIC criterion to overcome the prob-
lem and demonstrated its superior performance in the case in-
volving missing (or latent) variables. In particular, using the
Kullback–Leibler distance to measure the distance between the
true data generating density and the model density used for de-
scribing the data, they derived a new criterion based on the Q
function in the EM algorithm. This requires no additional ef-
fort in our case since the Q function is available from the EM
algorithm in the model estimation step.

Following their approach, we use the modified AIC and BIC
criteria as

AIC(k)mod = −2Q1(̂η, ζ̂ |̂η, ζ̂ ) + 2(k + 3), (17)

BIC(k)mod = −2Q1(̂η, ζ̂ |̂η, ζ̂ ) + (k + 3) log(N ), (18)

where Q1(̂η, ζ̂ |̂η, ζ̂ ) is the Q function in (15) at the value of
the MLE (̂η, ζ̂ ) from the EM algorithm, k + 3 is the number of
parameters to be estimated. Given a dataset, several competing
models may be ranked according to their AIC or BIC values.

With the aforementioned estimation, testing, and model se-
lection steps, we summarize the approach for detecting clusters.
Denote by K a preselected set of k’s, which is computationally
manageable but large enough to cover all potential choices of
the correct number of clusters. For each k in K, we apply the
MC-EM algorithm to get the parameter estimates and calculate
the modified AIC or BIC values. With the modified AIC or BIC
values, we determine the number of clusters k. For the k cho-
sen by AIC or BIC, the source locations and impact ranges are
estimated and testings are performed.

3.3 Detection With Mixed-Type Sensors

The above method is based on the assumption that all sen-
sors have the same characteristics, such as error rates, detection
ranges, etc. In practice, we may use different types of sensors in
a mobile sensor network with different characteristics. For ex-
ample, conversations with law enforcement officials suggested a
possible combination of a large number of lower quality sensors
on a fleet of taxicabs and a limited number of higher quality
sensors on police vehicles. If there are m types of sensors, the
impact range of the jth nuclear source on the lth type sensors is
assumed to be

ρ
(l)
j = c(l)ρ

(1)
j , l = 2, . . . , m; j = 1, . . . , k,

where ρ
(1)
j is the reference, c(l) is the ratio of the source im-

pact range for the lth type sensors over that for the refer-
ence type sensors. We assume that c(l) is given and can be
obtained from manufacturer’s specification. The location and
reading status data from the m types of sensors are (Y,�) =
{(Y(1), . . . , Y(m)), (δ(1), . . . , δ(m))}, where Y(l) = (y(l)

1 , . . . , y(l)
Nl

)
is a 2 × Nl matrix denoting the set of Nl positions from the lth
type sensors and the vector δ(l) = (δ(l)

1 , . . . , δ
(l)
Nl

) denoting the
reading status for those sensors. For the lth type sensors, the
density function from (9) is modified as

fη(l),ζ (l) (y, δ|O, r, k)

= [(
ζ (l))1−δ(

1 − ζ (l))δ]1{y/∈⋃k
j=1 Ij }

×
k∏

j=1

[(
η

(l)
j

)δ(
1 − η

(l)
j

)1−δ
]1{y∈Ij }

f (y), (19)

where η(l) = (η(l)
1 , . . . , η

(l)
k ). Hence for each type of sensor, there

is a set of parameters to be estimated.
The conditional joint density function of Y,� given O, r and

k from (12) is modified as

fη,ζ (Y,�|O, r, k)

= exp

⎧⎨⎩
m∑

l=1

⎡⎣ k∑
j=1

Z
(l)
j log η

(l)
j +

k∑
j=1

Z∗
j

(l) log
(
1 − η

(l)
j

)

+
⎛⎝n∗(l) −

k∑
j=1

Z∗
j

(l)

⎞⎠ log ζ (l) +
⎛⎝n(l) −

k∑
j=1

Z
(l)
j

⎞⎠
× log

(
1 − ζ (l)) +

Nl∑
i=1

log f
(
yi

(l))⎤⎦⎫⎬⎭ , (20)
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where η = (η(1), . . . , η(m)), ζ = (ζ (1), . . . , ζ (m)), Z
(l)
j = ∑Nl

i=1

δ
(l)
i 1{y(l)

i ∈Ij }, and Z∗
j

(l) = ∑Nl

i=1(1 − δ
(l)
i )1{y(l)

i ∈Ij } are the num-
ber of positive and negative readings from the lth type sen-
sors inside the jth cluster, respectively, n(l) = ∑Nl

i=1 δ
(l)
i and

n∗(l) = ∑Nl

i=1(1 − δ
(l)
i ) are the total number of positive and neg-

ative readings from the lth type sensors, respectively.
The cluster detection steps using this model are similar to

those in Section 3 for the model with a single sensor type (9).
Details are omitted in this article and are available upon request.

4. SIMULATION STUDIES

In this section, we present simulation studies to demonstrate
that a mobile sensor network with analysis procedures using the
proposed latent source modeling method can effectively detect
either single or multiple nuclear sources. Intuitively, factors,
such as range, error rates, and number of sensors will directly
affect how well nuclear sources can be detected. These factors
form a set of network parameters, and we study how they relate
to the method’s performance in detecting nuclear sources. In
Section 4.1, we describe a Visual Basic graphical simulation

tool that we used to generate our data. In Section 4.2, we apply
the cluster detection methods developed in Section 3 to study
the signal data simulated using the graphical tool under various
scenarios.

4.1 Simulation Design and Evaluation

We designed a mobile sensor network in an area of similar
size as downtown Manhattan in New York City. The study re-
gion was set to an area of 25 by 25 blocks. Each block was a
square with side length of 200, which represents 200 feet in real
distance. To achieve this, a street grid-based graphical tool was
developed using Visual Basic Version 9.03 (Microsoft, Inc.) for
visualization of simulated traffic patterns in a metropolitan area.
The tool supports multiple control parameters such as numbers
of streets in either horizontal or vertical direction, size of street
blocks and types, quantities and speed of vehicles, a probabil-
ity of turning upon reaching an intersection, etc. Figure 1 is
a snapshot of the simulation tool. Since the number of regis-
tered taxicabs is more than 13,000 in New York City (Schaller
Consulting 2006), we assume that there are at least 1500 par-
ticipating vehicles (such as taxicabs, police cars, fire trucks,

Figure 1. Snapshot of the simulation tool.
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security cars, etc.) in the downtown area. In the simulation tool,
all vehicles are confined within the street grids.

In our simulation, the set of network parameters was selected
as follows. The source impact range is set to 150 or 200 feet,
roughly corresponding to 0.75 and 1.0 of a block length, re-
spectively. Note that current technology does not achieve such
high source impact range numbers, but we are seeking to un-
derstand the impact of potential future technology. The current
technology provides false alarm rates that are relatively low and
future technology can be expected to make them even lower.
Medalia (2010) reported that the number of false alarms in
2005 from the radiation sensors at the Lincoln Tunnel between
New York City and New Jersey were 50–60 out of 43 million
vehicles. And it is expected that the available detecting devices
will have less than 3% false alarm rate. Based on this, sensitivity
and specificity are set to (η, ζ ) = (0.95, 0.95) or (0.98, 0.98),
and the number of participating vehicles mounted with sensors
is set from 500 to 2500 with increments of 500. In summary,
there are two impact ranges, two error rates, and five sensor
numbers, from which we can construct 2 × 2 × 5 = 20 sets of
network parameters. For each set of parameters, we generated
random positions (on the street grids) of participating vehicles
and randomly placed a single or multiple sources anywhere in
the study region. For multiple sources, we assumed that they
had the same energy spectrum. Based on models (3) and (5),
we assigned a probability of positive detection for each sensor
and activated it accordingly. The positions of the sensors and
their nuclear detection signals, either positive or negative, were
collected. These geographic positions and the detection signals
formed an observed dataset. We then applied the proposed latent
source modeling approach to detect clusters. Simulations were
repeated 500 times in each setting of network parameters.

To measure performance in our simulation study, we consider
two criteria: (i) at least one of the clusters is statistically signif-
icant at a given level (5% in our case); (ii) the detected cluster
regions cover the true nuclear sources. The first criterion is re-
lated to the “hypothesis testing” power (abbreviated as “testing
power” in this article), which is computed as the percentage of
times that at least one of the clusters is statistically significant at

5% level for the test described in Section 3.2.1. The empirical
critical value (obtained via the Monte Carlo testing method) is
used. We also computed the “detection power” as the percent-
age of times that the proposed algorithm resulted in a correct
detection, satisfying both criteria above. The latter is a more
stringent performance measure than the testing power alone.

4.2 Performance of Mobile Sensor Networks

4.2.1 Power for Detecting One Source. We first studied the
effect of sensors’ impact range and the number of sensors for a
single source randomly placed in the study region. Sensitivity
and specificity were set at (0.95, 0.95). With 5% level tests,
we plot detection power in Figure 2(a). The result shows that
we need 1000 200-foot sensors to achieve 92% detection power,
while 1000 150-foot sensors yield about 57%. When the number
of sensors reaches 1500 or above for 200-foot sensors and 2500
and above for 150-foot sensors, respectively, the detection power
is close to 100%.

We repeated the same simulations with sensitivity and
specificity of (0.98, 0.98) and obtained the power curves in
Figure 2(b). This network of higher quality sensors achieved
much higher power. For example, the detection power increased
from 57% to 76% when both networks have 1000 sensors of
150-feet range.

The first half of Table 1 presents performance measures under
four network settings (two error rates and two source impact
ranges), with the number of sensors fixed at 1500, for a single
randomly placed source. We use 1500 sensors here because
it is feasible for a city as large as New York City to equip this
many taxicabs with nuclear detection sensors under a reasonable
budget. In the table, we report detection power, testing power,
and sizes of hypothesis tests using the Monte Carlo method.

We also compared our detection algorithm with a varying-
window-size scan statistic approach from the free SaTScan
software (www.satscan.org) and a stepwise regression method
(Demattei, Molinari, and Daures 2006, 2007). Using the same
settings, we list the detection power, testing power, and sizes
from the two comparative methods in the top half of Table 1.
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(a) η = 59.0, ζ = 0.95 (b) η = 0.98, ζ = 0.98

Figure 2. Detection power of a mobile sensor network with one source from one simulation time slice for New York City. X-axis represents
the numbers of sensors and Y-axis the detection power. (a) Two different sensor ranges with assumed η = 0.95, ζ = 0.95. (b) Two different
sensor ranges with assumed η = 0.98, ζ = 0.98.
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Table 1. Summary of detection powers, hypothesis testing powers, and sizes in various cases when true k = 1 and 2 and the number of sensors
is 1500

Latent source model SaTScan Step regression

(η, ζ ) Range Detection Testing Detection Testing Detection Testing

True k = 1
Power (0.95,0.95) 150 80.4% 85.2% 5.2% 8.5% 49.0% 66.1%

200 98.8% 99.2% 48.6% 51.0% 85.0% 92.5%
Size – – 5.4% – 6.6% – 33.0%
Power (0.98,0.98) 150 96.7% 95.2% 5.4% 13.5% 80.9% 94.0%

200 100.0% 100.0% 95.0% 98.4% 95.5% 97.8%
Size – – 5.6% – 4.8% – 35.0%

True k = 2
Power (0.95,0.95) 150 65.3% 95.8% 1.0% 8.4% – 41.8%

200 97.2% 100.0% 32.4% 52.6% – 61.8%
Size – – 5.9% – 5.8% – 35.6%
Power (0.98,0.98) 150 82.5% 99.6% 2.5% 14.0% – 83.2%

200 100.0% 100.0% 88.5% 99.6% – 98.2%
Size – – 5.2% – 5.0% – 37.5%

Our algorithm produces better results in all cases, especially
in the case of shorter sensor range (i.e., weaker sensors). Our
method and SaTScan can control the Type I error around 5%,
while the stepwise regression method makes about 30% false
alarm errors.

4.2.2 Power for Detecting Two Sources. To demonstrate
the performance of a mobile sensor network when there is more
than one source, we studied the same network settings as in
Section 4.2.1 but with two sources. Here, the two sources were
placed randomly in the study region. We report the detection
performance in the bottom half of Table 1. We observe when we
have two clusters to detect, the detection power is lower than
that for only one cluster under the same network setting since
the detection is required to cover both clusters, while the testing
power is higher since the testing is significant as long as one of
the clusters is significant from the testing process.

In contrast to the simultaneous detection of multiple sources
in our method, the scan statistics uses a sequential approach.
When it detects a significant primary cluster, it replaces the data
inside the primary cluster with the average outside of it, then
does the detection to pick up a secondary cluster. As a result, we
observe from Table 1 that SaTScan achieves much lower power
for detecting two sources than our method. For the stepwise
regression method, we are not able to calculate the detection
power for the multiple cluster case since the numeric summary
of the locations and sizes of detections is not available. Also the
stepwise regression method produces a high level of false alarm
errors as in the one cluster case.

4.2.3 Power for Detection Using Mixed-Type Sensors. In
what follows, we selected the setting of 1500 sensors with de-
tection range 150 feet and 95% for both η and ζ as a bench-
mark in further studies. This setting achieved detection powers
of 80.4% in one cluster and 63.4% in two clusters. To assess
the value of using higher quality sensors, we substituted a small
number (50, 75, 100) of sensors with higher quality ones of both
sensitivity and specificity at 0.98. The source impact ranges of
the new sensors were set at 200, 250, or 300 feet.

The detection results for the combination of the two types of
sensors for one cluster are presented in Figure 3. We observed a
significant improvement in detection power as compared to the
results in Table 1. For example, with a substitute of 50 high-
quality sensors (200-foot detection range and 2% error rates),
the detection power increases from 80.4% to 85.6% (a 6.5%
relative increase). We can observe that substituting with higher
quality sensors increase detection power significantly (i.e., with
a simple t-test or some other approaches). Among the various
cases with high-quality sensors, the improved detection power
may not differ significantly. For example, the detection power
increases marginally from 85.2% to 86.9% with the two settings
for 50 high-quality sensors—one with 200-foot range and the
other with 300 foot. The reason for this is, we speculate, that the
increase of the detection power levels off and is not sensitive to
some small changes.

4.2.4 Determining the Number of Sources. To evaluate the
proposed AIC and BIC criteria for determining the number of
clusters, we used the benchmark setting of the mobile sensor
network described at the beginning of Section 4.2.3 and put 0–4
sources in the study region. Then we followed the procedures
in Section 3.2.2 and defined K={0, 1, 2, 3, 4} as the preselected
set of k’s. For each k ∈ K, we calculated the values of the
modified version AIC(k)mod and BIC(k)mod from (17) and (18),
and estimated the number of clusters accordingly.

Table 2 summarizes the model selection results. The modified
AIC and BIC methods seem to work well. The correct number
of sources was always selected most often in all settings. In
addition, BIC, with a larger penalty term, appears to perform
slightly better than AIC. For those wrongly chosen cluster num-
bers, the majority tends to be one smaller than the true number
(i.e., k − 1). These findings are similar to the model selection
results reported in Pan (2001), Sun (2008), and Xie et al. (2009).

5. DISCUSSION

In this article, we propose a robust mobile sensor network
and develop a statistical algorithm to provide consistent and

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 1

6:
32

 2
8 

Ja
nu

ar
y 

20
14

 



912 Journal of the American Statistical Association, September 2013

50 60 70 80 90 100

0.
85

0.
90

0.
95

1.
00

R=200

R=250

R=300

Figure 3. Power improvement with substitution of high-quality sensors at the benchmark setting of 1500 sensors with 150-foot detection
range and 5% error rates. The X-axis represents the number of high-quality sensors with 2% error rates and different detection ranges. The Y-axis
represents the detection power.

pervasive surveillance for nuclear materials in major cities.
Simulation studies under the settings of Section 4 suggest
that the proposed network and statistical methods can provide
an effective tool to detect nuclear sources placed in a spatial
region. This study aims to provide a forward-looking design
and implementation of a detection capability from a sensor
management point of view.

In this study, we assume that the clusters are nonoverlap-
ping. In practice, when two nuclear sources are close enough, a
sensor can be activated by either or both of them. The clusters
formed around the sources might be overlapping. Chap. 5 of
Cheng (2010) relaxed the nonoverlapping cluster assumption
and studied detection of overlapping clusters. Though the de-
tection power increases slightly when the two or more sources
are nearby, the computational cost is much higher. In practice,
it seems reasonable to use one cluster to represent multiple ad-
jacent sources.

The mobile sensor network proposed here can be supple-
mented by static sensors. In fact, in most cases such a supple-
ment is necessary to cover locations with sparse or zero traffic,

such as a large park in the city. Our detection algorithm can
be extended to handle both types of networks since the static
sensors’ positions and states can be merged and processed with
those of mobile sensors. Our models have only considered two-
dimensional regions and have disregarded the possibility that a
stationary source might be located above the ground in a build-
ing. In practice, the source can be treated with slightly weaker
energy intensity placed at the ground level.

Although the nuclear detection algorithm developed here is
computationally intensive due to multiple levels of Monte Carlo
and EM iterations, it is feasible for real world application. It
takes less than 1 min on average on a personal desktop computer
with 2.6 GHz processors. Thus, a slightly higher performance
computing device should be able to provide meaningful real
time nuclear detection.

Finally, we do not consider in the article the possibility of
shielding of the nuclear energy by the buildings or other ma-
terials. The shielding issue is very complex. It depends on the
geographic distribution and shapes of the buildings and other
large objects in the region. It also depends on the packing

Table 2. Model selection evaluation. Reported in the table are the percentages of times that the AIC or BIC criterion selects the specified
number of clusters. The bold entry indicates the most frequently selected number of clusters in each case

AIC BIC
Estimated Estimated

True k k = 0 k = 1 k = 2 k = 3 k = 4 k = 0 k = 1 k = 2 k = 3 k = 4

0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
1 26.2 64.5 6.8 2.5 0.0 25.4 68.2 3.4 3.0 0.0
2 6.8 19.0 48.2 25.6 0.4 5.4 20.2 65.2 9.0 0.2
3 1.8 2.4 14.8 48.8 32.2 1.8 2.4 24.6 61.8 9.4
4 2.0 7.6 25.2 23.2 42.0 2.2 3.0 11.2 20.4 62.2
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materials used to transport the nuclear materials. Nelson and
Sokkappa (2008) provided a detailed report and developed a
generic packaging model to study the impact of shielding for
several nuclear and packing materials. Further study is needed
to understand the impact of shielding, especially in metropoli-
tan areas. It is an interesting and challenging topic for future
research.

[Received June 2011. Revised March 2013.]
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