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a b s t r a c t

The analysis of non-Gaussian time series has been studied extensively and has many applications.
Many successful models can be viewed as special cases or variations of the generalized autoregressive
moving average (GARMA) models of Benjamin et al. (2003), where a link function similar to that used in
generalized linear models is introduced and the conditional mean, under the link function, assumes an
ARMA structure. Under such amodel, the ‘transformed’ time series, under the same link function, assumes
an ARMA form as well. Unfortunately, unless the link function is an identity function, the error sequence
defined in the transformed ARMAmodel is usually not a martingale difference sequence. In this paper we
extend the GARMA model in such a way that the resulting ARMA model in the transformed space has a
martingale difference sequence as its error sequence. The benefit of such an extension are four-folds. It
has easily verifiable conditions for stationarity and ergodicity; its Gaussian pseudo-likelihood estimator
is consistent; standard time series model building tools are ready to use; and its MLE’s asymptotic
distribution can be established. We also proposes two new classes of non-Gaussian time series models
under the new framework. The performance of the proposedmodels is demonstrated with simulated and
real examples.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Researchers have shown an increasing interest in non-Gaussian
time series models, with problems coming from various ap-
plications. These studies can be divided into two categories:
innovations-based and data-based. The innovations-based mod-
els make distributional assumptions on the noise or innovation
process. Heavy tailed and asymmetric distributions are often em-
ployed for modeling time series exhibiting heavy tails and skew-
ness, including Student-t , Gamma, generalized error distributions
(GED), generalized logistic distributions and their skewed ver-
sions, see Bollerslev (1987), Nelson (1991), Hansen (1994), Li and
McLeod (1988), Tiku et al. (2000), Wong and Bian (2005), Bon-
don (2009) and others. The data-based approach is based on
the distributional assumptions on the observed time series data.
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Several models under this approach have been developed recently,
including the autoregressive conditional duration (ACD)models by
Engle and Russell (1998), multiplicative error models (MEM) by
Engle (2002) and Engle and Gallo (2006), Poisson and negative bi-
nomial models for discrete-valued or count time series models by
Davis et al. (2003), Davis and Wu (2009), Fokianos et al. (2009)
and Fokianos and Fried (2010), Beta autoregressive moving aver-
age (ARMA) models for rates or proportional time series by Rocha
and Cribari-Neto (2009), binomial ARMA models for binary data
by Startz (2008), and others. These models are either special cases
or variations of the generalized autoregressive moving average
(GARMA) models under the general framework of Benjamin et al.
(2003). It is also a time series extension of the generalized linear
models (GLM) of McCullagh and Nelder (1989). Similar to GLM, the
conditional mean (given past information in a time series setting)
is modeled directly, through a link function, with an ARMA type of
structure that is most commonly used for modeling time series.

The GARMAmodels have an intriguing feature—the time series,
transformed using the link function, assumes an ARMA structure.
Such a feature can potentially make model building, estimation
and prediction very easy. It would also make investigation of the
probabilistic properties of the series and asymptotic behavior of
the estimators easier, if the error sequence in the ARMA formation
is a martingale difference sequence (MDS). Unfortunately, unless
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an identity link function is used, the GARMA model of Benjamin
et al. (2003) does not have a MDS as its error sequence in the
ARMA formation. On the other hand, the use of identity link
in GARMA models is restrictive and often encounters various
difficulties in modeling the underlying time series. For example,
whenmodeling rates or proportional time series data, it is difficult
to provide feasible parameter conditions to ensure all values
of the conditional expectation be bounded between 0 and 1.
For nonnegative time series, GARMA models with identity link
function do not allow negative autocorrelations (Fokianos, 2012).
Multiplicative error models and Poisson autoregressive models,
where the ARMA coefficients must be constrained to be non-
negative, have similar problems.

In this paper we extend the GARMA models so that the error
sequence in the ARMA formulation is a MDS. We refer it as the
Martingalized GARMA (M-GARMA) model. It continues to enjoy
all the interpretations, the link to GLM models, and many of the
properties of GAMRA model, but more importantly, with MDS as
its error sequence, verifiable stationarity and ergodicity conditions
are easy to obtain, its Gaussian pseudo-likelihood estimator is
consistent, standard model building tools are ready to use, MLE’s
asymptotic behavior can be established, and predictions are easier
to obtain.

Under the proposed setting, themodel can be easily generalized
to integrated M-GARMA and fractional integrated M-GARMA
models, as martingale processes (i.e. integrated MDS) are well
understood andwell behaved. It can also be easily extended to have
a joint dynamics of conditional mean and conditional variance
structure.

The rest of this paper is organized as follows. Section 2 briefly
reviews the existing GARMA model introduced by Benjamin et al.
(2003) and introduces theM-GARMAmodel, including two special
models, the log-Gamma-M-GARMA model and the logit-Beta-
M-GARMA model. Section 3 provides a detailed analysis of the
probabilistic properties of the M-GARMA model, including its
stationarity and ergodicity conditions. In Section 4,wepropose two
estimators for M-GARMA models and investigate their theoretical
properties. Model building and prediction issues are discussed
as well. Section 5 carries out a simulation study of the two
M-GARMAmodels introduced earlier. The finite sample properties
of the estimators are studied and a fast model building approach
is compared with full model diagnostic. Finally, in Section 6 we
use the log-Gamma-M-GARMA model and logit-Beta-M-GARMA
model to study realized volatilities and US personal saving rates,
respectively.

2. GARMAmodels and martingalized GARMAmodels

2.1. GARMA models

Let {yt} be a (non-Gaussian) time series andFt = {yt , yt−1, . . .}
be the σ -field generated by the information up to time t . We also
denote µt as the conditional expectation of yt given Ft−1.

Benjamin et al. (2003) formulated the framework of GARMA
(p, q) model under an exponential family distribution. Specifically,
it assumes that the conditional distribution of yt given its past
follows

f (yt |Ft−1) = exp

ytϑt − b(ϑt)

ϕ
+ a(yt , ϕ)


, (1)

where ϑt and ϕ are the canonical and scale parameters, and the
conditional expectation and variance of yt given Ft−1 is given
by µt = b′(ϑt) = E(yt |Ft−1) and Var(yt |Ft−1) = ϕb′′(ϑt),
respectively. Benjamin et al. (2003) further assumed that the
conditional mean µt has the following ARMA structure

ηt ≡ g(µt) = ν +

p
j=1

φjg(yt−j)+

q
j=1

δj[g(yt−j)− ηt−j], (2)

where φ = (φ1, . . . , φp)
′ and δ = (δ1, . . . , δq)

′ are the autoregres-
sive and moving average parameters. The function g(·) is called a
link function. It is assumed that the transformed mean follows a
seemingly ARMA process. The quantity ηt is called the linear pre-
dictor. The link function g(·) is restricted to a one-to-one function
andhence it can be inverted to obtainµt = g−1(ηt). Benjamin et al.
(2003) also included deterministic covariates in (2). For cleaner no-
tation, we will exclude it in our model development but it can be
easily included in all our models.

By adding g(yt)− ηt to both sides of (2), we have

g(yt) = ν +

p
j=1

φjg(yt−j)+ εt +

q
j=1

δjεt−j, (3)

where εt = g(yt) − ηt = g(yt) − g(µt). Obviously (3) shows
that under GARMAmodel, g(yt) assumes exactly a standard ARMA
model formulation (Box and Jenkins, 1976). The only difference is
that the error sequence is not necessarily a white noise sequence.
Note that E(εt | Ft−1) = E[g(yt) | Ft−1]− g(µt) is not necessarily
zero, unless g(·) is an identity function. Thus under this formula-
tion, the noise sequence εt is not a MDS in most of the cases.

2.2. M-GARMA models

In the following, we propose to extend the GARMA model in
such a way so to ensure the error sequence in (3) is a MDS. We call
it a martingalized GARMA model (M-GARMA). Specifically, we as-
sume the conditional distribution p(yt | Ft−1) can be parametrized
as

p(yt | Ft−1) = f (yt | µt , ϕ), (4)

where ϕ is a collection of time invariant parameters hence all past
information is summarized in µt . In addition, let

gϕ(µt) = ν +

p
j=1

φjh(yt−j)+

q
j=1

δj[h(yt−j)− gϕ(µt−j)], (5)

where gϕ(µt) = E[h(yt) | Ft−1] serves as the link function in the
terminology of GLM.

By adding h(yt)− gϕ(µt) to both sides of (5), we have

h(yt) = ν +

p
j=1

φjh(yt−j)+ εt +

q
j=1

δjεt−j, (6)

where εt = h(yt)−gϕ(µt). It is clear by this construction of the pair
of link functions (h(·), gϕ(·)) that εt is now aMDS. In the following
we refer to gϕ(·) as the link function and h(·) the y-link function.

Some remarks on different issues of the model are in order:

Remark 2.1 (The Link Functions). In practice, it is often more
convenient to start with a parameter free y-link function h(·)
and work backwards to obtain the link function gϕ(·). As we
demonstrate later that modeling is easier if the y-link function h(·)
does not involve any unknown parameters. In this case, the ARMA
orders and ARMA coefficients can be obtained directly using h(yt)
series. On the other hand, there is no special difficulty when the
link function gϕ(·) involves some unknown parameters.

Remark 2.2 (From a Transformation Point of View). The impact of
y-link function h(·) in M-GARMA model can be viewed as
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Table 1
Some commonly used conditional distributions, their recommended y-link functions, the corresponding link functions, and the conditional variances of the resulting MDS.

Density E[yt |Ft−1] Var[yt |Ft−1]

Lognormal logN(log(µt )− σ 2/2, σ 2) µt (eσ
2
− 1)µ2

t

Gamma Gam(cµd
t , cµ

d−1
t ) µt µ2−d

t /c
Inverse-Gamma Inv-Gam(cµd−1

t + 1, cµd
t ) µt cµ1+d

t /(cµd−1
t − 1)

Weibull Weibull(k, µt/Γ (1 + k−1)) µt µ2
t


Γ (1+2k−1)
Γ 2(1+k−1)

− 1


Beta Beta(τµt , τ (1 − µt ))
′ µt

µt (1−µt )
1+τ

Poisson Poisson(µt ) µt µt

h(yt ) gϕ(µt ) Var[h(yt )|Ft−1]

Lognormal log(yt ) logµt −
1
2σ

2 σ 2

Gamma log(yt ) ψ(cµd
t )− (d − 1) log(µt )− log(c) ψ1(cµd

t )

Inverse-Gamma log(yt ) d log(µt )+ log(c)− ψ(cµd−1
t + 1) ψ1(cµd−1

t + 1)

Weibull log(yt ) ≈ logµt −
1
2


Γ (1+2k−1)
Γ 2(1+k−1)

− 1


≈
Γ (1+2k−1)
Γ 2(1+k−1)

− 1

Beta log(yt/1 − yt ) ψ(τµt )− ψ(τ(1 − µt )) ψ1(τµt )+ψ1(τ (1−µt ))

Poisson
√
yt ≈

√
µt ≈

1
4

Note: The functions ψ(·) and ψ1(·) are the digamma and trigamma functions, respectively.
transforming the time series to a linear process. Transformation
is an important tool for statistical analysis for improvements in
model simplicity, variance stabilization, and precision of estima-
tion. In time series analysis, it has been widely employed, often as
the first step of analysis. However, it is simply and often irrationally
assumed that the transformed series follows an ARMAmodel with
a (Gaussian) white noise error sequence and all subsequent infer-
ences are done under such an assumption. Also there have been a
few general guidance and theoretical foundation on how to prop-
erly transform a time series. Although (6) is exactly under the form
of an ARMA model with transformation, the proposed M-GARMA
model starts with the conditional distribution, which serves as a
foundation for parametrization of the model, the determination of
the y-link function and parameter estimation. Eqs. (4) and (5) can
be viewed as a special case of model (6), but it allows for a more
solid foundation for theoretical development.

Remark 2.3 (The Selection of the y-Link Function). In practice, the
y-link function h(·) can be selected as a common strictly mono-
tone continuous function such as logarithm, power, logit, recip-
rocal, probit and others. For example, the logarithm and square
root functions are often used for positive data, the logit transfor-
mation is used for the data in the unit interval such as rates and
proportions, and the reciprocal transformation can be used for
non-zero data. Considerations of the range of µt and its corre-
sponding space of the ARMA parameters are often of practical
importance. For example, for proportional observations, an identi-
cal link function would result in difficult constraints on the ARMA
parameter space to ensure the conditional mean stays within the
meaningful boundary. For conditional Gamma distributions, an
identical link function would often restrict the ARMA parameters
to be positive.

A useful tool for constructing the y-link function is the Bartlett
(1947) variance-stabilizing transformation. It aims to remove a
mean/variance relationship, so that the variance becomes constant
relative to the mean. Often the Delta method is used. For exam-
ple, logarithm transformation for Gamma distribution, square root
transformation for Poisson distribution, arcsine square root trans-
formation for proportions (binomial data), are often used as the
variance-stabilizing transformation. The Box–Cox power transfor-
mation of Box and Cox (1964), denoted as yλt when λ ≠ 0 and log yt
when λ = 0, is a family of transformations parametrized by λ that
includes the logarithm, square root, and multiplicative inverse as
special cases. It is often used as Gaussian transformation as well
as for variance stabilization, hence can be considered as a y-link
function.
When the conditional distribution belongs to an exponential
family, and if h(yt) is a canonical sufficient statistic, then its condi-
tional mean and variance depends on the log-partition function of
the exponential distribution,with certain properties that are useful
for estimation.

As the y-link function is the core component of the model and
often a suitable choice may not be obvious, one may consider a
nonparametric approach, estimating it from the data. For exam-
ple, h(·) can be approximated by an expansion

K
j=1 γjzj(·), where

{zj(·)} is a family of basis functions. In practice, it is often desir-
able to have a monotone y-link function. So existing methods on
smoothing monotone functions may be applied here. See for ex-
ample, Ramsay (1988, 1998) and He and Shi (1998) among oth-
ers. With the nonparametrically estimated y-link function, we can
further develop model specification tests to validate simple and
‘‘natural’’ choices of h(·) such as logarithm, logit and power trans-
formations. Such an adaptive approach may make M-GARMA
model more flexible in more applications, as well as more confi-
dent in its formation. We hope to study this semiparametric ap-
proach in the future.

Remark 2.4 (Canonical Link Functions). In some cases, gϕ(µt) −

h(µt) is a constant with respect to µt . We call such a pair of link
functions (gϕ(·), h(·)) canonical link functions. A pair of identity
functions are canonical link functions. When the link functions
are canonical, the proposedM-GARMAmodel can be reformulated
to the GARMA model of Benjamin et al. (2003). For example, if
the conditional distribution is a Gamma distribution in the form
of Gamma(α, α/µt), then log(·) is a canonical link function since
E[log(yt) | Ft−1] = log(µt) + ψ(α) − log(α), where ψ(·) is
the digamma function. In this case, let εt = h(yt) − h(µt) −

ψ(α) + log(α), which is a MDS. Then (6) becomes h(yt) =

ν∗
+
p

j=1 φjh(yt−j) + εt +
q

j=1 δjεt−j. When the conditional
distribution is log-normal, the log function is canonical, see
Table 1.

Remark 2.5 (Inverting gϕ(·)). To calculate the likelihood function,
we will need the inverse of the link function gϕ(·). When the
y-link function h(·) is monotone and the conditional cumulative
probability function of the conditional distribution f (µt , ϕ) is
monotone inµt (such aswhen the conditional distribution belongs
to a location family), the link function gϕ(µt) is alsomonotonewith
respect to µt , hence invertible. It is often possible to restrict the
parameter space of ϕ to make gϕ(·) invertible, when gϕ(·) is not
invertible but continuous, there are only a finite number of distinct
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solutions of µt for gϕ(µt) = ηt in the practical range of usual
problems. In such cases, we evaluate of the likelihood function at
each of the solutions and use the one that maximizes f (yt | µt , ϕ)
as its ‘generalized inverse’.

Remark 2.6 (Approximation of the Link Function). The link function
gϕ(µt) is determined by the conditional distribution and the y-link
function h(·). In certain situations, the exact link function may be
too complex and an approximation may be sufficient. Specifically,
one may use a second-order Taylor approximation. Since E[yt −

µt |Ft−1] = 0 and E[(yt − µt)
2
|Ft−1] = Var(yt |Ft−1), we have

gϕ(µt) = E[h(yt)|Ft−1] ≈ h(µt)+
1
2!

h′′(µt)Var(yt |Ft−1). (7)

Although higher-order Taylor expansion may be more accurate,
the approximation may be complex and not invertible. Experience
shows in many problems the second-order Taylor expansion is
sufficient. Linear approximation results in gϕ(µt) ≈ h(µt), the link
function suggested by Benjamin et al. (2003).

Although the inverse of gϕ maynot always exist analytically, the
solution can always be found with numerical procedures as this is
a one dimensional function. For our simulation and data analysis,
we use the bisection method.

Remark 2.7 (Linear Predictor). Note that, under the M-GARMA
model, ηt = gϕ(µt) is a linear predictor of h(yt) and the above
formulations can also be rewritten as

ηt ≡ gϕ(µt) = ν +

m
j=1

φ̃jh(yt−j)+

q
j=1

δ̃jηt−j, (8)

where m = max{p, q}, φ̃j = φj + δj for j = 1, . . . ,m and δ̃j = −δj
for j = 1, . . . , q, and φj = 0 if m > p and δj = 0 if m > q.
That is, the linear predictor ηt is a moving average of past trans-
formed responses h(yt−1), . . . , h(yt−p) and the past predictors
ηt−1, . . . , ηt−q. GARCH model assumes a very similar formulation.

Remark 2.8 (Martingale Difference Tests). The fact that {εt} is a
MDS is critical for the validity of the pseudo Gaussian estimation
discussed in Section 4.1. After a model has been fitted to the data,
we can apply the martingale difference tests on the residuals as
a model diagnostic tool. We refer the reader to Escanciano and
Lobata (2009) for a thorough review of such tests. In our numerical
analysis, we will apply the tests in Domínguez and Lobata (2003),
Escanciano and Velasco (2006) and Kuan and Lee (2004).

Table 1 shows some conditional distributions that may be
used in practice, along with recommended y-link functions. For
lognormal, Gamma, inverse-Gamma, Weibull, Beta and Poisson
distributions, we have analytic forms of the link functions under
mean-parametrization with the logarithm y-link function. For the
conditional Beta distribution with logit y-link function, we also
have an analytic form for the corresponding link function. For
Weibull with the logarithm y-link function and Poisson with the
square-root y-link function, their approximated link functions,
obtained with Taylor expansion, are shown.

2.3. Two specific M-GARMA models

Here we propose two specific M-GARMA models. They are
designed to model two types of commonly encountered non-
Gaussian time series. Their probabilistic properties will be
established later in Section 3 andwewill use them for the empirical
study of various estimators.
LogGamma-M-GARMAmodel:Consider the followingGamma-
M-GARMA(p, q) model with the y-link function h(yt) = log yt ,

yt |Ft−1 ∼ Gam(cµd
t , cµ

d−1
t ),

log yt = ν +

p
j=1

φj log yt−j + εt +

q
j=1

δjεt−j,
(9)

with εt = log yt−gc,d(µt) = log yt−ψ(cµd
t )+(d−1) logµt+log c ,

where cµd
t and cµd−1

t are the shape and rate parameters of Gamma
distribution, and µt is the conditional expectation of yt based on
the past information up to time t − 1. The link function is given by
gc,d(µt) = ψ(cµd

t ) − (d − 1) logµt − log c , and the conditional
variance is ψ1(cµd

t ), i.e., Var[εt |Ft−1] = ψ1(cµd
t ), where ψ(·) and

ψ1(·) are digamma and trigamma functions, respectively.
This is a special parametrization for the Gamma distribution.

It maintains the conditional mean µt as one of the parameters
while allows flexibility to control the shape and scale. Although a
Gamma distribution is determined by two parameters, our three-
parameter parametrization is identifiable as long as µt changes
over time, similar to settings such as random effect models.

When d = 0, the link function gc,d(µt) = logµt +ψ(c)− log c
differs from the y-link function by a constant, and the conditional
variance is also a constant, i.e. Var[εt |Ft−1] = ψ1(c). In this case,
the model reduces to a canonical M-GARMA model in which the
error process remains to be aMDSwith the same function link and
y-link functions.

Fig. 1 shows simulated processes under the model using
different d and Fig. 2 shows the histogram of the corresponding
marginal distributions. It can be seen that the parameter d controls
the shape of the marginal distribution of the process significantly
and the smaller d makes the process less ‘normal’. Fig. 3 shows
the link functions for different d (solid line). The dash line is the
corresponding linear approximation gϕ(·) = h(·) (see Remark 2.6).
It can be seen that the linear approximation is more accurate with
large d.

This specification of the ARMA process with logarithm y-link
function is different from that used for the MEM models given
by Engle (2002), Engle and Gallo (2006) and Brownlees et al.
(2012) because they suggested using an identity transformation,
i.e., h(yt) = yt .

Logit-Beta-M-GARMA model: Beta-M-GARMA model can be
used for proportion time series where the observations take value
in (0, 1). We consider the following Beta-M-GARMA(p, q) model
with the logit y-link h(yt) = logit(yt) = log[yt/(1 − yt)],

yt |Ft−1 ∼ Beta(τµt , τ (1 − µt)),

logit(yt) = ν +

p
j=1

φjlogit(yt−j)+ εt +

q
j=1

δjεt−j,
(10)

with εt = logit(yt) − gτ (µt), where τµt and τ(1 − µt) are
two positive shape parameters of Beta distribution, and µt is the
conditional mean based on the past information up to time t − 1.
The link function and conditional variance are given by gτ (µt) =

ψ(τµt) − ψ(τ(1 − µt)) and Var[h(yt)|Ft−1] = Var(εt |Ft−1) =

ψ1(τµt) + ψ1(τ (1 − µt)) respectively. Rocha and Cribari-Neto
(2009) proposed another form of Beta-GARMAmodel based on the
class of Beta regression models of Ferrari and Cribari-Neto (2004).
Their model is similar to those of Benjamin et al. (2003) and the
error terms are not a MDS.

2.4. Some extensions

In this section we discuss several possible extensions of the
M-GARMA model.
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Fig. 1. Simulated log-Gamma-M-GARMA series with c = 3.
Fig. 2. Histogram of simulated log-Gamma-M-GARMA series with c = 3.
Fig. 3. The link function of the log-Gamma-M-GARMA model with c = 3.
M-GARIMA model: The M-GARMA model can be extended to
have an integrated ARMA structure. Specifically, one may extend
(6) to

∆dh(yt) =

p
j=1

φj∆
dh(yt−j)+ εt +

q
j=1

δjεt−j, (11)

where p(yt | Ft−1) = f (yt | µt , ϕ), gϕ(µt) = E[h(yt) | Ft−1] and
εt = h(yt)− gϕ(µt).

By expanding the difference operator in the left side of (11)
and rearranging, and let ηt = gϕ(µt), we obtain the following
representation similar to (5)

ηt =

d
k=1


d
k


(−1)kh(yt−k)+

p
j=1

φj∆
dh(yt−j)

+

q
j=1

δj(h(yt−j)− ηt−j). (12)

M-GARFIMA model: Another extension is to include the
fractionally integrated operator (1 − L)d (0 < d < 1) into the
M-GARMA model. Specifically, the new model is given by

φ(L)(1 − L)dh(yt) = ν + δ(L)εt , (13)

with εt = h(yt) − gϕ(µt), where L is the backshift operator,
φ(L) = 1 − φ1L − · · · − φpLp, δ(L) = 1 + δ1L + · · · + δqLq,
and gϕ(µt) = E[h(yt) | Ft−1]. The M-GARFIMA(p, d, q) model can
be seen as an extension of standard ARFIMA models (see Sowell
(1992); Beran (1995)), and it canbeused tomodel the longmemory
behavior of yt .
M-GARMA–GARCHmodel:One can also extend the conditional
distribution to have two or more time varying parameters, with
joint or separate dynamics. For example, suppose the conditional
distribution is

yt | Ft−1 ∼ f (yt | ξ1t , ξ2t , ϕ). (14)

Let ηt = gϕ(ξ1t , ξ2t) = E[h(yt) | Ft−1] and σ 2
t = g∗

ϕ(ξ1t , ξ2t) =

Var[h(yt) | Ft−1]. We can assume

ηt = gϕ(ξ1t , ξ2t)

= ν +

p
j=1

φjh(yt−j)+

q
j=1

δj(h(yt−j)− ηt−j), (15)

σ 2
t = g∗

ϕ(ξ1t , ξ2t) = α0 +

k
j=1

αj(h(yt−j)− ηt−j)
2
+

m
j=1

βjσ
2
t−j.

By adding h(yt)− gϕ(ξ1t , ξ2t) to both sides of (15), we have

h(yt) = ν +

p
j=1

φjh(yt−j)+ εt +

q
j=1

δjεt−j,

σ 2
t = α0 +

k
j=1

αjε
2
t−j +

m
j=1

βjσ
2
t−j,

with εt = h(yt) − gϕ(ξ1t , ξ2t) and σ 2
t = Var(εt | Ft−1). Hence

h(yt) follows a standard ARMA–GARCH model. Combining it with
(14), we have the M-GARMA–GARCH model.
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3. Probabilistic properties of M-GARMAModel

It is of interest to study whether the M-GARMA models admit
stationary distributions. The ergodicity of generalized ARMA pro-
cesses has been discussed in Davis et al. (2003), Neumann (2011),
Woodard et al. (2011) and Douc et al. (2013) among others. The
M-GARMAmodels bear ARMA representations (6) with MDS as in-
novations. Let φ(z) = 1 −

p
i=1 φpz i. Because the distribution

of εt depends on Ft−1, the standard condition φ(z) ≠ 0 for all
|z| ≤ 1 is not sufficient for the existence of a stationary distri-
bution of the process {h(yt)}. To answer this question, we use the
theory of Markov chains on a general state space. For all the termi-
nology related to Markov chains, we refer the reader to Meyn and
Tweedie (2009).

Let X = {Xn}n≥0 be a Markov chain on the state space X,
equipped with some σ -field B(X). Let {P(x, A), x ∈ X, A ∈ B(X)}
be the transition probability kernel. The main tool we use is pre-
sented as Lemma 1. We omit the proof, because it can be obtained
by applying the results in Chapter 15 of Meyn and Tweedie (2009).
The major condition is the so called geometric drift condition: there
exists an extended-valued function V : X → [1,∞], a measur-
able set C , and constants b < ∞, β > 0 such that

∆V(x) :=


P(x, dy)V(y)− V(x) ≤ −βV(x)+ bIC (x),

x ∈ X. (D)
We call X geometrically ergodic, if X is positive Harris recurrent,

and there exists a constant r > 1 such that
∞
n=1

rn∥Pn(x, ·)− π∥ < ∞, for all x ∈ X,

where π is the unique invariant probability measure, and ∥ · ∥

denotes the total variation norm.

Lemma 1. Suppose X is ψ-irreducible and aperiodic. If for some m,
the skeletonXm satisfies the drift condition (D) for a petite set C and a
functionV which is everywhere finite. ThenX is geometrically ergodic,
and


X
V (x)π(dx) < ∞, where π is the unique invariant probability

measure.

Consider the model defined by (4) and (5). Recall that gϕ(µ) =
h(y)f (y | µ, ϕ)dy and define Vϕ(µ) =


(h(y) − gϕ(µ))2f (y |

µ, ϕ)dy. Since ϕ is fixed, we sometimes omit the subscript ϕ in
gϕ and Vϕ . Throughout this section we assume g(µ) and V (µ)
are continuous. Our conditions depend on the growth rate of the
variance function V (µ) relative to the mean function g(µ)

λ := lim sup
|g(µ)|→∞

V (µ)
g(µ)2

. (16)

To provide a definition of the stationary M-GARMA process,
we need to use the Markov chain representation. Without loss of
generality, assume q = p − 1, and at least one of φp and δp−1 is
nonzero. We also assume ν = 0 for simplicity. As can be seen from
the proof, including a constant term ν in (5) does not affect the
ergodicity condition. Define the square matrices

Φ =


φ1 φ2 · · · φp−1 φp
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,

Φ1 =


φ1 + δ1 φ2 + δ2 · · · φp−1 + δp−1 φp

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 ,
(17)
and set δ = (1, δ1, . . . , δp−1)
′. We first define a Markov Chain on

Rp. Given Xt−1, we generate yt as

yt ∼ f (yt | µt , ϕ), where g(µt) = δ′ΦXt−1. (18)

We then set εt = h(yt)− g(µt), and define

Xt = ΦXt−1 + (1, 0, . . . , 0)′εt . (19)

Clearly X = {Xt}t≥0 is a time-homogeneous Markov chain. It can
be shown that h(yt) = δ′Xt , and the {yt} process defined in (18)
satisfies the dynamic (4) and (5).

Theorem 1. Assume X is ψ-irreducible and aperiodic, and every
compact set is a petite set. If either of the following conditions hold, X
is geometrically ergodic, and under the invariant probability measure
π , Eπ [h(yt)]2 < ∞.

(i) The quantity λ = 0, and φ(z) ≠ 0 for all |z| ≤ 1.
(ii) When 0 < λ < ∞, define Ψk recursively as Ψ0 = I , and

Ψk = Φ ′Ψk−1Φ+λΦ ′

1Ψk−1Φ1 for k ≥ 1. For someh, the operator
norm of Ψh is strictly less than one.

Remark 3.1. Suppose conditional on Xt−1, εt has a density p(· |

µt , ϕ) (with respect to the Lebesgue measure), and for every µ, ϕ,
the density p(· | µ, ϕ) is positive everywhere, then similarly
as Chan and Tong (1985), it can be shown that X is ψ-irreducible
and aperiodic, where ψ can be taken as the Lebesgue measure on
Rp. This condition holds for both the log-Gamma-M-GARMAmodel
(9) and the logit-Beta-M-GARMA model (10).

Remark 3.2. The assumption that every compact set is a petite
set is technical. It is true when X is a ψ-irreducible Feller chain,
and the support of ψ has non-empty interior (Meyn and Tweedie,
2009, Proposition 6.2.8). Clearly the support of the Lebesgue
measure isRp, and thus has non-empty interior. On the other hand,
if we assume the density p(y | µ, ϕ) is jointly continuous in y and
µ, then it can be shown thatX is Feller. This condition also holds for
both log-Gamma-M-GARMA model (9) and logit-Beta-M-GARMA
model (10).

Remark 3.3. The condition introduced throughΨk is stronger than
φ(z) ≠ 0 for all |z| ≤ 1. It is interesting that when λ = 0,
the ergodicity condition reduces to φ(z) ≠ 0 for all |z| ≤ 1,
which extends the standard result for ARMA processes with i.i.d
innovations.

There are many ways to represent ARMA models as state
spacemodels. Different representations lead to different ergodicity
conditions. We take Harvey’s representation (Harvey, 1993) as
another example. Again without loss of generality, assume q =

p − 1, and at least one of φp, δp−1 is nonzero. Let s1t = h(yt), and

skt =

p
i=k

φih(yt+k−i−1)+

p−1
j=k−1

δjεt+k−j−1

for 2 ≤ k ≤ p. Set St = (s1t , . . . , spt)′ and δ = (1, δ1, . . . , δp−1)
′,

then Harvey’s representation is given by

St = Φ ′St−1 + δεt , (20)

and h(yt) = (1, 0, . . . , 0)St . Conversely, if given St−1, we generate
yt as

yt ∼ f (yt | µt , ϕ), where g(µt) = (1, 0, . . . , 0)Φ ′St−1, (21)

set εt = h(yt) − g(µt), and define St as (20), then S = {St}t≥0 is
a Markov Chain on Rp. It holds that h(yt) = (1, 0, . . . , 0)St , and
the {yt} process defined in (21) satisfy the dynamic (4) and (5).
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For this representation, in order to get the ψ-irreducibility of S ,
we introduce the controllability condition

the p vectors δ,Φ ′δ, (Φ ′)2δ, . . . , (Φ ′)p−1δ

are linearly independent. (22)

Theorem 2. Assume (22) holds, and S isψ-irreducible and aperiodic,
and every compact set is petite. Under either of the following, S is
geometrically ergodic, and Eπ [h(yt)]2 < ∞, where π is the invariant
probability measure.

(i) The quantity λ = 0, and φ(z) ≠ 0 for all |z| ≤ 1.
(ii) When 0 < λ < ∞, let ζ = (φ1, 1, 0, . . . , 0)′, and define Υk

recursively as Υ0 = I , and Υk = ΦΥk−1Φ
′
+λ · δ′Υk−1δ · ζ ζ ′ for

k ≥ 1. For some h, the operator norm of Υh is strictly less than
one.

Remark 3.4. Again, suppose conditional on St−1, εt has a density
p(· | µt , ϕ), which is positive everywhere, then under the control-
lability condition (22), it can be shown that X isψ-irreducible and
aperiodic, where ψ can be taken as the Lebesgue measure on Rp.
If we assume the density p(y | µ, ϕ) is jointly continuous in y and
µ, then it can be shown that X is Feller. These conditions hold for
both log-Gamma-M-GARMA model (9) and logit-Beta-M-GARMA
model (10).

Remark 3.5. Let δ(z) = 1 +
p−1

j=1 δjz
j. It seems that if φ(z) and

δ(z) have no common zeros, then the controllability condition (22)
holds. But we currently do not have a proof for it.

Remark 3.6. Both Theorems 1 and 2 guarantee that the marginal
variances of h(yt) and εt are finite. Since {εt} is aMDS, andφ(z) ≠ 0
for all |z| ≤ 1, the autocovariances of {h(yt)} can be calculated
using the ARMA representation (6).

Remark 3.7. Positive Harris recurrence implies that under π , the
invariant σ -field of the stationary process X is trivial, see Theorem
17.1.5 of Meyn and Tweedie (2009). So X under π is ergodic. The
same is true for S .

Remark 3.8. Under the conditions of either of Theorems 1 and 2,
if the y-link function h(·) is one-to-one, then under π , the process
{yt} is stationary and ergodic in the sense that its invariant σ -field
is trivial.

Remark 3.9. For the special case with λ > 0, and p = q = 1, it is
possible to focus on the process {g(µt)}, and provide an alternative
ergodicity condition: if φ2

1 + (φ1 + δ1)
2 < 1, then the process

{g(µt)} is geometrically ergodic, and Eπ [g(µt)]
2 < ∞. The proof

is given in the Appendix.

The proofs of Theorems 1 and 2 are presented in the Appendix.
In the followingwe consider log-Gamma-M-GARMAmodel and

logit-Beta-M-GARMA model in detail. By Lemma 2, we have the
following corollary.

Corollary 1. For the model (9), when d ≥ 0, there exists an initial
distribution on

{ε0, ε−1, . . . , ε1−q, y0, y−1, . . . , y1−p}

such that the process {yt}t≥1 defined by (9) is stationary and ergodic,
and E[h(yt)]2 < ∞.

The corollary can be seen by noting that when d > 0, we have
λ = 1 and Theorem 1(ii) and Theorem 2(ii) apply. When d = 0
then λ = 0 and Theorem 1(i) and Theorem 2(i) apply. Similar
conditions may be derived when d < 0.
Corollary 2. For the model (10), there exists an initial distribution on

{ε0, ε−1, . . . , ε1−q, y0, y−1, . . . , y1−p}

such that the process {yt}t≥1 defined by (10) is stationary and ergodic,
and E[h(yt)]2 < ∞.

This can be seen that, for logit-Beta-M-GARMA model (10),
similarly as Lemma 2, we have λ = 1 and Theorem 1(ii) and
Theorem 2(ii) apply.

4. Estimation, model selection and prediction

This section considers general estimation procedure of the M-
GARMA models, along with general model selection guidance and
prediction procedures.

4.1. Estimation

We propose two approaches for parameter estimation. The first
is based onGaussian pseudo-likelihoodwith additional conditional
likelihood estimation, the second is based on the likelihood. It is
often convenient and possible to use an approximation of gϕ(·) for
evaluating the likelihood.

Based on (6), one can use Gaussian pseudo-likelihood to es-
timate the ARMA parameters quickly, following Yao and Brock-
well (2006). This estimate will be referred to as GMLE. Recall that
φ(z) = 1 −

p
i=1 φiz i, and let δ(z) = 1 +

q
j=1 δjz

j. Assume for
simplicity that ν = 0. Let θ = (φ1, . . . , φp, δ1, . . . , δq)

′. We as-
sume θ ∈ B, which is a closed set contained in the set

{θ ∈ Rp
× Rq

: φ(z)δ(z) ≠ 0 for all |z| ≤ 1, φ(·)
and δ(·) have no common zeros}.

Given that the error sequence is a stationary and ergodic MDS, the
following theorem ensures its asymptotic consistency.

Theorem 3 (Hannan, 1973). Consider the M-GARMA model (4) and
(5). Assume {εt} is a stationary and ergodic time series, and Eε2t < ∞.
If the true value θ0 is an interior point of B , then as T → ∞, the GMLE
θ̃ based on h(y1), . . . , h(yT ) converges to the true θ0 with probability
one.

Hannan (1973) also obtained the central limit theorem of the
GMLE, under the additional condition that E(ε2t |Ft−1) = σ 2,
which is a constant over time. For the general M-GARMA(p, q)
models, the innovations εt are conditional heteroscedastic, and
the asymptotic distribution of the GMLE is currently unavailable.
Here we consider the M-GARMA(p, 0) model as a special case. Let
φ = (ν, φ1, . . . , φp)

′. For this model, maximizing the conditional
Gaussian likelihood is equivalent asminimizing the sumof squares

φ̄ = arg min
ν,φ1,...,φp

T
t=p+1

[h(yt)− ν − φ1h(yt−1)− · · · − φph(yt−p)]
2.

It turns out even if the innovations εt are not Gaussian, and are con-
ditional heteroscedastic, the asymptotic distribution of φ̄ can be
shown to be normal. Let Xt = (1, h(yt), h(yt−1), . . . , h(yt−p+1))

′,
then

φ̄ =


T

t=p+1

Xt−1X ′

t−1

−1 T
t=p+1

Xt−1εt .

We use V (µt) = Vϕ(µt) := Var(εt |Ft−1) to denote the variance
function.
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Theorem 4. Consider the M-GARMA model (4) and (5). Assume
{h(yt)} is a stationary and ergodic time series, and E[h(yt)]4 < ∞,
E[V (µt)]

2 < ∞, then as T → ∞,
√
T (φ̄ − φ0) ⇒ N(0,V−1WV−1),

where V := E(XtX ′
t ) andW := E[V (µt)Xt−1X ′

t−1] are all assumed to
be positive definite.

The proof of Theorem 4 is given in the Appendix. Unlike the
ARMA models with i.i.d. innovations, the asymptotic distribution
here depends on moments of the process with orders higher than
two. Consider the Gamma-M-GARMA(p, 0) model (9), for which

g(µt) = ψ(cµd
t )− log(cµd−1

t ) = ν +

p
i=1

φih(yt−i),

V (µt) = ψ1(cµd
t ).

By Lemma 2, there exists κ > 0 and Bκ > 0 such that V (µt) ≤

(1 + κ)[g(µt)]
2

+ Bκ . Therefore, the finiteness of E[V (µt)]
2 is a

consequence of E[h(yt)]4 < ∞.

Proposition 1. Consider the model (9)with c > 0, d > 0 and q = 0.
Let ξ be the positive root of the polynomial z3+3z2−1. DefineΞ0 = I ,
andΞk = Φ ′Ξk−1Φ+(3+2ξ)Φ ′

1Ξk−1Φ1. If the operator normof Ξh
is strictly less than one for some h, then at the stationary distribution,
E[h(yt)]4 < ∞.

The proof is presented in the Appendix. Similarly we can show that
the same result holds for the Beta-M-GARMA(p, 0) model (10).

The estimated innovation variance using GMLE seems not
meaningful for theM-GARMAmodel. However, with the estimated
ARMA parameters and residuals, one can estimate µt by solving

gϕ(µt) = h(yt)− ε̂t ,

and construct an approximated likelihood for other parameters in
the conditional distribution

L(ψ) =

T
t=1

f (yt | µ̂t , ϕ),

to obtain an estimator for ϕ.
In the following we consider full maximum likelihood estima-

tion. Let the parameter vector θ′
= (ν, φ1, . . . , φp, δ1, . . . , δq) and

β′
= (θ′, ϕ, ε0, ε−1, . . . , ε1−q). The log-likelihood function is

LT (β) =

T
t=1

ℓt(β) =

T
t=1

log f (yt | µt , ϕ), (23)

where µt satisfying (5) for t = 1, . . . , T .
Suppose the available data set is {y1−p, . . . , y0, y1, . . . , yT }.

Given a set of parameters θ, including the initial values of εt for
t = 0,−1, . . . , 1 − q, ηt = gϕ(µt) can be recursively obtained for
t = 1, . . . , T . Let µt = g−1

ϕ (ηt) for t = 1, . . . , T , where g−1
ϕ (ηt)

is a generalized inverse function of gϕ(·) discussed in Remark 2.5.
By plugging µt into (23), we can evaluate the log-likelihood
function Lt(θ). The maximum likelihood estimate is then obtained
by maximizing (23), using nonlinear optimization procedures.

In practice, one can set the initial values εt = h(yt) − gϕ(µt)
to zero, for t = 0,−1, . . . , 1 − q to reduce the complexity, a
common practice in time series estimation. The resulting estimate
θ̂ then becomes conditional maximum likelihood estimate. One
can also use Gaussian ML estimates for the ARMA parameters and
its corresponding ML estimate for ϕ as initial values to obtain the
full likelihood estimate. The theory of Hall andHeyde (1980) can be
applied to study the asymptotic distribution of the MLE. However,
for concrete M-GARMA models, sufficient conditions that ensure
the asymptotic normality are under investigation. Regardless of
the technical issues, we provide a reasonable formula for the
asymptotic covariance matrix. Let

ut(θ) =
∂ log f (yt |µt , ϕ)

∂θ
.

Let θ0 be the true parameter. Under regularity conditions, {ut(θ0)}
is a MDS with respect to {Ft}. Define

IT (θ0) =

T
t=1

Eθ0 [ut(θ0)(u(θ0))
′
|Ft−1].

Under regularity conditions, it holds that

[IT (θ0)]
−1/2(θ̂ − θ0) ⇒ N(0, I).

For many M-GARMA models, for a given θ0, the conditional
information Eθ0 [ut(θ0)(u(θ0))

′
|Ft−1] can be calculated explicitly.

By substituting the estimate θ̂, we get an estimate IT (θ̂). In practice,
the standard errors of the estimates can also be obtained by
evaluating the Hessianmatrix of the log-likelihood function (23) at
theMLE. Our empirical experiences have shown that the estimator
works very well.

Sometimes the exact link function gϕ(µt) may be too compli-
cated to invert. In such a situation we can use an approximation
g̃ϕ(µt) to replace it for evaluating the likelihood. Specifically, given
Ft−1, we replace gϕ(µt) by g̃ϕ(µt) in (5), and then invert g̃ϕ(µt) to
get µt , which allows us to calculate ℓt(β) = log f (yt | µt , ϕ). See
Remark 2.6 for some examples of the approximation.

4.2. Model building and selection procedures

The ARMA formation in (6) provides a convenient approach for
order determination. One can simply use the standard methods
for building Gaussian time series models, based on information
such as autocorrelation function (ACF), partial autocorrelation
function (PACF) and extended autocorrelation function (EACF)
of Tsay and Tiao (1984), though caution needs to be excised
since it has been shown that for ARMA model with varying
conditional variances, estimators of ACF, PACF and EACF may have
more complex standard errors, hence model determination based
on such measures may be slightly biased (Chen et al., 2013).
With several tentative models, BIC and out-of-sample prediction
performance can be obtained to select the more appropriate
models.

4.3. Prediction

A benefit of having a M-GARMA model is the easiness of
performing out-of-sample forecast. For a sequence {yt} following
theM-GARMAmodel defined by (4) and (6), if the process is causal
and invertible, then the linear least square predictor of h(yt+h)
based on the information set Ft is

E(h(yt+h) | Ft) = ηt+h|t = ν +

p
i=1

φiηt+h−i|t +

q
j=1

δjεt+h−j|t

where ηt+h−i|t is the h − i step ahead prediction for i < h and
ηt+h−i|t = h(yt+h−i) for i ≥ h; and εt+h−j|t is the linear prediction
of εt+h−j based on {h(y1), . . . , h(yt)} for j ≥ h, and εt+h−j|t = 0 for
j < h. This is easily seen as εt is a MDS.

It is more complicated to predict yt+h since E(yt+h | Ft) does
not equal to the inversion g−1

ϕ (ηt+h|t). A feasible way is through
forward simulation. Specifically, at time t , let η̃t−j = h(yt−j) −

εt−j|t for j ≥ 0, we first obtain the predictor η̃t+1 using (8),
where it is understood that every η is replaced by η̃. Then with
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Table 2
Simulation results of the Gamma-M-GARMA model.

Parameter True GMLE MLE AMLE0 AMLE1

ν −0.01 −0.1327 (0.0510) −0.0191 (0.0408) 0.2345 (0.0291) −0.0126 (0.0350)
φ1 0.90 0.7944 (0.0637) 0.8873 (0.0358) 0.9427 (0.0306) 0.8962 (0.0342)
δ1 −0.60 −0.5705 (0.0833) −0.5902 (0.0378) −0.5897 (0.0385) −0.5899 (0.0380)
c 1.00 0.9153 (0.0648) 1.0023 (0.0625) 0.9995 (0.0589) 0.9968 (0.0619)
d −0.50 −0.6399 (0.1094) −0.5141 (0.0801) −0.4865 (0.0737) −0.5142 (0.0808)

ν −0.01 −0.0379 (0.0272) −0.0127 (0.0276) 0.2038 (0.0290) 0.0110 (0.0246)
φ1 0.90 0.8615 (0.0438) 0.8884 (0.0355) 0.8674 (0.0359) 0.8815 (0.0353)
δ1 −0.60 −0.5816 (0.0647) −0.5888 (0.0505) −0.5858 (0.0530) −0.5881 (0.0511)
c 1.00 1.0050 (0.0687) 1.0127 (0.0663) 1.0099 (0.0661) 1.0109 (0.0666)
d 0.00 −0.0394 (0.0895) −0.0154 (0.0814) −0.0180 (0.0818) −0.0210 (0.0815)

ν −0.01 −0.0095 (0.0239) −0.0086 (0.0220) 0.1831 (0.0296) −0.0148 (0.0205)
φ1 0.90 0.8794 (0.0414) 0.8887 (0.0364) 0.8230 (0.0374) 0.8748 (0.0356)
δ1 −0.60 −0.5845 (0.0756) −0.5928 (0.0553) −0.5931 (0.0549) −0.5931 (0.0553)
c 1.00 1.0173 (0.0804) 1.0153 (0.0806) 1.0228 (0.0780) 1.0154 (0.0803)
d 0.50 0.4853 (0.1084) 0.4960 (0.1118) 0.4745 (0.1000) 0.4959 (0.1106)
µ̃t+1 = g−1
ϕ (η̃t+1), ỹt+1 can be simulated from the conditional

density f (ỹt+1 | µ̃t+1, ϕ). With the simulated ỹt+1, one can
repeat the procedure to obtain a simulated ỹt+2, and so on. The
h-step prediction can then be obtained using the average of many
simulated ỹt+h’s.

5. Simulation examples

In this section, we investigate finite sample performances of
proposed estimators under the Gamma-M-GARMA and Beta-M-
GARMA models in Section 2.3, with log and logit transformations
respectively. Since the exact link function and approximate link
functions can be obtained, we compare their performances for
estimating the parameters. In particular, linear approximation
leads to gϕ(µt) = h(µt), the link function suggested by Benjamin
et al. (2003), see Remark 2.6. The estimator obtained using
this approximation is referred to as AMLE0. With the second
order approximation (see Remark 2.6), the estimator is referred
to as AMLE1. The MLE obtained using the exact link function
gϕ(µt) is still referred to as MLE. We also demonstrate the finite
sample performance of the pseudo Gaussian likelihood estimator
GMLE. All estimates are obtained with a constraint optimization
technique that uses the MaxSQPF algorithm, implementing a
sequential quadratic programming technique, see Nocedal and
Wright (1999).

5.1. Log-Gamma-M-GARMA model

We generate a time series of length T = 500 from the log-
Gamma-M-GARMA(1, 1) model:

yt | µt ∼ Gam(cµd
t , cµ

d−1
t ),

log yt = ν + φ1 log yt−1 + εt + δ1εt−1, εt = log yt − gc,d(µt).

The estimator AMLE0 is obtained by maximizing the likeli-
hood with the approximated link function gc,d(µt) ≈ log(µt),
and AMLE1 is obtained using the second order approximation
gc,d(µt) ≈ logµt − (2cµd

t )
−1. For three sets of the parame-

ters {ν, φ1, δ1, c, d}, the simulation is repeated for 500 times. The
means and standard errors of the estimates are presented in Ta-
ble 2.

It can be seen that the simple GMLE performs reasonably well
and can serve as good starting values. AMLE0 performs reasonably
well in this case, except for d = 0.5 case where the AR coefficients
are off significantly. Fig. 3 has shown that the linear approximation
is less accurate as d increases. The constant term given by AMLE0
is always biased due to the linear approximation. The second order
approximation works well. When d = 0, the log-function is
canonical and AMLE0 should be the same as MLE except for the
constant term. In Table 2, we see the estimates given by these two
methods are very close when d = 0. The difference is due to the
fact that d also needs to be estimated.

5.2. Logit-Beta-M-GARMA model

We simulate a time series of length T = 500 from the Logit-
Beta-M-GARMA(1, 1) model:

yt | µt ∼ Beta(τµt , τ (1 − µt)),

logit(yt) = ν + φ1logit(yt−1)+ εt + δ1εt−1,

εt = logit(yt)− gτ (µt).

The approximated link functions used for AMLE0 and AMLE1 are
gτ (µt) ≈ logit(µt) and gτ (µt) ≈ logit(µt) − [2(1 + τ)µt(1 −

µt)]
−1, respectively. For each of the four sets of parameters,

the means and standard errors of the estimates based on 500
repetitions are reported in Table 3.

It can be seen that the simple GMLE performs very well, though
our experiments (not shown here) show that its performance
may deteriorate when the sample size is smaller. The AMLE0
performs poorly when τ is small, but its performance improves as
τ increases. This is due to the fact that the approximation is closer
to the true link function gτ (·) as τ increases. The estimator AMLE1,
using a second order approximation, performs better than AMLE0.

Next we study themodel selection procedure using BIC for both
MLE and GMLE. We set the true orders as p = q = 1, and fix
the parameters ν = −.1, φ1 = 0.8 and δ1 = −.5. For each
combination of τ = 1, 5 and T = 200, 500, the procedure is
repeated 500 times. Table 4 gives the number of times that each
(p, q) is selected, with 1 ≤ p, q ≤ 3. It is shown that the MLE,
which is computationally more intensive, performs slightly better
than GMLE in terms of model identification. For moderate sample
size, BIC performs quite well, though it has a tendency to select
large models.

6. Applications

6.1. High-frequency realized volatility

Realized volatility has been extensively modeled and studied
in financial econometrics, see for example, Barndorff-Nielsen
and Shephard (2002), Hansen and Lunde (2005) and Takahashi
et al. (2009). Daily realized volatility is often calculated based
on high frequency intra-day asset returns to measure integrated
variability (Andersen and Bollerslev, 1998; Andersen et al.,
2001; Barndorff-Nielsen and Shephard, 2001). Here we study
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Table 3
Simulation results of the Beta-M-GARMA model.

Parameter True GMLE MLE AMLE0 AMLE1

ν −0.10 −0.1159 (0.1030) −0.1097 (0.0907) −0.1097 (0.0907) −0.0653 (0.0542)
φ1 0.80 0.0653 (0.0542) 0.7807 (0.0672) 0.5570 (0.1120) 0.6470 (0.0728)
δ1 −0.50 −0.4773 (0.1043) −0.4773 (0.1043) −0.4607 (0.1122) −0.4607 (0.1122)
τ 1.00 1.0047 (0.0525) 1.0071 (0.0511) 0.9789 (0.1350) 1.0057 (0.0512)

ν −0.10 −0.1100 (0.0374) −0.1091 (0.0372) −0.0897 (0.0305) −0.1040 (0.0354)
φ1 0.80 0.7796 (0.0599) 0.7816 (0.0597) 0.7157 (0.0617) 0.7633 (0.0600)
δ1 −0.50 −0.4847 (0.0812) −0.4854 (0.0807) −0.4839 (0.0804) −0.4850 (0.0806)
τ 5.00 5.0530 (0.2957) 5.0543 (0.2956) 5.0534 (0.2959) 5.0544 (0.2956)

ν −0.10 −0.1071 (0.0451) −0.1053 (0.0320) −0.0959 (0.0291) −0.0959 (0.0291)
φ1 0.80 0.7817 (0.0995) 0.7861 (0.0588) 0.7524 (0.0596) 0.7807 (0.0588)
δ1 −0.50 −0.4872 (0.1036) −0.4906 (0.0783) −0.4897 (0.0783) −0.4904 (0.0782)
τ 10.0 10.086 (0.6275) 10.105 (0.6236) 10.094 (0.6439) 10.107 (0.6236)

ν −0.10 −0.1107 (0.0293) −0.1107 (0.0293) −0.1106 (0.0284) −0.1106 (0.0284)
φ1 0.90 0.8889 (0.0291) 0.8893 (0.0288) 0.8768 (0.0288) 0.8888 (0.0288)
δ1 −0.50 −0.4913 (0.0509) −0.4916 (0.0503) −0.4916 (0.0503) −0.4916 (0.0503)
τ 50.0 50.557 (3.2916) 50.559 (3.2906) 50.565 (3.2911) 50.563 (3.2914)
Table 4
Model selection using BIC. Logit-Beta-M-GARMA(1, 1) model with ν = −0.10, φ = 0.8 and δ = −0.5.

GMLE MLE
q = 0 q = 1 q = 2 q = 3 q = 0 q = 1 q = 2 q = 3

τ = 1 p = 0 0 2 5 3 0 0 2 0
T = 200 p = 1 153 199 2 4 122 227 3 3

p = 2 77 0 1 6 72 1 9 5
p = 3 10 2 4 32 2 1 14 38

τ = 5 p = 0 0 1 5 3 0 25 8 4
T = 200 p = 1 140 204 1 1 0 289 1 4

p = 2 65 1 14 7 81 2 12 4
p = 3 4 0 5 47 5 0 17 48

τ = 1 p = 0 0 0 0 0 0 0 0 0
T = 500 p = 1 21 372 5 0 0 387 4 2

p = 2 68 2 1 2 56 2 3 4
p = 3 14 1 2 0 5 1 4 21

τ = 5 p = 0 0 0 0 0 0 0 0 0
T = 500 p = 1 8 389 1 1 0 399 3 0

p = 2 55 1 10 2 58 1 2 1
p = 3 6 0 5 21 5 0 2 29
Fig. 4. Fitted results for the HSI realized volatility using the Log-Gamma-M-GARMA model.
the daily realized volatility MTRV, the median truncated realized
variance of Hang Seng Index (HSI), taken from the ‘‘Oxford-Man
Institute’s realized library’’ (version 0.2, available at the website:
http://realized.oxford-man.ox.ac.uk). The data is from January 2,
2008 toMay 15, 2012with 823 observations, see Fig. 4. As volatility
is positive and often modeled by Gamma distribution, we use the

http://realized.oxford-man.ox.ac.uk
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Table 5
Estimation results of the Log-Gamma-M-GARMA model for the HSI realized volatility.

Parameter Two-parameter parametrization Three-parameter parametrization
Log-Gamma-M-GARMA MEM Log-Gamma-M-GARMA MEM
GMLE MLE AMLE0 MLE GMLE MLE AMLE0 MLE

ν −0.0195 −0.0104 0.0329 0.0268 −0.0195 −0.0250 0.0232 0.0307
(0.0088) (0.0097) (0.0095) (0.0085) (0.0088) (0.0117) (0.0097) (0.0096)

φ1 1.0414 1.0944 1.0911 0.9689 1.0414 1.1274 1.1381 0.9602
(0.0667) (0.0741) (0.0738) (0.0814) (0.0667) (0.0747) (0.0756) (0.0901)

φ2 −0.0694 −0.1093 −0.1061 0.0000 −0.0694 −0.1627 −0.1589 0.0000
(0.0612) (0.0698) (0.0695) (0.0764) (0.0612) (0.0674) (0.0704) (0.0833)

δ1 −0.6383 −0.6084 −0.6042 −0.5234 −0.6383 −0.6618 −0.6508 −0.5113
(0.0549) (0.0623) (0.0623) (0.0738) (0.0549) (0.0633) (0.0633) (0.0879)

c 4.6745 4.7277 4.7228 4.6824 4.0116 3.9394 3.9404 3.8863
(0.2110) (0.2253) (0.2251) (0.2242) (0.2208) (0.2586) (0.2530) (0.2441)

d −0.3487 −0.3878 −0.3798 −0.4049
(0.0616) (0.0773) (0.0745) (0.0711)

Loglik 1.224 5.492 5.236 1.465 20.02 22.26 21.06 20.99
BIC 31.12 22.58 23.09 30.62 0.231 −4.243 −1.845 −1.716
RSS 1065 1030 1038 1097 1043 1035 1040 1091
Q (1) 0.0022 5.13* 5.11* 3.6420 0.0022 3.3889 6.062* 2.9087
Q (5) 4.7523 11.1* 11.2* 71.52** 4.7523 10.338 11.54* 72.51**

Q (22) 17.134 26.662 26.601 157.9** 17.134 23.902 26.023 157.8**

Q 2(1) 7.082** 9.26** 11.39** 0.0142 3.3934 4.604* 6.86** 0.0049
Q 2(5) 31.91** 28.07** 29.35** 0.1715 6.7814 8.1967 13.29* 0.0104
Q 2(22) 43.07** 39.65** 40.15** 0.3316 16.752 19.184 22.665 0.1476
C1 0.884 0.057 0.032* 0.923 0.884 0.096 0.016* 0.924
C2 0.646 0.076 0.076 0.886 0.646 0.262 0.112 0.948
C3 0.320 0.012* 0.016* 0.848 0.320 0.168 0.056 0.800
K1 0.790 0.082 0.048* 0.400 0.790 0.107 0.040* 0.496
K2 0.808 0.096 0.124 0.990 0.808 0.224 0.136 0.992
K3 0.454 0.042* 0.026* 0.350 0.454 0.280 0.124 0.890
GS 0.880 0.066 0.066 0.254 0.880 0.128 0.046* 0.286
KL1 0.925 0.105 0.000** 0.489 0.925 0.172 0.000** 0.411
KL2 0.255 0.027* 0.000** 0.694 0.255 0.071 0.000** 0.639
KL3 0.037* 0.006** 0.000** 0.624 0.037* 0.011* 0.000** 0.644

Note: The values in parentheses are the standard errors.
* indicate that the test statistic is significant at 5% levels.
** indicate that the test statistic is significant at 1% levels.
Gamma-M-GARMA model with log y-link function (9). We also
consider a simper model where the parameter d in (9) is fixed at
d = 0, and c is to be estimated.

Based on standard order determination procedures for the
Gaussian time series (Tsay and Tiao, 1984; Chen et al., 2013) and
using BIC, the order of the M-GARMA process is selected as p = 2
and q = 1. That is, the following model is used,

yt | µt ∼ Gam(cµd
t , cµ

d−1
t ),

log yt = ν + φ1 log yt−1 + φ2 log yt−2 + εt + δ1εt−1,

where εt = log yt − gc,d(µt).
Table 5 shows the estimation results of three methods MLE,

GMLE and AMLE0, see Section 5 for details about AMLE0. In the
top panel we report the estimates and their standard errors. In
the bottom panel we report a few statistics to compare different
methods. The first two rows give the maximum log likelihood and
the BIC. In the third row, RSS stands for residual sum of squares
defined by RSS =

T
t=1(yt − µ̂t)

2. The quantity Q (m) denotes
the Box–Ljung test statistic withm lags (Ljung and Box, 1978). The
statistic Q 2(m) is the portmanteau test statistic based on squared
standardized residuals ê2t , which are defined as ê2t = ε̂2t /σ̂

2
t , where

σ̂ 2
t is the estimated conditional variance Var(log yt | Ft−1) =

ψ1(ĉµ̂d̂
t ). This statistic is used to test whether the conditional

heteroscedasticity is modeled well, see McLeod and Li (1983). We
also employ the martingale difference tests check whether {εt}
is a MDS. The statistics CP and KP stand for Cramer–von Mises
test and Kolmogorov–Smirnov test respectively (Domínguez and
Lobata, 2003), where P is the number of lagged values used in
the tests. The statistic GS is the generalized spectral test proposed
by Escanciano and Velasco (2006). The test KLP were proposed by
Kuan and Lee (2004), where we use the multivariate exponential
density as the weight function, and the parameter β is taken as the
reciprocal of the sample standard deviation. Sincemostmartingale
tests are not distribution free, and the p-values are often obtained
through bootstrapping, we only report p-values of the martingale
tests. GMLE results are very similar with those of MLE, suggesting
the advantage of M-GARMA models. AMLE0 also provides very
similar results, because in the range ofµt of this data set, the linear
approximation of the link function is very accurate.

Comparing the left and right panels of Table 5, we see the
benefit of adding d as a parameter and estimating it. It allows us to
model the conditional heteroscedasticity more adequately, as the
statistics Q 2(m) are significantly reduced in the right panel. We
choose m = 1, 5, 22, corresponding to autocorrelations within a
day, a week and a month of the squared standardized residuals.
The models in the right panel also has significantly smaller BIC
values. Furthermore, the martingale difference tests for the three-
parameter case provide larger p-values.

In the right panel, theGMLE,MLE andAMLE0 all produce similar
results, as the estimated d is small whichmakes the approximation
used by AMLE0 quite accurate. However, the residuals from MLE
estimation have slightly better properties, in terms of BIC and Q
statistics.

We also compare the log-Gamma-M-GARMA model with the
following MEMmodel

yt |Ft−1 ∼ Gam(cµd
t , cµ

d−1
t ),

µt = ν + φ1yt−1 + φ2yt−2 + δ1(yt−1 − µt−1).

For details on general MEM models, see for example Engle (2002),
Engle and Gallo (2006) and Brownlees et al. (2012). Based on the
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Fig. 5. Fitted results for US personal saving rate with the Logit-Beta-M-GARMA model.
likelihood, BIC, RSS and portmanteau tests, we find that the log-
Gamma-M-GARMA model has a better performance.

Finally, we use a few plots in Fig. 4 to illustrate the performance
of the fitted log-Gamma-M-GARMA(2, 1) model using MLE. The
upper-left panel is a plot of the original time series yt and the
fitted values µ̂t , showing a good fit to the data. The upper-right
panel gives the residuals ε̂t . In the lower-left panel we show
the absolute residual |ε̂t |, and the estimated conditional standard
deviation σ̂t . We also construct a QQ plot (lower-right panel)
to check the conditional distribution assumption more carefully.
Let F(· | µt , c, d) be the cumulative distribution function of
Gam(cµd

t , cµ
d−1
t ), then ut = F(yt | µt , c, d) follows the uniform

distribution on [0, 1]. Let ût = F(yt | µ̂t , ĉ, d̂) and we show, in
the lower-right panel, the QQ plot of ût over Uniform [0, 1]. Note
that such constructed QQ plot can also be viewed as residual QQ
plot. Let F1(· | µt , c, d) be the conditional cumulative distribution
function of εt given Ft−1. It can be easily shown that F1(εt |

µt , c, d) = F(yt | µt , c, d). Hence a straight line in the QQ plot
would indicate reasonable model (and the residual) assumption.

6.2. US personal saving rate

In this section we study the US personal saving rate, an impor-
tant economic indicator. The seasonal adjusted monthly series is
available at the US Bureau of Labor Statistics (http://www.bls.gov).
The series, from January 1959 to March 2013 with 651 observa-
tions, is shown in the upper left panel of Fig. 5. It is reasonable to
assume that saving rate would not exceed 15% hence the series is
bounded in [0, 0.15]. For simplicity, wemultiply the series by 20/3
andmodel it with a conditional Beta distribution on [0, 1]. Specifi-
cally, we employ the Logit-Beta-M-GARMAmodel (10) with a time
trend

yt | Ft−1 ∼ Beta(τµt , τ (1 − µt)),

logit(yt) = ν + γ t +

p
j=1

φjlogit(yt−j)+ εt +

q
j=1

δjεt−j,

where εt = logit(yt) − gτ (µt). Our analysis is parallel to that in
Section 6.1. First, the order is selected as p = 4 and q = 1. We
then apply the methods of MLE, GMLE, AMLE0, and AMLE1 (see
Section 5 for details about AMLE0 and AMLE1), and the results
are reported in Table 6. Here the residual sum of squares RSS1
is defined as RSS1 =

T
t=1(yt − µ̂t)

2, and RSS2 is defined as
RSS2 =

T
t=1(logit(yt)− gτ̂ (µ̂t))

2.
We see the results of MLE and AMLE1 are very close, again

because the second order approximation of the link function is
accurate in the range of this data set. GMLE andAMLE0 also provide
very similar results. From the maximum likelihood, BIC and RSS,
we see that MLE and AMLE1 provide slightly better fit than GMLE
andAMLE0, but the improvements aremarginal. Portmanteau tests
suggest that both the dependence in the series logit(yt), and the
conditional heteroscedasticity are modeled well. This finding is
also confirmed by the top panel of Fig. 5, which gives the time
series plot of yt with fitted values µ̂t , as well as the residual plot
of ε̂t . The bottom left panel shows the absolute residuals, and the
conditional standard deviations σ̂t , defined by σ̂ 2

t = Var[logit(yt) |

Ft−1] = ψ1(τ̂ µ̂t) + ψ1(τ̂ (1 − µ̂t)). We also construct a QQ plot
using a similar procedure as described in Section 6.1. The bottom
panel suggests that the conditional Beta assumption is reasonable.
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Appendix

A.1. Proofs for Section 3

Proof of Theorem 1. For simplicity, we assume ν = 0. The proof
for the case ν ≠ 0 is very similar, but slightly more complicated.
We will prove the Markov chain X in (19) is geometrically ergodic.
We first consider the condition (ii).

Proof of (ii). Since Xt = ΦXt−1 + (1, 0, . . . , 0)′εt , we have

E(∥Xt∥
2

| Xt−1) = X ′

t−1Φ
′ΦXt−1 + Var(εt | µt).

http://www.bls.gov
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Table 6
Estimation results of the Logit-Beta-M-GARMA model for the US saving rate.

Parameter GMLE MLE AMLE0 AMLE1

ν 0.0354 (0.0186) 0.0317 (0.0167) 0.0323 (0.0165) 0.0317 (0.0167)
γ −1.43E-4 (6.1E-5) −1.27E-4 (4.6E-5) −1.28E-4 (5.4E-5) −1.27E-4

(5.5E-5)
φ1 0.9145 (0.1142) 0.9486 (0.1175) 0.9380 (0.1168) 0.9483 (0.1175)
φ2 −0.1155 (0.0862) −0.1413 (0.0923) −0.1386 (0.0904) −0.1412 (0.0922)
φ3 −0.0283 (0.0532) −0.0378 (0.0504) −0.0369 (0.0496) −0.0378 (0.0504)
φ4 0.1895 (0.0471) 0.1978 (0.0459) 0.1946 (0.0452) 0.1977 (0.0459)
δ1 −0.3197 (0.1128) −0.3039 (0.1159) −0.3050 (0.1153) −0.3039 (0.1159)
τ 87.698 (4.7385) 87.928 (4.8120) 87.930 (4.8761) 87.934 (4.8898)

Loglik 1037.44 1038.29 1037.8 1038.27
BIC −2023.05 −2024.75 −2023.77 −2024.71
RRS1 1.4166 1.4130 1.4142 1.4130
RRS2 30455 30459 30483 30459
Q (12) 10.113 11.448 10.196 11.417
Q (24) 16.180 18.057 15.840 18.007
Q 2(12) 9.5981 11.488 10.020 11.439
Q 2(24) 11.091 13.013 11.514 12.964
C1 0.000** 0.046* 0.020* 0.032*

C2 0.006** 0.068 0.036* 0.064
C3 0.136 0.390 0.300 0.424
K1 0.000** 0.034* 0.020* 0.020*

K2 0.048* 0.174 0.178 0.188
K3 0.206 0.650 0.444 0.644
GS 0.058 0.274 0.222 0.270
KL1 0.000** 0.008** 0.004** 0.008**

KL2 0.000** 0.000** 0.000** 0.000**

KL3 0.000** 0.001** 0.000** 0.001**

Note: The values in parentheses are the standard errors.
* denote that the test is significant at 5% level of significance.
** denote that the test is significant at 1% level of significance.
For every κ > 0, there exists a Bκ > 0 such that

V (µ) ≤ (1 + κ)λ[g(µ)]2 + Bκ , (24)

and it follows that

E(∥Xt∥
2

| Xt−1) ≤ X ′

t−1Φ
′ΦXt−1 + (1 + κ)λ[g(µt)]

2
+ Bκ

= X ′

t−1Φ
′ΦXt−1 + (1 + κ)λX ′

t−1Φ
′

1Φ1Xt−1 + Bκ
≤ (1 + κ)X ′

t−1Ψ1Xt−1 + Bκ .

Next, by taking a double expectation

E(∥Xt∥
2

| Xt−2) ≤ (1 + κ)E[X ′

t−1Ψ1Xt−1 | Xt−2] + Bκ .

Applying (24) again,

E[X ′

t−1Ψ1Xt−1 | Xt−2]

= X ′

t−2Φ
′Ψ1ΦXt−2 + w1Var(εt−1 | µt−1)

≤ X ′

t−2Φ
′Ψ1ΦXt−2 + w1(1 + κ)λ[g(µt−1)]

2
+ w1Bκ

= X ′

t−2Φ
′Ψ1ΦXt−2 + (1 + κ)λX ′

t−2Φ
′

1Ψ1Φ1Xt−2 + w1Bκ
≤ (1 + κ)X ′

t−2Ψ2Xt−2 + w1Bκ .

It follows that

E(∥Xt∥
2

| Xt−2) ≤ (1 + κ)2X ′

t−2Ψ2Xt−2 + (1 + κ)w1Bκ + Bκ ,

wherew1 is the (1, 1)th entry of Ψ1.
Following the same argument, we have for any positive

integer h,

E(∥Xt∥
2

| Xt−h) ≤ (1 + κ)hX ′

t−hΨhXt−h +

h−1
j=0

(1 + κ)jwjBκ

wherewj is the (1, 1)th entry of Ψj for j ≥ 1, andw0 = 1.
Choose h, such that the operator norm of Ψh is less than 1− 2ω

for some ω > 0. Choosing κ such that (1 + κ)h(1 − 2ω) < 1 − ω,
we have

E(∥Xt∥
2

| Xt−h) ≤ (1 − ω)∥Xt−h∥
2
+

h−1
j=0

(1 + κ)jwjBκ .

Since every compact set is petite, from here it is easy to verify that
for the skeleton Xh, the drift condition (D) is met with V(x) =

∥x∥2
+ 1 for x ∈ Rp. By Lemma 1, the chain X is geometrically er-

godic, and Eπ∥Xt∥
2 < ∞, whereπ is the unique invariant probabil-

ity measure. Because h(yt) = δ′Xt , it follows that Eπ [h(yt)]2 < ∞.
Proof of (i). Since λ = 0, for every κ > 0, there exists a Bκ

> 0 such that V (µ) ≤ κ[g(µ)]2 + Bκ . Define Ψ0 = I , and
Ψk = Φ ′Ψk−1Φ + κΦ ′

1Ψk−1Φ1 for k ≥ 1. Similarly as the proof
of (ii), we have

E(∥Xt∥
2

| Xt−h) ≤ X ′

t−hΨhXt−h +

h−1
j=0

wjBκ .

Under the condition φ(z) ≠ 0 for all |z| ≤ 1, the spectrum ra-
dius ofΦ is strictly less than one, so we can choose h, such that the
operator norm of Φh is less than 1 − 2ω for some ω > 0, and we
can then choose a κ small enough such that the operator norm of
∥Ψh∥ is less than 1 − ω. Thus,

E(∥Xt∥
2

| Xt−h) ≤ (1 − ω)∥Xt−h∥
2
+

h−1
j=0

wjBκ .

The proof is completed by applying Lemma 1. �

Proof of Theorem 2. The proof of Theorem 2 is very similar with
that of Theorem 1. We will outline the proof of (ii) and omit the
proof of (i).

Recall ζ = (φ1, 1, 0, . . . , 0)′. It holds that g(µt) = φ1s1,t−1 +

s2,t−1 = ζ ′St−1. For every κ > 0, there exists a Bκ > 0 such that

E(∥St∥2
| St−1) ≤ ∥Φ ′St−1∥

2
+ δ′δV (µt)

≤ S ′

t−1ΦΦ
′St−1 + δ′δ(1 + κ)λS ′

t−1ζ ζ
′St−1 + δ′δBκ

≤ (1 + κ)S ′

t−1Υ1St−1 + δ′δBκ .
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Using the same argument as the proof of Theorem 1, we can show
that

E(∥St∥2
| St−h) ≤ (1 + κ)hS ′

t−hΥhSt−h +

h−1
j=0

(1 + κ)jδ′ΥjδBκ .

The rest of the proof is the same as that of Theorem 1, and we will
omit details. �

Proof of the Statement in Remark 3.9. We first observe that

g(µt) = ν + φ1h(yt−1)+ δ1εt−1

= ν + φ1g(µt−1)+ (φ1 + δ1)εt−1,

so {g(µt)} is aMarkov Chain. For every κ > 0, there exists a Bκ > 0
such that

E[(g(µt)
2) | g(µt−1)]

= [ν + φ1g(µt−1)]
2
+ (φ1 + δ1)

2V (µt−1)

≤ [ν + φ1g(µt−1)]
2
+ (φ1 + δ1)

2
{(1 + κ)λ[g(µt−1)]

2
+ Bκ}.

If φ2
1 + λ(φ1 + δ1)

2 < 1, it is easy to check that the drift condition
(D) is met, thus the process {g(µt)} is geometrically ergodic by
Lemma 1, and Eπ [g(µt)]

2 < ∞, where π is the unique invariant
probability measure. �

In order to apply Theorems 1 and 2 for the log-Gamma-M-
GARMA model (9), we need the following Lemma.

Lemma 2. Suppose Y ∼ Gam(cµd, cµd−1), where c, d > 0 are fixed
constants. Let g(µ) = E(log Y ) and V (µ) = Var(log Y ). Then

lim sup
|g(µ)|→∞

V (µ)/[g(µ)]2 = 1.

Proof. We have

g(µ) = ψ(cµd)− log(cµd−1), V (µ) = ψ1(cµd),

whereψ andψ1 are the digamma and trigamma functions respec-
tively. The following recurrence relationship hold for x > 0

ψ(x + 1) = ψ(x)+
1
x
, ψ1(x + 1) = ψ1(x)−

1
x2
,

which, together with the fact ψ1(x) =


∞

n=0(x + n)−2 imply that

lim
x→0

xψ(x) = −1, lim
x→∞

ψ(x)/ log(x) = 1,

lim
x→0

x2ψ1(x) = 1, lim
x→∞

ψ1(x) = 0.

Therefore, the conclusion follows. �

A.2. Proofs for Section 4.1

Proof of Theorem 4. Since {h(yt)} is stationary and ergodic, by the
ergodic theorem,

lim
T→∞

1
T

T
t=p+1

XtX ′

t = E(XtX ′

t ) = V a.s., (25)

where V is assumed to be finite and positive definite. Since W :=

E[V (µt)Xt−1X ′

t−1] is also finite and positive definite, again by the
ergodic theorem

lim
T→∞

1
T

T
t=p+1

E

Xt−1X ′

t−1ε
2
t | Ft−1


= lim

T→∞

1
T

T
t=p+1

V (µt)Xt−1X ′

t−1 = W a.s. (26)
Furthermore, because W is finite and the process {Xt−1X ′

t−1ε
2
t } is

stationary, for any ϵ > 0,

E


1
T

T
t=p+1

E

Xt−1X ′

t−1ε
2
t I{X

′

t−1Xt−1ε
2
t ≥ ϵT } | Ft−1



=
1
T

T
t=p+1

E

Xt−1X ′

t−1ε
2
t I{X

′

t−1Xt−1ε
2
t ≥ ϵT }


→ 0,

and therefore

lim
T→∞

1
T

T
t=p+1

E

Xt−1X ′

t−1ε
2
t I{X

′

t−1Xt−1ε
2
t ≥ ϵT } | Ft−1


= 0

in probability. (27)

By Corollary 3.1 of Hall and Heyde (1980) and a Cramer–Wold
device, (26) and (27) imply that

1
√
T

T
t=p+1

Xt−1εt ⇒ N(0,W ),

which, together with (25), completes the proof. �

We now verify the moment condition for the log-Gamma-M-
GARMA model (9).

Proof of Proposition 1. Suppose Y ∼ Gam(cµd, cµd−1), where
c, d > 0 are fixed constants. Recall V (µ) = Var(log Y ), and define
V3(µ) = E[log Y−g(µ)]3 and V4(µ) = E[log Y−g(µ)]4. Using the
properties of polygamma functions, we have similarly as Lemma 2,

lim sup
|g(µ)|→∞

|V3(µ)|/|g(µ)|3 = 2, lim sup
|g(µ)|→∞

V4(µ)/[g(µ)]4 = 9.

Consequently, for every κ > 0, there exists a Bκ > 0 such that

V (µ) ≤ (1 + κ)[g(µ)]2 + Bκ ,
|V3(µ)| ≤ 2(1 + κ)|g(µ)|3 + Bκ ,

V4(µ) ≤ 9(1 + κ)[g(µ)]4 + Bκ . (28)

To simplify the notation in the calculation, we introduce the
collection of matrices

A = {A : A is a p × p non-negative definite matrix,
and each entry of A is a finite order multivariate
polynomial of φ1, . . . , φp.


.

Let ς = (1, 0, . . . , 0)′. For any matrix A ∈ A, we calculate

E[(X ′

tAXt)
2

| Xt−1]

= (X ′

t−1Φ
′AΦXt−1)

2
+ E


4(ς ′AΦXt−1)

2
· ε2t | Xt−1


+ E


2Xt−1Φ

′AΦXt−1 · ς ′Aς · ε2t | Xt−1


+ E

4ς ′AΦXt−1 · ς ′Aς · ε3t | Xt−1


+ E


(ς ′Aς)2 · ε4t | Xt−1


≤ (X ′

t−1Φ
′AΦXt−1)

2
+ 6Xt−1Φ

′AΦXt−1 · ς ′Aς · V (µt)

+ 4ς ′AΦXt−1 · ς ′Aς · |V3(µt)| + (ς ′Aς)2 · V4(µt).

Set α = X ′

t−1Φ
′AΦXt−1 and β = X ′

t−1Φ
′

1AΦ1Xt−1. Using (28), and
the fact g(µt)ς = Φ1Xt−1, after collecting terms, we have

E[(X ′

tAXt)
2

| Xt−1] ≤α2
+ (1 + κ)[6αβ + 4(cα + β/c)β + 9β4

]

+ 10Bκ · ς ′Aς · α + 13Bκ(ς ′Aς)2

for any c > 0. Let ξ be the positive root of the polynomial z3 +

3z2 − 1. Set c = ξ , we have

E[(X ′

tAXt)
2

| Xt−1] ≤ (1 + κ)[α + (3 + 2ξ)β]
2

+ 10Bκ · ς ′Aς · α + 13Bκ(ς ′Aς)2. (29)
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For each integer h > 0, by repeating (29) h times, we know there
exists a constant Cκ , and a matrix Aκ ∈ A (both depending on κ)
such that

E(∥Xt∥
4

| Xt−h) ≤ (1 + κ)h(X ′

t−hΞhXt−h)
2
+ X ′

t−hAκXt−h + Cκ .

Choose h, such that the operator norm ofΞh is less than 1− 2ω for
some ω > 0. Choosing κ such that (1+ κ)h(1− 2ω)2 < 1−ω, we
have

E(∥Xt∥
4

| Xt−h) ≤ (1 − ω)∥Xt−h∥
4
+ X ′

t−hAκXt−h + Cκ .

Nowwe can apply Theorem 14.3.7 of Meyn and Tweedie (2009) to
obtain that under the invariant probability π , Eπ∥Xt∥

4 < ∞, and
the proof is complete. �
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