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Time series data collected from arrays of seismometers are traditionally used to solve the core problems of detecting and
estimating the waveform of a nuclear explosion or earthquake signal that propagates across the array. We consider here a
parametric exponentially modulated autoregressive model. The signal is assumed to be convolved with random amplitudes
following a Bernoulli normal mixture. It is shown to be potentially superior to the usual combination of narrow band filtering
and beam forming. The approach is applied to analyzing series observed from an earthquake from Yunnan Province in China
received by a seismic array in Kazakhstan.
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1. INTRODUCTION

One important aspect of the general problem of monitoring nuclear tests such as those that have occurred in North
Korea, Pakistan and India pertains to inferences drawn directly from arrays of sensors or seismometers that detect
seismic events such as earthquakes or mining or nuclear test explosions. Amplitudes and power spectra of the
signal estimated from an array of sensors can be used directly to obtain an estimate for the magnitude of an event
that relates directly to yield if the event happens to be an explosion. The signal arrival times are also critical
because they are used to locate the origin of the event, another important parameter of interest. Furthermore, there
are a number of shorter signals called ‘phases’ that arrive with different delays and correspond to different paths
taken to the recording receivers by the different phases. Generally, there might be two arrivals associated with the
body wave (P ) and possibly two arrivals associated with surface waves (S ). For further analysis, see Gibbons et
al. (2011). The parametric formulation allows for this kind of behaviour in the model for the convolving functions.
Hence, it is critical to develop the best estimators possible for the waveform of the underlying signal on the array.

To illustrate, consider Figure 1 that shows four of the nine channels recording an earthquake in Yunnan Province
in China at the Makanche Array in Kazakhstan. The series are recorded at 20 points per second, leading to a folding
frequency of 10 cycles per second (Hz). The primary energy in this signal is in the 0–3 Hz range. The signals
arrive at different times Ti ; i D 1; 2; : : : ; N , relative to some arbitrary start point, with the time delays Ti D r 0i�
giving the relation of the array coordinate vector ri D .ri1; ri2/

0 in km to a slowness parameter � 0 D .�1; �2/ in
second/km. The slowness parameter is directly related to the velocity and azimuth of a propagating plane wave
(see Shumway et al. (2008) for details). The coordinates for the nine vertical recording channels of the Makanche
are shown in Figure 2.
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Figure 1. First four (of nine) vertical channels recording an earthquake in Yunnan Province in China, February 9, 2004 at the
Makanche Array in Kazakhstan
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Figure 2. Array coordinates r D .r1; r2/0 in km for the nine channels at the Makanche Array in Kazakhstan

Given an underlying signal s.t/, assumed to be fixed and unknown, we model the arrival at sensor i by

yi .t/ D s
�
t � r 0i�

�
C "i .t/; (1)

i D 1; 2; : : : ; N , t D 1; 2; : : : ; n, where "i .t/ is stationarily correlated over time but uncorrelated between
sensors. In the frequency domain, one can obtain an F-statistic as in Shumway (1971) for each � . Finding
the maximum as a function of slowness � , we convert to velocity and azimuth to obtain direction. The max-
imum likelihood estimators for the fixed velocity and azimuth also lead to the best linear unbiased estimates
(Shumway and Dean, 1968) for the signal. In this case, the best estimator for the signal can be approxi-
mated: first by filtering the data into the signal band, and then by delaying and averaging, that is, we compute
the estimator

Os.t/ D N�1
NX
iD1

yi
�
t C r 0i�

�
: (2)
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Figure 3. The estimated signal of the Yunnan earthquake data computed by equation (2) compared with the waveform at the
first sensor

In the geophysical literature, this is called ‘beam-forming,’ and it depends critically on the assumption that the
signal is a plane wave propagating across the array with a fixed velocity and azimuth (direction in degrees measured
clockwise from north).

For details on this computation and extensions to multiple signal and noise sources, see Shumway et al.
(2008). Figure 3 shows the estimated signal compared with the raw signal observed at the first sensor, and we
find improvements in signal-to-noise ratio, particularly when the signal arrives; the first arrival is enhanced,
and a clear representation of the first two cycles can be important for discrimination between earthquakes and
nuclear explosions.

The aforementioned procedure can be relatively effective, but it still depends on the special plane wave model.
Furthermore, it depends on being able to assume an exact replica for the signal at each element of the array. It
might be effective to generalize it to a model that does not depend on plane wave propagation and would lead
to alternatives to beam-forming. The rest of the article is organized as follows. Section 2 proposes a generalized
model, in which the observations on each sensor consists of several waves of the underlying signal s.t/ that arrive
at different time points and have different amplitudes. The generalization is achieved at the cost of more detailed
processing. In Sections 3 and 4, we employ a Bayesian paradigm to extract the signal and estimate the unknown
parameters. The approach is implemented via Markov chain Monte Carlo (MCMC) (Gilks et al., 1995; Liu, 2001;
Robert and Casella, 1999) and provides a powerful means for dealing with high dimensional nonlinear problems. A
similar approach has been used in Cheng et al. (1996). We adopt their framework and propose some modifications
to improve its performance. Section 5 applies the new model to analysing the earthquake signal from Yunnan
Province in China, observed by a seismic array in Kazakhstan. Section 6 concludes.

2. A BAYESIAN FORMULATION OF THE MODEL

It is clear that the plane wave model currently in use may not be the best one for producing an estimator for the
underlying signal on the array. There can be nonlinear perturbations in the idealized linear model that will cause
significant changes in the estimated underlying signal. Therefore, we propose extending the model in equation (1)
to one that allows departures from the idealized signal model. Consider the generalization
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yi .t/ D

mX
jD�v

ai;j s.t � j /C "i .t/; (3)

where ai;j is the amplitude multiplier for each delay on each sensor and "i .t/ are independent zero-mean
Gaussian white noise processes with variance �2y . The model allows for yi .t/ to be expressed as a sum con-
sisting of a convolution of unknown scale amplitudes aij and the signal with additive noise. It is clear that
the plane wave model (1) can be obtained by letting ai;j D ı

�
j � r 0

i
�
�
, where ı.�/ denotes Kronecker’s

delta function. The advantage of allowing more general amplitude factors in equation (3) is that it allows the
signal contributions at each lag to be modified in the model, which potentially can adjust for perturbations
because of scattering and other local variations in wave propagation. Many observed series have reflections
because of mixtures of phases, that is, similar echoes distribute over the range of the primary signal. Such a
model can also be used to describe acoustic echoes in telecommunication (Murano et al., 1990; Benesty et al.,
2001; Vaseghi, 2006), in which yi .t/ is the echo, s.t/ is the source of the echo and ai;j represents the echo
path. In the problem of echo cancellation, s.t/ is observable, the task is to estimate the echo path then sub-
tract the echo from the received signal. Suess et al. (1998) used a similar model for analysing rippled-fired
mining explosion signals and used it for discriminating mining explosions and earthquakes. In the mobile com-
munication literature for recovering convolutively mixed sources, Andrieu et al. (1998) studied a similar model
with ¹s.t/º being a sequence of (multichannel) discrete signals. Godsill and Andrieu (1999) proposed a general
model with no restriction on the mixing structure. In our model, a strong restriction is imposed on the mix-
ing coefficients ai;j specifically to model the signal reflection structure of seismic signals travelling through
earth medium.

In order to produce a sensible parametric representation for the signal process, it is reasonable to suspect from
Figure 1 that the roughly periodic behaviour might be fit well by an autoregressive (AR) model except for the
indication that there is a decay in the amplitudes. This can be even more pronounced in more impulsive earthquakes
and in explosions. As a simplified model, we allowed for an exponentially modulated AR model of order p,
written as

s.t/ D e�d tx.t/;

where

x.t/ D

pX
kD1

�kx.t � k/C �.t/ (4)

is an AR(p) model and d denotes the decay parameter associated with the exponential modulations. For the
Chinese earthquake signal and other earthquake events we have analysed, the roots of the characteristic polynomial
is close to the unit circle, and this will be noted later on. We assume that �.t/ is a zero-mean Gaussian white noise
process with variance �2x .

The amplitudes ai;j ; i D 1; 2; : : : ; N , j D �v;�v C 1; : : : ; m, are critical to the modelling process because
they clearly control the extent to which the signal loads on each sensor. The analogy between this signal model
and what might be termed a random coefficient factor model is suggested where the signal process plays the
role of factors. One could consider a set of coefficients that generates a linear time invariant filter and trans-
forms to a frequency domain factor analysis (Shumway and Der, 1985). However, we choose here to keep
the model strictly in the time domain and construct a probability distribution for the amplitudes. The main
idea is that the amplitudes should be zero when a particular delay is not important in determining the out-
put at an observed sensor. The restriction essentially forces a pattern that one essentially looks for when doing
factor analysis.

Specifically, we assume that the amplitude is zero with probability � and otherwise follows a normal distribution
with mean �a and variance �2a . To avoid ambiguity, we let the delay of the first arriving signal on the first sensor
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be zero and the corresponding amplitude multiplier be 1, that is, a1;j D 0 for all j < 0 and a1;0 D 1. In order
to prevent catching too weak signal as the first arriving signal on the first sensor, we also restrict ja1;j j < 1:5

for j > 0.

3. THE PRIOR AND POSTERIOR DISTRIBUTIONS

In this model, the variance �2y of the observation noise "i .t/ can be estimated from the background noise received
by the sensors before the signal arrives. In addition, the decay parameter d can be estimated from the decay of
the observed series. Hence, we will assume these two parameters are known in the following discussion. In the
earthquake data presented in Figure 1, we let �y D 1=�2y D 1=62

2 and d D 0:00070.
The rest of unknown parameters in the model are ‚ D

®
�x D 1=�

2
x ;�; A; �

¯
, where � D .�1; �2; : : : ; �p/

0,
the AR parameters in equation (4), A D ¹ai;j ; i D 1; � � � ; N; j D �v;�v C 1; � � � ; mº, the set of amplitude, and
� D P.ai;j D 0/.

We use the following prior distributions for the unknown parameters in the model.

P .�x/ � Gamma.˛x; 	x/; P.�/ � N.�� ; †�/; P.�/ � Beta.ˇ1; ˇ2/;

a1;j D 0 for j < 0 ; a1;0 D 1;

P.a1;j j �/ D � ı.a1;j /C .1 � �/c ˆ
�
a1;j I�a; �

2
a

�
I.ja1;j j < 1:5/ for j > 0 ;

P.ai;j j �/ D � ı.ai;j /C .1 � �/ ˆ
�
ai;j I�a; �

2
a

�
for i ¤ 1;

where ˆ.aI�;†/ denotes the normal density function with mean � and variance †, evaluated at a. I.�/ is the
indicator function, c is the normalizing constant. For the signal X D ¹x.t/; t D �m C 1;�m C 2; � � � ; n C vº,
we assume

P.x.�mC 1/; � � � ; x.�mC p// � N.0;†0/;

and x.t/ follows equation (4) for t > �mC p.
Let Y D ¹yi .t/; i D 1; � � � ; N; t D 1; � � � ; nº be the observations, the posterior distribution of the parameters,

and the signal can be written as

P.X ; ‚ j Y / / P.Y ;X ; ‚/

D P.�x/P.�/P.X j �x;�/ P.�/P.A j �/P.Y j X ; A/

D P.�x/P.�/P .x.�mC 1/; � � � ; x.�mC p//

�

vCnY
tD�mCpC1

r
�x

2 
exp

8̂<̂
:�0:5�x

0@x.t/ � pX
jD1

�jx.t � j /

1A2
9>=>;

� P.�/
Y

jD1;��� ;m

P.a1;j j �/ �
Y

iD2;��� ;N;jD�v;��� ;m

P.ai;j j �/

�
Y

iD1;��� ;N;tD1;��� ;n

r
�y

2 
exp

8̂<̂
:�0:5�y

0@yi .t/ � mX
jD�v

ai;j s.t � j /

1A2
9>=>; ;

(5)

where s.t/ D e�dtx.t/.
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The prior distributions used here are quite standard. The hyper-parameters .˛x; 	x/ control the prior knowl-
edge of the underlying signal strength, and .ˇ1; ˇ2/ reflects prior knowledge on the probability � D P.ai;j D 0/,
the ‘sparseness’ of reflection and composition of the delayed versions of the underlying signal. As posterior
distributions are often sensitive to the selection of prior distributions, especially for nonlinear models with a rela-
tively small sample size, caution should be exercised and prior sensitivity should be tested. With no strong prior
knowledge, one would choose the prior as non-informative as possible.

4. BAYESIAN INFERENCE WITH MARKOV CHAIN MONTE CARLO METHOD

Markov chain Monte Carlo is a powerful tool for solving problems in high-dimensional space. It has been applied
successfully in various problems in statistics (Gelfand and Smith, 1990; Liu and Sabatti, 2000), physics (Goodman
and Sokal, 1989; Marinari and Parisi, 1992), bioinformatics (Lawrence et al., 1993; Liu, 1994), signal processing
(Chen et al., 2002; Lee et al., 1995; Winkler, 1995), economics (Chib et al., 2006; Chib and Ergashev, 2009;
Verhofen, 2005) and other fields. In MCMC, a Markov chain

�
X .l/; ‚.l/

�
, l D 1; � � � ; L, is generated from a

transition kernel whose stationary distribution is P.X ; ‚ j Y /. Then, for any function h.X ; ‚/, under regularity
conditions, L�1

PL

lD1 h
�
X .l/; ‚.l/

�
converges to E.h.X ; ‚/jY / as L tends to infinity.

In the following, we provide detailed construction of the Markov chain that updates
�
X .l/; ‚.l/

�
from�

X .l�1/; ‚.l�1/
�

. The general construction is a Gibbs sampler (Casella and George, 1992) with several modi-

fications. The updating (sampling) is designed to cycle through the parameters one group at a time, conditional
on the rest of the most recently sampled parameters. A complete cycle of updating results in a new sample of�
X .l/; ‚.l/

�
. To simplify notation, we always use P

�
�i jY ;X

.l/; ‚.l/�

�
to denote the distribution of the parame-

ter �i conditional on all the rest of the most recent samples of parameters in the l-th iteration; some of them have
been updated in this iteration; some of them are the samples from the previous iteration and yet to be updated.

4.1. Updating the Parameters �x , �, � and A

We use the standard conditional distribution to update these parameters.

(1) Draw the precision parameter � .l/x from P
�
�xjY ;X

.l�1/; ‚.l/�

�
� Gamma

�
˛�x ; 	

�
x

�
, where ˛�x D ˛x C

.mC nC v � p/=2 and

	�x D 	x C
1

2

vCnX
tD�mCpC1

24x.l/.t/ � pX
jD1

�.l/
j
x.l/.t � j /

352 :
(2) Draw the AR model coefficients �.l/ from P

�
�jY ;X .l�1/; ‚.l/�

�
� N

�
��� ; †

�
�

�
, where ��� D

†��
�
bC†�1� ��

�
and †�� D .C C†�/

�1. Here, b is a p � 1 vector with components

b.i/ D � .l/x

nCvX
kD�mCpC1

x.l/.k/x.l/.k � j /;

and C is a p � p matrix with elements given by

C.i; j / D � .l/x

nCvX
kD�mCpC1

x.l/.k � i/x.l/.k � j /:
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(3) Draw the multipliers a.l/
i;j

, i D 2; � � � ; q, j D �v; � � � ; m, from

P
�
ai;j jY ;X

.l�1/; ‚.l/�

�
D ��ı.ai;j /C .1 � �

�/ˆ
�
ai;j I�

�
a; �
�2
a

�
;

where

��a D �
�2
a

 
�a

�2a
C �y

nX
tD1

Q".l/
i
.t/s.l/.t � j /

!
;

��2a D

"
1

�2a
C �y

nX
tD1

�
s.l/.t � j /

�2#�1
;

and

�� D
�

�C .1 � �/di;j
; where di;j D

��a
�a

exp

²
��2a
2��2a

�
�2a
2�2a

³
:

Here, Q"i .t/ D yi .t/ �
P
k¤j a

.l/

i;k
s.l/.t � k/. For i D 1, a.l/

1;j
, j D 1; � � � ; m, is drawn from

P
�
a1;j jY ;X

.l�1/; ‚.l/�

�
D N��ı.a1;j /C

�
1 � N��

�
c�ˆ

�
a1;j I�

�
a; �
�2
a

�
I.ja1;j j < 1:5/;

where c� is the normalizing constant for the truncated normal distribution, and

N�� D
�

�C .1 � �/ Ndi;j
with Ndi;j D

c ��a
c��a

exp

²
��2a
2��2a

�
�2a
2�2a

³
:

In this step, each a.l/
i;j

is updated one by one sequentially.

(4) Draw �.l/ from P
�
�jY ;X .l�1/; ‚.l/�

�
� Beta

�
��
1
; ��
2

�
, where ��

1
D �1 C .mC v C 1/N � .mC 1/ � na,

��
2
D �2 C na. Here, na is the number of nonzero unfixed a.l/

i;j
.

The aforementioned steps complete the update for �x , �, � and A. It is a standard implementation of the
Gibbs sampler.

4.2. Updating the Signal X

Although one can use the standard Gibbs sampler to update each individual x.t/ conditioned on the rest of X and
the other parameters, its mixing rate is slow. In fact, given the other parameters, the signal X can be embedded in
the dynamic linear model with Gaussian innovations. Hence, the forward-filtering backward-sampling algorithm of
Früwirth-Schnatter (1994) and Carter and Kohn (1994) can be used to update X as a block from P

�
X j Y ; ‚.l/

�
.

Such a procedure has a higher mixing rate and is more efficient.
Specifically, given parameters �x , �, � and A, we rewrite the model in the form of dynamic linear model (Chen

and Liu, 2000). Stacking the signal in the vector x.t/ D .x.t C v/; x.t C v � 1/; � � � ; x.t �m//0, the data in the
vector y.t/ D .y1.t/; � � � ; yN .t//0 and the observe noise in the vector ".t/ D ."1.t/; � � � ; "N .t//0, we have

x.t/ D Fx.t � 1/CB �.t C v/;

y.t/ D H .t/x.t/C ".t/;
(6)

where F is a .mC v C 1/ � .mC v C 1/ matrix, with the first row being .�1; � � � ; �p; 0; � � � ; 0/, the first lower
diagonal elements all being 1’s and the rest elements are all 0’s. The vectorB D .1; 0; : : : ; 0/0 is a .mCvC1/�1
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vector andH .t/ D
®
e�d.t�j/ai;j

¯
N�.mCvC1/

, i D 1; : : : ; N; j D �v; : : : ; m. Let Y .t/ D ¹y.l/; l D 1; � � � ; tº

if t > 0 and let Y .t/ D ¿ if t � 0, then X .l/ can be sampled from P
�
X j Y ; ‚.l/

�
as follows.

(1) Use Kalman recursions to calculate P
�
x.t/jY .t/;‚.l/

�
� N.�x.t/; †x.t// for t D 1; : : : ; n.

(i) Let x.t/ � 0 for t � �m. When t D �m � v C p, x.t/ D .x.�m C p/; � � � ; x.�m C 1/; 0; � � � ; 0/0.
Since �m � v C p < 0, we have

P.x.�m � v C p/ j Y
�
�m � v C p/;‚.l/

�
D P

�
x.�m � v C p/ j ‚.l/

�
� N.�x.�m � v C p/;†x.�m � v C p//;

where †x.�m� vC p/ is a .mC vC 1/ � .mC vC 1/ matrix with the prior †0 on the top left corner
block and zeros for all other elements, �x.�m� vC p/ D .0; : : : ; 0/0 is a .mC vC 1/ � 1 zero vector.

(ii) For t D �m � v C p C 1; � � � ; 0, we have

P
�
x.t/ j Y .t/;‚.l/

�
D P

�
x.t/ j ‚.l/

�
� N.�x.t/; †x.t//;

where �x.t/ D F�x.t � 1/ and †x.t/ D F†x.t � 1/F
0 CBB0=� .l/x .

(iii) For t D 1; � � � ; n, according to model (6) and the Kalman filter, we have

P
�
x.t/ j Y .t/;‚.l/

�
� N.�x.t/; †x.t//

with

�x.t/ D F�x.t � 1/C†12.t/Œ†22.t/�
�1.y.t/ �H .t/F�x.t � 1//;

†x.t/ D †11.t/ �†12.t/Œ†22.t/�
�1†012.t/:

where†11.t/ D F†x.t�1/F
0CBB0=� .l/x ,†12.t/ D †021.t/ D †11.t/H

0.t/, and†22 D H .t/†12C
IN=�y , IN is the N �N identity matrix.

(2) Draw x.l/.n/ from P
�
x.n/jY .n/;‚.l/

�
, then generate x.l/.n � 1/; � � � ;x.l/.1/ recursively from

P
�
x.t/jx.l/.t C 1/; : : : ;x.l/.n/;Y .n/;‚.l/

�
/ P

�
x.t/ j Y .t/;‚.l/

�
P
�
x.l/.t C 1/ j x.t/;‚.l/

�
:

Noting that only one element in x.t/ is not in x.tC1/, we only need to draw x.l/.t �m/ to complete x.l/.t/.
Partition vector �x.t/ D .g1.t/; g2.t//

0 into an .mC v/ � 1 vector g1.t/ and a scalar g2.t/ and denote the
corresponding partition of †x.t/ as

†x.t/ D

�
G11.t/ G12.t/

G21.t/ G22.t/

�
:

Because P
�
x.l/.t C 1/ j x.t/;‚.l/

�
does not depend on x.t �m/ (usuallymCv > p), we draw x.l/.t �m/

from

P
�
x.t �m/ j x.l/.t �mC 1/; � � � ; x.l/.t C v/;Y .t/;‚.l/

�
� N

�
�; �2

�
;

where

� D g2.t/CG21.t/ŒG11.t/�
�1Œ.x.t C v/; � � � ; x.t �mC 1//0 � �2.t/�;

�2 D G22.t/ �G21.t/ŒG11.t/�
�1G12.t/:
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4.3. A Metropolis–Hasting Step

The aforementioned steps complete a Gibbs sampler implementation for updating
�
X .l/; ‚.l/

�
. Here, we add

a Metropolis–Hasting step to improve the performance and try to avoid the Markov chain getting stuck in
local mode.

(1) Move the amplitude set A to a new amplitude set QA in the following manner: randomly choose a non-zero
ai;j and interchange the values of ai;j and ai;J , where J D j � 1 or J D j C 1 with probability 0.5. Here,
ai;j and ai;J need to be those unfixed amplitudes.

(2) Use the same method as in Section 4.2 to draw a new signal set QX .
(3) Decide whether to accept

�
QX ; QA

�
as new .X ; A/. Let Q‚ D

®
�; �x;�; QA

¯
, then P

�
Q‚
�
D P.‚/. We accept�

QX; Q‚
�

with probability

min

´
1;
P
�
Q‚; QX j Y

�
P.X j Y ; ‚/

P.‚;X j Y /P
�
QX j Y ; Q‚

� μ D min

´
1;
P
�
Y ; Q‚

�
P.Y ; ‚/

μ

D min

´
1;

Qn
tD1 P

�
yt j Y t�1; Q‚

�Qn
tD1 P.yt j Y t�1; ‚/

μ
;

where P.yt j Y t�1; ‚/ and P
�
yt j Y t�1; Q‚

�
can be calculated by the Kalman filter when generating X

and QX . This acceptance rate comes from the Metropolis–Hastings method (Hastings, 1970).

5. REVISITING THE SEISMIC ARRAY DATA

We continue the analysis of the earthquake signal from Yunnan Province in China as observed at a nine-element
array in Kazakhstan. In this case, we have N D 9 time series observed. There are n D 1701 points taken at a
sampling rate of 20 points per second.

The choice of the prior distribution will affect inference with the posterior distribution. Here, we use a relative
flat prior in the analysis of the Yunnan earthquake data. Specifically, we let m D 40, v D 20, ˇ1 D 1, ˇ2 D 1,
�a D 0:7, �a D 0:15 and†0 D 25Ip , where Ip is the p�p identity matrix. To set the hyper-parameters .�� ; †�/
of the AR coefficient �, we fit

®
yi .t/e

d t ; i D 1; � � � ; N; t D 1; � � � ; n
¯

by an AR(p) model, then let �� be the
estimated AR coefficients and let †� D Ip . The hyper-parameters .˛x; 	x/ of �x control the prior knowledge of
the strength of the underlying signal. We use the method proposed in Chib and Ergashev (2009) to set .˛x; 	x/.
For a given prior distribution, we sample Y repeatedly from the joint distribution (5); then, the summary statistics
of the simulated data is compared with that of the true observations. We use ˛x D 25 and 	x D 1000when p D 3.
Figure 4 shows that the simulated data have similar quantiles to the true observations in different time periods.

In order to determine the AR model p in model (4), we use the deviance information criterion (DIC,
Spiegelhalter et al. (2002)). When the time series is directly observed, Akaike information criterion (AIC) or par-
tial autocorrelation function are often used for order determination. In the Bayesian framework, Troughton and
Godsill (1997) used an MCMC approach to determine the AR model. In our case, the time series x.t/ in equation
(4) is not directly observed and we found that DIC is a simple and effective approach for determining its AR order.
Specifically, DIC is defined as

DICp D EŒD.‚/ j Y �C
®
EŒD.‚/ j Y � �D

�
‚
�¯
;

where D.‚/ D �2 log P.Y j ‚/ and ‚ D E.‚ j Y /. Here, EŒD.‚/ j Y � and D
�
‚
�

can be obtained by the
MCMC procedure presented in Section 4. For each possible value of p, we implement the MCMC procedure and
calculate its DIC value. The order with the smallest DIC value is selected. Figure 5 reports the DIC values for
different p’s. The result suggests that we use p D 3.
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Figure 4. Boxplots of the values of the true observations (left boxes) and the simulated observations (right boxes) in different
time periods
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Figure 5. Deviance information criterion (DIC) values for different order p

Table I. Bayesian inference for model parameters

Parameters Mean Standard deviation Credible interval (95%)

� 0.8740 0.0149 (0.8435, 0.9016)
�2x 59.4198 6.1880 (47.7273, 71.8618)
�1 2.7947 0.0155 (2.7636, 2.8243)
�2 �2.6699 0.0300 (�2.7272, �2.6097)
�3 0.8673 0.0155 (0.8360, 0.8971)

We ran the MCMC procedure specified in the previous section for 15,000 iterations. The results of the last
10,000 iterations are used for the estimation of the model parameters. The inefficiency factor as defined in
Chib and Ramamurthy (2010) is about 50 for most of the parameters and 300 for �2x . Table I reports the
estimation results.

We obtained b�2x D 59:4198 and b� D .2:7947;�2:6699; 0:8673/0 for the AR parameters in model (4). The
roots of the AR(3) model are quite close to the unit circle with one real root 1.1271 and two complex roots with
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Figure 6. Deconvolved signal s.t/ for the Chinese earthquake data in the top panel and its 95% credible interval (from the 5th
second to the 45th second) in the bottom panel
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Figure 7. The estimated amplitudes ai;j (the black dots) and its 95% credible interval (‘+’), of the first four channels for the
Chinese earthquake data

magnitude 1.0114. This produces a highly periodic estimated waveform for the signal X , as shown in Figure 6.
This is not entirely unexpected as the idealized waveforms of earthquakes and explosions typically have a strong
periodic component that is used for input into procedures for discriminating between the two classes of events.

The estimated parameter O� D 0:8740 shows that the fraction of amplitudes ai;j that are zero is quite high. The
high value implies that many of the lags do not contain much information in determining the observed data in
model (3), while about 12% of the lags are significant. By contrast, the usual model (1) only produces a unit spike
at the delay predicted by the plane wave velocity model.
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Since the posterior distribution of the amplitude ai;j is a mixture distribution with positive probability mass at
zero, the amplitude is estimated by its posterior median, that is,

bai;j D median
°
a.l/
i;j
; l D 1; � � � ; L

±
:

Figure 7 shows the estimated amplitudes for the first four sensors. We can estimate the velocity and
azimuth of the signal using the first arrival times on different channels. With each sampled A.l/ D°
a.l/
i;j
; i D 1; � � � ; N; j D �v;�v C 1; � � � ; m

±
, we can obtain the time delays of each channel relative to the first
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Figure 8. Contour map of the first arrival times
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Figure 9. For the Chinese earthquake data, the observed (solid line) and recovered (dotted line) series of the first two sensors
in the top panels and the residuals in the bottom panels
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channel. Suppose u.k/ D
�
u.l/
1
; � � � ; u.l/

N

�
is the vector of the first arrival times at the channels in seconds. We

may write ui D r 0
i
� C ei , where ri is the coordinate of the i -th sensor, and � is slowness in seconds per

cycle. Minimizing
PN

iD1

�
u.l/
i
� r 0

i
�
�2

leads to an estimate of � . The mean of the estimated slowness parame-

ters
°b�.l/; l D 1; � � � ; L± is .�0:0876; 0:1706/0. Converting the slowness parameters to azimuths and velocities,

it gives that the azimuth of the signal is 152.8ı with the 95% credible interval 151.7–154.5ı, and the velocity
is 5.22 km/second with the 95% credible interval 4.62–5.36 km/second. Figure 8 plots a contour map of the first
arrival times. The first wave of the signal arrives at the points on each straight line at the same time. The correla-
tion and beam power estimator gave an azimuth of about 148ı and a velocity of 6.3 km/second respectively. The
true azimuth from the event to the array is 150.5ı. Both estimated values from the Bayesian method and the beam
power estimator are slightly off from the true angle.

The observed and recovered series of the sensors are shown in Figure 9, and we note the excellent fit between
the observed and recovered values, shown in the top panels for the first two sensors. The dotted and solid lines
are very close but not identical as can be noted by the residual plots, shown in the bottom panels of Figure 6. The
maximum amplitudes on all of the original channels are approximately 1000, and we can note that the root mean
square error values range from 56 on the fourth sensor to 103 on the seventh sensor, implying that the signal-to-
noise ratio is almost exclusively 10 or more. The amplitudes on the residual noise scale are mostly between �200
and 200, and the noise is relatively white.

6. CONCLUSIONS

We have considered here a new approach to deconvolution. The time series on an array is modelled as filtered
versions of a signal that can be represented as an exponentially modulated AR process. The aim is to let the filter
functions sort out the salient parts of the signal using a mixture of a Bernoulli process and a truncated normal
distribution as a model. The modulated AR(p) model is often used for earthquakes in the seismic damage field.

Although the estimated signal depends on an MCMC analysis, hence unsuitable for real-time processing, the
results seem to offer promise for producing waveforms that are improvements over those that one obtains from
routine processing. In the case of the seismic event, the estimated waveform shows more clearly the component
phases and focuses attention on a given frequency. We also note that improvements in the location capabili-
ties of the seismic array may be possible using the time delays between the arrivals predicted by the amplitude
multiplier locations.

We note that proposed models (3) and (4) can be extended to model other types of multivariate or panel time
series. In fact, our model is a one-factor dynamic factor model, but with delay and echo, resulting in a specific
and often sparse loading matrix. It can be easily extended to a multifactor model that is commonly considered in
the economics literature (Stock and Watson, 2012; Bai and Ng, 2008; Stock and Watson, 2006). The additional
features of delay and echo in our model are generally not considered in dynamic factor model research. However,
such effects certainly exist in some applications. For example, the same economic factor or financial event may
have impact on different countries with different delay. Echoes may occur in seasonal time series.
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