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a b s t r a c t

Functional data analysis has became an increasingly popular class of problems in statistical research.
However, functional data observed over time with serial dependence remains a less studied area.
Motivated by Bosq (2000), who first introduced the functional autoregressive models, we propose a
convolutional functional autoregressive model, where the function at time t is a result of the sum of
convolutions of the past functions and a set of convolution functions, plus a noise process, mimicking
the vector autoregressive process. It provides an intuitive and direct interpretation of the dynamics of a
stochastic process. Instead of principal component analysis commonly used in functional data analysis,
we adopt a sieve estimation procedure based on B-spline approximation of the convolution functions.
We establish convergence rate of the proposed estimator, and investigate its theoretical properties. The
model building, model validation, and prediction procedures are also developed. Both simulated and real
data examples are presented.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Functional data analysis has received much attention over the
last few decades, and has been widely applied in many fields, in-
cludingmedical science (Houghton et al., 1980; Gasser et al., 1984;
Ratcliffe et al., 2002a,b), behavioral science (Keselman and Kesel-
man, 1993), and economics (Roberts, 1995; Diebold and Li, 2006).
Nonparametricmethods, such as splinemethods (Silverman, 1984;
Brumback and Rice, 1998; Zhou et al., 1998; Cai et al., 2000) and
kernel smoothing (Nadaraya, 1964;Watson, 1964; Fan and Gijbels,
1996), were often implemented to analyze functional data. Unsu-
pervised learning methods, such as principal component analy-
sis (James et al., 2000) and clustering analysis (James and Sugar,
2003) were extended for functional data as well. Books by Ramsay
and Silverman (2005), Ferraty and Vieu (2006), and Horváth and
Kokoszka (2012) provide comprehensive introductions on various
aspects of functional data analysis.

Often, a variety of functional data is observed over time and
has serial dependence. For example, in financial industry, the
implied volatility of an option as a function of moneyness changes
over time. In insurance industry, age-specific mortality rate as
a function of age changes over time. In banking industry, term
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structure of interest rates (yield as a function of time to maturity
of a bond) changes over time. In meteorology, daily records of
temperature, precipitation and cloud cover for a region, viewed as
three related functional surfaces, change over time.

Time series analysis, designed to explore the underlying
dynamics of data, is well studied and understood, with modern
development in nonlinear (Tong and Lim, 1980; Chan, 1993),
nonparametric (Chen and Tsay, 1993a,b; Härdle et al., 1997; Xia
and Li, 1999; Cai et al., 2000; Fan and Yao, 2003), multivariate (Tiao
and Tsay, 1983, 1989; Lüetkepohl, 2005) and spatial–temporal
modeling (Handcock and Wallis, 1994; Cressie and Huang, 1999;
Gneiting, 2002). Functional datawith serial dependence poses new
challenges, and requires new methodology in time series analysis.

Bosq (2000) first introduced functional autoregressive (FAR)
models of order p,

Xt = ∆1Xt−1 + · · · +∆pXt−p + εt ,

where X = (Xt , t ∈ Z) and ε = (εt , t ∈ Z) are a sequence
of random functions and a functional white noise process, re-
spectively, and ∆i, is a linear operator in Hilbert functional
space H. Only under some special cases, these linear operators
can be estimated by performing functional principal component
analysis on the sample autocovariance operators. The consis-
tency of such estimators has been proved (Bosq, 2000; Hörmann
et al., 2013). All the theoretical and empirical results in the lit-
erature were developed based on the models and methods in
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Bosq (2000), including Hörmann and Kokoszka (2010), Horváth
et al. (2010), Aue et al. (2012), Horváth and Kokoszka (2012),
Horváth et al. (2012), Berkes et al. (2013), and Hörmann et al.
(2013).

In this article, we develop a new class of functional time
series models called the convolutional functional autoregressive
(CFAR) models, along with its associated estimation procedure
using splines and sievemethods. As a special case of the FARmodel,
our model provides an intuitive and direct interpretation of the
dynamics of a stochastic process. It assumes that the function at
time t is a result of the sum of convolutions of the past functions
and convolution functions plus a noise process, mimicking the
autoregressive process commonly used in scalar time series. It is
also an extension of the vector autoregressive process. For the
FARmodel, Bosq (2000) proposed a Yule–Walker type estimator of
the autocorrelation operator, obtained using functional principal
component analysis. In contrast, our method fully exploits the
advantage of the convolution structure and the assumption that
the impact of the past on the present is smooth. Both simulated
and real examples show that the sieve estimator outperforms
in estimation and prediction. The paper makes contributions to
the literature in three aspects. First, we propose a new class of
functional time series model, and introduce the sieve estimation
of the autoregressive operators. Second, we establish the central
limit theorems and convergence rates for the convolution function
estimators. For the FAR model, Bosq (2000) only considered
consistency, and Mas (2002) obtained a partial result on the weak
convergence of the autoregressive operator. Third, we develop
model building and model validation procedures for CFAR models,
while the study of FAR models is less complete due to lack of
specific model assumptions.

The rest of the paper is organized as follows. In Sections 2 and 3,
the CFARmodel and the associated statistical inference procedures
are introduced. The asymptotic theories are developed in Section 4.
Simulation results are presented in Section 5 and a real example is
analyzed in Section 6. All proofs are collected in the Appendix.

We first introduce some notations. For a vector µ, (µ)i denotes
its ith entry. For a matrix A, (A)ij denotes its (i, j)th entry. Without
loss of generality, we only consider time series on the function
space L2([0, 1],B[0,1], λ), abbreviated as L2[0, 1], where B[0,1] is
the Borel σ -field, and λ is the Lebesguemeasure. For a function f ∈

L2[0, 1], ∥f ∥ := ∥f ∥2 denotes its L2 norm. If f is also continuous, we
use ∥f ∥∞ to denote its maximumnorm.We consider the following
classes of smooth functions:

Liph
[−1, 1] = {f ∈ [−1, 1] : |f (x + δ)− f (x)| 6 Mδh,

M < ∞, 0 < h 6 1},

Lipζ2[−1, 1] = {f ∈ C r
[−1, 1] : f (r) ∈ Liph

[−1, 1],
ζ > 1, r = ⌊ζ⌋, h = ζ − r},

If f ∈ Lipζ2[−1, 1], then ζ is called moduli of smoothness of f (·).

2. Convolutional functional autoregressive models

A sequence of random functions X = (Xt , t ∈ Z) in L2[0, 1] is
called a convolutional functional autoregressive model of order p,
denoted by CFAR(p), if

Xt(s) =

p
i=1

 1

0
φi(s − u)Xt−i(u) du + εt(s), s ∈ [0, 1], (1)

where φi ∈ L2[−1, 1] for i = 1, . . . , p, are called convolution
functions, and εt are i.i.d. Ornstein–Uhlenbeck (O–U) processes
defined on [0, 1], following the stochastic differential equation,
dεt(s) = −ρεt(s)ds+σdWs,ρ > 0, andWs being aWiener process.
Remark 1. Following Bosq (2000), a natural generalization of
vector autoregressive process of order p on the function space is

Xt(s) =

p
i=1

 1

0
φi(s, u)Xt−i(u) du + εt(s), s ∈ [0, 1].

From a pointwise view, the function at time t and point s is a
weighted sum of p past functions plus noise. Our CFAR(p) model
can be viewed as a special case when ψ(s, u) = φ(s − u), where
φ(·) is a smooth function. The autoregressive operator of ourmodel
thus has the Toeplitz structure. Under this model, the conditional
mean of Xt(s) is obtained as a kernel type average of Xt−1(·) around
the same argument s. In functional data analysis, it is often the case
that Xt(s) has a stronger relationshipwith Xt−1(u) for the u close to
s, than those u far away from s. Ourmodel is able to exploit this type
of dependence among the data. The real data example on volatility
smiles shows that ourmodel has better prediction performance, as
compared with the more general model.

Remark 2. For functional data, it is common to assume that it is
continuous for both practical and technical reasons; see Ramsay
and Silverman (2005). For this reason, we choose the noise process
with continuous sample paths. To reduce model complexity, we
also require spatial dependence to be stationary. Due to these
considerations, we assume that the error processes εt follow the
O–U process, which is Gaussian with the following covariance
structure:

εt(s1) ∼ N

0,
σ 2

2ρ


, Corr(εt(s1), εt(s2)) = e−ρ|s1−s2|,

∀s1, s2 ∈ [0, 1].

To account for spatial heteroscedasticity, we can include a variance
function of the noise process in the model.

Xt(s) =

p
i=1

 1

0
φi(s − u)Xt−i(u) du + w(s)εt(s), s ∈ [0, 1], (2)

where w(s) is a heteroscedasticity function for the noise process.
We note that O–U process is just one of the many possible choices
here. Other noise process, including various Gaussian processes,
can be used here, though we require a parametric family for our
estimation procedure. Our asymptotic results are derived under
O–U process but can be extended to other noise processes.

If all the convolution functions {φi(·), i = 1, . . . , p} are contin-
uous, Xt is also continuous, but not differentiable. The skeleton of
Xt(·), excluding the noise process, defined as

ft(s) =

p
i=1

 1

0
φi(s − u)Xt−i(u) du

is differentiable.
In model (1), convolution functions {φi(·), i = 1, . . . , p}

allow various sample paths of the Xt(·) process, Fig. 1 shows two
simulated examples. The top panel uses φ(s) = 1, s ∈ [−1, 1], and
X0(·) = 0 and the bottom one uses φ(s) = I(s > 0), s ∈ [−1, 1],
and X0(·) = 10. Both use ρ = 5, σ 2

= 10. The solid lines and
dashed lines are Xt(·) and ft(·), respectively, t = 1, 2, 3 and 100.
In the top panel, since φ(·) is a constant function, ft(·) is simply
the average of Xt(·) hence a constant function. In the bottom panel,
φ(·) is an indicator function on (0, 1], so the skeleton of ft(s)would
be a partial integration of Xt−1(·) on the left of s in [0, s]. At s = 0,
Xt(0) contains no information ofXt−1, but only noise; as s increases,
the weight φ(s − ·) increases and information carried by Xt(s) on
Xt−1(·) increases as well; at s = 1, Xt(1) is the integration of the
function Xt−1(·) in the entire range of [0, 1] plus noise. It is worth
noting that the process in the top panel is nonstationary. We start
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Fig. 1. Plots of Xt (·) and ft (·), t = 1, 2, 3, 100 under the two models in Section 2.
at X0 = 0, but Xt(·) becomes explosive as time increases. The
process shown in the bottom panel is stationary. Althoughwe start
at a large value, X0(s) = 10 for case (ii), the process becomes close
to 0 when t = 100.

Definition 1. A sequence of random functions X = (Xt , t ∈ Z)
in L2[0, 1] is (weakly) stationary, if the mean and covariance
functions do not vary with time, i.e., for ∀h ∈ Z, s1, s2 ∈ [0, 1],

E(Xt(s1)) = µ(s1), and
Cov(Xt+h(s1), Xm+h(s2)) = Cov(Xt(s1), Xm(s2)).

Theorem 1 presents a sufficient condition for the stationarity of
CFAR(1) models.

Theorem 1. The CFAR(1) process X = (Xt , t ∈ Z), defined in (1) is
(weakly) stationary, if

κ = sup
06s61

 1

0
φ2(s − u)du

1/2

< 1. (3)

Here weak stationarity is actually equivalent to strong station-
arity, since we assume that the noise process is Gaussian. It is easy
to see that ∥φ∥

2
2 < 1 is also a sufficient condition for stationarity.

However, the condition in Theorem 1 is a weaker one, since for any
s,
 1
0 φ

2(s − u)du 6
 1
−1 φ

2(u)du. Note that
 1
0 φ

2(s − u)du is the
sum of squares of the convolution weight of Xt−1(·) to obtain ft(s).

The preceding condition can be generalized to provide a
sufficient condition for the stationarity of CFAR(p) models.

Theorem 2. The CFAR(p) process X = (Xt , t ∈ Z) defined in (1) is
(weakly) stationary, if all the roots of the characteristic function

1 − κ1z − κ2z2 − · · · − κpzp = 0, (4)

are outside the unit circle, where κi = sup06s61

 1
0 φ

2
i (s − u)du for

i = 1 . . . , p.

Condition in Theorem 2 is similar to the sufficient condition for
scalar AR(p) models to be stationary, replacing the AR coefficients
by the maximum of the norms of the weight functions φi(s − ·),
s ∈ [0, 1].
Corollary 1. Assume the CFAR(1) process X = (Xt , t ∈ Z)
satisfies (3). Define a sequence of functions on [0, 1]2:

Ψ1(s, u) = φ(s − u), Ψℓ(s, u) =

 1

0
Ψℓ−1(s, v)φ(v − u) dv,

for ℓ > 2. (5)

Then Xt has the following functional MA (∞) representation

Xt(s) = εt(s)+

∞
ℓ=1

 1

0
Ψℓ(s, u)εt−ℓ(u) du. (6)

Corollary 2. The CFAR(p) process X = (Xt , t ∈ Z) satisfies (4).
Define a sequence of functions on [0, 1]2:

Ψ1(s, u) = φ1(s − u),

Ψℓ(s, u) =

ℓ−1
i=1

 1

0
φi(s − v)Ψℓ−i(v, u) dv + φℓ(s − u),

2 6 ℓ 6 p,

Ψℓ(s, u) =

p
i=1

 1

0
Φi(s, v)Ψℓ−i(v, u) dv, ℓ > p.

Then Xt has the following representation

Xt(s) = εt(s)+

∞
ℓ=1

 1

0
Ψℓ(s, u)εt−ℓ(u) du. (7)

Corollaries 1 and 2 are derived from Theorem 3.1 and Theorem
5.1 of Bosq (2000) directly. This is similar to that of the stationary
scalar AR(p) case when there is no intercept in the model. To
include nonzero mean function µ(·), we can use Xt(s) − µ(s) =p

i=1

 1
0 φi(s − u)(Xt−i(u)− µ(u))du.

3. Estimation, prediction and order determination

For simplicity, we assume that each Xt(·) is observed at discrete
points, s = n/N , n = 0, . . . ,N , for time t = 1, . . . , T .

3.1. Estimation

Since the convolution operator guarantees continuous path of
Xt(·), we approximate it by linearly interpolating the observations.
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For any s ∈ [−1, 1], if sn−1 6 s < sn, let

Xt(s) =
(sn − s)Xt(sn−1)+ (s − sn−1)Xt(sn)

1/N
. (8)

Linear interpolation is used to approximate

φi(s − u)Xt−i(u)du

since Xt(·) is continuous but not differentiable.
We approximate the unknown convolution functions φi(·)

using B-splines. Specifically,

φi(·) ≈φk,i(·) =

k
j=1

βk,i,jBk,j(·), for i = 1, . . . , p, (9)

where {Bk,j(·), j = 1, . . . , k} are uniform cubic B-spline basis
functions with k degrees of freedom.

Plugging in the linear interpolation of Xt−i(·) and B-spline
approximation of φi(·) into (1), we have

ε̃t,n := εt(sn) ≈ Xt(sn)

−

p
i=1

k
j=1

βk,i,j

 1

0
Bk,j(sn − u)Xt−i(u)du. (10)

Letεt = (εt,0, . . . ,εt,N)′.We can rewrite (10) asεt = Xt(s)−Mtβk,
where Mt = (Mt,1, . . . ,Mt,p), Mt,i is an (N + 1) × k matrix with
entries (Mt,i)nj =

 1
0 Bk,j(sn − u)Xt−i(u)du, and βk is a (pk) × 1

vector with entries βk = (β′

k,1, . . .
β′

k,p)
′, and (βk,i)j = βk,i,j.

Since Bk,j(·) are fixed and known functions, Mt is known, given
the observations. Under the O–U process, for equally spaced sn,
{εt(sn), 0 6 n 6 N} follows an AR(1) process with AR coefficient
e−ρ/N and covariance matrix Σ, where (Σ)ij = e−ρ|i−j|/Nσ 2/2ρ.
Therefore, β = {βij, i = 1, . . . , p, j = 1, . . . , k}, σ 2, and ρ
can be estimated by maximizing the approximated log-likelihood
function,

Qk,T ,N(β, σ
2, ρ) = −

(N + 1)(T − p)
2

ln

πσ 2

ρ



−
N(T − p)

2
ln(1 − e−2ρ/N)−

1
2

T
t=p+1

ε′

β,t Σ−1 εβ,t , (11)

where εβ,t = Xt(s) − Mtβ. Let βk = (β′

k,1, . . . ,
β′

k,p)
′ be the

estimator of βk by maximizing Qk,T ,N(β, σ
2, ρ), where (βk,i)j =βk,i,j.

After reparameterization, the objective function can be written
as

Qk,T ,N(β, ϕ, ω) = −
(N + 1)(T − p)

2
ln(2πω)

−
N(T − p)

2
ln(1 − ϕ2)−

e(β, ϕ)
2ω

, (12)

where ϕ = e−ρ/N , ω = σ 2/2ρ, Σ0 = 2ρΣ/σ 2, e(β, ϕ) =T
t=p+1 ε′

β,tΣ
−1
0 εβ,t , and Σ0 is the correlation matrix of {εt(sn),

n = 0, . . . ,N}.
Given β and ϕ, the maximizer ofw is

ω =
e(β, ϕ)

(N + 1)(T − p)
. (13)
Hence

max
β,ϕ,ω

Qk,T ,N(β, ϕ, ω) = max
β,ϕ


−
(N + 1)(T − p)

2
ln e(β, ϕ)

−
N(T − p)

2
ln(1 − ϕ2)+ c


= max

ϕ


−
(N + 1)(T − p)

2
ln e(β(ϕ), ϕ)

−
N(T − p)

2
ln(1 − ϕ2)+ c


, (14)

where c is a constant andβ(ϕ) = argmin
β

e(β, ϕ)

=


T

t=p+1

M′

tΣ
−1Mt

−1  T
t=p+1

M′

tΣ
−1Xt(s)


. (15)

Then this problem becomes a one-parameter optimization prob-
lem, and the estimator of ϕ can be easily obtained by maximizing
(14). Together with (13) and (15), we have the estimators for σ 2,
ρ,β. Consequently, the convolution functionφi(·) can be estimated
byφk,i(·) =

k
j=1
βk,i,jBk,j(·).

Remark 3. With the linear interpolation, our method can deal
with irregularly spaced {sn, n = 0, . . . ,N} as well. It can also
be extended to cover the situation that at different times, Xt are
observed at different spatial locations, as long as certain uniformity
conditions are satisfied. For ease of theoretical analysis, we assume
equally spaced {sn = n/N} at every time t .

Remark 4. Comparing with the method proposed by Bosq (2000)
that combines Yule–Walker estimation and functional principal
component analysis, our method exploits the assumption that
the convolution functions are smooth, and takes advantages of
the convolution structure. Both simulated and empirical examples
show that our method provides more accuracy predictions when
model is correctly specified.

3.2. Fitted values

Given estimated φi(·), the continuous process Xt(·) can be
interpolated more precisely than the simple linear interpolation.
By taking advantage of information from the observed {Xt(sn), n =

0, . . . ,N} and the Markovian property of the O–U process, we
obtain a better approximation of Xt(·). Specifically, for a fixed s ∈

(sn, sn+1), let

ft(s) =

p
i=1

 1

0

φk,i(s − u)Xt−i(u)ds, (16)

and letX∗

t (s) =ft(s)+

e−ρ(s−sn) e−ρ(sn+1−s)

 Σ−1
0

×


Xt(sn)−ft(sn)

Xt(sn+1)−ft(sn+1)


, (17)

whereΣ0 is the estimated correlationmatrix of εt(sn) and εt(sn+1),
with diagonal entry 1 and off-diagonal entry e−ρ/N . When s = sn,X∗
t (s) = Xt(s). Hereft(·) is the estimated skeleton of Xt(·) process,

and Xt(sn)−ft(sn) is the approximated residual process.

Remark 5. Plugging (17) into (16), we can fitft+1(·), andX∗

t+1(s)
iteratively. However, empirical results show that its impact is
minor with large N .
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3.3. Prediction

Given X1, . . . , Xt , the least squares prediction of Xt+1(s) is

Xt+1(s) =

p
i=1

 1

0

φk,i(s − u)X∗

t+1−i(u)du, (18)

where X∗

t+1−i(·) is the fitted processes of Xt+1−i(·) in (17). The
residual is defined asεt+1(s) = Xt+1(s)−Xt+1(s). (19)
In addition, if Xt+1(·) is partially observed at s = 0, 1

N , . . . , s
∗, the

prediction of Xt+1(s), for s ∈ (s∗, 1] can be obtained byX∗

t+1(s) =Xt+1(s)+ e−ρ(s−s∗)(Xt+1(s∗)−Xt+1(s∗)), (20)

whereXt+1(s) is from (18).

3.4. Determination of the B-spline approximation order

As in all nonparametric estimation, smoothness choice is crucial
in balancing the estimation bias and variance (Ruppert et al., 1995;
Fan and Gijbels, 1996). For spline methods, the tuning parameter
is the number of degrees of freedom k (Zhou et al., 1998; Huang,
2003). We propose to choose k to minimize the out-sample rolling
forecasting error instead of the typically used cross validation
criterion due to the time series nature of our problem. Specifically,
for a given k, and each t = T0, . . . , T , we use data {Xh(sn), h =

0, . . . , t−1, n = 0, . . . ,N}, observed before time t to estimate the
convolution functions using B-spline with k degrees of freedom,
and obtain the prediction of Xt(sn), Xk,t(sn) as in (18). Define an
overall squared rolling forecasting error

S(k) =

T
t=T0

N
n=0

(Xt(sn)−Xk,t(sn))2. (21)

The optimal k is chosen to be the one that minimizes S(k).

3.5. CFAR order determination

F-test can be constructed for hypothesis testing of the
significance of the convolution functions as well as for CFAR order
determination. For testing H0 : φr+1(·) = · · · = φp(·) = 0 vs H1:
not H0, we reject H0 if

F =
(SSE(r) − SSE(f ))/[k(p − r)]
SSE(f )/[(N + 1)(T − p)− pk]

> Fα,k(p−r),(N+1)(T−p)−pk, (22)

where SSE(f ) and SSE(r) are sum of squared estimated residuals
of the approximated model in (10) for full CFAR(p) and reduced
CFAR(r) model respectively, for an optimally chosen k. Specifically,

SSE(f ) =

T
t=p+1

ε′

t,1
Σ−1

0 εt,1, SSE(r) =

T
t=p+1

ε′

t,2
Σ−1

0 εt,2,

where Σ0 is the estimate of Σ0, the correlation matrix of εt(s),
whose (i, j)th entry is e−ρ|i−j|/N , from full and reduced models,
respectively; {εt,i(sn), t = p + 1, . . . , T , n = 0, . . . ,N}, i =

1, 2 are the residuals of the full and reduced models, respectively.
This test can be used for model specification. We begin with the
CFAR(1) model, and sequentially add more lags of Xt , until the
newly introduced lag is not significant.

In addition, define the cross-sectional residuals of εt ,

et(sn) = εt(sn)− e−ρ/Nεt(sn−1). (23)
Under our model, {et(sn), n = 1, . . . ,N} is a white noise process,
for t = p + 1, . . . , T . Letet(sn) = εt(sn) − e−ρ/Nεt(sn−1). Hence,
the features of {et(sn), n = 1, . . . ,N}, can be studiedwith standard
residual analysis for time series model validation.
4. Theoretical properties

We study the asymptotic properties of our estimator as both N
and T go to infinity. Then we discuss how the bias and asymptotic
variance of the point estimate of the convolution function φi(s)
would decrease and increase respectively, as the number of spline
basis functions k approaches infinity.

4.1. Sieve framework

In this section we formulate our method under the sieve
estimation framework.

The sieve method is designed for estimation of a parameter in
an infinite-dimensional space Θ. Often optimizing the objective
function over the parameter space cannot be directly solved.
Instead, we optimize the function over a sequence of subspaces
{Θk, k ∈ Z+

}, which are called sieve spaces. If the sieve spaces
satisfy certain conditions, the sequence of estimators, called sieve
estimators, is expected to be consistent, as the complexity of sieve
spaces goes to infinity with the sample size, see Chen (2008) and
Halberstam and Richert (2013).

The parameter space Θ for CFAR(p) models contains all
the functions in L2[−1, 1] that satisfy the stationary condition
specified in Theorem 2. The sieve space, Θk, used to approximate
the parameter space Θ, is defined as Θk = Spk ∩ Θ, where Spk is the
product of p copies of Sk,

Sk =


k

j=1

βjBk,j(·),β = (β1, . . . , βk)
′
∈ Rk


,

and {Bk,j(·), j = 1, . . . , k} are the uniform cubic B-spline functions
defined on [−1, 1] with k degrees of freedom. In other words,
Sk is the cubic spline space with k − 4 uniform interior knots at
{−1,−1 + 1/m, . . . , 1 − 1/m, 1}, wherem = (k − 3)/2.

The population objective function to maximize is,

Q (φ, σ 2, ρ)

= E

−

1
2σ 2


ρ2
 1

0
ε2t (s)ds + ρε2t (0)+ ρε2t (1)− ρ


, (24)

where εt(s) = Xt(s)−
p

i=1

 1
0 φi(s−u)Xt−i(u)du, andQ (φ, σ 2, ρ)

is the expectation of log-likelihood of the O–U process εt(·); see
Rao (1999). Define the population objective function Qk(β, σ

2, ρ)
in sieve space Θk,

Qk(β, σ
2, ρ)

= E

−

1
2σ 2


ρ2
 1

0
ε2t (s) ds + ρε2t (0)+ ρε2t (1)− ρ


,

where εt(s) = Xt(s)−
p

i=1
k

j=1 βi,j
 1
0 Bk,j(s − u)Xt−i(u) du, and

φi,k(·) =
k

j=1 βi,jBk,j(·), i = 1, . . . , p.
When Xt(·) is only observed at discrete points, with (8) we have

the sample objective function Qk,T ,N(β, σ
2, ρ) as in (12), then the

sieve estimator in space Θk is

(βk,σ 2
k ,ρk) = argmaxQk,T ,N(β, σ

2, ρ).

4.2. Asymptotic properties for CFAR(1) models

LetQk be the linear operator defined in Section 6.4 of Schumaker
(1981), which maps C[−1, 1] onto the space Sk. Letφk = Qkφ =βk,1Bk,1 + · · · + βk,kBk,k, and rk(s) = φ(s) − φk(s). Again, φk =k

j=1 βk,jBk,j(·) is the estimated convolution function in Sk.
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Theorem 3. Xt is a stationary CFAR(1) process defined in (1).βk andβk are the B-spline coefficients of φk andφk. Assume φ ∈ Lipζ2[−1, 1]
with ζ > 1. Then with given σ 2 and ρ , as T → ∞ and N2/T → ∞,
√
T (βk −βk − bk)

d
→ N(0,Σk),

where Σk = Γ −1
k Υ kΓ

−1
k , Υ k is the long-run variance of the process

ut + zt + Atbk, where bk = Γ −1
k µk, and the entries in ut , zt , At , µk

and Γ k are listed as follows

(ut)i =
1
σ 2

 1

0

 1

0
A(Bk,i, rk)(u, v)Xt−1(u)Xt−1(v)(u, v) dudv,

(zt)i =

 1

0


2ρ
σ 2

Bk,i(−u)εt(0)+
1
σ

 1

0
(ρBk,i(v − u)

+ B′

k,i(v − u)) dWt(v)


Xt−1(u) du,

(At)ij =
1
σ 2

 1

0

 1

0
A(Bk,i, Bk,j)(u, v)Xt−1(u)Xt−1(v) dudv,

(µk)i =
1
σ 2

 1

0

 1

0
A(Bk,i, rk)(u, v)γ (u, v) dudv,

(Γ k)ij =
1
σ 2

 1

0

 1

0
A(Bk,i, Bk,j)(u, v)γ (u, v) dudv,

where γ (u, v) = Cov(Xt(u), Xt(v)), and A is a bivariate functional
operator, A : C1

[−1, 1] ⊗ C1
[−1, 1] → C[−1, 1]2,

A(f , g)(u, v) = ρf (−u)g(−v)+ ρf (1 − u)g(1 − v)

+

 1

0
f ′(s − u)g ′(s − v) ds + ρ2

 1

0
f (s − u)g(s − v) ds. (25)

Theorem 3 provides the asymptotic distribution of the esti-
mated B-spline coefficients when the dimension of the sieve space
is fixed. We note that the asymptotic result does not involve N di-
rectly. As long as N goes to infinity fast enough with T such that
N2/T → ∞, the error introduced by the linear interpolation is of
a smaller order.

As a consequence of Theorem 3, we have the following central
limit theorem for the pointwise estimate of the convolution
function when k is fixed.

Corollary 3. Assume φ ∈ Lipζ [−1, 1] with ζ > 1. For each fixed k,
define Bk(s) = (Bk,1(s), . . . , Bk,k(s))′, and

bk(s) = Bk(s)′bk − rk(s), σ 2
k (s) = Bk(s)′ΣkBk(s).

Then as T → ∞ and N2/T → ∞,
√
T
φk(s)− φ(s)− bk(s)

 d
→ N(0, σ 2

k (s)).

Theorem 4. Assume φ ∈ Cζ [−1, 1], where ζ > 2 is an integer. Then
as k → ∞, and

∥bk(·)∥∞ = O(k−ζ0+3/2), ∥σ 2
k (·)∥∞ = O(k),

where ζ0 = min{ζ , 4}.

Theorem 4 shows that the asymptotic bias converges with
rate O(k−ζ0+3/2), where k is the number of basis functions, which
reflects the complexity of the sieve space; and ζ indicates the
smoothness of the convolution function. We note that even if
ζ > 4, the use of cubic splines is not able to take advantage
of the additional smoothness. The asymptotic variance grows at
the rate O(k) as k increases. This is a common phenomenon that
the model complexity controls the trade-off between bias and
variance. When k is small, the bias dominates, since there are not
enough knots to approximate the convolution function. When k
is large, the variance dominates, and the estimation of extra B-
spline coefficients introduces too much variability. Theorem 4 also
hints on the selection principle of the number of knots. When the
convolution function is smooth, a small k is favorable; when the
sample size is large, we can afford to have more knots.

Remark 6. By balancing the bias and variance, the optimal conver-
gence rate of the estimation error is attained at k ≍ O(T 1/(2ζ0−2)),

then both the squared bias and variance will be O(T−
2ζ0−3
4ζ0−4 ). If the

moduli of smoothness of φ is greater than 4 and k = O(T−1/6),
the optimal convergence rate is O(T−5/12). If B-splines with higher
order are adopted, the estimator is expected to converge faster.

4.3. Asymptotic properties for CFAR(p)

The asymptotic properties of the estimators of CFAR(p) models
are very similar to those of CFAR(1) models. Let φk,i = Qkφi =βk,i,1Bk,1 + · · · +βk,i,kBk,k, and rk,i(s) = φ(s)−φk,i(s).

Theorem 5 provides the bound of the B-spline coefficients
estimation error, and is a higher dimension version of Theorem 3.

Theorem 5. Assume Xt is a stationary CFAR(p) process defined in (1).
Let βk and βk be the B-spline coefficients of {φk,1, . . . ,φk,p} and
{φk,1, . . . ,φk,p} respectively. Assume φi ∈ Lipζi2 [−1, 1] with ζi > 1,
for i = 1, . . . , p. Then with given σ 2 and ρ , as T → ∞ and
N2/T → ∞,
√
T (βk −βk − bk)

d
→ N (0,Σk)

where Σk = Γ −1
k Υ kΓ

−1
k , Υ k is the long-run variance of the process

ut + zt + Atbk, where bk = Γ −1
k µk. Here ut = (u′

t,1, . . . ,u
′
t,p)

′,
zt = (z′

t,1, . . . , z
′
t,p)

′, µk = (µ′

k,1, . . . ,µ
′

k,p)
′, Γ k and At can be

partitioned into p × p blocks.

Γ k =


Γ k,0 Γ k,−1 . . . Γ k,−p+1
Γ k,1 Γ k,0 . . . Γ k,−p+2
...

...
. . .

...
Γ k,p−1 Γ k,p−2 . . . Γ k,0

 ,

At =


At,1,1 At,1,2 . . . At,1,p
At,2,1 At,2,2 . . . At,2,p
...

...
. . .

...
At,p,1 At,p,2 . . . At,p,p

 .
The entries in ut , zt , At , bk and Γ k are listed as follows

(ut,h)i =
1
σ 2

p
q=1

 1

0

 1

0
A(Bk,i, rk,q)(u, v)Xt−h(u)

× Xt−q(v)(u, v) dudv,

(zt,h)i =

 1

0


2ρ
σ 2

Bk,i(−u)εt(0)+
1
σ

 1

0
(ρBk,i(v − u)

+ B′

k,i(v − u)) dWt(v)


Xt−h(u) du,

(At,l,h)ij =
1
σ 2

 1

0

 1

0
A(Bk,i, Bk,j)(u, v)Xt−l(u)Xt−h(v) dudv,

(µk,h)i =
1
σ 2

p
q=1

 1

0

 1

0
A(Bk,i, rk,q)(u, v)γq−h(u, v) dudv,

(Γ k,h)ij =
1
σ 2

 1

0

 1

0
A(Bk,i, Bk,j)(u, v)γh(u, v) dudv,

for i, j = 1, . . . , k and l, h = 1, . . . , p, where γq(u, v) =

Cov(Xt(u), Xt+q(v)), q ∈ Z.
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Table 1
Simulation results with different combinations of (k,N, T ) for Example 1. Means and standard deviations (in brackets) of the estimation
errors E and the sums of squared one-step-ahead out-of-sample forecasting errors, and the frequency ofp = p.

Model Estimation error E Forecasting MSE ( σ
2

2ρ = 1) Frequency ofp = p

CFAR(1) CFAR CFAR FAR CFAR

N = 100 T = 100 k = 7 0.43 (0.10) 1.06(0.12) 1.41 (0.38) 96%
k = 11 0.17 (0.10) 1.05(0.12) 1.41 (0.38) 97%
k = 19 0.33 (0.14) 1.05(0.12) 1.41 (0.38) 98%

N = 100 T = 10 k = 11 4.37 (3.35) 1.76 (0.89) 6.66 (7.28) 91%
T = 100 0.17 (0.10) 1.05 (0.12) 1.41 (0.38) 97%
T = 1000 0.03 (0.02) 1.00 (0.03) 1.02 (0.03) 97%

N = 10 T = 100 k = 11 0.20 (0.10) 1.08 (0.13) 1.45 (0.40) 96%
N = 100 0.17 (0.10) 1.05 (0.12) 1.41 (0.38) 97%
N = 1000 0.17 (0.10) 1.05 (0.12) 1.42 (0.40) 97%
The central limit theorem for the point estimate of the
convolutions functions is obtained as a consequence of Theorem 5.

Corollary 4. Assume φi ∈ Lipζ [−1, 1], with ζi > 1, i = 1, . . . , p.
For each fixed k, define Bk,i(s) = (B′

k,i,1, . . . , B
′

k,i,k)
′, Bk,i,i =

(Bk,1(s), . . . , Bk,k(s))′, and Bk,i,j is a p-dimensional vector whose
entries are all 0, for j ≠ i. Then

bk,i(s) = Bk,i(s)′bk − rk,i(s), σ 2
k,i(s) = Bk,i(s)′ΣkBk,i(s),

for i = 1, . . . , p,

and as T → ∞ and N2/T → ∞.
√
T
φk,i(s)− φ(s)− bk,i(s)

 d
→ N(0, σ 2

k,i(s)), for i = 1, . . . , p.

The behavior of the asymptotic bias and variance as k increases
is similar with the CFAR(1) case, as shown in the next theorem.

Theorem 6. Assume φi ∈ Cζi [−1, 1] with ζi > 2. It holds that as
k → ∞,

∥bk,i(·)∥∞ = O(k−ζ0+3/2), ∥σ 2
k,i(·)∥∞ = O(k),

for i = 1, . . . , p,

where ζ0 = min{ζ1, . . . , ζp, 4}.

5. Simulations

In this section, we illustrate the performance of the proposed
estimators, demonstrate the impacts of k, T and N , and compare
our models with FAR models through two simulated examples.

For each model, we generate the functional time series and
estimate the convolution functions, with 100 repetitions. The
performance of estimation is evaluated by the integrated squared
error, Ei = ∥φk,i − φi∥

2
2, for i = 1, . . . , p.

Example 1. Consider a simple CFAR(1) model with the convolu-
tion function φ(·) being the normal density function with mean 0
and standard deviation 0.1, truncated at [−1, 1]. For the noise pro-
cess, we use ρ = 5 and σ 2

= 10, and assume that they are known.
We summarize the results for different combination of (k, N , T ) in
Table 1. We also use figures to demonstrate various features of the
model and the method. Most of the figures are based on a typical
data set, whose estimation error is the median value among the
100 simulated sets. For the plots we set N = 100, T = 100, and
consider various k.

The second column of Table 1 shows the estimation perfor-
mance of φ(·) with different combination of (k,N, T ). If T and N
are fixed, as k increases, the average of E decreases first, due to
the improvement of sieve approximation, and then increases be-
cause of the introduction of extra B-spline coefficients. If k and N
are fixed, as T increases, the estimates become more accurate and
stable since the average and standard error of E decrease. The er-
ror E decreases approximately at the rate of 1/T which confirms
the theoretical results. If k and T are fixed and N is small, increas-
ingN improves the performance of the estimators. However, when
N is large enough, E stays at the same level. Because of the strong
spatial correlation in the error process, denser observations do not
provide much extra information.

The third and firth columns of Table 1 display the sums of
squared out-of-sample forecasting errors for CFAR and FARmodels,
respectively. It is seen that our method has a better prediction
accuracy when model is correctly specified. The last column
reports the frequency of the determined orderp using the F test
in Section 3.5 is the correct orderp = p for 100 data sets. It is seen
that the sequential F-tests perform reasonably well.

Figs. 2–4 demonstrate the results for the chosen typical data set.
Fig. 2 displays predicted Xt(·) using (18) from time t = 2 to 7, using
k = 15, T = 100 and N = 100. The predictions (dotted lines)
are close to the skeletons (dashed lines). Also note that the noise
process is large inmagnitudewith strong spatial correlation, hence
a direct smoothing of Xt(·)will be far away from the true skeleton
ft(·).

Fig. 3 demonstrates the use of the out-of-sample rolling
forecasting in choosing k, for T = 100, T0 = T/2 and N = 100.
The left panel of Fig. 3 displays the sumof squared forecasting error
across k for the typical data set. For small k, the forecasting error is
very large, due to the lack of knots to approximate φ(·)well. As the
complexity of the sieve space k increases, forecasting error reduces
very quickly, until the minimum prediction error is reached. After
that, the error increases gradually with k because of the variability
introduced by the extra splines. It is interesting to note that when
k is odd, the prediction error is smaller than that when k is even.
This is due to the fact thatφ(·) and its second derivative reach their
maximum value at 0. The estimate benefits from a knot at 0 when
k is odd. The right panel of Fig. 3 shows a histogram of the 100
optimal k of the 100 data sets.

Fig. 4 displays the estimated φ(·) for the typical data set when k
takes different values. As expected, the accuracy of the estimate
improves first and then becomes worse as k increases. The top
panels show the estimates when the bias dominates, and the
bottom panels show the estimates when the variance dominates.

Example 2. This simulated example is based on the estimated
model obtained for the real data example presented in Section 6.
Here we consider a CFAR(2) model, and an irregular setting with
different observation locations at different times and a spatially
nonstationary noise process. We set φ1(s) = 15(s + 0.7)(s +

0.3)(s − 0.3)I{s60.3} + 3(s − 0.3)(s − 1.3)I{s>0.3} and φ2(s) =

15(s + 0.6)(s + 0.4)(s − 0.2)I{s60.2} + 7(s − 0.2)(s − 0.5)(s −

0.8)I{s>0.2}. By examining the variance of the real data in Section 6,
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Fig. 2. Plots of predicted Xt (·)when k = 15, N = 100, and T = 100, t = 2–7, for the typical data set for Example 1. The solid lines and circles are Xt (·); the dashed lines are
ft (·); the dotted lines are the predictions.
Fig. 3. Left panel: plot of sum of squared out-of-sample forecasting error against k for the typical data set when T = 100 and N = 100 for Example 2; right panel: histogram
of the optimal k of the 100 data sets when T = 100 and N = 100 for Example 2.
Fig. 4. Plots of φ(·) (solid line) andφ(·) (dashed line) with T = 100, N = 100, and k = 5, 7, 11, 15, 19, 101 for the typical data set for Example 2.
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Table 2
Simulation results with different T for Example 2. Means and standard deviations (in brackets) of estimation errors E and the sums of squared one-step-ahead out-of-sample
forecasting errors, and the frequency ofp = p.

Model Estimation error E Estimation MSE Forecasting MSE ( σ
2

2ρ = 2) Frequency ofp = p

CFAR(2) CFAR φ1 CFAR φ2 ρ σ 2 CFAR FAR CFAR

T = 50 0.91 (1.41) 0.89 (1.15) 0.0213(0.0347) 0.0057(0.0092) 2.19(0.59) 4.70 (3.90) 90%
T = 100 0.97 (0.86) 0.42 (0.45) 0.0113(0.0145) 0.0022(0.0032) 2.13(0.44) 4.08 (2.05) 92%
T = 200 0.82 (0.24) 0.21 (0.24) 0.0046(0.0065) 0.0013(0.0019) 2.16(0.32) 3.91 (1.47) 85%
Table 3
The p-values for testing H0 : φi = 0, when k = 11 for real data analysis.

H0 φ1 = 0 φ2 = 0 φ3 = 0

p-value 0.0061 0.0076 0.8651

the heteroscedasticity weight function of the noise process as
defined in (2) is chosen as

w(s) ∝


e−10w

+ 0.1, 0 6 s 6 0.6,
0.2(w − 0.6)+ e−6

+ 0.1, 0.6 < s 6 1.
(26)

Let Nt = 40 + mt , where Nt is the number of observations at
time t , and {mt} are generated independently from the Poisson
distribution with mean 5. The observation location {s0, . . . , sNt } at
time t is generated independently from theuniformdistribution on
[0, 1]. We set ρ = 1, and σ 2

= 2, but assume they are unknown.
We also choose k = 6 for the estimation.

The simulation results are summarized in Table 2. The estimates
of convolution functions, ρ and σ 2 improve as T increases, as
shown in the columns 2–5 of Table 2, respectively. Comparing the
out-of-sample forecasting errors of CFAR and FAR models, we see
that CFAR model provides more accurate predictions even when
sample size is small. From the last column of Table 2, it is seen that
the sequential F-tests performwell in determining the CFAR order.

6. Data analysis

A European call option is a contract which gives the holder the
right to buy an underlying asset at a specified strike price on a
specified expiration date; see Hull (2006). Its value is determined
by the volatility of the underlying asset and other directly observed
parameters including risk-free rate and maturity, in the most
widely used Black–Scholes pricing formula; see Black and Scholes
(1973) and Merton (1973). The volatility derived from option
pricing methods with the observed option price is called the
implied volatility. A plot of the implied volatility of an option as
a function of its moneyness is known as a volatility curve, where
moneyness is the relative strike price with respect to the price
of the underlying asset; see Hull (2006). In this section, we apply
our method to the S&P 500 index European call option data and
study the dynamics of volatility curves. The option data is collected
from July 9, 2004 to September 20, 2004, and the expiration date
is December 18, 2004. Hence, the time series is T = 51 long.
We select the options with strikes between 900 and 1550, which
were actively traded within this period and have solutions for
implied volatilities derived from the Black–Scholes model most of
the time. The number of observations at each time varies from
43 to 48, and the total number of observations is 2241. Our aim
is to construct the volatility curve against moneyness, study its
evolution dynamics, and make forecasts.

The left panel of Fig. 5 displays the implied volatility curves
as functions of moneyness over time, where the volatility smiles
are clearly demonstrated, since deep in-the-money or out-the-
money options have larger implied volatility than others. As the
expiration date approaches, the implied volatilities of at-the-
money options decrease, those of out-the-money options increase,
and the location where the volatility curve reaches a minimum
value approaches to 1 from the right side, as shown in the top left
panel of Fig. 5. It indicates that the process may not be stationary,
so we eliminate this trend before fitting the CFAR model by taking
Zt(s) = Xt(s + τt/500), and Yt(s) =Zt(s)−Zt−1(s), t = 2, . . . , T ,
where τt is the time to maturity, Xt(s) is the implied volatility
with moneyness s, and Zt(·) is the linear interpolation of Zt(·)
as defined in (8). Many empirical results show that the implied
volatility curves are unit-root-nonstationary (Fengler et al., 2005;
Goncalves and Guidolin, 2006; Lam et al., 2011). All the curves
Yt(·) are transformed to have the common support [0, 1], and they
are plotted in the right panels of Fig. 5. The data for deep in-the-
money and out-the-money options are much more volatile than
those of at-the-money options, as shown in Fig. 6 (top left panel).
Therefore, we set a heteroscedasticity function (26) for the noise
process when modeling {Yt}.

The p-values of the sequential F-tests for testing H0 : φi = 0
vs H1 : φi ≠ 0 for i = 1, 2, 3 in Table 3 indicate that CFAR(2)
model should be used to fit the data. The left panel of Fig. 6 displays
the sums of squared out-of-sample forecasting errors against k
where outsample forecasting period is from T0 = (4/5)T to T .
The number of basis functions k is chosen to be 6, where the error
reaches its minimum value. The middle and right panels of Fig. 6
display the estimated φ1 and φ2, respectively.

Set the residuals aset(si) =εt(si)− e−ρ|si−si−1|εt(si−1), i = 2, . . . ,Nt .

The sample spatial autocorrelation functions of {et(si), i =

2, . . . ,Nt} for t = 3, . . . , 38 are shown in Fig. 7. Overall, most
of the sample autocorrelations ofet(·) are not significant, which
implies that the CFAR(2) model fits data well.

One-step-ahead out-of-sample forecasting error of Xt(·) is used
to compare the prediction performance of the estimated CFAR(2)
model with the FAR model by Bosq (2000) and the functional
random walk model, where Yt+1(si) = 0 (i.e. Xt+1(si) = Xt(si)),
∀si ∈ [0, 1]. Table 4 shows the estimated ρ and σ 2 using the
CFAR(2) model, and the mean squared out-sample forecasting
errors of different models. CFAR(2) outperforms the other two
models, reducing the forecasting MSE by more than 20%.
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Appendix

The detailed proofs are provided in the Appendix.
Proof of Theorem 1. By Cauchy–Schwarz inequality, for any func-
tion x ∈ L2[0, 1], 1

0
φ(s − u)x(u)du

2
2

=

 1

0

 1

0
φ(s − u)x(u)du

2

ds

6

 1

0

 1

0
φ2(s − u)du

 1

0
x2(u)du


ds 6 κ2

∥x∥.
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Table 4
Parameter estimates of the CFARmodel and forecastingMSEs of differentmodels for real data
analysis.ρ σ 2 MSE(CFAR) MSE(FAR) MSE (random walk)

1.0597 2.2279e−04 8.7134e−05 1.1010e−04 1.1938e−04
Fig. 5. Plots of implied volatilities against moneyness (top left panel) for different time (bottom left panel) and plots of data after preprocessing (top right panel) across
time (bottom right panel). The colorbars on the right show the time (top panels) and the implied volatility values (bottom panels) corresponding to different color scales.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Plot of the sum of squared out-of-sample forecasting errors against k (left panel) and plots ofφ1(·) (middle panel) andφ2(·) (right panel) for real data analysis.
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Fig. 7. Sample autocorrelations ofet (·)with lag 0 autocorrelation removed when t = 3, . . . , 38 for real data analysis.
It follows that

sup
∥x∥61

 1

0
φ(s − u)x(u)du

2
2

6 κ2 < 1.

By Lemma 3.1 in Bosq (2000), Xt is stationary. �

Proof of Theorem 2. Let Hp
[0, 1] be the Cartesian product of p

copies of the random function space H[0, 1]. The norm in Hp
[0, 1]

is defined as

∥(X1, . . . , Xp)∥p =

 p
i=1

∥X1∥
2
2, where X1, . . . , Xp ∈ H[0, 1].

Consider

∆ =

∆1 ∆2 . . . ∆p
I 0 . . . 0
0 I . . . 0
0 . . . I 0

 , K =

κ1 κ2 . . . κp
1 0 . . . 0
0 1 . . . 0
0 . . . 1 0

 , (A.1)
where I denotes the identity operator,∆i is a convolution operator
associating with φi, i.e. ∆iX =

 1
0 φi(· − u)X(u)du. Note that

∥∆X∥p 6 ∥KX∥p. And all the roots of the characteristic function are
eigenvalues of the matrix K. Let λmax be the maximum eigenvalue
in modulus of K, and |λmax| < 1. Hence, there exists an integer
j, such that ∥∆j

∥ 6 ∥Kj
∥ < 1. By Theorem 5.1 in Bosq (2000),

CFAR(p) model is stationary if (4) is satisfied. �

Lemma 1. Let f , g ∈ Lipζ2[−1, 1], and ζ > 1, {s0 = 0, s1, . . . ,
sN = 1} is an equally spaced partition of [0, 1]. For any u, v ∈ [0, 1],
let fu and gv be (N + 1)× 1 vectors, fu = (f (s0 − u), f (s1 − u), . . . ,
f (sN − u))′, gv = (g(s0 − v), g(s1 − v), . . . , g(sN − v))′. Σ is
defined in Section 3.1, where (Σ)ij = e−ρ|i−j|/Nσ 2/2ρ . Define
AN(f , g)(u, v) = f′uΣ

−1gv , then

AN(f , g)(u, v) =
1
σ 2

A(f , g)(u, v)+ O(N−ζ0+1), (A.2)

where ζ0 = min{ζ , 2}, and A is the binary functional operator
defined in (25).

Proof. Define ϕ = e−ρ/N . From Sutradhar and Kumar (2003), it is
known that

Σ−1
0 =

1
1 − ϕ2


1 −ϕ 0 · · · 0

−ϕ 1 + ϕ2
−ϕ · · · 0

0 · · · −ϕ 1 + ϕ2
−ϕ

0 · · · · · · −ϕ 1

 .
Using Cholesky decomposition and rearranging the rows and
columns,we are able to findU and prove thatΣ−1

=
σ 2

2ρU
′U, where

U =
1

1 − ϕ2

1 − ϕ2 0 · · · 0
−ϕ 1 · · · 0
0 · · · −ϕ 1

 . (A.3)

And we have the equation given in Box I.
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Ufu =
1

1 − ϕ2


1 − ϕ2f (s0 − u) f (s1 − u)− ϕf (s0 − u) . . . f (sN − u)− ϕf (sN−1 − u)

′

,

Box I.
Ugv has a similar expression, hence

f′uΣ
−1gv =

2ρ
σ 2

f (−u)g(−v)+
2ρ

(1 − ϕ2)σ 2

N
n=1

(f (sn − u)

−ϕf (sn−1 − u)) (g(sn − v)− ϕg(sn−1 − v))

=
2ρ
σ 2

f (−u)g(−v)+
2ρ

(1 − ϕ2)σ 2

N
n=1

[f (sn − u)

− f (sn−1 − u)] [g(sn − v)− g(sn−1 − v)]

+
2ρ

(1 − ϕ2)σ 2

N
n=1

(1 − ϕ) [f (sn − u)

− f (sn−1 − u)] g(sn−1 − v)

+
2ρ

(1 − ϕ2)σ 2

N
n=1

(1 − ϕ)f (sn−1 − v)

× [g(sn − v)− g(sn−1 − v)]

+
2ρ

(1 − ϕ2)σ 2

N
n=1

(1 − ϕ)2f (sn−1 − v)g(sn−1 − v)

= L1 + L2 + L3 + L4 + L5.

Since f , g ∈ Lipζ2[−1, 1], |f ′(u) − f ′(v)| 6 M|u − v|, if ζ > 2;
|f ′(u)− f ′(v)| 6 M|u−v|−ζ+1, if ζ < 2, for some positive constant
M . It follows that

L2 =
2ρ

N(1 − ϕ2)σ 2

N
n=1

1
N


f (sn − u)− f (sn−1 − u)

1/N



×


g(sn − v)− g(sn−1 − v)

1/N



=
2ρ

N(1 − ϕ2)σ 2

N
n=1

1
N
(f ′(sn−1 − u)+ O(N−ζ0+1))

× (g ′(sn−1 − u)+ O(N−ζ0+1))

=
1
σ 2

 1

0
f ′(s − u)g ′(s − v) ds + O(N−ζ0+1).

Similarly, we obtain L3 =
ρ

σ 2

 1
0 f ′(s − u)g(s − v)ds + O(N−ζ0+1),

L4 =
ρ

σ 2

 1
0 f (s− u)g ′(s− v)ds+O(N−ζ0+1), and L5 =

ρ2

σ 2

 1
0 f (s−

u)g(s − v)ds + O(N−ζ0+1).
Using integration by parts, we have

f′uΣ
−1gv =

1
σ 2


ρf (−u)g(−v)+ ρf (1 − u)g(1 − v)

+

 1

0
f ′(s − u)g ′(s − v) ds + ρ2

 1

0
f (s − u)g(s − v) ds


+O(N−ζ0+1). �

Lemma 2. If the CFAR(1) process X = (Xt , t ∈ Z) satisfies (3) and
φ ∈ C2

[−1, 1], we define γh(u, v) = Cov(Xt(u), Xt+h(v)), then
there exists a positive constant ιwhich only depends on φ and ρ such
that:

(i) ∥Ψh∥∞ 6 κh for h > 2.
(ii) ∥γh∥∞ 6 σ 2ικ |h| for h ∈ Z.
(iii) For h > 1,

max
u,v

∂γh(u, v)∂u

 , ∂γh(u, v)∂v

 6 σ 2ικh,

and when h = 0, for any u1, u2, v ∈ [0, 1],

|γ (u1, v)− γ (u2, v)| 6 σ 2ι|u1 − u2|.

(iv) For h > 1,

max
u,v

∂2γh(u, v)∂u2

 , ∂2γh(u, v)∂u∂v

 , ∂2γh(u, v)∂v2

 6 σ 2ικh,

and when h = 0,

max
u≠v

∂2γ (u, v)∂u2

 , ∂2γ (u, v)∂u∂v

 , ∂2γ (u, v)∂v2

 6 σ 2ι.

Proof. By Cauchy–Schwarz inequality, for any u, v ∈ [0, 1],

|Ψ2(u, v)| =

  1

0
φ(u − s)φ(s − v) ds

 6

 1

0
φ2(u − s)ds

1/2

·

 1

0
φ2(s − v)ds

1/2

6 κ2,

|Ψh(u, v)| 6

 1

0
Ψ 2

h−1(u, s)ds
1/2 

·

 1

0
φ2(s − v)ds

1/2

6 κ∥Ψh−1∥∞, for h > 3.

Hence, Lemma 2(i) can be proved inductively.
By the definition of Ψ , for h > 2,

Ψh(u, v) =


[0,1]h

φ(u − s1)φ(s1 − s2) · · ·

φ(sh−1 − v) ds1 · · · dsh−1,

then we have
∂Ψh(u, v)

∂u
=


[0,1]h

φ′(u − s)Ψh−1(s, v) ds,

∂Ψh(u, v)
∂v

=


[0,1]h

Ψh−1(u, s)φ′(s − v) ds,

∂2Ψh(u, v)
∂u2

=


[0,1]h

φ′′(u − s)Ψh−1(s, v) ds,

∂2Ψh(u, v)
∂v2

=


[0,1]h

Ψh−1(u, s)φ′′(s − v) ds.

Let d1 = max−16s61 |φ′(s)| and d2 = max−16s61 |φ′′(s)|, and it
holds that

max
u,v

∂Ψh(u, v)
∂u

, ∂Ψh(u, v)
∂v

 6 d1κh−1, for h > 1,

max
u≠v

∂2Ψh(u, v)
∂u2

, ∂2Ψh(u, v)
∂v2

 6 d2κh−1, for h > 1.
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By Corollary 1, the covariances γ (u, v) have the expression:

γ (u, v) =
σ 2

2ρ
e−ρ|u−v|

+
σ 2

2ρ

∞
ℓ=1

 1

0

 1

0
Ψℓ(u, w)Ψℓ(v, z)e−ρ|w−z| dwdz.

It follows that, for any u, v ∈ [0, 1],

∥γ ∥∞ 6 σ 2/[2ρ(1 − κ2)],

|γ (u1, v)− γ (u2, v)| 6
σ 2

2ρ


ρ +

d1κ
1 − κ2


|u1 − u2|,

max
u≠v

∂2γ (u, v)∂u2

 , ∂2γ (u, v)∂u∂v

 , ∂2γ (u, v)∂v2


6
σ 2

2ρ


ρ2

+
d

1 − κ2


,

where d = max{d21, d2κ}.
For h > 1, the autocovariances γh(u, v) = Cov(Xt(u), Xt+h(v))

are given by

γh(u, v) =
σ 2

2ρ

 1

0
e−ρ|u−s|Ψh(v, s) ds

+
σ 2

2ρ

∞
ℓ=1

 1

0

 1

0
Ψℓ(u, w)Ψℓ+h(v, z)e−ρ|w−z| dwdz.

Hence, for h > 1, we have

∥γh∥∞ 6 σ 2κ |h|/[2ρ(1 − κ2)],∂γh(u, v)
∂u


∞

6
σ 2

2ρ


ρ +

d1κ
1 − κ2


κh,

∂γh(u, v)
∂v


∞

6
σ 2

2ρ
·
d1κh−1

1 − κ2
,

max
u≠v

∂2γh(u, v)∂u2

 , ∂2γh(u, v)∂u∂v

 , ∂2γh(u, v)∂v2


6
σ 2

2ρ


ρ2

+
d

1 − κ2


κh.

Since γh(u, v) = γ−h(v, u), the proof of Lemma 2(ii), 2(iii) and
2(iv) is complete. �

Lemma 3. The CFAR(1) process X = (Xt , t ∈ Z) satisfies (3). Let ε∗

0
be an i.i.d. copy of ε0, and X∗

t be obtained by replacing ε0 with ε∗

0 in
the definition of Xt . If f : [0, 1]2 → R be a continuous function, and
set ∥f ∥∞ := maxu,v |f (u, v)|. Define

Yt =

 1

0

 1

0
f (u, v)Xt(u)Xt(v) dudv, and

Y ∗

t =

 1

0

 1

0
f (u, v)X∗

t (u)X
∗

t (v) dudv.

Then, for each q ∈ N and q > 1, and t > 0,

∥Yt − Y ∗

t ∥q 6

√
2σ 2

ρ
√
1 − κ2

[(2q − 1)!!]1/q ∥f ∥∞ · κ t .

Proof. By Cauchy–Schwarz inequality,

∥Yt − Y ∗

t ∥q 6 2
  1

0

 1

0
f (u, v)[Xt(u)− X∗

t (u)]Xt(v) dudv

q

6 2∥f ∥∞

 1

0

 1

0

[Xt(u)− X∗

t (u)]Xt(v)

q dudv
6 2∥f ∥∞

 1

0

 1

0

 1

0
Ψt(u, w)(εt(w)− ε∗

t (w))


dw

2q

·
Xt(v)


2q dudv

6

√
2σ 2

ρ

(1 − κ2)

[(2q − 1)!!]1/q∥f ∥∞ · κ t . �

Proof of Theorem 3. Define δt(·) = Xt(·)−Xt(·). For any function
f ∈ C[−1, 1], denote (f ∗ g)(u) =

 1
0 f (u − v)g(v)dv. We first

observe that Xt can be decomposed as

Xt(s) =

k
j=1

βk,j(Bk,j ∗Xt−1)(s)+ (rk ∗Xt−1)(s)

+ εt(s)+ (φ ∗ δt)(s).

Letvt andwt be two (N+1)-dimensional vectorswhose ith entries
are (rk∗Xt−1)((i−1)/N) and (φ∗δt)((i−1)/N) respectively. Let εt
be the (N+1)-dimensional vector whose ith entry is εt((i−1)/N).
The estimatorβk can be decomposed as

βk =βk +


T

t=2

M′

tΣ
−1Mt

−1  T
t=2

M′

tΣ
−1(vt + εt + wt)


.

We claim that under the condition T = o(N2)

1
√
T

T
t=2

M′

tΣ
−1wt = op(1). (A.4)

Let µk,N = E(M′
tΣ

−1vt), Γ k,N = E(M′
tΣ

−1Mt), and bk,N =

Γ −1
k,Nµk,N , then

βk = βk + bk,N + Γ −1
k,N

1
T

T
t=2

(M′

tΣ
−1vt − µk,N)

+ Γ −1
k,N

1
T

T
t=2

M′

tΣ
−1εt

− Γ −1
k,N

1
T

T
t=2

(M′

tΣ
−1Mt − Γ k,N)bk,N + op(T−1/2). (A.5)

We claim that

βk = βk + bk + Γ −1
k

1
T

T
t=2

(ut − µk)+ Γ −1
k

1
T

T
t=2

zt

− Γ −1
k

1
T

T
t=2

(At − Γ k)bk + op(T−1/2). (A.6)

If we represent εt(u) as

εt(u) = εt(0)e−ρu
+ σ

 u

0
e−ρ(u−v) dWt(v),

then similar to the proof of Lemma 1, we get

(zt)j =

 1

0


2ρ
σ 2

Bk,j(−u)εt(0)+
1
σ

 1

0
(ρBk,j(v − u)

+ B′

k,j(v − u)) dWt(v)


Xt−1(u) du. (A.7)

The vector-valued process ut + zt + Atbk is a stationary
process. For any fixed unit vector θ ∈ Rk, by Lemma 3, the
physical dependencemeasures defined inWu (2005) of the process
θ′(ut + zt + Atbk) decay geometrically fast, and therefore the
martingale approximation used in Wu (2005) can be applied to
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obtain the central limit theorem for
T

t=2 θ′(ut + zt + Atbk). By
the Cramer–Wold device, we have
√
T (βk −βk − bk)

d
→ N(0,Γ −1

k Υ kΓ
−1
k ),

where Υ k is the long-run variance of the process ut + zt + Atbk.
Nowweprove the claim (A.4).Weproceedby showing that each

entry of the vector converges to zero in probability. The jth entry
ofMtΣ

−1wt can be written as 1

0

 1

0
AN(Bk,j, φ)(u, v)Xt−1(u)δt(v) dudv.

By Lemma 1, there exists a constant c1 > 0 such that

|AN(Bj, φ)(u, v)| 6 c1, for all u, v,N. (A.8)

Letγh(u, v) = Cov(Xt(u), δt+h(v)),

γ̄h(u, v) = Cov(δt(u), δt+h(v)).

By Lemma 2, there exists a constant c2 > 0 such that

∥γ̃h∥∞ 6 c2κh/N, ∥γ̄h∥∞ 6 c2κh/N.

It follows that

E
 1

0

 1

0

AN(Bk,j, φ)(u, v)δt(u)δt(v)
 dudv = O(N−1),

so it suffices to prove
T

t=2 yjt = op(T 1/2), where

yjt =

 1

0

 1

0
AN(Bk,j, φ)(u, v)Xt−1(u)δt(v) dudv.

By (A.8),

Eyjt =

 1

0

 1

0
AN(Bk,j, φ)(u, v)[γ1(u, v)−γ1(u, v)] dudv

= O(1/N). (A.9)

The autocovariance is

Cov(yjt , yj,t+h) =


[0,1]4

AN(Bk,j, φ)(u1, v1)AN(Bk,j, φ)(u2, v2)

× [γh(u1, u2)γ̄h(v1, v2)

+ γh+1(u1, v2)γ−h+1(u2, v1)] du1du2du3du4.

By (A.8) and Lemma 2,we know there exists a constant c3 > 0 such
that

|Cov(wjt , wj,t+h)| 6 c3κ2h/N.

It follows that

Var


T

t=2

yjt


= O(T/N). (A.10)

Combining (A.9) and (A.10), and using the condition T = o(N2), we
have

T
t=2 yjt = op(T 1/2), and the proof of claim (A.4) is complete.

The difference between the two expressions in (A.5) and (A.6) is
due to the approximation of Xt byXt , so the proof of claim (A.6) is
in the same fashion of that of claim (A.4). We omit the details. �

Lemma 4. The distance of two adjacent knots for uniform cubic
B-spline functions defined on [−1, 1] with k degrees of freedom is
1/m, and m = (k− 3)/2. Define two (m+ 4)× (m+ 4)matrices Ps
and Vs:

(Ps)qj =

 1+s/m

s/m

 1+s/m

s/m
e−ρ|u−v|B′

k,q+m−1(u)B
′

k,j+m−1(v) dudv,

(Vs)qj = ρ2
 1+s/m

s/m

 1+s/m

s/m
e−ρ|u−v|Bk,q+m−1(u)Bk,j+m−1(v) dudv,
for q, j = 1, . . . ,m + 4. Let b = (b0, . . . , bm+3)
′ be a unit vector.

There exist constants c1 and c2 such that if s ∈ Iα ,
3

j=0 b
2
j > 1

3m , and
m > c1, then

b′(Ps + Vs)b > c2
3

j=0

b2j .

Proof. Rescale the uniform B-spline functions,

Bq(s) = Bk,m+q(s/m) = [q, q + 1, . . . , q + 4](· − s)3
+
,

for q = 0, . . . ,m + 3.

The support of Bq(·) is [q, q + 4] and we denote B(u) ≡ B−2(u). Ps
and Vs can be written as

(Ps)qj =

 m+s

s

 m+s

s
e−ρ|u−v|/mB′

q−1(u)B
′

j−1(v) dudv,

(Vs)qj =
ρ2

m2

 m+s

s

 m+s

s
e−ρ|u−v|/mBq−1(u)Bj−1(v) dudv,

for q, j = 1, . . . ,m+4. For a fixed 3 < s < 4, there arem+4 spline
functions which are not identically zero on the interval [s,m + s]:
B0(u), B1(u), . . . , Bm+3(u). For any numbers b0, b1, b2, b3, there

exists a constant c3 > 0 such that
 4
3

3
j=0 bjBj(s)

2
ds >

c3
3

j=0 b
2
j . Thus there exists an s ∈ [3, 4] such that 3

j=0

bjBj(s)

 >
√
c3 ·


3

j=0

b2j

1/2

.

On the other hand, there exists a constant c4 such that for all

s ∈ [3, 4],
3

j=0 bjB
′

j(s)
 6 c4 ·

3
j=0 b

2
j

1/2
. As a result, there

exists an interval Iα of length c5 > 0, which is contained in [3, 4],
such that for each s in this interval 3
j=0

bjBj(s)

 > c6 ·


3

j=0

b2j

1/2

,

where 0 < c6 < 1 is an absolute constant.
Define the functions:

f1(u) =

3
j=0

bjBj(u), f2(u) =

m−1
j=4

bjBj(u),

f3(u) =

m+3
j=m

bjBj(u),

and let f (u) = f1(u)+ f2(u)+ f3(u). Using the identity

e−ρ|u|/m
=

1
π


∞

−∞

eiuλ ·
m/ρ

1 + (mλ/ρ)2
dλ,

we have

b′Psb =
1
π

 m+s

s

 m+s

s
f ′(u)f ′(v)


∞

−∞

ei(u−v)λ

·
m/ρ

1 + (mλ/ρ)2
dλdudv

=
1
π


∞

−∞

 m+s

s
f ′(u)eiuλ du

2 m/ρ
1 + (mλ/ρ)2

dλ

=
1
π


∞

−∞

− f1(s)eisλ + f3(m + s)ei(m+s)λ

− (iλ)
 m+s

s
f (u)eiuλ du

2 m/ρ
1 + (mλ/ρ)2

dλ.
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Similarly,

b′Vsb =
ρ2

πm2


∞

−∞

 m+s

s
f (u)eiuλ du

2 m/ρ
1 + (mλ/ρ)2

dλ.

Neuman (1981) showed the Fourier transform of the central spline
B−2(u) is 2

−2
B−2(u)eiuλ du =


2 sin(λ/2)

λ

4
.

Let g(λ) =
m−1

j=4 bjei(j+2)λ, we have m+s

s
f (u)eiuλ du =

 m+s

s
f1(u)eiuλ du +

 m+s

s
f3(u)eiuλ du

+ g(λ)
 4

0
B−2(u)eiuλ du

=

 m+s

s
f1(u)eiuλ du +

 m+s

s
f3(u)eiuλ du

+ g(λ)

2 sin(λ/2)

λ

4
. (A.11)

Note that m+s

s
f1(u)eiuλ du

 6

 7

3

3
j=0

|bj|Bj(u) du 6 2, (A.12)

and a similar inequality holds for the Fourier transform of f3(u).
We will consider two cases.
Case 1: maxλ∈[0,2/m] |g(λ)| 6 m |f1(s)|/3. On the interval λ ∈

[π/(6m), 11π/(6m)], by law of cosines, it holds that−f1(s)eisλ + f3(m + s)ei(m+s)λ
 > |f1(s) sin(mλ)| > |f1(s)|/2,

and with (A.11) and (A.12), we have−f1(s)eisλ + f3(m + s)ei(m+s)λ
− (iλ)

 m+s

s
f (u)eiuλ du


>

|f1(s)|
2

−
22π
3m

−
|f1(s)|

3

=
|f1(s)|

6
−

22π
3m

.

It follows that

b′Psb >
1
π

 11π/(6m)

π/(6m)


|f1(s)|

6
−

22π
3m

2 m/ρ
1 + (mλ/ρ)2

dλ

=
1
π

 11π/6

π/6


|f1(s)|

6
−

22π
3m

2
ρ

ρ2 + λ2
dλ

>
60ρ

36ρ2 + 121π2


|f1(s)|

6
−

22π
3m

2

.

Recall that
3

j=0 b
2
j > 1

3m , so

|f1(s)| > c4


3

j=0

b2j

1/2

> c6/
√
3m.

Therefore, for Case 1, there exists a constant c7 > 0, such thatwhen
m > c7, it holds that

b′Psb >
5ρ

109ρ2 + 364π2
|f1(s)|2 >

5ρc26
109ρ2 + 364π2

3
j=0

b2j .

Case 2: maxλ∈[0,2/m] |g(λ)| > m |f1(s)|/3. This implies that
there exists a λ0 ∈ [0, 2/m] such that |g(λ0)| > m |f1(s)|/3 >
c6
√
m/6. Since b is a unit vector, |g(λ)| 6

√
m, and it follows that

f1(s) 6 3/
√
m. By Zygmund (2002), the derivative of g(λ) satisfies

|g ′(λ)| 6 m3/2. Therefore, on an interval I1 ⊂ [0, 3/m] of length
c6/(12m), |g(λ)| > c6

√
m/12. On this interval, it holds that m+s

s
f (u)eiuλ du

 >
c6

√
m

12


2 sin(λ/2)

λ

4
− 4.

There exists a c8 > 0 such that whenm > c8, m+s

s
f (u)eiuλ du

 >
c6

√
m

13
.

It follows that

b′Vsb >
ρ2

πm2


I1

 m+s

s
f (u)eiuλ du

2 m/ρ
1 + (mλ/ρ)2

dλ

>
ρ2

πm2


mI1

c24m
169

ρ

ρ2 + λ2
dλ

>
c36ρ

3

2028π(ρ2 + 9)
·
1
m

>
c36ρ

3

18252π(ρ2 + 9)
· |f1(s)|2

>
c56ρ

3

18252π(ρ2 + 9)
·

3
j=0

b2j .

Note that

b′Psb

=

m+3
q=0

m+3
j=0

 1+s/m

s/m

 1+s/m

s/m
bibje−ρ|u−v|/mB′

q+m(u)B
′

j+m(v) dudv

= E


m+3
q=0

 1+s/m

s
bqεt(u)B′

q+m(u) du

2

> 0.

Similarly, we have b′Vsb > 0, so both Ps and Vs are non-negative
definite. Hence, the proof is completed by setting c1 = max{c7, c8},
and

c2 =
c56ρmin{ρ2, 1}
18252π(ρ2 + 9)

. �

Lemma 5. The minimum eigenvalue of Γ k, defined in Theorem 3 is
O(k−1).

Proof. Γ k could be written as sum of the following four matrices.
Γ k =

4
i=1 Gk,i.

(Gk,1)ij =

 1

0

 1

0

 1

0
γ0(u, v)B′

k,i(s − u)B′

k,j(s − v) dudvds,

(Gk,2)ij = ρ2
 1

0

 1

0

 1

0
γ0(u, v)Bk,i(s − u)Bk,j(s − v) dudvds,

(Gk,3)ij = ρ

 1

0

 1

0
γ0(u, v)Bk,i(−u)Bk,j(−v) dudv,

(Gk,4)ij = ρ

 1

0

 1

0
γ0(u, v)Bk,i(1 − u)Bk,j(1 − v) dudv,

for i, j = 1, . . . , k. DefineWk,1 and Wk,2.

(Wk,1)ij =
σ 2

2ρ

 1

0

 1

0

 1

0
e−ρ|u−v|B′

k,i(s − u)B′

k,j(s − v) dudvds,

(Wk,2)ij =
ρσ 2

2

 1

0

 1

0

 1

0
e−ρ|u−v|Bk,i(s − u)Bk,j(s − v) dudvds,
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for i, j = 1, . . . , k. For any b = {b1, . . . , bk} ∈ Rk,

b′Gk,1b =

 1

0
E


k

i=1

 1

0
biXt(u)B′

k,i(s − u)du

2

ds

=

 1

0
E


k

i=1

 1

0
bi

 1

0
φ(u − v)Xt−1(v) dv

+ εt−1(u)

B′

k,i(−u) du

2

ds

>

 1

0
E


k

i=1

 1

0
biεt−1(u)B′

k,i(−u) du

2

ds

> b′Wk,1b > 0.

So Gk,1 ≽ Wk,1 ≽ 0. In a similar way, we can show that Gk,2 ≽

Wk,2 ≽ 0. Thus Γ k ≽ Wk,1 + Wk,2. Let b = (b0, . . . , b2m+2) be a
unit vector, and

D1 =


0 6 j 6 2m − 1 :

j+3
l=j

b2l > 1/(3m)


,

and D2 = {0, 1, . . . , 2m − 1}\D1. Since


j∈D2

j+3
l=j b

2
l 6 2m ·

1/(3m) = 2/3, it holds that


j∈D1

j+3
l=j b

2
l > 1/3. For each

j ∈ D1 and j 6 m − 1, by Lemma 4, There exists an interval
Ij ⊂ [−1 + j/m,−1 + (j + 1)/m] of length c5/m, such that for
each s ∈ Ij 1

0

 1

0

2m+2
h,l=0

bhbl

B′

k,h(s − u)B′

k,l(s − v)

+ ρ2Bk,h(s − u)Bk,l(s − v)

e−ρ|u−v| dudv > c6

j+3
l=j

b2l .

It follows that 1

0

 1

0

 1

0

2m+2
h,l=0

bhbl

B′

k,h(s − u)B′

k,l(s − v)

+ ρ2Bk,h(s − u)Bk,l(s − v)

e−ρ|u−v| dudvds

>
c3c6
m


j∈D1,j6m−1

j+3
l=j

b2l .

By applying reverting the order of the rows and the columns, we
can show that for each j ∈ D1 and j > m, there exists an interval
Ij ⊂ [−1+ j/m,−1+ (j+1)/m] of length c5/m, such that for each
s ∈ Ij 1

0

 1

0

2m+2
h,l=0

bhbl

B′

k,h(s − u)B′

k,l(s − v)

+ ρ2Bk,h(s − u)Bk,l(s − v)

e−ρ|u−v| dudv > c6

j+3
l=j

b2l .

So similarly, 1

0

 1

0

 1

0

2m+2
h,l=0

bhbl

B′

k,h(s − u)B′

k,l(s − v)

+ ρ2Bk,h(s − u)Bk,l(s − v)

e−ρ|u−v| dudvds

>
c3c6
m


j∈D1,j>m

j+3
l=j

b2l .
Therefore,

b′(Wk,1 + Wk,2)b >
c3c6
6m

,

and the proof is complete. �

Lemma 6. AssumeΞ : [0, 1]2 → [0, 1] is a function, and satisfies

∥Ξ (1)
∥∞ = sup

06u1,u2,v61,u1≠u2

Ξ(u1, v)− Ξ(u2, v)

u1 − u2

 ,Ξ(v, u1)− Ξ(v, u2)

u1 − u2

 < ∞;

∥Ξ (2)
∥∞ = sup

06u,v61,u≠v

∂2Ξ(u, v)∂u2

 , ∂2Ξ(u, v)∂u∂v

 ,∂2Ξ(u, v)∂v2

 < ∞.

(A.13)

Define the k × k matrix Λ with the (j, l)th entry 1

0

 1

0

 1

0
B′

k,j(s − u)B′

k,l(s − v)Ξ(u, v) dudvds. (A.14)

Then ∥Λ∥ = O(k−1).

Proof. Let Sj be the support of Bk,j, and let Sjl be the set of swhich
makes the integral 1

0

 1

0
B′

k,j(s − u)B′

k,l(s − v)Ξ(u, v) dudv (A.15)

nonzero. Define two subsets of Sjl,

Sjl1 := {s : s ∈ Sjl, (Sj ∪ Sl) ⊄ [s − 1, s]},

and Sjl2 := Sjl\Sjl1. Use λ to denote the Lebesgue measure. Let
k = 2m+3, and note that 1/m is themesh size. For each 1 6 j 6 k,
we consider the entries in the jth row of the matrix Λ. There are
three cases.

Case 1. If ||l − j| − m| 6 3, then λ(Sjl) 6 7/m, and it follows
that |(Λ)jl| 6 C1/k, where C1 is a constant depending only on Ξ .
Observe that for each j, the inequality ||l − j| − m| 6 3 only holds
for at most 14 different values of l.

Case 2. If |j − l| 6 3, then λ(Sjl1) 6 7/m, and integrating (A.15)
over s ∈ Sjl1 leads to a value bounded by C1/(2k). For s ∈ Sjl2, the
integral (A.15) can be written as 1

0

 1

0
B′

k,j(s − u)B′

k,l(s − v)Ξ(u, v) dudv

=


Sj


Sl

B′

k,j(u)B
′

k,l(v)Ξ(s − u, s − v) dudv.

Let u∗

j be the left boundary of Sj, then


Sj


Sl

B′

k,j(u)B
′

k,l(v)Ξ(s − u, s − v) dudv


=




Sj


Sl

B′

k,j(u)B
′

k,l(v)[Ξ(s − u, s − v)

−Ξ(s − u∗

j , s − v) dudv]


6


Sj


Sl

|B′

k,j(u)B
′

k,l(v)| · ∥Ξ (1)
∥∞(u − u∗

j ) dudv

6 C1/(2k). (A.16)

Since λ(Sjl2) 6 1, we have |(Λ)jl| 6 C1/k.



X. Liu et al. / Journal of Econometrics 194 (2016) 263–282 279
Case 3. If 3 < |j− l| < m−3, then for each s ∈ Sjl1, it must hold
that either Sj ⊂ [s − 1, s] or Sl ⊂ [s − 1, s]. Similar as (A.16), it
holds that for each s ∈ Sjl1, the integral (A.15) has an absolute value
less than C1/k. For s ∈ Sjl2, since Sj and Sl have no intersection, we
have

Ξ(s − u, s − v) = Ξ(s − u∗

j , s − v)

−
∂Ξ(s − u∗

j , s − v∗

l )

∂u
(u − u∗

j )

−
∂Ξ(s − u∗

j , s − v∗

l )

∂v
(v − v∗

l )+ R(u, v)

where

|R(u, v)| 6 ∥Ξ (2)
∥∞(u − u∗

j + v − v∗

l )
2, u ∈ Sj, v ∈ Sl.

Therefore


Sj


Sl

B′

k,j(u)B
′

k,l(v)Ξ(s − u, s − v) dudv


=




Sj


Sl

B′

k,j(u)B
′

k,l(v)R(u, v) dudv


6


Sj


Sl

|B′

k,j(u)B
′

k,l(v)| · ∥Ξ (2)
∥∞(u − u∗

j + v − v∗

l )
2 dudv

6 C1/k2. (A.17)

Since λ(Sjl1) 6 8/m and λ(Sjl2) 6 1, it holds that

|(Λ)jl| 6
C1

k
·
8
m

+
C1

k2
6

C2

k2
,

where C2 is a constant which only depends onΞ .
Combining these three cases, we see that there exists a constant

C3 which only depends onΞ , such that ∥Λ∥∞ 6 C3/k, and ∥Λ∥1 6
C3/k. Therefore,

∥Λ∥ 6 ∥Λ∥
1/2
∞

∥Λ∥
1/2
1 6 C3/k. �

Proof of Theorem 4. By Corollary 6.26 of Schumaker (1981),

∥φ −φk∥∞ 6 c1k−ζ , ∥φ′(·)−φ′

k(·)∥∞ 6 c1k−ζ+1, (A.18)

where c1 is an absolute constant. There are four terms in the
definition of A(Bk,j, rk). We first consider 1

0

 1

0

 1

0
B′

k,j(s − u)r ′

k(s − v)γ (u, v) dudvds.

Let

Sj = {s : λ(Sj ∩ [s − 1, s]) > 0},

and Sj1 = {s ∈ Sj : Sj ⊄ [s − 1, s]}, Sj2 = Sj\Sj1. When s ∈ Sj1, it
holds that 1

0

 1

0
B′

k,j(s − u)r ′

k(s − v)γ (u, v) dudv
 6 Cρk−ζ+1,

where C is constant which only depends on ρ, σ 2 and φ. When
s ∈ Sj2 and 3 < j < k− 2, using the fact that


Sj
B′

k,j(u) du = 0 and
Lemma 2, we have 1

0

 1

0
B′

k,j(s − u)r ′

k(s − v)γ (u, v) dudv


=


 1

0


Sj

B′

k,j(u)r
′

k(s − v)

γ (s − u, v)− γ (s − u∗

j , v)

dudv


6 Ck−ζ .
Noticing that λ(Sj1) 6 4/m, and combining the previous two cases,
we see that 1

0

 1

0

 1

0
B′

k,j(s − u)r ′

k(s − v)γ (u, v) dudvds
 6 Ck−ζ .

It can be shown that the other three terms in the definition of
A(Bk,j, rk) have the same order O(k−ζ ), and hence

|(µk)j| 6 Ck−ζ .

By Lemma 5,

∥bk∥ = ∥Γ −1
k µk∥ = O(k−ζ+3/2).

It follows that

∥bk(·)∥∞ 6 ∥Bk(·)
′bk∥∞ + ∥rk(·)∥∞ = O(k−ζ+3/2).

For the statement regarding ∥σ 2
k (·)∥∞, it suffices to show that

∥Σk∥ = O(k).

We proceed by calculating the long-run variances of the three
processes ut , zt and Atbk. First we observe that zt is a martingale,
and

Var(zt) = Γ k.

The covariance between utj and ut+h,l is

Cov(utj, ut+h,l) =


[0,1]4

A(Bk,j, rk)(u1, v1)A(Bk,l, rk)(u2, v2)

× [γh(u1, u2)γh(v1, v2)

+ γh(u1, v2)γh(v1, u2)] du1du2du3du4.

By (A.18), we have

A(Bk,j, rk)(u, v) 6 Cρk−ζ+1

where Cρ is constant which only depends on ρ. The preceding
bound, together with Lemma 2 implies that,

|Cov(utj, ut+h,l)| 6 2C2
ρ/(1 − κ2

2 )
2σ 4

· k−2ζ+2κ2|h|.

Therefore, the operator normof the long-run variance ofut is of the
order O(k−2ζ+3). The (j1, j2)th entry of the matrix E(Atbkb′

kA
′

t+h) is

k
l1,l2=1


[0,1]4

A(Bk,l1 , Bk,j1)(u1, v1)(bk)l1

× (bk)l2A(Bk,l2 , Bk,j2)(u2, v2)

× [γh(u1, u2)γh(v1, v2)

+ γh(u1, v2)γh(v1, u2)] du1du2du3du4. (A.19)

By the definition ofA(·, ·), the productA(Bk,j1 , Bk,h1)A(Bk,j2 , Bk,h2)
can be expanded to 16 terms. We first consider the term

[0,1]6
B′

k,l1(s1 − u1)B′

k,j1(s1 − v1)B′

k,l2(s2 − u2)B′

k,j2(s2 − v2)

× [γh(u1, u2)γh(v1, v2)

+ γh(u1, v2)γh(v1, u2)] ds1ds2du1dv1du2dv2. (A.20)

Let Bk be the set of the pairs (j, l) such that either |j − l| 6 3,
or ||j − l| − m| 6 3. Lemma 2 gives bounds on derivatives of
γh(u, v). Using these bounds, and a similar argument as the proof
of Lemma 6, we can show that there exists a constant c2 > 0 such
that the absolute value of (A.20) can be controlled as
c2κ2h/k2 if (j1, l1) ∈ Bk and (j2, l2) ∈ Bk;

c2κ2h/k3 if one and only one of (j1, l1) and
(j2, l2) belongs to Bk;

c2κ2h/k4 if (j1, l1) ∉ Bk and (j2, l2) ∉ Bk.
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It can be shown that the other 15 terms have the same bounds, and
we omit the details. Let C be a k × k matrix whose (j, l)th entry is
1/k when (j, l) ∈ Bk, and 1/k2 when (j, l) ∉ Bk, then

∥E(Atbkb′

kA
′

t+h)∥ 6 c3κ2h
2 · ∥C · |bk| · |b′

k| · C∥ 6 c4κ2hk−2ζ+3,

where c3 and c4 are absolute constants, and |bk| consists of
entry-wise absolute values of bk. Therefore, the long-run variance
of Atbk is of the order O(k−2ζ+3), and the proof is complete.
Since the population objective function is the expectation of log-
likelihood function andφk(·) is consistent, thenσ 2

k andρk are also
consistent. �

Lemma 7. If the CFAR(p) process X = (Xt , t ∈ Z) satisfies (4) and
φi ∈ C2

[−1, 1] for i = 1, . . . , p, then Xt =


∞

j=0 ∆jεt−j is
a stationary process, where Xt = (Xt , Xt−1, . . . , Xt−p+1)

′, εt =

(εt , 0, . . . , 0)′, and ∆ is defined in (A.1). There exist three constants
ι, t0 and λ which only depend on {φi, i = 1, . . . , p} and ρ such that:
(i) ∥∆h

∥ 6 ιλh for h > 2.
(ii) ∥γh∥∞ 6 σ 2ιλ|h| for h ∈ Z.
(iii) For h > 1,

max
u,v

∂γh(u, v)∂u

 , ∂γh(u, v)∂v

 6 σ 2ικh.

(iv) For h > 1,

max
u,v

∂2γh(u, v)∂u2

 , ∂2γh(u, v)∂u∂v

 , ∂2γh(u, v)∂v2

 6 σ 2ικh.

Proof. By Lemma 5.1 and Theorem 5.1 in Bosq (2000), it is
straightforward to see that Xt has the following expression: Xt =

∞

j=0 ∆jεt−j. Since we show that ∥∆j
∥
1/j

→ λmax < 1 in the proof
of Theorem 2, there exists an integer t0 such that ∥∆h

∥ 6 λh, for
h > t0, where λ = (1 + λmax)/2.

For h > t0, any u, v ∈ [0, 1],

γh(u, v) =
1
p
E(Xt(u)′Xt+h(v))

=
1
p

∞
j=0

E

(∆jεt−j)(u)′(∆j+hεt−j)(v)


6

1
p

∞
j=0

∥(∆jεt−j)(u)∥2 · ∥(∆j+hεt−j)(v)∥2

6
δσ 2λh

2ρp(1 − λ)
,

where δ = maxj>0 ∥∆j
∥. By the definition of∆i, we have

∆q1∆q2 . . .∆qn f (s) =


[0,1]n

φq1(s − u1)φq2(u1 − u2) . . . φqn

× (uqn−1 − uqn)f (un) du1 . . . duqn .

The entries in ith row of ∆p can be regarded a polynomial in
{∆1, . . . ,∆p} of degree p − i + 1, without intercept (the identity
operator). Hence, we can define two linear operators ∆(1) and
∆(2) in Hp

[0, 1] such that ∆(1)f (s) = [∆pf (s)]′, and ∆(2)f (s) =

[∆pf (s)]′′. Specifically, assume that the (i, j)th entry in ∆ is
∆q1∆q2 . . .∆qn , and we define (i, j)th entries in ∆(1) and ∆(2) as
follows

(∆(1)f (s))ij =


[0,1]n

φ′

q1(s − u1)φq2(u1 − u2) . . . φqn

× (uqn−1 − uqn)f (un) du1 . . . duqn ,

(∆(2)f (s))ij =


[0,1]n

φ′′

q1(s − u1)φq2(u1 − u2) . . . φqn

× (uqn−1 − uqn)f (un) du1 . . . duqn .
Then, the operator norms of ∆(1) and ∆(2) are bounded by
pdp,1κ

p−1
max and pdp,2κ

p−1
max respectively, where κmax = max{κ1, . . . ,

κp, 1}, dp,1 = max16j6p,06s61 |φ′

j (s)|, and dp,2 = max16j6p,06s61

|φ′′

j (s)|.
On the other hand, by the definition of∆, it suffices to show that

the operator normsof ∂(∆jf (s))/∂s and ∂(∆jf (s))/∂s2 are bounded
by pdp,1κ

p−1
max ∥f ∥∞ and pdp,2κ

p−1
max ∥f ∥∞ respectively, for 1 6 j < p.

It follows that,

∂γh(u, v)
∂u

6
σ 2δ1λ

h

2ρp(1 − λ)
,

∂γh(u, v)
∂v

6
σ 2δdp,1κ

p−1
maxλ

h−p

2ρ(1 − λ)
,

∂2γh(u, v)
∂u2

6
σ 2dδ2λh

2ρp(1 − λ)
,

∂2γh(u, v)
∂v2

6
σ 2δdp,2κ

p−1
maxλ

h−p

2ρ(1 − λ)
,

∂2γh(u, v)
∂u∂v

6
σ 2δ2δdp,2κ

p−1
maxλ

h−p

2ρ(1 − λ)
,

for h > t0 + p, where δ1 = max{ρ, pdp,1κ
p−1
max δ}, and δ2 =

max{ρ2, pdp,2κ
p−1
max δ}.

The proof is complete. �

Lemma 8. The CFAR(p) process X = (Xt , t ∈ Z) satisfies (4). Let ε∗

0
be an i.i.d. copy of ε0, and X∗

t be obtained by replacing ε0 with ε∗

0 in
the definition of Xt . If f : [0, 1]2 → R be a continuous function, and
set ∥f ∥∞ := maxu,v |f (u, v)|, then for −p 6 h 6 p,

Yt,h =

 1

0

 1

0
f (u, v)Xt(u)Xt−h(v) dudv, and

Y ∗

t,h =

 1

0

 1

0
f (u, v)X∗

t (u)X
∗

t−h(v) dudv.

Then, for each q ∈ N, there exists a constant ι which depends on
{φi, i = 1, . . . , p}, ρ , σ 2, p and f (u, v), such that

∥Yt,h − Y ∗

t,h∥q 6 ιλt .

Proof. By Cauchy–Schwarz inequality and Lemma 7, for t > t0+p,

∥Yt,h − Y ∗

t,h∥q 6

  1

0

 1

0
f (u, v)[Xt(u)− X∗

t (u)]X
∗

t−h(v) dudv

q

+

  1

0

 1

0
f (u, v)[Xt−h(v)− X∗

t−h(v)]Xt(u) dudv

q

6 ∥f ∥∞

 1

0

 1

0

∆tεt(u)− ∆tε∗

t (u)

2q · ∥X∗

t−h(v)∥2q dudv

+ ∥f ∥∞

 1

0

 1

0

∆t−hεt−h(u)− ∆t−hε∗

t−h(u)

2q

· ∥Xt(v)∥2q dudv

6 2∥f ∥∞ · λt−p


σ 2

ρ

q

[(2q − 1)!!]

1/(2q)

×

γ q
max[(2q − 1)!!]

1/(2q)
6

2σγ 1/2
max

ρ1/2
[(2q − 1)!!]1/q∥f ∥∞ · λt−p

where γmax = maxs∈[0,1] Var(Xt(s)). �

Proof of Theorem 5. The proof is similar to that of Theorem 3. Xt
can be decomposed as

Xt(s) =

p
i=1

k
j=1

βk,i,j(Bk,j ∗Xt−i)(s)+

p
i=1

(rk,i ∗Xt−i)(s)

+ εt(s)+

p
i=1

(φi ∗ δt)(s).
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Letvt andwt be two (N+1)-dimensional vectorswhose jth entries
are

p
i=1(rk,i ∗ Xt−i)((j − 1)/N) and

p
i=1(φi ∗ δt)((j − 1)/N)

respectively. Let εt be the (N + 1)-dimensional vector whose jth
entry is εt((j − 1)/N). The estimateβk can be decomposed as

βk =βk +


T

t=p+1

M′

tΣ
−1Mt

−1  T
t=p+1

M′

tΣ
−1(vt + εt + wt)


.

We claim that under the condition T = o(N2)

1
√
T

T
t=p+1

M′

tΣ
−1wt = op(1). (A.21)

Let µk,N = E(M′
tΣ

−1vt), Γ k,N = E(M′
tΣ

−1Mt), and bk,N =

Γ −1
k,Nµk,N , then

βk = βk + bk,N + Γ −1
k,N

1
T

T
t=p+1

(M′

tΣ
−1vt − µk,N)

+ Γ −1
k,N

1
T

T
t=p+1

M′

tΣ
−1εt

− Γ −1
k,N

1
T

T
t=p+1

(M′

tΣ
−1Mt − Γ k,N)bk,N + op(T−1/2). (A.22)

We claim that

βk = βk + bk + Γ −1
k

1
T

T
t=p+1

(ut − µk)+ Γ −1
k

1
T

T
t=p+1

zt

− Γ −1
k

1
T

T
t=p+1

(At − Γ k)bk + op(T−1/2). (A.23)

By Lemma 8, we can finish this proof similar to that of Theo-
rem 3. �

Lemma 9. Let q > 2 be an integer. Consider two (qk) × (qk)
symmetric positive semi-definite matrices:

Ω1 =


Ω 0
0 0


, Ω2 =


Ω11 Ω12
Ω21 Ω22


,

where Ω and Ω11 are (q − 1)k-dimensional square matrices. Assume
there exist positive constants c1 6 c2 such that

∥Ω11∥ 6 c2, Ω ≽ c1I(q−1)k, Ω22 ≽ c1Ik.

Then

Ω1 + Ω2 ≽
c21

c1 + 2c2
Iqk.

Proof. Let 0 < c < 1, and define

Ω3 =


c−1/2I(q−1)k 0

0 c1/2Ik


Ω11 Ω12
Ω21 Ω22


×


c−1/2I(q−1)k 0

0 c1/2Ik


=


c−1Ω11 Ω12

Ω21 c Ω22


.

We see that Ω3 is positive semi-definite, and

Ω1 + Ω2 = Ω3 +


Ω − (c−1

− 1)Ω11 0
0 (1 − c)Ω22


.

Since Ω ≽ c1I(q−1)k and ∥Ω11∥ 6 c2, it holds that

Ω − (c−1
− 1)Ω11 ≽ (c1 − (c−1

− 1)c2)I(q−1)k.
By taking c = 2c2/(c1 + 2c2), we have

Ω1 + Ω2 ≽ Ω3 +
c21

c1 + 2c2
Iqk,

and the proof is complete. �

Lemma 10. Assume that φ1, . . . , φp ∈ C2
[−1, 1], the minimum

eigenvalue of Γ k, defined in Theorem 5 is O(k−1).

Proof. For any function Ψi, denote by (Ψiεt)(u) the random
variable

 1
0 Ψi(u, v)εt(v) dv. Define γ11(u, v) := σ 2e−ρ|u−v|. For

each 2 6 i 6 p, let γ1i(u, v) := Cov[εt(u), (Ψi−1εt)(v)] and
γi1(u, v) := γ1i(v, u). For every pair 2 6 i, j 6 p, define γij(u, v) =

Cov[(Ψi−1εt)(u), (Ψj−1εt)(v)]. Now for each pair 1 6 i, j 6 p,
define a k × kmatrix Ξij, with (h, l)th entry

(Ξij)hl =

 1

0

 1

0

 1

0
B′

k,h(s − u)B′

k,l(s − v)

+ ρ2Bk,h(s − u)Bk,l(s − v) ds γij(u, v)dudv.

For each 1 6 i 6 p, define the p × p block matrix

Γ p,i =


Ξii Ξi,i−1 . . . Ξi,1 0

Ξi−1,i Ξi−1,i−1 . . . Ξi−1,1 0
...

...
. . .

...
...

Ξ1,i Ξ1,i−1 . . . Ξ11 0
0 0 . . . 0 0

 .
Using the representation (7), we know

Γ k ≽

p
i=1

Γ p,i.

By Lemma 5, there exists a constant c1 > 0 such that

Ξ11 ≽ c1/k · Ik.

The condition that φ1, . . . , φp ∈ C2
[−1, 1] implies that all func-

tions γij(u, v) satisfy the assumption (A.13), and then by Lemma 6,
the operator norms of all matrices Ξij have the order O(k−1) uni-
formly. Then we can apply Lemma 9 inductively to complete the
proof. �

Proof of Theorem 6. By Lemmas 9 and 10, we can complete the
proof of Theorem 6, following the proof of Theorem 4. �
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