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Abstract: We consider a factor model for high-dimensional time series with regime-

switching dynamics. The switching is assumed to be driven by an unobserved

Markov chain; the mean, factor loading matrix, and covariance matrix of the noise

process are different among the regimes. The model is an extension of the tra-

ditional factor models for time series and provides flexibility in dealing with ap-

plications in which underlying states may be changing over time. We propose an

iterative approach to estimating the loading space of each regime and clustering the

data points, combining eigenanalysis and the Viterbi algorithm. The theoretical

properties of the procedure are investigated. Simulation results and the analysis of

a data example are presented.
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1. Introduction

Multivariate time series data are observed in such fields as finance, eco-

nomics, and computational biology, and various models and methods, generalized

from univariate cases, have been discussed in the literature. Vector ARMA mod-

els were first proposed by Quenouille (1957); the parameter estimation and model

specification were investigated by Tiao and Box (1981), Tsay and Tiao (1983),

Lütkepohl (1985), Tiao and Tsay (1989), and others. Models for nonstationary

time series were also introduced, such as vector error correction models Engle and

Granger (1987), multivariate stochastic variance models Harvey, Ruiz, and Shep-

hard (1994) and MGARCH models Engle and Kroner (1995); Bauwens, Laurent,

and Rombouts (2006). Lütkepohl (2005) provides a comprehensive introduction

to the multivariate time series models and methods.

These models are often confronted with computational challenges, over-

parametrization, and overfitting issues when dealing with high-dimensional time

series. Factor analysis is considered an effective way to alleviate these problems

by dimension reduction, starting with Anderson (1963) and Priestley, Rao, and

Tong (1974) who applied it to multivariate time series. In the last decades,

much attention has been paid to the high-dimensional case. Chamberlain and

Rothschild (1983) and Forni et al. (2000) studied the factor model consisting of
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common factors and an idiosyncratic component with weak cross-sectional and

serial dependence. Bai and Ng (2002) and Hallin and Lǐska (2007) proved that

the number of factors can be estimated consistently and established the conver-

gence rate of factor estimators. Peña and Box (1987) and Pan and Yao (2008)

decomposed the time series into two parts, a latent factor process and a vector

white noise process, in which strong cross-sectional dependence is allowed. Lam,

Yao, and Bathia (2011) and Lam and Yao (2012) developed an approach that

takes advantage of information from autocovariance matrices at nonzero lags via

eigendecomposition to estimate the factor loading space, and they established the

asymptotic properties as the dimension goes to infinity with sample size. This

innovative method is applicable to nonstationary processes and processes with

uncorrelated or endogenous regressors Chang, Guo, and Yao (2013).

Regime switching Hamilton (1989) has been introduced in different models,

including threshold models Tong and Lim (1980); Tong (1983) and ARCH models

Hamilton and Susmel (1994); Hamilton (1996), and has various applications in

economics, including analyzing business cycles Kim and Nelson (1998), GNP

Hansen (1992), interest rates Gray (1996) and monetary policy Bernanke and

Gertler (2000); Sims and Zha (2006). Factor models with regime switching can

be tracked back to Diebold and Rudebusch (1994). In this paper we generalize

the factor models of Pan and Yao (2008), and introduce a factor model with an

unobserved state variable switching between several regimes in which the mean,

factor loadings, and covariance matrices of noise process are all different. By

allowing these parameters to switch across regimes, one enhances flexibility in

modeling multivariate time series, and provides an effective tool to distinguish

and identify the dynamics over time.

For factor models, switching mechanisms can be found in many cases. For

example, CAPM theory indicates that the expected market return is an impor-

tant factor for the expected return of an asset, and it is expected that its impact

(loadings) on any individual asset may be different depending on whether a stock

market is volatile or stable. In economics, risk-free rate, unemployment, and eco-

nomic growth are crucial factors of all economic activities and their performance

indicators. Again, the loadings of these factors may vary under different fiscal

policies (neutral, expansionary, or contractionary) or in different stages of the

economic cycle (expansion, peak, contraction, or trough); see Kim and Nelson

(1998).

In this paper, we develop an iterative algorithm for the estimation of model

parameters and unobserved time-varying states based on eigendecomposition and

the Viterbi algorithm. The theoretical properties of the estimators are investi-

gated. As in Lam, Yao, and Bathia (2011), whose model is essentially a one-

regime model in our case, the convergence rate of estimated loading space de-

pends on the ’strength’ of the state. We find that, with multiple states of different



REGIME-SWITCHING FACTOR MODELS 1429

’strength’, the convergence rate of the loading space estimator for strong states

is the same as the one-regime case, while the rate improves for weak states,

gaining extra information from the strong states. Empirical results confirm such

observations.

The rest of the paper is organized as follows. In Sections 2 and 3, detailed

model setting and estimation procedure are introduced. The theoretical proper-

ties are investigated in Section 4. Simulation results are presented in Section 5

and a data example is analyzed in Section 6. All proofs are in the Supplementary

Material.

2. Switching Factor Models

We introduce some notation. For any matrix H, ∥H∥F , and ∥H∥2 denote

the Frobenius and L-2 norms of H; tr(H) and λmax(H) are the trace and the

largest nonzero eigenvalue of a square matrix H, respectively, and ∥H∥min is the

square root of minimum nonzero eigenvalue of H′H. We write a ≍ b, if a = O(b)

and b = O(a).

Let yt be a p×1 observed time series and zt be a homogenous and stationary

hidden Markov chain taking values in {1, 2, . . . ,m} with transition probabilities

πk,j = P (zt+1 = j | zt = k) k, j = 1, · · · ,m, (2.1)

where the number of states m is known. We assume that, for t = 1, . . . , n, when

zt = k,

yt = µk +Akxt + ε
(k)
t and ε

(k)
t ∼ N(0,Σk), (2.2)

where xt is a d× 1 latent factor process with d fixed and (much) smaller than p,

independent of z = {z1, . . . , zn}, E(xt) = 0. Here µk is the mean of the process,

Ak is the unknown loading matrix, and Σk is the covariance matrix of the noise

process for state k. We assume that {ε(1)t }, · · · , {ε(m)
t } are m uncorrelated white

noise processes, independent of {(xt, zt), t ∈ Z}. Our model is a generalization of

the factor models of Lam, Yao, and Bathia (2011). The dynamics of yt are driven

by the factor process xt according to m states controlled by the state variable zt.

As noted in Lam and Yao (2012), Ak is not uniquely defined since (Ak, xt)

in (2.2) can be replaced by (AkUk, U
−1
k xt) for any d×d non-singular matrix Uk.

Denote the linear space spanned by the columns of a matrix A as M(A). It is

easily seen that M(Ak), the factor loading space for state k, is uniquely defined

by (2.2). Hence, we can find a p× d matrix Qk and a d× d non-singular matrix

Γk satisfying

Q′
kQk = Id, and Ak = QkΓk, k = 1, · · · ,m. (2.3)

It follows that M(Qk) = M(Ak). The columns of Qk are d orthonormal vectors,

and the column space spanned by Qk is the same as the column space spanned
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by Ak. In addition, let Bk = (bk,1, . . . ,bk,p−d) be an orthnormal basis such that

M(Bk) is the orthogonal complement space of M(Qk). Hence (Qk,Bk) forms a

p×p matrix with orthogonal columns, Q′
kBk = 0, and B′

kBk = Ip−d. In practice,

A′
kBk = 0. (2.4)

Assume that the loading spaces are different across regimes, our goal is to cluster

the data by regimes, and estimate d and M(Qk), for k = 1, . . . ,m.

Remark 1. The (Ak, xt) in (2.2) can be replaced by (AkUk, U
−1
k xt) for any

d× d non-singular matrix Uk. Hence, the factor process may not be stationary

after such nonsingular transformations across regimes, if {Uk, k = 1, . . . ,m}
are different. However, it does not directly affect the underlying process or

the estimation procedure since we do not impose the stationarity on the latent

process xt.

For factor models in high-dimensional cases, it is common to assume that

the squared L-2 norm of the p × d loading matrix grows with the dimension p

Bai and Ng (2002); Doz, Giannone, and Reichlin (2011), with the growth rate

defined as the strength of the factors in Lam, Yao, and Bathia (2011). In our

multi-regime factor model in (2.2), the strength of the factors may be different

across regimes. Assume that

∥Ak∥22 ≍ ∥Ak∥2min ≍ p1−δk , 0 ≤ δk ≤ 1,

where ∥Ak∥2min is the minimum nonzero eigenvalue of A′
kAk. If δk = 0, the

factors are ’strong’ for state k and we call state k a strong state and Ak a dense

loading matrix. If δk > 0, the factors are ’weak’ for state k and we call state

k a weak state and Ak a sparse loading matrix. The strength of the state is

an indicator of signal-to-noise ratio. It measures the relative growth rate of the

amount of information which the observed process yt carries about the common

factors xt as p increases, with respect to the growth rate of the amount of noise

process. When the state is weak, the information contained in yt about the

factors grows more slowly than the noises introduced as p increases, hence the

proportion of information is diluted by the noise. When the state is strong, the

signal-to-noise ratio remains constant.

Setting

Rt =
m∑
k=1

ΓkxtI(zt = k), (2.5)

the switching factor model can be written as

yt=

m∑
k=1

I(zt = k)
(
µk+Akxt+ε

(k)
t

)
=

m∑
k=1

I(zt = k)
(
µk+QkΓkxt+ε

(k)
t

)
(2.6)



REGIME-SWITCHING FACTOR MODELS 1431

=

m∑
k=1

I(zt = k)
(
µk +QkRt + ε

(k)
t

)
. (2.7)

This reveals different ways to decompose the dynamic part of the process. In

(2.6), Qk is the standardized loadings, xt is the factor latent process, and Γk

reflects the strength of the state. When the dynamic part is divided as in (2.7), Rt

can be regarded as another latent factor process but with standardized loadings,

and the L-2 norm of its variance matrix increases with p at different rates across

regimes.

3. Estimation Procedure

In Section 3.1 we introduce a method that takes advantage of the autocovari-

ance matrices to estimate the loading spaces when the state variable z is known;

in Section 3.2 we propose a method using the Viterbi algorithm to estimate the

hidden state variable when the loading spaces are known. Combining the two

methods, we propose an iterative algorithm to estimate all the model parameters

in Section 3.3.

3.1. Estimation of Bk, µk, d and the transition probabilities given state

indicator z

If the states z1, . . . , zn are given, transition probabilities can be estimated by

π̂k,j =

∑n−1
t=1 I(zt = k, zt+1 = j)∑n−1

t=1 I(zt = k)
, for k, j = 1, . . . ,m,

and

π̂k =

∑n
t=1 I(zt = k)

n
, for k = 1, . . . ,m.

For the estimation of factor loading spaces, we adopt the procedure proposed by

Lam, Yao, and Bathia (2011), Lam and Yao (2012), and Chang, Guo, and Yao

(2013). It is based on the observation that, since the idiosyncratic noise ε
(k)
t is

white, the dynamics of yt (autocovariance) only come from the dynamics of the

factor xt. Hence we can retrieve the factor loading space through an analysis of

the autocovariance structure of yt. If

Σx(l) =
1

n− l

n−l∑
t=1

Cov(xt, xt+l),

Σy,k(l) =
1

n− l

n−l∑
t=1

Cov(yt, yt+l | zt = k),

it follows that
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Σy,k(l) =
1

n− l

n−l∑
t=1

m∑
j=1

π
(l)
k,jCov(yt, yt+lI(zt+l = j) | zt = k)

=AkΣx(l)

m∑
j=1

π
(l)
k,jA

′
j , (3.1)

where π
(l)
k,j = P (zt+l = j | zt = k), the transition probability from state k to state

j in l steps. If xt is stationary, then Σx(l) is the autocovariance matrix of xt at

lead l.

For a fixed prescribed integer l0, define

Mk =

l0∑
l=1

Mk,l, (3.2)

where Mk,l = Σy,k(l)Σy,k(l)
′ is a quadratic version of the autocovariance matrix

Σy,k(l). Because of (2.4) and (3.1), we have Mk,lBk = 0 for all k. If
∑m

j=1 π
(l)
k,jA

′
j

is of full rank, Mk is a non-negative definite matrix sandwiched by Ak and A′
k

with rank d. Then the d unit eigenvectors of Mk corresponding to its d non-zero

eigenvalues form the space M(Ak), the space spanned by the columns of Ak.

We write the sample versions of these statistics, given z = {z1, . . . , zn}, for
k = 1, . . . ,m,

Σ̂y,k(l) =

∑n−l
t=1

∑m
j=1(yt − µ̂k)(yt+l − µ̂j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

,

µ̂k =

∑n
t=1 ytI(zt = k)∑n
t=1 I(zt = k)

, (3.3)

M̂k,l = Σ̂y,k(l)Σ̂y,k(l)
′, M̂k =

l0∑
l=1

M̂k,l.

Let λ̂k,1 ≥ λ̂k,2 ≥ . . . ≥ λ̂k,p be the p eigenvalues of M̂k and q̂k,1, . . . , q̂k,p be the

set of corresponding orthonormal eigenvectors. If

Q̂k = (q̂k,1, . . . , q̂k,d), and B̂k = (q̂k,d+1, . . . , q̂k,p), (3.4)

then M(Qk) and M(Bk) can be estimated by M(Q̂k) and M(B̂k), respectively.

To estimate the number of factors with data in each regime, we use the eigenvalue-

ratio method of Lam and Yao (2012). Specifically, let

d̂k = argmin
1≤j≤c

λ̂k,j+1

λ̂k,j

. (3.5)

We set c to p/2, since the minimum eigenvalues of M̂k may be close to 0, especially

when n is small and p is large; see Lam and Yao (2012).
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Corollary 1 in Section 4 shows that under some mild conditions, d̂1, . . . , d̂m
are all reasonable estimates of the number of factors d. Since d is common to

all regimes, we choose the one from the strongest state, as the theoretical results

show that the estimated nonzero eigenvalues from a stronger state have a faster

convergence rate. Hence, we use d̂ = d̂k̃ to estimate d, where k̃ = argmax ∥M̂k∥2.
Let ft be the dynamic part of yt, ft =

∑m
k=1AkxtI(zt = k). Since the column

space ofAk is identifiable only up to a nonsingular transformation across regimes,

we cannot recover xt directly, but we have natural estimators

R̂t =

m∑
k=1

Q̂
′
k(yt − µ̂k)I(zt = k), f̂t =

m∑
k=1

Q̂kQ̂
′
k(yt − µ̂k)I(zt = k), (3.6)

with the residuals

ε̂t =

m∑
k=1

(Ip − Q̂kQ̂
′
k)(yt − µ̂k)I(zt = k). (3.7)

Remark 2. Our method works under weaker assumptions that dependence be-

tween xt and εs when t > s is allowed. If E(ε
(k)
s x′

t) = 0 only for t ≤ s, we can

still follow the same procedure to estimate M(Qk), but take

Σy,k(l) =
1

n− l

n−l∑
t=1

Cov(yt+l, yt | zt+l = k)

and Mk =
∑l0

l=1Σy,k(l)Σy,k(l)
′. Here we assume that {ε(k)t , t ∈ Z} and {xt, t ∈

Z} for all k = 1, . . . ,m, are independent for simplicity.

Remark 3. This estimation procedure has been used for one-regime factor mod-

els with stationary processes in Tao et al. (2011) and Lam, Yao, and Bathia

(2011), and with nonstationary processes in Chang, Guo, and Yao (2013). Many

numerical results show that the estimation of the loading space is not sensitive

to the choice of l0; see Lam, Yao, and Bathia (2011), Lam and Yao (2012), and

Chang, Guo, and Yao (2013). Although the estimator works with any l0 ≥ 1

both theoretically and numerically, the extra terms in Mk of (3.2) are very use-

ful when the sample size is small and the variability in the estimation of the

autocovariance matrices is large. Nevertheless, as the autocorrelation is often at

its strongest at small time lags, a relatively small l0 is usually adopted.

3.2. Estimation of the hidden state z given loading spaces and other

model parameters

Although {Bk, k = 1, . . . ,m} are only uniquely identifiable up to orthogonal

transformations, the density function of B′
ztyt is invariant to such transforma-

tions. Thus, given πk,j , πk, µk, and Bk, k, j = 1, . . . ,m, the state variables
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z1, . . . , zn can be estimated by maximizing Gn(z), the logarithm of the probabil-
ity density function of {B′

ztyt, t = 1, . . . , n}. Specifically, under the assumption
that the noise process is normally distributed,

Gn(z) = log
(
πz1f(B

′
z1y1)

)
+

n∑
t=2

log
(
πzt−1,ztf(B

′
ztyt)

)
, (3.8)

where

f(B′
ztyt) = − 1√

(2π)p−d|ΣB,zt |

− exp

[
−
(B′

zt(yt − µzt))
′Σ−1

B,zt
B′

zt(yt − µzt)

2

]
. (3.9)

Here Gn(z) is a sum of n functions in the form of

Gn(z) = g1(z1) +

n∑
t=2

gt(zt−1, zt),

due to the Markovian structure of z, where

g1(z1) = log
(
πz1f(B

′
z1y1)

)
,

and
gt(zt−1, zt) = log

(
πzt−1,ztf(B

′
ztyt)

)
, for t = 2, . . . , n.

Hence Gn(z) can be maximized by the Viterbi algorithm Viterbi (1967) and
Forney (1973). The maximizer of the state sequence z1, . . . , zn is given by the
recurrence relations,

S1,k = k,

xt,k = argmax
1≤j≤m

[gt(zt−1 = j, zt = k) +Gt−1(St−1,j)] ,

St,k = (St−1,xt,k
, k),

where St,k is a t × 1 vector and the maximizer of Gt(z1, . . . , zt−1, zt = k) for
the first t observations that has k as its final state. In each iteration there
are m evaluations gt(·, k) to update Gt(St,k) for k = 1, . . . ,m, and m possible
paths {St,1, . . . ,St,m} to be compared. So the complexity of Viterbi algorithm is
O(m2n). The state variable can be estimated by

ẑ = argmax
1≤k≤m

Gn(Sn,k).

The covariance matrix of B′
kyt given zt = k, ΣB,k = B′

kΣkBk can be esti-
mated by

Σ̂B,k =

n∑
t=1

B′
k(yt − µk)(yt − µk)

′BkI(ẑt = k)/[

n∑
t=1

I(ẑt = k)− 1]. (3.10)
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Remark 4. One would prefer to construct the density of yt given zt with (3.7).

However, since Ip −QkQ
′
k = BkB

′
k, it follows that

(Ip −QkQ
′
k)(yt − µk) ∼ N(0,BkB

′
kΣkBkB

′
k).

This p-variate normal distribution lives on a (p− d)-dimensional space, while

B′
k(yt − µk) ∼ N(0,ΣB,k), where ΣB,k = B′

kΣkBk, (3.11)

is a non-degenerated representation of the distribution in (3.11) restricted on the

(p− d)-dimensional space.

Remark 5. There are several advantages to using the density function of {B′
ztyt,

t = 1, . . . , n}, instead of {yt, t = 1, . . . , n}. First, we do not need to estimate

Ak, since we can only estimate the space it spans. Second, in order to compute

the density of yt, we would need to to assume a specific model for the latent

process xt. Although there is a vast literature in dynamic factor models Forni et

al. (2000); Bai and Ng (2002); Hallin and Lǐska (2007), here we choose to avoid

the difficulty.

3.3. An iterative algorithm

We adopt the distance measure used in Chang, Guo, and Yao (2013). For

any p× d1 orthonromal matrix H1 and p× d2 orthonormal H2,

D(H1,H2) =
{
1− 1

max {d1, d2}
tr(H1H

′
1H2H

′
2)
}1/2

. (3.12)

HereD(H1,H2) ∈ [0, 1], D(H1,H2) = 0 if and only if d1 = d2,M(H1) = M(H2),

and D(H1,H2) = 1 if and only if M(H1) ⊥ M(H2). We are ready to state the

algorithm.

Step 1. Begin with some initial values ẑ.

Step 2. Given ẑ, obtain d̂, π̂k, π̂j,k, µ̂k, Q̂k, and B̂k based on the methods in

Section 3.1, for j, k = 1, . . . ,m.

Step 3. Given the estimates obtained in Step 2, estimate z by maximizing Gn(z)

using the Viterbi algorithm in Section 3.2.

Step 4. Repeat Step 2 and Step 3 until either a maximum number of iterations

is reached, or

1

m

m∑
k=1

D(Q̂
(1)
k , Q̂

(2)
k ) < c1, and

∣∣∣Gn(ẑ
(1))−Gn(ẑ

(2))

Gn(ẑ
(1))

∣∣∣ < c2,

where c1, c2 ∈ (0, 1) are prescribed small constants, and Q̂
(1)
k , Q̂

(2)
k , ẑ(1),

and ẑ(2) are successive estimates for Qk and z, respectively.
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Remark 6. Since the two iterative steps do not minimize the same objective

function, the algorithm is not guaranteed to reach a fixed point solution given a

finite sample. However, the objectives of the two steps are consistent. In Step 2,

we try to extract common factors when estimating the loading spaces, hence try

to reduce the remainder error terms in the factor models. In Step 3, maximizing

of the density function is equivalent to minimizing the errors in the factor models

for normally distributed errors. Such issues are common to estimation procedures

of dynamic factor models, and an iterative algorithm is widely used Watson and

Engle (1983); Stock and Watson (2005); Doz, Giannone, and Reichlin (2011).

Remark 7. We estimate the state variables instead of the transition probabilities

in Step 3, because finding the maximizer of {πk,j} of density function of {B′
ztyt}

is more computationally expensive than the estimation of z by the Viterbi algo-

rithm due to the dependence of the state variables. Although misclassification

occurs because of the nature of hard clustering Kearns, Mansour, and Ng (1998);

Hastie, Tibshirani, and Friedman (2009), this does not have much influence on

the estimation of the loading spaces, since it often occurs when the data points

lie near the intersection of the loading spaces. Numerical results show that our

algorithm is able to cluster the data by regimes efficiently, and can estimate the

loading spaces effectively. To obtain consistent estimators of transition proba-

bilities and avoid misclassification, a discarding algorithm can be applied Chen

(1995), in which only the data points that can be ’clearly separated’ by the ob-

jective function, e.g. f(B′
ky)/f(B

′
jy) > c0, are used for estimation. Since a

small number of observations are used, the consistency of the estimators can be

achieved with lower efficiency, as c0 goes to infinity together with the sample size.

3.4. Initial values of z

Our experience suggests that the initial values of the state variable z are

crucial for the estimation procedure. Here we provide a method for finding

reasonable initial values of z. Let

Σy(l) =
1

n− l

n−l∑
t=1

Cov(yt,yt+l) =
1

n− l

n−l∑
t=1

m∑
k=1

πkCov(yt,yt+l | zt = k)

=

m∑
k=1

πkΣy,k(l).

As a sum of m rank-d matrices, the matrix Σy(l) has a rank less than or equal

to dm. If πj,k = 1/m for j, k = 1, . . . ,m, we have

Σy(l) =
1

m2

m∑
k=1

AkΣx(l)

m∑
j=1

A′
j .



REGIME-SWITCHING FACTOR MODELS 1437

Hence M =
∑l0

l=1Σy(l)Σy(l)
′ is a matrix sandwiched by

∑m
k=1Ak and

∑m
k=1A

′
k

with rank smaller or equal to d. We find the eigenvalues of M and use the ratio

estimator in (3.5) for the initial estimate of d. Specifically, let

Σ̂y(l) =
1

n− l

n−l∑
t=1

(yt − µ̂)(yt+l − µ̂′), µ̂ =
1

n

n∑
t=1

yt, M̂ =

l0∑
l=1

Σ̂y(l)Σ̂y(l)
′.

Let λ̂1, . . . , λ̂p be the eigenvalues of M̂ in descending order. We use d0 =

argmin1≤j≤p/2 λ̂j+1/λ̂j as the initial value of d.

The dynamic part of the observed process at time t lies in the column space of

Ak if zt = k. Therefore, {y1, . . . ,yn} should be located near the m d-dimensional

subspaces M(A1), . . . ,M(Am). With d0, we perform a principal component

analysis on yt to find the d0m directions, q̂1, . . . , q̂d0m in descending order that

account for the most variation of {y1, . . . ,yn}. We can then construct the m

subspaces, S1, . . . ,Sm by dividing the set {q̂1, . . . , q̂d0m} into m groups that

minimize the squared distance between yt and its closest subspace. Specifically,

let st = {s1,t, . . . , sd0m,t, . . . , sp,t} be the principal component scores of yt, and

{K1, . . . ,Km} be a partition of the index set of {1, . . . , d0m}, each Ki containing

d0 elements. Let

W (K1, . . . ,Km) =
n∑

t=1

max
1≤i≤m

∑
j∈Ki

s2j,t, (3.13)

and select the partition K∗
1, . . . ,K∗

m that maximizes W . Here
∑

j∈Ki
(sj,t)

2 is the

squared norm of the projection of yt onto the space Si, where Si = M(qj , j ∈
Ki), and it is maximized by the index corresponding to the subspace to which yt

is the closest, from {S1, . . . ,Sm}. Hence, the initial values of state variables can

be set as

ẑt = argmax
1≤i≤m

∑
j∈K∗

i

s2j,t.

Finding the optimal partition is computationally extensive, unless d0m is

small. With large d0m, one can use a procedure similar to K-mean clustering

to find a tentative solution, as the procedure is only for searching a good set of

initial values.

Since the directions obtained by principal component analysis are orthog-

onal to each other, the constructed subspaces S1, . . . ,Sm are also orthogonal.

However, we do not assume that for M(A1), . . . ,M(Am), so the constructed

subspaces S1, . . . ,Sm are not necessarily good estimates for loading spaces. It

follows that the d0m orthogonal directions are often more than needed and there

may be states to which only a few observations are assigned. If it happens, a

smaller d0 can be used.
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4. Theoretical Properties

In this section, we first investigate the convergence rates of the proposed
estimator M(Q̂k) and d̂ as n and p go to infinity, given true state classification
z, under the setting of Section 3.1. Second, we introduce a theorem regarding
misclassification under the setting of Section 3.2.

Some regularity conditions are needed.

Condition 1. The process xt is α-mixing with mixing coefficients satisfying∑∞
t=1 α(t)

1−2/γ < ∞, for some γ > 2, where

α(t) = sup
i

sup
A∈F i

−∞,B∈F∞
i+t

|P (A ∩B)− P (A)P (B)|,

and F j
i is the σ-field generated by {xt : i ≤ t ≤ j}.

Condition 2. For any j = 1, . . . , d, and t = 1, . . . , n, E(|xj,t|2γ) ≤ C, where xj,t
is the j-th element of xt, C > 0 is a constant, and γ is given in Condition 1. For
l = 1, . . . , l0, Σx(l) is of full rank, and ∥Σx(l)∥2 ≍ O(1) ≍ ∥Σx(l)∥min.

Condition 3. Each element of Σk, for k = 1, . . . ,m, remains bounded as p
increases to infinity.

Condition 4. For each k, k = 1, . . . ,m, there exists a constant δk ∈ [0, 1] such
that ∥Ak∥22 ≍ p1−δk ≍ ∥Ak∥2min, as p goes to infinity.

Condition 5. The Markov chain z is irreducible, positive recurrent and aperi-
odic.

Condition 6. For each k = 1, . . . ,m, let C = {j | δj = min1≤k≤m δk} contain all
the indices of the strongest states, and for each state k there exists an integer lk,
satisfying that lk ≤ l0,

∑
j∈C π

(lk)
k,j Aj is of rank d, and∥∥∥∑

j∈C
π
(lk)
k,j Aj

∥∥∥2
min

≍ p1−δmin . (4.1)

Condition 7. For k = 1, . . . ,m, Mk in (3.2) has d distinct positive eigenvalues.
For j ̸= k, D(Qj ,Qk) ̸= 0, where D(·, ·) is defined in (3.12).

Remark 8. The stationarity of the latent process is not required, though we do
require the mixing conditions stated in Condition 1.

Remark 9. Mk, the quadratic form of autocovariance matrices of yt depends
on observations from other regimes, including the strongest regime. Hence the
most dense loading matrices influence the estimation of the loading space for
each state. Condition (4.1) requires that at one of the nonzero lags, the impact
of the dense loading matrices do not cancel each other out. It is also used to
bound ∥Mk∥min.
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Remark 10. Condition 7 makes Qk uniquely defined and identifiable, where

Qk = (qk,1, . . . ,qk,d) with qk,1, . . . ,qk,d the d orthonormal eigenvectors of Mk

corresponding to the d nonzero eigenvalues λk,1 > · · · > λk,d.

Theorem 1. If Conditions 1−7 hold with given observed state z and true d and,

for k = 1, . . . ,m, pδk/2+δmin/2n−1/2 → 0 as n, p → ∞ we have

∥Q̂k −Qk∥2 = Op(p
δk/2+δmin/2n−1/2),

where δmin = min1≤k≤m δk.

When m = 1, a special case of our setting, Lam, Yao, and Bathia (2011)

proved that the convergence rate of the estimator of the loading space is

Op(p
δn−1/2). For the regime switching model with m > 1, our results show that,

except for the strongest states (with δmin), the estimators of loading spaces for

all the weaker states converge faster than pδkn−1/2. Thus, the estimators of the

loading spaces for the strongest states retain the same convergence rate, while

these for other states gain some efficiency from regime switching mechanism. The

main reason for this is that our approach depends on the autocovariance matrices

of yt given zt = k at leads 1, . . . , l0. It is a linear combination of autocovariance

matrices given current state k switching to all the states. The autocovariance

matrices switching to the strongest states have the leading order and all other

terms are of smaller order.

Theorem 2. If Conditions 1−7 hold with observed state z and true d and, for

k = 1, . . . ,m, pδk/2+δmin/2n−1/2 → 0 and ∥Σk∥2 is bounded, as n, p → ∞ we have

p−1/2∥f̂t − ft∥2 = Op(p
δmin/2n−1/2 + p−1/2).

Theorem 2 provides the convergence of the extracted factor term, and the

rate does not vary across regimes, free of δk. It shows that by introducing stronger

states, the estimated dynamic part of the observed process shows an overall

improvement.

If the distance measure in (3.12) is adopted for the loading space M(Qk),

then we have a result about its estimation error.

Theorem 3. If Conditions 1−7 hold with observed state z and true d and, for

k = 1, . . . ,m, pδk/2+δmin/2n−1/2 → 0 as n, p → ∞, we have

D(Q̂k,Qk) = Op(p
δk/2+δmin/2n−1/2).

Theorem 3 shows that the error for estimated loading space is on the same

order as that for the estimated Qk when Qk is uniquely defined as in Remark

10.
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Theorem 4. If Conditions 1−7 hold with observed states z and, for k = 1, . . . ,m,

hn,k = pδk/2+δmin/2n−1/2 → 0 as n, p → ∞ , the eigenvalues {λ̂k,1, . . . , λ̂k,p} of

M̂k satisfy

(1) |λ̂k,i − λk,i| = Op(p
2−δk/2−δmin/2n−1/2) for i = 1, . . . ., d, and

(2) λ̂k,j = Op(p
2n−1) for j = d+ 1, . . . , p.

Corollary 1. Under the conditions of Theorem 4, we have λ̂k,j+1/λ̂k,j ≍ 1 for

j = 1, . . . , d, and λ̂k,d+1/λ̂k,d = Op(p
δk+δminn−1), for k = 1, . . . ,m.

Theorem 4 shows that the estimators for the d nonzero eigenvalues of Mk

converge more slowly than those for the p− d zero eigenvalues. Corollary 1 gives

the order of ratio of the estimated eigenvalues, and provides partial theoretical

support for the ratio estimator proposed in Section 3.1. Because of differences

in δk, the stronger the state k is, the faster convergence rate λ̂k,d+1/λ̂k,d has.

Therefore, we choose d̂k̃ as the estimator of the number of factors using the state

k̃ for maximizing ∥M̂k∥2, since it is related through ∥M̂k∥2 = Op(p
2−δk−δmin),

proved by Lemma 3 and 4 in Supplementary Material.

Remark 11. The asymptotics of λ̂k,i+1/λ̂k,i with i > d are difficult to obtain,

even when m = 1; see Remark 2 in Lam and Yao (2012). Chang, Guo, and Yao

(2013) adjusted the ratio estimator as

d̂ = argmin
1≤j≤p/2

{ λ̂j+1 + CT

λ̂j + CT

}
, (4.2)

where CT = p2−δn−1/2 log n for a one-regime model, and proved it is a consistent

estimator for d. However, the adjusted ratio estimator in (4.2) cannot be used

for data analysis as δ is unknown. In practice, the ratio estimator in (3.5) is

used; see Lam, Yao, and Bathia (2011), Lam and Yao (2012) and Chang, Guo,

and Yao (2013).

Next we investigate the performance of the estimator of the state z. To sim-

plify matters, we assume the πk,j for k, j = 1, . . . ,m are equal, hence estimating

zt can be done separately for each t, instead of relying on the Viterbi algorithm.

This is also equivalent to pure classification without the Markov chain mecha-

nism. The setting is not exactly what we assumed in Section 3.2, but the results

reveal how misclassification occurs and its impact on the estimation of the rest

of the parameters.

Let

wt,k,j = log[f(B′
kyt)]− log[f(B′

jyt)] = l(k|yt)− l(j|yt), (4.3)
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where

l(k|yt) = log(f(B′
kyt))

= −p− d

2
log(2π)− 1

2
log |ΣB,k|−

(B′
k(yt−µk))

′Σ−1
B,kB

′
k(yt−µk)

2
. (4.4)

The estimator of zt under the equal transition probability assumption can be

rewritten as ẑt = k if wt,k,j > 0 for all j ̸= k. Hence misclassification occurs

when there exists a j such that wt,zt,j < 0. Specifically, the probability of mis-

classification, when zt = k, is P (ẑt ̸= zt = k) = P (minj ̸=k wt,k,j < 0). When

zt = k,

l(k|yt) = −p− d

2
log(2π)− 1

2
log |ΣB,k| −

1

2
(B′

k(yt − µk))
′ΣB,k

−1B′
k(yt − µk)

= −p− d

2
log(2π)− 1

2
log |ΣB,k| −

1

2
(ε

(k)
t

′
BkΣB,k

−1B′
kε

(k)
t ),

and

l(j|yt) = −p− d

2
log(2π)− 1

2
log |ΣB,j |

−1

2

(
B′

j(Akxt+µk−µj+ε
(k)
t )

)′
ΣB,j

−1
(
B′

j(Akxt+µk−µj+ε
(k)
t )

)
.

Hence,

wt,k,j =
1

2
(log |ΣB,j | − log |ΣB,k|) +

1

2
ε
(k)
t

′
(BjΣB,j

−1B′
j −BkΣB,k

−1B′
k)ε

(k)
t

+
1

2

(
B′

jAkxt +B′
j(µk − µj)

)′
ΣB,j

−1
(
B′

jAkxt +B′
j(µk − µj)

)
+(B′

j(Akxt + µk − µj))
′Σ−1

B,jB
′
jε

(k)
t

= I1 + I2 + I3 + I4. (4.5)

Here I1 is a given constant, measuring the differences in variation of the two

states. I2 reflects the impact of the noise after being projected into the space Bk

and Bj . The third term I3 shows the size of the noises needed for misclassifica-

tion. In addition, B′
jAkxt is the projection of xt on the intersection of M(Bj)

and M(Ak). If M(Ak) and M(Aj) are less common, then B′
jAkxt is larger

(in magnitude), and the chance for misclassification is less. Of course, if the

difference in the mean µk −µj is larger, then the misclassification probability is

smaller. Here I4 is the cross term of I2 and I3.

Misclassification of zt may not have large impact on the estimation of the

loading spaces. Small B′
jAkxt leads to misclassifying the observation from state

k to state j. It happens in two situations. For some observations, Akxt are close

to the column space of Aj , which makes B′
jAkxt small. Such observations hence

lie close to the space M(Aj) and do not have large impact in the estimation of

M(Aj). The other possibility is that these misclassified observations have a small
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signal-to-noise ratio which makes B′
jAkxt small, hence they are less influential

for the estimation of M(Aj).

Theorem 5. If xt is a normally distributed random process, given true Bk, µk,

and ΣB,k, k = 1, . . . ,m, we have

E(wt,k,j) =
1

2
(log |ΣB,j | − log |ΣB,k|)

+
1

2
tr ((Σk +Σf,k,t +Uk,j)Wj)−

(p− d)

2
, (4.6)

Var(wt,k,j) =
1

2
∥Σ1/2

k (Wj −Wk)Σ
1/2
k ∥2F +

1

2
∥Σ1/2

k A′
kWjAkΣ

1/2
k ∥2F

+
1

2
tr (Σf,k,tWjUk,jWj)+tr ((Σf,k,t+Uk,j)WjΣkWj), (4.7)

where Σf,k,t = Var(Akxt), and Uk,j = (µk − µj)
′(µk − µj), Wj = BjΣ

−1
B,jB

′
j.

The mean and variance of ωt,k,j increase with p. As expected, misclassifica-

tion is unavoidable. For weak states, as p increases, the accumulated noise tends

to overwhelm the difference in Akxt + µk − µj . Hence classification error may

increase with p. On the other hand, for strong states, the signal remains strong

and the misclassification rate is much better than those for weak states.

5. Simulations

In this section, we illustrate the performance of the proposed estimators

with some numerical experiments, compare their convergence rates for states with

different strength, and explore the interactions among states. The performance of

the estimators of M(Qk) and d, and the performance of clustering are presented

separately.

With two switching regimes m = 2, we considered three models. In Model

1, both states were strong, with δ1 = δ2 = 0. In Model 2, one of the states was

strong, and one weak, with δ1 = 0, and δ2 = 1. In Model 3, both states were

weak, with δ1 = δ2 = 1. The transition probabilities between the two states were

set to 0.5. In the simulation, all p×d entries in Ak were generated independently

from the uniform distribution on [−p−δk/2, p−δk/2] with strength δk. The mean of

observed process µk was a p×1 vector with all entries zero, for k = 1, 2. Different

values of d, and different structures of the latent process and noises were used.

In all the examples, we used l0 = 1. Estimation error of M(Q̂k) is defined as

D(Q̂k,Qk).

5.1. The performance of M(Q̂k)

In this experiment d was set to 1 and we estimated the loading spaces using

the true d. The factor process xt was from an AR(1) process with AR coefficient
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Table 1. Means of the estimation errors D(Q̂k,Qk).

z observed z unobserved
p = 20 p = 40 p = 80 p = 20 p = 40 p = 80

Model 1 State 1 (δ1 = 0) 0.0159 0.0164 0.0161 0.0438 0.0606 0.1055
State 2 (δ2 = 0) 0.0143 0.0155 0.0169 0.0445 0.0711 0.0958

Model 2 State 1 (δ1 = 0) 0.0203 0.0216 0.0207 0.0225 0.0274 0.0304
State 2 (δ2 = 1) 0.0856 0.1274 0.2131 0.0977 0.1495 0.2689

Model 3 State 1 (δ1 = 1) 0.0796 0.1489 0.4149 0.2424 0.5563 0.6067
State 2 (δ2 = 1) 0.0803 0.1453 0.4226 0.2626 0.5091 0.6614

0.9 and N(0, 4) noises. The noise process {ε(1)t , . . . , ε
(m)
t } were m independent

vector white noise processes whose covariance matrix had 1 on the diagonal and

0.95 for all off-diagonal entries. We set the pre-specified controls t0, c1, and c2
in the iterative algorithm in Section 3.3 to 50, 0.001, and 0.001, respectively.

We repeated the simulation 100 times with sample size n = 1,000. Let

p = 20, 40, 80. Table 1 and Figure 1 show the results for when z is observed and

when z is unobserved.

When the state variable z is observed, by comparing the results of Model 2

to these of Model 1, we can see that the estimation for the strong state is slightly

worse after a weak state is introduced to the model. However, by comparing the

results of Model 2 to these of Model 3, the estimation for the weaker state is

much better due to the existence of a strong state, especially when p is large.

It shows that the estimation for weak states benefits from the stronger states as

our theory indicates.

The top panels in Figure 1 display the boxplots of estimation errors for

different p when z is observed in each model on the same scale. In addition to

what we can see from Table 1, it shows that the estimation variation increases

with p and is larger for the weak states.

When z is unobserved, the estimation errors of the loading spaces for each

model with different p have similar pattern to those in the case when z is known,

as seen in Table 1 and the bottom panels in Figure 1. The estimation of strong

states still has good performance in absence of weak states; weak states benefit

from the existence of strong states. The estimators are less accurate if the state

variable is unobserved. As p increases, even the strong states suffer from unob-

served z. Because of lack of information on z, it happens that our algorithm is

trapped in a local maximum.

5.2. The clustering performance

In this experiment we used the settings in Section 5.1 for a comparison of

the clustering performance among models with different strength. Results of
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Figure 1. Boxplots of estimation errors of M(Q̂k) for p = 20, 40, 80 when z
is observed (top panels), and when z is unobserved (bottom panels), under
true d for the model described in Section 5.1.

Table 2. Means(sd) of misclassification rates of the hidden states.

p = 20 p = 40 p = 80
Model 1 0.0334(0.0909) 0.0485(0.1169) 0.1153(0.1418)
Model 2 0.0452(0.0128) 0.0635(0.0609) 0.1525(0.0723)
Model 3 0.2155(0.1905) 0.4439(0.0482) 0.4686(0.0434)

misclassification rates and transition probabilities are summarized in Tables 2

and 3, respectively.

Table 2 shows the misclassification rates for each model with different p. It

is seen that misclassification occurs very often when all the states are weak, but

less so in the presence of at least one strong state.

Table 3 shows the means and standard deviations of the estimated transi-
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Table 3. Means(sd) of estimated transition matrices. The true values are all
0.5.

p = 20 p = 40 p = 80
Model 1 0.5110 0.4890 (0.1008) 0.6435 0.3565 (0.0689) 0.5273 0.4727 (0.1134)

0.5000 0.5000 (0.0877) 0.6133 0.3867 (0.0582) 0.4918 0.5082 (0.1021)
Model 2 0.5322 0.4678 (0.0296) 0.5423 0.4577 (0.0431) 0.4996 0.5004 (0.0558)

0.5219 0.4781 (0.0260) 0.5373 0.4627 (0.0422) 0.4739 0.5261 (0.0601)
Model 3 0.5153 0.4847 (0.2145) 0.5861 0.4139 (0.3114) 0.4240 0.5760(0.3339)

0.4799 0.5201 (0.2201) 0.5200 0.4800 (0.3129) 0.3686 0.6314(0.3388)

Table 4. The relative frequency estimates of d̂ = d.

n 50 100 200 500 1,000
Model 1 p = 0.1n 0.180 0.385 0.725 0.995 1

p = 0.5n 0.380 0.610 0.850 0.995 1
p = 0.8n 0.390 0.585 0.855 0.995 1

Model 2 p = 0.1n 0.200 0.405 0.820 1 1
p = 0.5n 0.365 0.605 0.915 1 1
p = 0.8n 0.380 0.620 0.905 1 1

Model 3 p = 0.1n 0.115 0.125 0.075 0.075 0.275
p = 0.5n 0.055 0.100 0.200 0.065 0
p = 0.8n 0.080 0.080 0.060 0 0

tion probabilities, where the true transition probabilities are all 0.5. For Model

3, because of random noises and lack of information, some observations are mis-

classified to each state with larger probability comparing to Model 1 and Model

2, since the standard deviations of estimates of transition probabilities for Model

3 are much larger than those for Model 1 and Model 3.

5.3. The performance of d̂

In this experiment we set the number of factors to 3 (d = 3) and investigated

the performance of the proposed estimator for d, under true z. Here the latent

process xt was set to be three independent AR(1) processes with N(0, 4) noises

and AR coefficients 0.6, −0.5 and 0.8, respectively. {ε(1)t , . . . , ε
(m)
t } were m white

noise process whose covariance matrix had 1 on the diagonal and 0.2 for the off-

diagonal entries. We took n = 50, 100, 200, 500, 1,000, and p = 0.1n, 0.5n, 0.8n.

We repeated the simulation 200 times for each (n, p) setting and the relative

frequencies of correct estimates of d are reported in Table 4.

From Table 4 we see that the existence of a strong state, no matter whether

or not there is a weaker state, produces much more accurate estimates for the

number of factors d. As n increases, the estimations all improve in the presence

of a strong state. Regarding the impact of p, it is seen that the estimation of d

benefits from a ’blessing of dimensionality’ when one or more strong states exist,
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and perform better as p increases. However, when all states are extremely weak

(δ1 = δ2 = 1), the number of correct estimation goes to 0 as n increases. The

features do not change much with p, partially because the increase of information

in n offsets the increase of noise introduced as p increases.

6. Data Analysis

We applied our approach to the daily returns of 123 stocks from January 2,

2002 to July 11, 2008. These stocks were selected among those included in the

S&P 500 and traded every day during the period. The returns were calculated

in percentages based on daily closing prices. This data was analyzed by Lam

and Yao (2012) and Chang, Guo, and Yao (2013). We have the sample size

n =1,642 and the dimension of observations p = 123. We assume that there are

two regimes, m = 2, and set l0 = 1, t0 = 200, c0 = c1 = 0.001. Varying the value

of l0 does not change the estimation results significantly.

The proposed iterative procedure yields d̂ = 1, which differs from the number

of factors estimated in Lam and Yao (2012). Hence allowing the loading matrix

to change across two regimes reduces the number of factors needed. The one

factor accounts for 25.92% of the total variation of stock returns. The residuals

ε̂t are computed from (3.7). The sample cross-autocorrelations of ε̂t for the

first 7 stocks are plotted in Figure 2. There are almost no significant nonzero

autocorrelations for ε̂t, showing that, after extracting the latent factor, little

serial dependence is left in the data. Our results indicate that only one factor

drives the 123 stocks, but the factor loadings switch between two states. Ignoring

the switching structure as in Lam and Yao (2012), it would appear that there

are two different factors.

Even with d = 1, Qk is still not unique due to a trivial replacement of

(Qk,RtI(zt = k)) by (−Qk,−RtI(zt = k)) for either k = 1 or k = 2, or both,

in (2.7). According to (2.3) and (2.5), take Ak = γkQk and RtI(zt = k) = γkxt,

where we could set γk to 1 or −1 when the dimension is fixed. Here we choose

γk which makes the majority of the entries in Qk positive, hence yt is most

positively correlated with the corresponding latent factor xt and Rt, since

yt = µk +Akxt + ε
(k)
t = µk +QkRt + ε

(k)
t , when zt = k.

Specifically, let Q̂k and R̂t be the estimate of Qk and Rt without consideration

of signs. We adjust the sign of Q̂k as

Q̂adj,k =

{
−Q̂k, if

∑p
i=1 I(q̂k,i > 0) >

∑p
i=1 I(−q̂k,i > 0),

Q̂k, otherwise,
(5.1)

where q̂k,i is the i-th entry in Q̂k for k = 1, 2. The adjusted Q̂k makes most of

its entries positive. R̂adj,t is obtained according to Q̂adj,1 and Q̂adj,2.
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Figure 2. Plots of the sample cross-autocorrelations of ε̂t of the first 7 stocks
with lag 0 autocorrelation removed.

Figure 3 displays the time series plots of R̂adj,t in the top panel and returns
of the S&P 500 index in the bottom panel. R̂adj,t changes along with the S&P
500 index in this period, except for a few days around July 22, 2002, and it ex-
plains 76.27% of the total variation in the S&P 500 index. Hence, this factor can
be regarded as a representation of market performance. Because index funds,
which aim to replicate the movements of an index of a financial market, build
their investment portfolio with all stocks in the index and trade them together,
it causes synchronous oscillations between the market and the stocks. The pop-
ularity of index funds provides a reason that the market factor accounts for a
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Figure 3. Time series plots of R̂adj,t (top panel) and the return series of
the S&P 500 index (bottom panel) in the same period. Indicators of the
estimated states of the observations I(ẑt = k) for k = 1, 2, are shown in the
rug plots, on the top for State 1 and at the bottom for State 2.

large percentage of the total variation of stock returns.

The indicators of the estimated state variable I(ẑt = k), for k = 1, 2, are

shown in the rug plots of both panels in Figure 3, State 1 on the top and State

2 at the bottom. It is obvious that the state variable is strongly correlated with

the volatility of the market. The standard deviation of the S&P 500 index is

1.4642 given ẑt = 1, while the standard deviation of the S&P 500 index is 0.6649

given ẑt = 2. When the S&P 500 index was volatile in 2002, 2003, and 2007 due

to the internet bubble, the invasion of Iraq, and the subprime crisis, respectively,

the observations were more likely to belong to State 1; when the S&P 500 index

was stable in 2004-2006, the observations tend to be assigned to State 2.

For State 1, the factor accounts for 34.89% of the total variation in yt,

while for State 2, it only accounts for 15.75%. A possible explanation is that

investors may prefer passive management, such as index-tracking funds, to avoid

nonsystematic risk when the market is volatile.

The estimated transition probabilities are shown in Table 5. During this

period, about two-thirds of the time the system stays in State 2. The transition
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Table 5. Estimated transition matrix and stationary probabilities.

State 1 State 2 πk

State 1 0.6758 0.3242 0.3782
State 2 0.1969 0.8031 0.6281

between the states are frequent, especially from State 1 to State 2.

Supplementary Material

The detailed proofs of Lemma 1−4, Theorem 1−5, and Corollary 1 are pro-

vided in the Supplementary Material.
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