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Abstract
In this paper we propose a new class of seasonal time series models, based on a stable

seasonal composition assumption. With the objective of forecasting the sum of the

next𝓁 observations, the concept of rolling season is adopted and a structure of rolling

conditional distributions is formulated. The probabilistic properties, estimation and

prediction procedures, and the forecasting performance of the model are studied and

demonstrated with simulations and real examples.
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1 INTRODUCTION

Seasonal time series are encountered in a wide range of

applications. Traditionally, there are three general classes of

seasonal time series models, namely the seasonal autore-

gressive integrated moving average (ARIMA) models (Box

& Jenkins, 1994), the trend-and-seasonal models (Franzini

& Harvey, 1983), and the stable seasonal pattern models

(Chen & Fomby, 1999; Oliver, 1987). All these models pro-

vide different perspectives in dealing with seasonality. In

particular, standard seasonal ARIMA models are in a mul-

tiplicative form, whereas trend-and-seasonal models are in

an additive form. There is a vast literature on seasonal time

series analysis and seasonal adjustment (e.g., Bell & Hillmer,

1984; Box & Jenkins, 1994; Cleveland & Tiao, 1976; Findley,

Monsell, Bell, Otto, & Chen, 1998; Ghysels & Osborn, 2001;

Zellner, 1978).

On the other hand, compositional models of Aitchison

(1986) concentrate on the proportion of each component

relative to the whole. Compositional models, by modeling

ratios of proportions, successfully release the unit sum con-

straint, which makes it possible to apply standard statistical

methodologies. This type of model has been used in many

applications. For example, statistical analysis of percentages

by weight of major oxides in rock specimens can be used to

identify new types of rock specimens, as shown in a series

of research topics by Thomas and Aitchison (2006). Another

example is the study of budget patterns of a household

reflected by the proportions of total expenditures allocated to

several commodity groups. Aitchison (1986) analyzed such

an example on five commodity groups.

Seasonality in a time series can often be viewed as a cer-

tain type of regular composition of seasons over time. For

example, for a monthly time series with an annual season-

ality, the 12 months can be seen as 12 components of the

year (the composition), and the seasonality can be seen as a

certain systematic distributive pattern of the measurements

among 12 months with respect to the total measurement of

the year. In the sales industry, the percentage of sales amount

in each quarter out of the year is often stable across dif-

ferent years, whereas the yearly total may vary. Chen and

Fomby (1999) touched upon this observation and introduced

a stable seasonal pattern model, by assuming that the propor-

tion (composition) of each part in a period remains the same

(probability-wise) across seasons.
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In this paper we introduce a class of seasonal time series

models using the compositional principle to deal with sea-

sonality. This class of models has the flexibility in adapting

to different forecasting objectives. Tiao and Xu (1993) first

proposed the adaptive idea using different estimation crite-

ria for different forecasting horizons (objectives). This is a

powerful idea and has been used by Tiao and Tsay (1994),

who proposed an adaptive scheme to approximate certain

long-memory processes, and by Tong (1997), who gave fur-

ther discussions on adaptive procedures. Here we adopt this

idea to adaptively choose different models for different fore-

casting objectives. Specifically, in this paper we consider the

objective of forecasting the next 𝓁-observations total for dif-

ferent 𝓁 in a seasonal time series. Such forecasting tasks are

often encountered in many applications. For example, for cer-

tain industries, an accurate prediction of the total quantity

(e.g., sales, production) for the next several months is impor-

tant for better inventory management and marketing strategy

(see, e.g., Kilger & Wagner, 2010).

The rest of the paper is organized as follows. In Section 2 we

introduce a class of compositional seasonal time series mod-

discusses the estimation, model checking and prediction pro-

cedures of the model. Section contains several simulation

and real data examples, including the forecasting comparison

with standard seasonal ARIMA models.

2 THE MODEL

Seasonal time series, in some sense, is a form of composi-

tional data. Suppose we have a seasonal time series

X1,X2, … ,Xt, …

with period d. Each seasonal cycle can be viewed as a basis.

More specifically, the observations of {Xt+1,Xt+2, … ,Xt+d}
comprise the basis of a d-parts composition. This feature can

be used to model the seasonal behavior of the time series.

The use of compositional analysis can be flexible. For

example, in the seasonal time series analysis there are several

different ways to construct the seasonal components. Given

monthly observations, the annual total can also be viewed as

the sum of a four-part composition of four quarters total, or

the sum of a two-part composition of two semi-annual totals.

In this paper, we concentrate on the objective of forecasting

the next 𝓁-observations with 𝓁 varying from 1 to d.

Under this objective, we are motivated to partition the sea-

sonal total into a two-part composition that consisting of the

sum of the first d−𝓁 measurements and the remaining 𝓁 mea-

surements within one cycle. The seasonal time series of Xt can

be viewed as

…; |Xt−d+𝓁+1,… ,Xt−1,Xt
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Y1,t

,Xt+1,… ,Xt+𝓁
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Y2,t

; |Xt+𝓁+1,,… ,Xt+d−1,Xt+d
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Y1,t+d

,Xt+d+1,… ,Xt+d+𝓁
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Y2,t+d

; |… .

Under this setting, at each time t a complete season is

formed by the previous d−𝓁 measurements inclusive, and the

next 𝓁 measurements in a rolling basis. Then we can construct

a rolling two-component (d − 𝓁,𝓁) partition:

Y1,t =
d−𝓁−1∑

i=0

Xt−i and Y2,t =
𝓁∑

i=1

Xt+i.

Following Aitchison (1986), we assume that the ratio

Y2,t∕Y1,t, conditioning on a set of exogenous variables rt =
(r1t, r2t, … , rmt)′ observed at time t, follows the log-normal

distribution. That is,

Zt|rt = log

(
Y2,t

Y1,t

) |rt ∼ N
(
𝜇t + 𝜷′rt, 𝜎

2
t
)
, (1)

where 𝜷 = (𝛽1, 𝛽2, … , 𝛽m)′ is the coefficient vector and 𝜇t
is a series of unknown time-varying coefficients. Let 𝜀t =
Zt − 𝜇t − 𝜷

′rt and 𝜀t = 𝜎tet, where et ∼ N(0, 1). Model 1 can

be written as

Zt = 𝜇t + 𝜷′rt + 𝜎tet.

Compared with the traditional d-parts compositional model,

this (d − 𝓁,𝓁) partition avoids the excessive estimation of

the high-dimensional parameters that are not essential in

dealing with seasonality. Moreover, it is designed for the

objective of forecasting the next 𝓁-observations total. This

provides a much simpler forecasting scheme following the

objective-based adaptive model selection principle.

As Zt,Zt+d,Zt+2d, … are constructed with the same

partition of non-overlapping periods (i.e.,
∑d−𝓁−1

i=0 Xt−i+kd,∑𝓁
i=1 Xt+i+kd), it is reasonable to assume that this subseries

is stationary with the same mean and variance. On the other

hand, Zt and Zt+1 are from different partitions and hence

would have different mean and variance.

As a result, with period d, we assume

Zt = 𝜇s(t) + 𝜷′rt + 𝜎s(t)et, s(t) = t mod d. (2)

The intercept 𝜇s(t) and error variance 𝜎s(t) reflect the vari-

ation of the proportions in the season. Note that the time

series Y1,t and Y2,t both consist of partial sums of overlap-

ping windows, resulting in strong autocorrelations in Zt. In

addition, it is natural for a time series to possess serial correla-

tions. To accommodate serial correlation beyond the seasonal

components, we introduce an ARMA(p, q) structure to the

standardized error in the compositional model. That is,

els based on the theory of compositional analysis. Section 3

4
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et =
Zt − 𝜇s(t) − 𝜷′rt

𝜎s(t)
= 𝜃(B)

𝜙(B)
at, at ∼ N

(
0, 𝜎2

a
)
. (3)

Here B is the back-shift operator BXt = Xt−1, and 𝜃 and 𝜙 are

MA and AR polynomials:

𝜃(z) =1+𝜃1z+𝜃2z2+· · ·+𝜃qzq, 𝜙(z) =1−𝜙1z−𝜙2z2−· · ·−𝜙pzp.

Jointly, Equations 2 and 3 are referred to as a compositional

seasonal component (CSC) time series model with (d − 𝓁,𝓁)
partition, denoted as the CSC(𝓁) model.

Remark 1. The major advantage of the CSC model is its flex-
ibility in the assumptions of the process Xt. This model is
designed to analyze the proportions of seasonal components
instead of individual observations, allowing nonstationarity
in the process Xt. Given the observed sequence Xt, the series
Zt can be obtained through Y1,t and Y2,t in our construction.
Moreover, given a series of Zt and a set of initial values of
X1, … ,Xd+𝓁 , the series of Xt can be reconstructed iteratively.
The data-generating process (Equations 2 and 3) of Zt also
specifies the data-generating process of Xt, which is used in
our simulation study.

Remark 2. There are several ways of using the CSC model
for the prediction of the next 𝓁-observations total. The next

𝓁-observations total can be predicted by a (d−𝓁,𝓁) partition
in the CSC(𝓁) model. Alternatively, it can be done by the sum-
mation of the one to 𝓁-step-ahead predictions from a CSC(1)
model, a special class of CSC(𝓁).

Remark 3. By combining Equations 2 and 3, we have

𝜙(B)logY2,t = 𝜙(B)
(
logY1,t + 𝜇s(t) + 𝜷′rt

)
+ 𝜃(B)𝜎s(t)et.

This shows that this model is a special case of a transfer func-
tion model, with the sum of the preceding seasons as an input
variable. For transfer function modeling, see, for example,
Box and Jenkins (1994).

Remark 4. In model 2, we have assumed that var(et) =
1. Such an assumption imposes complex constraints on the
parameters in model 3. Instead, we will put a constraint on
one of the 𝜎s(t)’s. Specifically, we assume 𝜎0 = 1. Such a
reparametrization is equivalent to the original setting.

Figure 1 shows a simulated series from the CSC(1) model

with d = 12. Details of this series are given in Section .1. A

strong seasonality is seen together with certain nonstationar-

ity. Figure 2 shows the sample ACF and PACF of the series.

It is seen that those features can be easily misspecified as a

seasonal ARIMA model.
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FIGURE 1 Original data plot of simulated series (I) from model CSC(1)
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FIGURE 2 ACF and PACF of the simulated series (I) [Colour figure can be viewed at wileyonlinelibrary.com]
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ESTIMATION, MODEL CHECKING,
AND PREDICTION
In this section, we discuss estimation, model checking, and

prediction procedures for CSC models. The time series Xt is

observed, and the deduced process Zt in (1) is constructed

through rolling partition as discussed in Section 2. We then

estimate Model 3. Model checking is based on the resid-

ual analysis of Model 3 and out-of-sample performance of

predicting the sum of the next 𝓁Xt’s.

. Estimation
Define a set of indicator variables 𝛿j,t, 𝛿j,t = 1 if j = s(t) and

𝛿j,t = 0 otherwise. Equation 2 can be rewritten as

Zt =
m∑

i=1

𝛽iri,t +
d−1∑
j=0

𝜇j𝛿j,t + 𝜎s(t)et,

if there are m exogenous variables.

This is essentially a regression problem with time series

errors that can be formulated as

Zt = 𝜷′rt + 𝝁′𝜹t + 𝜎s(t)et and et =
𝜃(B)
𝜙(B)

at,

with at ∼ N(0, 𝜎2
a) and 𝜎0 = 1. Conditional maximum

likelihood estimation procedures can be used to estimate

the parameters Θ =
(
𝜷,𝝁, 𝜎s(t), 𝜙1, … , 𝜙p, 𝜃1, … , 𝜃q, 𝜎

2
a
)
.

Specifically, the likelihood function can be written as

L(Θ) =
(
2𝜋𝜎2

a
)− T−p−d+1

2 exp

(
−

T−𝓁∑
t=p+d−𝓁

(
et − 𝜙1et−1 − · · · − 𝜙pet−p − 𝜃1at−1 − · · · − 𝜃qat−q

)2

2𝜎2
a

)
,

where et =
Zt−𝝁′𝜹t−𝜷′rt

𝜎s(t)
and at can be iteratively calculated by

at =et − 𝜙1et−1 − … 𝜙pet−p − 𝜃1at−1 − · · · − 𝜃qat−q,

t =p + d − 𝓁, … ,T − 𝓁,

conditional on the assumptions that ap+d−𝓁−1 = · · · =
ap+d−𝓁−q = 0.

To find good initial values for MLE, we perform several

iterations of the following steps:

1. Given variance 𝜎2
a and ARMA coefficients for et, param-

eters in (𝜷, 𝜇) can be estimated with standard regression

estimators with known error covariance matrix. In the first

iteration, we can assume that et are i.i.d.

2. Form residuals from the first step with estimated coeffi-

cient 𝜖t = Zt − 𝜷̂
′rt − 𝝁̂′𝜹t. The seasonal residual variance

can be estimated as

s2
j = 1⌊T∕d⌋

⌊T∕d⌋∑
k=1

𝜖2
j+kd, j = s(t) = 0, 1, … , d − 1,

where ⌊T∕d⌋ is the floor function and 𝜎̂2
j =

s2
j

s2
1

, 𝜎̂2
0
= 1.

3. The ARMA coefficients 𝜙̂(B) and 𝜃̂(B) are estimated using

the standardized residual time series {et ∶ et = 𝜖t∕𝜎̂s(t)}.

. Model checking
We focus on the following aspects of model checking and

validation.

Residual analysis
For model-building procedures that involve time series analy-

sis, the residual autocorrelation analysis is an important step.

Specifically, let

ât =
𝜙̂(B)
𝜃̂(B)

êt =
𝜙̂(B)
𝜃̂(B)

𝜖t

𝜎̂s(t)
= 𝜙̂(B)

𝜃̂(B)
Zt − 𝜇̂s(t) − 𝜷̂

′rt

𝜎̂s(t)

be the estimated residual series for the CSC(𝓁) model. A stan-

dard white noise test such as the Box–Ljung test can be used.

Normality tests such as marginal univariate distribution test,

bivariate angle distribution test, and radius test can be used

as well.

Out-of-sample forecasting performance
With the objective of making predictions, the predic-

tion procedure and performance measure are determined.

The out-of-sample rolling forecast is implemented for pre-

dicting the next 𝓁-observations total Y2,T =
∑𝓁

j=1 XT+j for

given observations X1, … ,XT . In the rolling forecast proce-

dure, we define the starting point of the rolling forecast as K,

and the value of Y2,t is predicted for each time t between K+1

and T − 𝓁 + 1. The prediction can be done with least square

criterion or least absolute deviation criterion, described in

Section . .

Denote the predicted value of Y2,t as Ŷ2,t. We use the

mean squared forecasting error (MSFE) as the performance

measure, denoted as Q𝓁:

Q𝓁 = 1

T − 𝓁 − K + 1

T−𝓁+1∑
j=K+1

(Y2,j − Ŷ2,j)2, (4)

where 𝓁 varies from 1 to d. The criterion of Q𝓁 is measured

for both the seasonal ARIMA model and the CSC models in

Section .

3

3 1

3 2

3.2.1

3.2.2

3 3

4
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. Prediction
Here we discuss the prediction procedure for the next

𝓁-observations total
∑𝓁

j=1 Xt+j, under both the least square

criterion and the least absolute deviation criterion.

Prediction under CSC(𝓁)model
The CSC(𝓁) model is relatively straightforward in forecast-

ing the next 𝓁-observations total. Suppose we currently have

the observations of Xt up to time t, the prediction of the next

𝓁-observations total Y2,t =
∑𝓁

j=1 Xt+j can be realized by not-

ing that Y2,t = Y1,t exp{Zt}, where Y1,t is observed at time t
and Zt can be predicted using the joint model (Equations 2

and 3). Note that at time t the time series Zs is observed only

up to time t − 𝓁. In other words, we will need to predict

Zt−𝓁+1, … ,Zt.

Let Ft be the sigma field generated by {ei, i = 1, … , t}.

The least square prediction is the conditional mean

Ŷ2,t = E
[
Y2,t|Y1,t,Ft−𝓁

]
= Y1tE

[
exp{Zt}|Ft−𝓁

]
= Y1,tE

[
exp{𝜇s(t) + 𝜷′rt + 𝜎s(t)et}|Ft−𝓁

]
.

Here Y1,t is completely known as of time t, and et is the random

part that follows a stationary ARMA process with normal

errors in Equation 3. Hence

Ŷ2,t = Y1,t exp
{
𝜇s(t) + 𝜷′rt + 𝜎s(t)êt|t−𝓁 + 0.5𝜎2

s(t)𝜎
2
t|t−𝓁},

where êt|t−𝓁 = E [et|Ft−𝓁] is the 𝓁-step-ahead forecast from

the ARMA process of et, and 𝜎2
t|t−𝓁 = var [et|Ft−𝓁] is the

prediction variance.

On the other hand, the prediction under the absolute devia-

tion criterion is the conditional median. Since the exponential

function is a monotone function and, for normal distribution,

the median equals the mean, we have

Ỹ2,t =median
[
Y2,t|Y1,t,Ft−𝓁

]
= Y1,t exp{𝜇s(t)+𝜷′rt+𝜎s(t)êt|t−𝓁},

where êt|t−𝓁 is the same 𝓁-step-ahead prediction as above.

Prediction under CSC(1)model
Alternatively, the CSC(1) model can be used for the predic-

tion of next 𝓁-observations total, and in certain cases it is

more convenient than the CSC(𝓁) model and yields more

accurate predictions in many cases. In this setting, the pre-

diction of the next 𝓁-observations total can be done by thez

summation of each individual season that is predicted by the

CSC(1) model. Specifically, the prediction of Y2,t =
∑𝓁

j=1 Xt+j

involves the prediction for each single Xt+j. Like all prediction

models that involve exogenous variables, we need the future

rt+1, … , rt+𝓁 available at time t. There is no problem if rt are

deterministic such as a time trend or seasonal dummies; or rt

can be 𝓁-lag observations of a process so rt+1, … , rt+𝓁 are

available at time t.
In the CSC(1) model,

Xt+1 = Y1,t exp
{
𝜇s(t+1) + 𝜷′rt+ 1 + 𝜎s(t+1)et+1

}
,

where Y1,t = Xt−d+2 + · · · + Xt is known up to time t. Under

the least square criterion, the one-step forecast of Xt+1 is the

conditional expectation

X̂t(1) = E
[
Xt+1|Y1,t,Ft−1

]
= Y1,t exp

{
𝜇s(t+1) + 𝜷′rt+ 1

+ 𝜎s(t+1)êt+1|t + 0.5𝜎2
s(t+1)𝜎

2
t+1|t},

where êt+1|t and 𝜎2
t+1|t are the one-step prediction and its

prediction variance under Model 3.

The two-step-ahead least square forecast is also the condi-

tional expectation:

X̂t(2) = E
[
Xt+2|Y1,t,Ft

]
= E

[
(Xt−d+3 + · · · + Xt+1) exp

{
𝜇s(t+2)

+𝜷′rt+ 2 + 𝜎s(t+2)êt+2

}|Ft
]

=
(
Xt−d+3 + · · · + X̂t(1)

)
exp

{
𝜇s(t+2)

+ 𝜷′rt+ 2 + 𝜎s(t+2)êt+2|t + 0.5𝜎2
s(t+2)𝜎

2
t+2|t},

which is based on the two-steo ahead forecast of et+2, as

well as the one-step forecast of Xt+1 from the previous step.

Similarly, we can get the 𝓁th step forecast X̂t(𝓁):

X̂t(𝓁) =
(
Xt−d+𝓁+1 + · · · + Xt + X̂t(1) + · · · + X̂t(𝓁 − 1)

)
exp

{
𝜇s(t+𝓁) + 𝜷′rt+𝓁 + 𝜎s(t+𝓁)êt+𝓁|t + 0.5𝜎2

s(t+𝓁)𝜎
2
t+𝓁|t}.

Then the prediction of Y2,t is Ŷ2,t = X̂t(1) + · · · + X̂t(𝓁).
Prediction is simpler under the absolute deviation criterion.

The one-step prediction is

X̃t(1) = median
[
Xt+1|Y1,t,Ft

]
= Y1,t exp

{
𝜇s(t+1) + 𝜷′rt+ 1 + 𝜎s(t+1)êt+1|t},

and the 𝓁th step prediction is

X̃t(𝓁) = median
[
Xt+𝓁|Y1,t,Ft

]
=
(
Xt−d+𝓁+1 + · · · + Xt + X̃t(1) + · · · + X̃t(l − 1)

)
exp

{
𝜇s(t+𝓁) + 𝜷′rt+𝓁 + 𝜎s(t+𝓁)êt+𝓁|t},

3 3

3.3.1

3.3.2
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where êt+𝓁|t is the 𝓁-step-ahead least square forecast of et+𝓁

from the ARMA process.

NUMERICAL EXAMPLES AND
FORECASTING PERFORMANCE
COMPARISON

Here we present two simulated examples and three real exam-

ples to demonstrate the predictive power of CSC models. We

focus on out-of-sample forecasting performance comparisons

between CSC(𝓁), CSC(1) and seasonal ARIMA models. In

all our examples, the ARIMA models used for comparison

are selected based on a detailed analysis, combining resid-

ual analysis, Akaike information criterion and out-of-sample

rolling forecasting performance.

.1 Simulated example (I)
As described in Section 1, the data-generating process pro-

duces Zt based on model 1, and the observations in Xt can

be inferred from Zt. The first simulated series in Figure 1

is generated by a CSC(1) process with white noise errors

et ∼ N(0, 0.022). No exogenous variables are assumed in this

simulation example.

Set d = 12, 𝜎0 = · · · = 𝜎d11 = 1 and

𝝁 = (𝜇0, … , 𝜇11)′ = ( − 2.45 − 2.50 − 2.38 − 2.50 − 2.40 − 2.38

− 2.25 − 2.20 − 2.40 − 2.50 − 2.40 − 2.45)′.

The seasonal ARIMA model selected for comparison is

(1 − B)(1 − B12)Xt = (1 − 𝜃1B − 𝜃2B2)(1 − 𝜃3B12)𝜀t

and the standard rolling forecast procedure is applied.

We perform out-of-sample predictions using the three mod-

els respectively and obtained Q𝓁 defined in Equation 4 for

different prediction horizons, 𝓁. The values of Q𝓁 are plotted
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FIGURE 3 ‘*’ denotes Q𝓁,ARIMA; ‘▿’ denotes Q𝓁,CSC(1); ‘△’

denotes Q𝓁,CSC(𝓁)

in Figure 3. It can be seen that the ARIMA model performs

worse than the CSC models for larger 𝓁. As the true model,

CSC(1) performs the best among the three models.

.2 Simulated example (II)
The second simulated series is generated from a CSC(1)

model with AR(1)(𝜙 = 0.8) errors. The simulation is based

on the same seasonal mean and seasonal variance vectors as

the previous example. We assume an AR(1) error process

et = 0.8et−1 +at and the white noise process at ∼ N(0, 0.022).
Figure 4 shows the time series plot. It shows certain nonsta-

tionarity and strong seasonality in the series. The ACF and

PACF plots (Figure 5) are very similar to what we commonly

see for seasonal time series, so that such series can be eas-

ily misspecified by seasonal ARIMA models. In addition, the

seasonal pattern is clearly seen through the box plots shown

in Figure 6.

According to various criteria including the rolling fore-

cast performance, the best seasonal ARIMA model for the

simulated series is

(1 − B)(1 − B12)Xt = (1 − 𝜃1B)(1 − 𝜃2B12)𝜀t.

The values of Q𝓁 for seasonal ARIMA, CSC(1) + AR(1) and

CSC(𝓁) + ARMA(p𝓁 , q𝓁) models are listed in Table 1 and

the rolling forecasts start at point K = 168. The CSC(𝓁) +
ARMA(p𝓁 , q𝓁) model gives a poor performance and the fore-

casting performance of the seasonal ARIMA is not as good

as CSC(1) + AR(1).
We also compare the yearly-total prediction performance

of seasonal ARIMA and CSC(1) + AR(1) by comparing the

values of MSE at different lead times 𝓁 = 1, … , 12 (Table 2).

Different from the rolling forecast of 𝓁-observations total in

Table 1, the yearly-total prediction is the sum of 𝓁-forecasts,

with the end-of-year forecast being the endpoint. For example,

the yearly total is the total forecasts from July to December if

𝓁 = 6.

The CSC(1) + AR(1) model gives better predictions than

seasonal ARIMA for moderate prediction horizons.

.3 Real example (I)
In this real example, the monthly number of applications for a

certain type of government benefit is analyzed. There are 167

observations in total. The series we show and analyze here

is a transformed series for confidentiality reasons. It is trans-

formed in such a way that the models used are not affected.

4

4

4

4
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FIGURE 4 Original data plot of simulated series (II) from model CSC(1) + AR(1)
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The prediction is performed for the total application volumes

of the next 𝓁 months for 𝓁 = 1, 2, … , 12. The original

series has known outliers at observations 105, 106, and 107.

With the focus of seasonality in this paper, we smooth these

three observations with historical means of the correspond-

ing months in order to keep an objective discussion of the

CSC model. The transformed series after outlier smoothing

is shown in Figure 7. The data are analyzed by the seasonal

ARIMA, CSC(𝓁) and CSC(1) model, respectively.

The series has a strong seasonality, as observed in the ACF

and PACF plots (Figure 8). Beyond this, the application num-

bers for another type of benefit have a strong linear effect on

the target series. We include the series as rt in the seasonal

ARIMA model. The events captured by rt occurred many
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TABLE 1 Comparison of forecasting performance

Lead 𝓁 1 2 3 4 5 6 7 8 9 10 11 12

Q𝓁,A 0.89 3.88 8.67 15.34 24.45 34.81 45.69 57.27 71.66 91.07 115.45 145.84

Q𝓁,C(1) 0.84 3.56 7.82 13.78 22.27 32.29 43.24 55.29 70.32 89.79 114.15 144.09

Q𝓁,C(𝓁) 0.88 4.08 9.44 18.05 28.97 39.65 48.80 51.44 70.30 102.06 130.05 187.99

Q𝓁,A, seasonal ARIMA model; Q𝓁,C(1), CSC(1) + AR(1) model; Q𝓁,C(𝓁), CSC(𝓁) + ARMA(p𝓁 , q𝓁) model for simulated series (II).

TABLE 2 Comparison of yearly-total forecasting performance for simulated series (II)

Lead 𝓁 12 11 10 9 8 7 6 5 4 3 2 1

MA 104.11 114.20 143.04 103.97 63.79 66.72 53.56 30.00 8.84 5.53 2.82 0.70

MC(1) 107.26 117.47 138.62 104.49 59.34 60.24 49.86 29.04 7.78 5.60 3.11 0.66

Chge 3.03 2.87 −3.09 0.50 −6.97 −9.71 −6.91 −3.20 −11.99 1.34 10.16 −6.25

MA, seasonal ARIMA; MC(1), CSC(1) + AR(1); ‘Chge’ denotes percentage change between the two.
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FIGURE 7 Time series plot of application volume for government

benefit

years ago, so we do have all the future rt’s available in our

prediction exercise. Figure 9 shows the time series plot of rt.

Based on model selection criteria, the following seasonal

ARIMA model is analyzed for comparison:

(1 − 𝜙1B − 𝜙2B2)(1 − Φ1B12)(Xt + 𝛽rt) = (1 + Θ1B12)𝜀t.

For CSC(𝓁), the components are constructed by the value of

𝓁 that varies from 1 to 12. Figure 10 gives the box
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FIGURE 8 ACF and PACF of application volume [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Time series plot of exogenous variable rt

plots of log-ratio series Zt for 𝓁 = 3 and 𝓁 = 6, respec-

tively. The patterns in the box plots show that the log-ratio

series captures the seasonality in the original series by the

seasonal-dependent mean 𝜇s(t) and variance 𝜎2
s(t). Table 3

shows the estimation of the seasonal-dependent mean 𝜇s(t)
and standard error 𝜎s(t) for CSC(1) and CSC(3), respectively.

The seasonality of the log-ratio series is clearly seen from the

results, not only in the mean but also in the variance. In our

prediction exercise, we use different d periods to construct
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FIGURE 10 Box plots of log ratio for application volume: left, 𝓁 = 3; right, 𝓁 = 6

TABLE 3 Model estimation for CSC(1) (upper panel) and CSC(3) (lower panel)

s(t) 0 1 2 3 4 5 6 7 8 9 10 11

𝜇1,s(t) −2.535 −2.449 −2.539 2.698 −2.477 −2.434 −2.095 −2.233 −2.289 −2.383 −2.443 −2.370

𝜎1,s(t) 1 0.877 0.867 0.694 0.690 0.458 0.471 0.410 0.687 0.444 0.454 0.423

𝜇3,s(t) −1.198 −1.169 −1.212 −1.270 −1.288 −1.245 −0.995 −0.900 −0.839 −0.968 −1.056 −1.100

𝜎3,s(t) 1 1.134 1.255 1.031 0.997 0.732 0.615 0.500 0.544 0.610 0.578 0.620

𝜇s(t) is the seasonal mean and 𝜎s(t) is the seasonal standard deviation.

TABLE 4 Model estimation for AR structure of et

𝓁 1 2 3 4 5 6 7 8 9 10 11 12

𝜙̂1 0.72 1.27 1.19 1.23 1.26 1.32 1.25 1.22 1.52 1.59 1.54 1.58

se(𝜙̂1) 0.056 0.079 0.079 0.077 0.077 0.078 0.077 0.077 0.067 0.062 0.066 0.063

𝜙̂2 — −0.63 −0.23 −0.15 −0.16 −0.30 −0.19 −0.18 −0.58 −0.65 −0.60 −0.64

se(𝜙̂2) — 0.119 0.123 0.125 0.127 0.130 0.127 0.124 0.067 0.062 0.066 0.063

𝜙̂3 — 0.18 −0.17 −0.27 −0.29 −0.21 −0.26 −0.25 — — — —

se(𝜙̂3) — 0.080 0.080 0.078 0.078 0.079 0.079 0.079 — — — —

AR coefficients, 𝜙̂j; standard errors, se(𝜙̂j); ‘—’ indicates that results are unavailabled{3,2} due to different AR structures.

TABLE 5 Comparison of forecasting performance for benefit application

Lead 𝓁 1 2 3 4 5 6 7 8 9 10 11 12

Q𝓁,A 1.45 4.42 9.91 17.91 29.25 44.26 55.58 55.43 54.04 49.57 40.78 38.13

Q𝓁,C(𝓁) 1.27 3.12 6.18 14.01 27.89 39.93 51.58 57.61 65.69 77.81 65.98 112.96

Q𝓁,C(1) 1.27 3.07 6.67 11.45 18.69 29.18 42.59 48.50 58.31 63.88 60.57 67.70

ChgeC(𝓁) −11.95 −29.40 −37.69 −21.77 −4.66 −9.78 −7.19 3.93 21.57 56.97 61.78 196.21

ChgeC(1) −11.95 −30.56 −32.66 −36.06 −36.11 −34.07 −23.37 −12.50 7.90 28.87 48.51 77.54

Q𝓁,A(×102), seasonal ARIMA model; Q𝓁,C(𝓁)(×102), CSC(𝓁) + AR(p𝓁) model; Q𝓁,C(1)(×102), CSC(1) + AR(1) model; ‘Chge’ denotes percentage

change between the two.

the CSC model, so the base component Y1,t contains a suffi-

cient number of observations. Specifically, we use d = 12 for

𝓁 = 1, … , 8 and d = 24 for 𝓁 = 9, … , 12. The standard-

ized error process et follows strong autoregressive patterns,

but the AR orders are not identical for different 𝓁. Table 4

summarizes the coefficients and standard errors for the AR

estimation of the error process.

At the same time, the prediction of the next 𝓁-months total

can be achieved by taking summation of 𝓁-steps prediction

from the CSC(1) model, as described in Section . . The

CSC(1) + AR(1) model is fitted based on the evident AR(1)

structure of the error process.

The performance of the seasonal ARIMA, CSC(𝓁) and

CSC(1) models are compared for the forecasting of the next

𝓁-months total application volume. The rolling forecast starts

from K = 134. Table 5 shows the square root of fore-

casting measure Q𝓁 of the models. From Table 5 it is seen

that both CSC(𝓁) and CSC(1) outperform seasonal ARIMA

significantly in relatively short-term prediction when 𝓁 =
1, 2, … , 7. They do not do as well as the ARIMA model in3 3
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TABLE 6 Comparison of forecasting performance for benefit application

Lead 𝓁 1 2 3 4 5 6 7 8 9 10 11 12

MAFE𝓁,A 7.40 5.78 6.42 6.33 6.41 6.63 6.39 5.73 4.87 4.35 3.83 3.57

MAFE𝓁,C𝓁
7.85 5.84 5.11 5.49 6.18 6.22 5.61 5.53 5.58 5.61 4.62 5.48

MAFE𝓁,C(1) 7.85 5.75 5.55 5.32 5.41 5.37 5.56 5.33 5.16 5.04 4.72 4.67

ChgeC(𝓁) 6.06 1.06 −20.33 −13.28 −3.60 −6.07 −12.28 −3.47 14.48 29.01 20.68 53.67

ChgeC(1) 6.06 −0.62 −13.47 −15.90 −15.62 −18.88 −13.01 −7.11 5.81 15.81 23.19 30.76

MAFE𝓁,A, seasonal ARIMA model; MAFE𝓁,C(𝓁), CSC(𝓁)+AR(p𝓁) model; MAFE𝓁,C(1), CSC(1)+AR(1) model; ‘Chge’ denotes percentage change

between the two.
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FIGURE 11 Box plots of forecasting errors for 𝓁-months total, 𝓁 = 1, 2, … , 12
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FIGURE 12 Total industrial production index of energy (1997 =
100) (US) (1977–2002)

longer-term predictions when 𝓁 = 9, 10, 11, 12. Between the

two CSC models, CSC(1) + AR(1) gives even better perfor-

mance. As an additional forecasting measure, the mean abso-

lute forecasting errors (MAFE) in Table 6 validate the better

performance of CSC models in prediction lengths between 2

and 8.

To avoid the misleading conclusion from potential large

prediction outliers, we show the box plots of the prediction

errors (%) from the rolling forecast by ARIMA and CSC(𝓁)

model in Figure 11. This provides clear evidence that the

CSC(𝓁) model performs better than the ARIMA model with

moderate prediction horizons.

.4 Real example (II)
In this example we analyze the monthly US industrial produc-

tion index of energy from January 1977 to December 2002,

with 312 observations, using 1997 as the base year (with value

set to 100). The values of all other years are relative to year

1997. The data are from the website www.economagic.com.

The time series plot (Figure 12) shows strong seasonal-

ity with an upward trend. Based on ACF and PACF plots

(Figures 13 and 14) and a model selection procedure, the

seasonal ARIMA model

(1 − 𝜙B)(1 − B12)log(Xt) = (1 − 𝜃1B − 𝜃2B2)(1 − 𝜃3B12)𝜀t,

is used for comparison purposes.

Using a model selection procedure and detailed residual

analysis, CSC(1) + AR(3) is selected to model the series.

Rolling forecast starts from K = 168. Table 7 presents

a detailed forecasting performance comparison of the two

models. The values of Q𝓁 and the percentage change of Q𝓁

4

www.economagic.com
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FIGURE 13 ACF and PACF of US industrial production index of energy [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14 ACF and PACF of US industrial production index of energy (logged, seasonal differenced at d = 12) [Colour figure can be viewed

at wileyonlinelibrary.com]

TABLE 7 Comparison of forecasting performance for US industrial production index of energy

Lead 𝓁 1 2 3 4 5 6 7 8 9 10 11 12

Q𝓁,A 2.15 8.62 20.61 39.27 64.64 97.44 138.60 187.35 243.86 301.48 360.56 427.87

Q𝓁,C 2.84 11.95 27.92 47.53 69.88 95.43 129.40 171.72 221.49 267.72 302.87 342.13

Chge 32.11 38.61 35.46 21.02 8.11 −2.06 −6.64 −8.35 −9.17 −11.20 −16.00 -20.04

Q𝓁,A, seasonal ARIMA model; Q𝓁,C(1), CSC(1) + AR(3); ‘Chge’ denotes percentage change between the two.

TABLE 8 Comparison of yearly-total forecasting performance for US industrial production index of energy

Lead 𝓁 12 11 10 9 8 7 6 5 4 3 2 1

MSEA 633.22 433.95 409.85 290.68 189.02 93.81 72.94 49.55 43.67 23.74 13.40 1.33

MSEC(1) 347.28 276.26 300.51 223.44 209.64 118.51 78.16 86.24 62.49 27.99 15.45 1.64

Chge −45.16 −36.34 −26.68 −23.13 10.91 26.34 7.16 74.03 43.08 17.93 15.32 23.60

MSEA, seasonal ARIMA; MSEC(1), CSC(1) + AR(3); ‘Chge’ denotes percentage change between the two.
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FIGURE 15 US retail inventories/sales ratio for furniture etc.

(1992–2002)

between the two models suggest that CSC(1) + AR(3) per-

forms better for longer prediction horizons such as 𝓁 =
6, … , 12.

Table 8 contains the values of MSE from the forecasting of

yearly total by both seasonal ARIMA and CSC(1) + AR(3)
models. It further shows that CSC(1) + AR(3) outperforms

seasonal ARIMA in long-horizon forecasting.

. Real example (III)
In this example we analyze the US retail inventories/sales

ratio for furniture, home furnishing, electronics, and

34
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TABLE 9 Comparison of forecasting performance for US retail inventories/sales ratio for furniture etc.

Lead 𝓁 1 2 3 4 5 6 7 8 9 10 11 12

Q𝓁,A 0.29 1.21 2.62 4.61 7.54 11.89 17.25 22.76 28.41 35.04 41.99 49.28

Q𝓁,C(1) 0.32 1.23 2.52 4.48 6.88 10.11 14.21 18.75 23.81 29.21 34.49 40.98

Chge 9.90 1.72 −3.85 −2.72 −8.83 −14.97 −17.67 −17.62 −16.19 −16.63 −17.86 −16.85

Q𝓁,A(×102), seasonal ARIMA; Q𝓁,C(1)(×102), CSC(1) + MA(3); ‘Chge’ denotes percentage change between the two.

appliances, with 132 observations in total from Jan-

uary 1992 to December 2002, obtained from the website

www.economagic.com. It is a nonstationary time series with

strong seasonality, as shown in Figure 15.

The seasonal ARIMA model (1−𝜙B)(1−B12)log(Xt) = 𝜀t,

and CSC(1)+MA(3) are selected to model the series. Rolling

forecasts start from K = 72. A comparison of forecasting

performance is shown in Table 9. This demonstrates that

CSC(1)+MA(3) outperforms seasonal ARIMA for almost all

prediction horizons except for very short terms when 𝓁 = 1

and 2. In addition, the improvement of prediction is more

significant for longer forecasting horizons.
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