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a b s t r a c t

This paper introduces a novel dynamic generalized extreme value (GEV) framework for
modeling the time-varying behavior of maxima in financial time series. Specifically, an
autoregressive conditional Fréchet (AcF) model is proposed in which the maxima are
modeled by a Fréchet distributionwith time-varying scale parameter (volatility) and shape
parameter (tail index) conditioned on past information. The AcF provides a direct and
accurate modeling of the time-varying behavior of maxima and furthermore offers a new
angle to study the tail risk dynamics in financial markets. Probabilistic properties of AcF
are studied, and a maximum likelihood estimator is used for model estimation, with its
statistical properties investigated. Simulations show the flexibility of AcF and confirm
the reliability of its estimators. Two real data examples on cross-sectional stock returns
and high-frequency foreign exchange returns are used to demonstrate the AcF modeling
approach,where significant improvement over the static GEVhas been observed formarket
tail risk monitoring and conditional VaR estimation. Empirical result of AcF is consistent
with the findings of the dynamic peak-over-threshold (POT) literature that the tail index
of financial markets varies through time.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The study of extreme events in financial markets is always one of the main foci in risk management. Maximum
observations, as the representation of extreme behavior, are of particular interest. For example, mutual fund managers
are keen to assess the potential maximum daily loss across all stocks in their managed portfolio; the level of potential
intra-day maximum loss is important to high-frequency traders. By Fisher–Tippett–Gnedenko theorem, the generalized
extreme value distribution (GEV) can be used to characterize the behavior of maxima, making extreme value theory (EVT)
a widely researched and practiced approach for risk management in financial industry (e.g. Embrechts et al., 1999; McNeil
and Frey, 2000; Laurini and Tawn, 2009). Besides the Maxima-GEV methodology, the other fundamental methodology of
EVT is the peak-over-threshold (POT), which is based on generalized Pareto distribution (GPD). By Pickands–Balkema–de
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Haan theorem, GPD can be used to approximate the conditional behavior of random variable after it exceeds certain high
thresholds (e.g. Balkema and deHaan, 1974; Picklands, 1975; Davison and Smith, 1990). Under EVT framework,Maxima-GEV
and POT-GPD are closely related and can often reveal the same information, especially when used to model tail index ξ . See
Chapters 4 and 7 in Coles (2001) and Section 2.5 in this paper for more details about the connection between Maxima-GEV
and POT-GPD.

As mentioned in Diebold et al. (1998), most applications of EVT focus on modeling extreme events in time series with a
static approach under equilibrium distribution. However, the behavior of the underlying time series may change through
time. For example, financial time series tends to exhibit structural changes and time-varying dynamics such as volatility
clustering. To accommodate the dynamics of extreme events and study the conditional behavior of tail risk in financial
markets, there have been several recent studies of dynamic POT-GPD models. For example, Smith and Goodman (2000)
and Chavez-Demoulin et al. (2014) use Bayesianmethod to update the time-varying GPD parameters. Kelly (2014) and Kelly
and Jiang (2014) build a dynamic tail model with POT-GPD for panel data. Massacci (2016) and Zhang and Schwaab (2017)
employ a generalized autoregressive score1 type of observation-driven dynamics for the GPD parameters. These studies
show strong evidence of the time-varying behavior of extreme events in financial markets, especially for the tail index ξ .

One advantage of Maxima-GEV approach over POT-GPD approach is that it offers a direct modeling of maxima in time
series, which can be of particular importance. Unlike the dynamic GPD models, there is little research on dynamic GEV
models. Bali and Weinbaum (2007) design a time-varying GEV to estimate the realized volatility in an empirical study of
market risk, however, theoretical results are not provided.

In this paper we are mainly interested in modeling time series of maxima {Qt}, where {Qt} is a univariate time series
of maxima based on a set of underlying financial time series {Xit}

p
i=1. There are mainly two types of {Qt}. The first type is

the time series of cross-sectional maxima, where {Xit}
p
i=1 are a set of panel time series, and we are interested in modeling

the cross-sectional maxima Qt = max1≤i≤pXit . Such problems arise in many applications, including modeling the maximum
daily loss across a group of stocks in a portfolio. The second type is the time series of intra-period maxima, where {Xit}

p
i=1

denote the p intra-period observations for a univariate time series within period t , and we are interested in modeling the
intra-period maxima Qt = max1≤i≤pXit . For example, one may be interested in the intra-day maxima of high-frequency
trading losses that occur on the same day.

It is worth noting that there is an important difference between ‘‘maxima’’ and ‘‘extreme event’’. ‘‘Maxima’’ has a clear
definition of being the maximum of a set of observations, while ‘‘extreme event’’ is a more vague term, typically defined as
rare observations over a high threshold. A ‘‘maxima’’ may not necessarily be an ‘‘extreme event’’ though most likely it is. As
a time series of maxima, {Qt} is observed at every t . On the other hand, an extreme event may not be observed at each t , or
theremay be several extreme events within a time period. There is ample research on extremal process that offers stochastic
characterization and modeling of ‘‘extreme event’’ in stationary process (see Resnick, 1987; Basrak et al., 2002; Basrak and
Segers, 2009; Drees et al., 2015, for more details). However, in this paper the focus is the direct modeling of the maxima {Qt}

process and its time-varying behavior.
An important byproduct fromdynamicmodeling ofmaxima {Qt} is the tail index ξt , which is arguably themost important

indicator for financial market tail risk. As shown later, the tail index of maxima {Qt} corresponds to the tail index of the
underlying time series {Xit}

p
i=1. Thus, a bettermodeling ofmaxima can help obtain amore accurate assessment of the current

market risk level and offer more insight into the potential market extreme movement.
With the aim of modeling the time-varying behavior of maxima and tail risk in the financial market, in this paper we

introduce a novel dynamic conditional GEV framework, in which parameters (µ, σ , ξ ) of a conditional GEV are allowed to
vary through time with a GARCH-like2 autoregressive mechanism. Due to the heavy-tailed nature of financial data, Fréchet
distribution is widely used for modeling maxima originated from financial time series. Thus, we propose an autoregressive
conditional Fréchet (AcF) model that allows for an observation-driven time evolution of the scale parameter σ and the tail
index ξ of a Fréchet (Type-II GEV) distribution. Since the scale parameter and the tail index play the key role in characterizing
the tail behavior of Fréchet distribution, AcF provides a more flexible and applicable model for the time-varying behavior of
maxima in financial time series.

The main contributions of this paper are twofold. From a statistical point of view, this paper provides the first complete
treatment of a dynamicGEVmodel. TheAcF is a direct approach tomodeling the time-varying behavior ofmaxima in financial
time series. Probabilistic properties of the model and statistical properties of its estimator are investigated and developed.
They make the paper theoretically sound and help lay the foundation for further development of dynamic models under
EVT framework. From an econometric point of view, the newly designed AcF offers a new angle to study the time-varying
behavior of tail risk in financial markets and serves as a promising alternative to the dynamic POT-GPD methodology in the
literature. Real data applications show that the tail index of financial market is indeed time-varying. Compared to the static
GEV, AcF captures the dynamics of maxima more adequately and offers more promising performance in detecting potential
market extreme movement and providing more accurate conditional VaR prediction for maxima.

The rest of the paper is organized as follows. In Section 2 we present a detailed description of AcF and investigate its
probabilistic properties. A maximum likelihood estimator (MLE) is used for estimation and its statistical properties as an
irregular MLE are derived in Section 3. Simulation studies are presented in Section 4 to demonstrate the flexibility and

1 See Harvey and Chakravarty (2008) and Creal et al. (2013) for more details about generalized autoregressive score model.
2 See Engle (1982) and Bollerslev (1986) for more details about GARCH model.
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Fig. 1. Tail index α̂t estimated by moving window of size 1000 (solid curve) v.s. tail index α̂ estimated by the static GEV model based on total observations
(dashed line).

robustness of AcF and to evaluate the performance of MLE. Section 5 presents two real data applications, one on market tail
risk monitoring and tail connectedness based on cross-sectional maximum loss of stockmarkets and one on conditional VaR
estimation of intra-day maximum loss from high-frequency foreign exchange trading. We conclude the paper in Section 6.
The Appendix contains the proofs of the theorems and other technical materials.

2. Autoregressive conditional Fréchet model

2.1. Motivation

As a time series of maxima, {Qt} cannot be directly modeled by conventional time series models like ARMA or GARCH. By
Fisher–Tippett–Gnedenko theorem, we know that under certain condition, marginally {Qt} can be accurately approximated
by a GEV distribution with three parameters (µ, σ , ξ ), the location, the scale, and the shape parameter, respectively. The
common practice in the literature of modeling maxima {Qt} is to treat it as i.i.d. data and model it by a GEV distribution.
The obvious limitation is that the time dependency between {Qt} has been completely ignored in this approach, which can
potentially cause a huge loss inmodel efficiency if {Qt} has a strong dependency across time. To overcome this drawback, we
propose a dynamic GEV framework, under which a conditional evolution scheme is designed for the parameters (µt , σt , ξt )
of GEV, so that time dependency of {Qt} can be captured. Due to the heavy-tailedness of financial data, {Qt} marginally can
be well modeled by Fréchet distribution (i.e. Type II GEV distribution), which corresponds to the GEV of which ξ > 0. For
the rest of the paper, we focus on the case that conditionally Qt can be modeled by a Fréchet distribution with parameters
(µt , σt , αt ) where αt = 1/ξt as often used for the parametrization of Fréchet distribution:

Qt = µt + σtY
1/αt
t , (1)

where {Yt} is a sequence of i.i.d. unit Fréchet random variables and (µt , σt , αt ) ∈ Ft−1 = σ (Qt−1,Qt−2, . . .). Here µt and
σt are location-scale parameters and αt is the shape parameter, also called tail index of Fréchet distribution. Note that the
support of Qt is (µt , ∞) since Yt > 0.

The scale parameter σt should not be taken exactly as volatility since the conditional variance of Qt depends on both σt
and αt . However, as shown later in Proposition 1, σt can be closely related to the volatility process of the underlying time
series {Xit}

p
i=1 and thus requires a dynamic treatment due to the well-known volatility clustering in financial time series.

Moreover, Harvey (2013) observes that if volatility clustering is not accounted for, movements of the tail parameter αt can
be potentially confounded with movements of the scale parameter σt .

The tail index αt is the essential parameter since it governs the underlying tail behavior of {Qt} process and plays themost
important role in quantifying the potential tail risk. To demonstrate the necessity of dynamic modeling of αt , we perform
an ad-hoc moving-window GEV analysis on the cross-sectional maxima of negative daily log-returns (i.e. daily losses) of the
component stocks in S&P100 indexwhich includes 100 leading U.S. stocks. The observation period is from January 1, 2000 to
December 31, 2014 with 3773 trading days. For each trading day t , we record the maximum daily loss across the 100 stocks
and denote it by Qt . Hence the time series {Qt} has 3773 observations. For each t such that 500 ≤ t ≤ 3273, a GEV model
is fitted using {Qk}

t+500
k=t−499, the observations within a 1000-day (approximately 4 years) local window centered at t . We plot

the estimated tail index α̂t in Fig. 1 along with the estimated tail index α̂ obtained by directly fitting the static GEV model
with the entire series, treating them as i.i.d. observations.

It can be clearly seen that compared to the static estimation (dashed line), the tail index estimated with smaller moving
window (solid curve) changes quite drastically throughout the years, indicating an insufficiency of the static GEV model.
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A similar finding of varying tail index has been reported in Kelly and Jiang (2014) and Massacci (2016). An interesting
phenomenon is that the static GEV seems to give a significantly lower estimation of the tail index than the moving-window
GEV. An under-estimation of tail index over-estimates the tail risk, which in turn may result in higher reserve requirements
and other expenses for financial institutions.

2.2. Model specification

For parsimony, we setµt to be constant, which is the common practice in the extreme value analysis, and concentrate on
the dynamics of σt andαt , which are the key parameters ofmodeling tail behavior.We impose an autoregressive structure on
the time-varying parameters (σt , αt ) similar to the approach of GARCHmodel in Bollerslev (1986), autoregressive conditional
density model (ACD) in Hansen (1994), and autoregressive conditional duration model in Engle and Russell (1998).

Specifically, the autoregressive conditional Fréchet (AcF) model assumes the form

log σt = β0 + β1 log σt−1 + η1(Qt−1), (2)

logαt = γ0 + γ1 logαt−1 + η2(Qt−1), (3)

where β1, γ1 ≥ 0 and the two terms η1(·) and η2(·) are the observation-driven factors for {log σt} and {logαt}. The log
transform is used to ensure the positivity of the parameters.

We further assume that η1(·) is a continuous increasing function and η2(·) is a continuous decreasing function of Qt−1.
One salient feature of the maxima series {Qt} in many applications, especially in financial time series, is the clustering of
extreme events in time. It has been observed that large-valued maxima tend to happen around the same period in many
applications. One possible explanation is that an extreme event observed at time t − 1 (large Qt−1) causes the distribution
of Qt to have larger scale (large σt ) and heavier tail (small αt ), resulting in a larger tail risk of Qt . An increasing η1(·) and a
decreasing η2(·) ensure that larger Qt−1 is followed by larger σt and smaller αt . Together with the autoregressive scheme
of {log σt} and {logαt} (i.e. γ1, β1 ≥ 0), this evolution dynamics offers a joint modeling of both volatility clustering for {σt}

process and heavy-tail clustering for {αt} process.
There aremany choices of the continuousmonotone functions η1(·) and η2(·). In this paperwe use the simple exponential

function a0 exp(−a1x). It is a simplified version of the widely used logistic function L
1+a0 exp(−a1x)

. Due to its monotonicity,
differentiability, and boundedness, the logistic function is employed in many studies of observation-driven time series
models (e.g. Hansen, 1994; Lundbergh et al., 2003; Boutahar et al., 2008; Hall et al., 2016). The simplification here is due
to Qt > µ, hence there is no need to have the 1 in the denominator of the logistic function for boundedness. We set a1 > 0
to ensure boundedness and let the sign of a0 control monotonicity of the exponential function.

For the rest of the paper, we consider the following model:

Qt = µ + σtY
1/αt
t , (4)

log σt = β0 + β1 log σt−1 − β2 exp(−β3Qt−1), (5)

logαt = γ0 + γ1 logαt−1 + γ2 exp(−γ3Qt−1), (6)

where {Yt} is a sequence of i.i.d. unit Fréchet random variables, 0 ≤ β1 ̸= γ1 < 1, β2 > 0, β3 > 0, γ2 > 0, and γ3 > 0.
One alternative for η1(·) and η2(·) is the widely used generalized autoregressive score (GAS) models by Harvey and

Chakravarty (2008) and Creal et al. (2013), which has been successfully employed in the literature of dynamic POT-GPD
models, see Massacci (2016) and Zhang and Schwaab (2017). However, as shown in A.5, in our dynamic GEV context, the
η1(·) and η2(·) implied under the GAS framework are complicated and may not be monotone, and thus may suffer from lack
of interpretability.

The exponential function is simple, flexible and at the same time intuitive and interpretable. Although the exponential
function implies an upper bound for the {σt} and {αt} process,3 as demonstrated in Hansen (1994) for logistic functions,
the boundedness does not affect the flexibility of the model but facilitates numerical and technical tractability. Moreover,
as shown in Section 5, the current model can flexibly capture dynamics of both the scale parameter and the tail index, and
offers an accurate modeling of the maxima in financial time series. Extensions of AcF to allowing µt to vary more freely can
be implemented by imposing an ARMA structure on µt with added complexity and potential model instability. A further
justification of AcF is given in Section 2.4 under a general factor model setting.

To our best knowledge, this is the first formal presentation of dynamic GEV model that offers a complete dynamic
treatment for both the scale parameter σt and the tail index αt . In contrast to the static GEV, AcF is a time series model
of the conditional maxima. Given all the past information Ft−1, the conditional distribution of maxima Qt is Fréchet(µ, σt ,
αt ), where (µ, σt , αt )∈ Ft−1.

Remark 1. AcF can be easily extended to include q1 autoregressive terms of log σt and logαt , and q2 lagged terms of η(Qt ),
similar to that of GARCH(q1, q2) model. Similar theoretical properties can be derived and similar estimation procedure can
be used. Our empirical experience shows that the extension does not necessarily improve the performance of the model,

3 As shown in A.5, the η1(·) and η2(·) implied by GAS also give an upper bound on the {σt } and {αt } process.



Please cite this article in press as: Zhao Z., et al., Modeling maxima with autoregressive conditional Fréchet model. Journal of Econometrics (2018),
https://doi.org/10.1016/j.jeconom.2018.07.004.

Z. Zhao et al. / Journal of Econometrics ( ) – 5

but instead induces instability in estimation. A similar phenomenon has been observed in Creal et al. (2013) and Zhang and
Schwaab (2017) for POT-GPD model. In this paper we focus on AcF(1,1) model.

Remark 2. The choice of η1(·) and η2(·) may require further consideration when the model is used for other applications,
as the exponential function used here is designed to accommodate volatility clustering and heavy tail clustering for
financial applications. An increasing η1(·) produces volatility clustering and a decreasing η2(·) produces heavy-tail clustering.
However, if it is observed that an extreme event tends to be followed by a period of ‘normal’ activities, then η2(·) may be
assumed to be an increasing function. In general, as long as η1(·) and η2(·) are continuous bounded functions, the probabilistic
properties shown below still hold and the same estimation procedure can be applied.

Remark 3. Wehave assumed that the conditional distribution ofQt is of Fréchet type since themain focus here is on financial
applications. It can be extended to other types of GEVs. In some cases a proper transformation can be used. For example,
if a random variable X follows Gumbel(µ, σ ), then exp(X) is Fréchet with location parameter 0, scale parameter exp(µ)
and tail index 1/σ . Hence, if {Xit}

p
i=1 are in the Domain of Attraction of Gumbel distribution (Type I GEV), an exponential

transformation of the data can be modeled with AcF.

2.3. Stationarity and ergodicity

The evolution schemes (5) and (6) can be written as

log σt = β0 + β1 log σt−1 − β2 exp(−β3(µ + σt−1Y
1/αt−1
t−1 )),

logαt = γ0 + γ1 logαt−1 + γ2 exp(−γ3(µ + σt−1Y
1/αt−1
t−1 )),

where {Yt} is an i.i.d. sequence of unit Fréchet random variables. Hence {σt , αt} form a homogeneous Markov chain in R2.
The following theorem gives a general sufficient condition under which the process is stationary and ergodic.

Theorem 1. For an AcF with β2, β3, γ2, γ3 > 0, β0, γ0, µ ∈ R, and 0 ≤ β1 ̸= γ1 < 1, the latent process {σt , αt} is stationary
and geometrically ergodic.

The proof can be found in A.1. Since {Qt} is a coupled process of {σt , αt} through (4), {Qt} is also stationary and ergodic.
Unlike GARCH model, the stationarity of AcF mainly requires the autoregressive coefficient 0 ≤ β1 ̸= γ1 < 1 with no
restriction on the parameters associatedwith the shock processQt−1. This is due to the boundedness of η1(Qt−1) andη2(Qt−1).

2.4. AcF under a factor model setting

In this section, we illustrate that the limiting form of maxima Qt under a general factor model framework leads to an AcF
model. Assume {Xit}

p
i=1 follow a general factor model,

Xit = fi(Z1t , Z2t , . . . , Zdt ) + σitεit ,

where {Xit}
p
i=1 are observed time series at time t , {Z1t , Z2t , . . . , Zdt} consist of observed and unobserved factors, {εit}

p
i=1 are

i.i.d. random noises that are independent with the factors {Zit}di=1, and {σit}
p
i=1 ∈ Ft−1 are the conditional volatilities of

{Xit}
p
i=1. The function fi : Rd

→ R is a Borel function.
This general factor model has been widely used for analyzing high dimensional panel data. The (dynamic) factor models

of Bai and Ng (2002), Geweke (1977), Stock andWatson (2011), Lam and Yao (2012), andmany others assume unobservable
factors. Asset pricing models of Sharpe (1964), Mossin (1966), Fama and French (1993), and others use observable factors.

One fundamental characteristic of many financial time series is that they are often heavy-tailed. To incorporate this
observation, we make the common assumption that the random noise {εit}

p
i=1 are i.i.d. random variables in the Domain

of Attraction of Fréchet distribution (Leadbetter et al., 1983). Specifically, we adopt the following definition:

Definition 1 (Leadbetter et al., 1983). A random variable ε is in the Domain of Attraction of Fréchet distribution with tail
index α if and only if xF = ∞ and 1 − Fε(x) ∼ l(x)x−α , α > 0, where Fε is the cdf of ε, l(x) is a slowly-varying function and
xF = sup{x : Fε(x) < 1}. Here and after, for two positive functions m1(x) and m2(x), m1(x) ∼ m2(x) means m1(x)

m2(x)
→ 1, as

x → ∞.

Distributions in Domain of Attraction of Fréchet distribution include a broad class of random variables such as Cauchy,
Lévy, Pareto and t distributions. To facilitate algebraic derivation, we further assume that for εit , lt (x) → Kt as x → ∞,
where Kt ∈ Ft−1 is a positive constant. This is a rather weak assumption with all the aforementioned random variables
satisfying this condition. Since Kt can be incorporated into each σit , without loss of generality, we set Kt = 1 in the following.
Under a dynamic model, we assume that the conditional tail index αt of εit evolves through time according to certain
dynamics (e.g. (6)) and αt ∈ Ft−1.

We also assume that

sup
1≤p<∞

sup
1≤i≤p

|fi(Z1t , Z2t , . . ., Zdt )| < ∞ a.s.
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Notice here the supremum is taken over p with the number of latent factors d fixed. This is a mild assumption and it
includes all the commonly encountered factor models. For example, if the factor model takes a linear form, fi(Z1t , . . . , Zdt ) =∑d

j=1β
(i)
j Zjt , a sufficient condition for the assumption to hold would be sup1≤p<∞sup1≤i≤p∥β

(i)
∥ < ∞.

We further assume that

lim
p→∞

p∑
i=1

σ
αt
it = ∞ and lim

p→∞
sup
1≤i≤p

σ
αt
it∑p

j=1 σ
αt
jt

= 0.

Intuitively, it means the magnitudes of conditional volatility σit are comparable to each other and there is no single Xit that
dominates the total volatility. For example, if σit = ciσt and all ci’s are in a compact positive interval, then the assumption
holds.

Given the assumptions, the following result gives the asymptotic conditional distribution of maxima Qt = max1≤i≤pXit
when p goes to infinity.

Proposition 1. Given Ft−1, denote apt = 0 and bpt =
(∑p

i=1σ
αt
it

)1/αt , we have, as p → ∞,

Qt − apt
bpt

d
→ Ψαt (x), (7)

where Ψαt (x) is a Fréchet type random variable with tail index αt and Ψαt (x) = exp
(
−x−αt

)
.

The proof of Proposition 1 can be found in A.2. Proposition 1 shows that under the framework of the general factor model
and some mild conditions, the conditional distribution of maxima Qt = max1≤i≤pXit can be well approximated by a Fréchet
distribution. In terms of stochastic representation, (7) can be rewritten as Qt ≈ σtY

1/αt
t , where Yt is a unit Fréchet random

variable and σt = bpt . To be more flexible and accurate in finite samples, a location parameter µt can be included. That is,

Qt ≈ µt + σtY
1/αt
t , (8)

where (µt , σt , αt ) are time-varying parameters. Settingµt = µ for parsimoniousmodeling, we obtain the dynamic structure
of {Qt} specified in (4).

Remark 4. In the general factor model, the cross-sectional dependence among Xit ’s, such as tail dependence, can be
introduced by the factor structures. Notice that the independence assumption on εit ’s is not essential for Proposition 1.
Based on the results of maxima in stationary series in Leadbetter et al. (1983), similar and more elaborate results can be
derived if we impose a stationarity assumption or block independence assumption on εit ’s.

Remark 5. Note that Proposition 1 can handle heterogeneous volatilities among {Xit}
p
i=1 via {σit}

p
i=1. The assumption that

{εit}
p
i=1 share the same tail index αt may seem to be strong, however, van Oordt and Zhou (2016) found it reasonable in

financial applications. See Kelly (2014) and Kelly and Jiang (2014) for a similar assumption. See Proposition 3 in the Appendix
for a more involved version of Proposition 1, which handles the case that {εit}

p
i=1 have heterogeneous tail indices.

Remark 6. The general factor model considered in this section is just an example whose limiting form of maxima coincides
with our proposed AcFmodel. In this paperwe are not focusing on the general factormodel. Instead, we focus on AcFmodels.

Remark 7. For the intra-day high-frequency returns of a stock, a sensible assumption (e.g. Bali andWeinbaum, 2007) is that
on the same day t , the high-frequency returns {Xit}

p
i=1 follow a stationary time series such as a GARCH process or a Stochastic

Volatility model. Under such a stationary assumption, the intra-daymaxima Qt asymptotically follows a Fréchet distribution
with the same tail index αt as the p high-frequency returns {Xit}

p
i=1 observed on day t (e.g. Davis and Mikosch, 2009a, b).

2.5. Connection between AcF and the dynamic POT-GPD approach

By Proposition 1 and Remark 7 in Section 2.4, the tail index αt of the maxima Qt corresponds to the tail index of the
underlying time series {Xit}

p
i=1 under both the cross-sectional panel data setting and the high-frequency univariate time

series setting. Thus, the estimated tail index given by AcF can approximate the underlying true tail index process of {Xit}
p
i=1

and can then be used to study the tail risk for both types of data.
As mentioned before, AcF belongs to the dynamic Maxima-GEV approach, while most existing literature on time-varying

tail risk use the dynamic POT-GPD approach to estimate the tail index. For example, see Kelly (2014) and Kelly and Jiang
(2014) for the cross-sectional panel data setting and see Zhang and Schwaab (2017) for the high-frequency univariate time
series setting.

As is well known (e.g. Coles, 2001), both Maxima-GEV and POT-GPD provide consistent estimation of the true tail index.
One advantage of Maxima-GEV is that it offers a direct modeling of the maxima, which may be of interest especially under
the high-frequency univariate time series setting. Also, for POT-GPD, the choice of the threshold can be a sensitive tuning
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parameter. On the other hand, POT-GPD picks up all ‘‘relevant’’ observations above a high threshold andmaymake better use
of the available information comparing toMaxima-GEVwhich only focuses on themaxima. In terms of estimation efficiency,
the general view is that POT-GPD can be more efficient than Maxima-GEV under many cases since on average more data are
available for the estimation of POT-GPD, while POT-GPD and Maxima-GEV often have comparable performances for large
sample sizes. In financial applications, the sample size is usually large, thus AcF offers a promising alternative for accurately
estimating the time-varying tail index while also providing a direct modeling of the maxima behavior. See Ferreira and
deHaan (2015) and references therein for a nice summary and further theoretical comparisons between the two approaches.

Remark 8. The objective of both AcF and the popular dynamic POT-GPD approach is to model the time-varying tail index
rather than the full distributional behavior of the underlying financial time series. The tail index is the focus of the tail risk
literature. It provides a measure of the tail risk for a given stock/portfolio and is of interest in a wide range of applications,
such as global markets connectedness during crisis, asset pricing theory and effectiveness assessment of central bank
intervention (see e.g. Kelly and Jiang, 2014; Massacci, 2016; Zhang and Schwaab, 2017).

3. Parameter estimation

We denote all the parameters in the model by θ = (β0, β1, β2, β3, γ0, γ1, γ2, γ3, µ) and denote Θs = {θ |β0, γ0, µ ∈

R, 0 ≤ β1, γ1 < 1, β2, β3, γ2, γ3 > 0}. In the following, we assume that all allowable parameters are in Θs and denote the
true parameter by θ0 = (β0

0 , β
0
1 , β

0
2 , β

0
3 , γ

0
0 , γ 0

1 , γ 0
2 , γ 0

3 , µ0).
The conditional p.d.f. of Qt given (µ, σt , αt ) is

ft (θ ) = f (Qt |σt , αt ) = αtσ
αt
t (Qt − µ)−(αt+1) exp

{
−σ

αt
t (Qt − µ)−αt

}
.

Hence, by conditional independence, the log-likelihood function with observations {Qt}
n
t=1 is

Ln(θ ) =
1
n

n∑
t=1

lt (θ ) =
1
n

n∑
t=1

[
logαt + αt log σt − (αt + 1) log(Qt − µ) − σ

αt
t (Qt − µ)−αt

]
,

where {σt , αt}
n
t=1 can be obtained recursively through (5) and (6), with an initial value (σ1, α1).

Notice here the true value of (σ1, α1), denoted as (σ 0
1 , α0

1), is unknown since the state variables {σt , αt} is a hidden
processes. Fortunately, with 0 ≤ β1, γ1 < 1, the influence of (σ1, α1) on future (σt , αt ) decays exponentially as t increases,
hence its impact on parameter estimation will be minimum with a sufficiently large sample size. Theorems 2 and 3 show
that the consistency and asymptotic normality of MLE do not depend on whether (σ 0

1 , α0
1) is known and the asymptotic

distribution does not depend on the initial value (σ1, α1). For simplicity, we use the estimated (σ̂ , α̂) from the static GEV as
the initial value for (σ1, α1).

Denote the log-likelihood function based on an arbitrary (σ̃1, α̃1) as L̃n(θ ). Theorems 2 and 3 show that there always exists
a sequence θ̂n, which is a local maximizer of L̃n(θ ), such that θ̂n is consistent and asymptotically normal, regardless of the
initial value (σ̃1, α̃1).

Theorem 2 (Consistency). Assume the parameter spaceΘ is a compact set of Θs. Suppose the observations {Qt}
n
t=1 are generated

by a stationary and ergodic AcF with true parameter θ0 and θ0 is in the interior of Θ , then there exists a sequence θ̂n of local
maximizer of L̃n(θ ) such that θ̂n →p θ0 and ∥θ̂n − θ0∥ ≤ τn, where τn = Op(n−r ), 0 < r < 1/2. Hence θ̂n is consistent.

By the differentiability of L̃n(θ ) with respect to θ , the sequence θ̂n is also the solution to the score function ∂ L̃n
∂θ

(θ ) = 0.
Theorem 2 guarantees the existence of a sequence of consistent MLE θ̂n and is a result about the local behavior of the
likelihood function L̃n(θ ) near the true parameter value θ0. The uniqueness of MLE remains an open question due to
the complication brought by µ. The same difficulty also applies to the MLE of the static GEV as noted in Smith (1985).
Proposition 2 gives a partial answer to the asymptotic uniqueness of MLE.

Proposition 2 (Asymptotic Uniqueness). Denote Vn = {θ ∈ Θ|µ ≤ cQn,1 + (1 − c)µ0} where Qn,1 = min1≤t≤nQt , under
the conditions in Theorem 2, for any fixed 0 < c < 1, there exists a sequence of θ̂n = argmaxθ∈Vn L̃n(θ ) such that, θ̂n →p θ0,
∥θ̂n − θ0∥ ≤ τn, where τn = Op(n−r ), 0 < r < 1/2, and P(θ̂n is the unique global maximizer of L̃n(θ ) over Vn) → 1.

Since L̃n(θ ) is defined on Qt > µ, the parameter space for the maximization of L̃n(θ ) is actually Θn = {θ ∈ Θ|µ < Qn,1}.
Note that for any 0 < c < 1, Vn ⊆ Θn since µ0 < cQn,1 + (1 − c)µ0 < Qn,1. Proposition 2 states that there is an asymptotic
unique MLE over Vn, where Vn can be made arbitrarily close to Θn by the fact that Qn,1 ↘ µ0 a.s. and by setting c close to 1.
In practice, we take θ̂n = argmaxθ∈Θn L̃n(θ ). Numerical experiments confirm its good performance under finite sample.

Theorem 3 (Asymptotic Normality). Under the conditions in Theorem 2, we have
√
n(θ̂n − θ0)

d
→ N(0,M−1

0 ), where θ̂n is that
in Theorem 2 and M0 is the Fisher Information matrix evaluated at θ0. Further, the sample variance of plug-in estimated score
functions {

∂
∂θ
lt (θ̂n)}nt=1 is a consistent estimator of M0.
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Fig. 2. Finite sample empirical distribution of themaximaQ and its corresponding Fréchet limit,with different combinations of p anddegrees of freedom (df)
of the t-distribution in the factor model.

The proofs of Theorems 2 and 3 and Proposition 2 can be found in A.3. The main technical difficulty is that the MLE
here is irregular in the sense that µ affects the support of the observations Qt (since Qt > µ), so regularity conditions
of standard MLE are violated. Another technical complication is caused by the fact that the true initial value (σ 0

1 , α0
1) is

unknown. In the literature, Smith (1985) proves consistency and asymptotic normality for such irregular MLE for a wide
range of distributions, including Fréchet distribution, with i.i.d. observations. See Dombry (2015), Bücher and Segers (2016,
2017) for a recent development on this topic. Our proof extends the theoretical result to a dynamic model for dependent
time series under stationary and ergodic conditions. We note that this is the first formal treatment for statistical properties
of MLE under dynamic EVT framework. The technical tools developed here can also be used for dynamic POT-GPD models.

4. Simulation study

4.1. Convergence of maxima in factor model

In this section, we conduct numerical experiments to investigate the finite sample behavior of Qt described in Proposi-
tion 1. Specifically, we study the convergence of the marginal distribution of Qt to its Fréchet limit under a one-time period
factor model. To simplify notation, we drop the time index t in this section. We simulate data from the following one-factor
linear model,

Xi = βiZ + σiεi, i = 1, . . . , p,

where Z ∼ N(0, 1) is the latent factor, βi’s are i.i.d. random coefficients generated from a uniform distribution U(−2, 2)
and εi’s are i.i.d. t-distributions with degrees of freedom ν. The σi’s are i.i.d. random variables generated from a mixture of
uniform distribution 1

2U(0.5, 1.5) +
1
2U(0.75, 1.25) such that most σi’s are moderate in (0.75, 1.25) and the ratio between

maximum andminimum σi’s is 3. This setting roughlymatches the pattern of volatilities of different stocks in S&P100 index.
For t-distribution, ν corresponds to the tail index α in Definition 1. We set Q = max1≤i≤p(Xi).

We compare the finite sample empirical distribution of Q and its corresponding Fréchet limit stated in Proposition 1
under different ν and p. For each (ν, p) combination, 1000 sets of i.i.d. {Xi}

p
i=1 are generated, resulting in 1000 sampled

Q = max1≤i≤p(Xi). Fig. 2 plots the empirical cdf of the normalized Q in (7) along with the corresponding limiting Fréchet
distribution. It is clearly seen that as p increases, the empirical distribution of Q approaches its Fréchet limit. A large ν

requires larger p for accurate approximation. We also conduct experiments with t-distributed latent factors Z and observe
similar results.
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Table 1
The performance of AcF on approximation of 1-day conditional VaR for {Qt } process with independent errors εit and the correlation between the true tail
index and the one estimated by AcF.

T1 q̄ (q0 = 0.1) q̄ (q0 = 0.05) q̄ (q0 = 0.01) mean cor. median cor.

1000 0.095 0.049 0.012 0.871 0.928
2000 0.096 0.049 0.012 0.909 0.952
5000 0.097 0.051 0.012 0.947 0.973

4.2. AcF estimation for conditional VaR of maxima

In this section, we investigate the temporal approximation ability of AcF to themaxima {Qt} process from a general factor
model in terms of 1-day conditional Value at Risk (cVaR). cVaR is the most commonly used measure for tail risk in financial
applications. For 0 < q < 1, cVaRq

t is defined as the 1 − q extreme quantile of Qt given all past information Ft−1, where q is
often taken to be 0.1, 0.05 or 0.01. Here, we model the {Qt} process using AcF and calculate the corresponding cVaRq

t for Qt
using the fitted AcF.

Specifically, we simulate the {Qt} process from a similar one-factor linear model as in Section 4.1,

Xit = 0.009(βiZt + σiεit ), i = 1, . . . , p; t = 1, . . . , T ,

where Zt ∼ N(0, 1) is the latent factor, βi’s are i.i.d. random coefficients generated from U(−2, 2), σi’s are i.i.d. random
variables generated from amixture of uniform distribution 1

2U(0.5, 1.5)+ 1
2U(0.75, 1.25) and εit ’s follow i.i.d. t-distributions

with degrees of freedom νt . The multiplier 0.009 is used to control the magnitude of Xit to be at the same level of typical
stock returns. We fix p = 100 and change the observation length T throughout this section. For each day t we obtain
Qt = max1≤i≤pXit . We allow νt to evolve, following

log νt = γ0 + γ1 log νt−1 + γ2 exp(−γ3Qt−1),

which resembles the tail index evolution scheme in AcF. Note that the volatility of εit also evolves implicitly through time
due to the dynamics of νt . We set the parameters to be (γ0, γ1, γ2, γ3) = (−0.1, 0.9, 0.3, 5) such that the typical range of νt
is [2, 6]. Note that on day t , {Xit}

p
i=1 are dependent and have heterogeneous volatilities.

We use AcF to model the simulated {Qt}
T
t=1 process and assess the goodness of approximation by AcF’s out-sample

performance on predicting 1-day cVaR for Qt . Specifically, we first fit AcF based on the training set {Qt}
T1
t=1. Then using

the fitted AcF, we calculate cVaRq
t for each Qt on the test set {Qt}

T1+T2
t=T1+1. The true {Qt}

T1+T2
t=T1+1 are then compared with

the {cVaRq
t }

T1+T2
t=T1+1 and the number of violations is recorded. A violation happens when the observed daily maxima Qt is

larger than the corresponding cVaRq
t given by AcF. If AcF approximates the tail behavior of {Qt} process well, the expected

proportion of violations in the test set should be close to q.
Besides the 1-day cVaR, we also assess the goodness of approximation by calculating the correlation between the true

process νt and the estimated process α̂t byAcF in the training set {Qt}
T1
t=1. Based on the fitted AcF and the observations {Qt}

T1
t=1,

we can recover the estimated tail index α̂t . If AcF is accurate and robust, the correlation between νt and the estimated α̂t is
expected to be high, which implies that AcF can detect the true evolution of the tail index νt .

We set T1 = 1000, 2000, 5000, T2 = 100 and q0 = 0.1, 0.05, 0.01. For each combination of (T1, T2, q0), we repeat the
experiment 500 times. The ith experiment gives a realized violation percentage qi and we report the average percentage,
q̄ =

∑500
i=1qi/500, in Table 1.4 Each experiment also gives a realized correlation between νt and α̂t , and we report the mean

and median correlation observed in the 500 experiments. As shown in Table 1, the 1-day cVaR given by AcF performs well
with the actual violation rate close to the target rate, and the mean and median correlation are reasonably high which
indicates that AcF can detect the evolution of the true tail index accurately. Also, a larger training set tends to produce better
performance.

Extension 1 — Dependent errors εit : To further investigate the performance of AcF when εit ’s are dependent, we repeat
the experiment for the case where εit ’s are generated from multivariate t-distributions. Specifically, we assume εit ’s are
generated from 10 different multivariate t-distributions of size 10. There are 45 pairwise correlations in the correlation
matrix of each multivariate t-distribution, 30 of them are generated from U(0, 0.3), 10 are from U(0.3, 0.4) and 5 are from
U(0.4, 0.5). For each day t , the 100 εit ’s are generated independently from the 10 multivariate t-distributions with degrees
of freedom νt and corresponding correlation matrices. Note that marginally each εit is still a t-distribution with degrees of
freedom νt . We keep all the other settings unchanged and report the result in Table 2. Again, AcF performs well in terms of
1-day cVaR. Though the mean and median correlation are slightly lower than the ones for independent errors, they are still
reasonably high. Thus, it implies that AcF is robust when there are mild dependence among the errors.

Extension 2 — Heterogeneous (in tail indices) errors εit : To further investigate the performance of AcF when εit ’s have
heterogeneous tail indices, we repeat the experiment for the case where εit ’s are generated independently from different

4 We also calculate the p-values for testing E(qi) = q0 using one-sample Z-test based on {qi}500i=1 , the result confirms that AcF can approximate the cVaR
of Qt accurately. The result is omitted to conserve space and is available upon request.
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Table 2
The performance of AcF on approximation of 1-day conditional VaR for {Qt } process with dependent errors εit and the correlation between the true tail
index and the one estimated by AcF.

T1 q̄ (q0 = 0.1) q̄ (q0 = 0.05) q̄ (q0 = 0.01) mean cor. median cor.

1000 0.094 0.048 0.012 0.862 0.921
2000 0.097 0.047 0.011 0.876 0.936
5000 0.096 0.048 0.011 0.918 0.960

Table 3
The performance of AcF on approximation of 1-day conditional VaR for {Qt } process with independent errors εit having heterogeneous tail indices and
the correlation between the true tail index and the one estimated by AcF.

T1 q̄ (q0 = 0.1) q̄ (q0 = 0.05) q̄ (q0 = 0.01) mean cor. median cor.

1000 0.098 0.051 0.013 0.864 0.922
2000 0.097 0.050 0.012 0.905 0.953
5000 0.098 0.051 0.012 0.956 0.974

univariate t-distributions. Specifically, we assume εit ’s are generated from 100 different univariate t-distributions with
different tail indices ciνt , where ci are generated independently from U(0.8, 1.2) for i = 1, . . . , 100. For each day t , the
100 εit ’s are generated independently such that εit is simulated from the univariate t-distribution with tail index ciνt . We
keep all the other settings unchanged.

Note that though the errors have heterogeneous tail indices {ciνt}
100
i=1, they share the same time-varying component νt .5

As noted by Kelly (2014), νt is ‘‘common to all assets and may therefore be viewed as economy-wide extreme event risk in
returns’’, and it is desirable for AcF to uncover the dynamics of νt such that the correlation between α̂t and νt is close to 1.
We report the result in Table 3. AcF performs well in terms of 1-day cVaR and the correlation between α̂t and νt is close to
1, indicating the AcF is robust against heterogeneous tail indices and is able to detect the true dynamics of the tail index νt .

The results in Tables 1 to 3 show that, under various scenarios, the cVaR given by AcF can achieve the desired violation
rate q0 and the tail index estimated by AcF is highly correlated with the true tail index νt . All together, it indicates that AcF
can accurately approximate the tail behavior of themaxima {Qt} process that originates from a general factor model and AcF
is robust under misspecification of the scale parameter.

4.3. Performance of the maximum likelihood estimator

To study the finite sample performance of the MLE, we simulate data from an AcF with the following parameters
(β0, β1, β2, β3, γ0, γ1, γ2, γ3, µ) = (−0.050, 0.96, −0.051, 6.68, −0.068, 0.89, 0.33, 5.33, −0.069). This set of parameters
is the MLE obtained from an analysis of the S&P100 returns using AcF, shown in Section 5.1. Under this setting, the typical
range of αt is [2, 8] and the typical range of σt is [0.06, 0.21].

We investigate the performance of MLE and the corresponding confidence intervals with sample sizes N = 1000, 5000,
10 000. For each sample size,we conduct 500 experiments. Table 4 shows the average of the estimates, the standard deviation
from the 500 experiments, and the percentage of estimates that fall into the various confidence intervals based on the
asymptotic theory. As can be seen fromTable 4, both the bias and variance of theMLE decrease as the sample sizeN increases,
demonstrating the consistency of theMLE under correctmodel specification. Note that the performance of theMLE is already
satisfactory when N = 1000. Also, the coverage rate of the asymptotic confidence interval is close to the target rate and
improves with the increase of the sample size, validating the asymptotic properties presented in Section 3.

5. Real data applications

In this section, we present two real data applications of AcF, one on the cross-sectional maxima of negative log-returns of
stocks in twomajor U.S. stock indices and one on the intra-day maxima of negative log-returns from high-frequency foreign
exchange trading. In both cases, AcF shows its superiority over the static GEV for modeling maxima and its ability to reveal
the time-varying nature of the financial market tail risk. Moreover, AcF demonstrates its potential usefulness as a market
tail risk measure and an early warning signal for potential extreme movement in the financial market.

5.1. Cross-sectional maxima of the negative daily log-returns of stocks in S&P100 index and DJI30 index

In this section, we consider the cross-sectional maxima of the negative daily log-returns (i.e. daily losses) of component
stocks in S&P100 Index (hereafter S&P100) and Dow Jones Industrial Average Index (hereafter DJI30) respectively. For both
indices, the time horizon we consider here is from January 1, 2000 to December 31, 2014. The S&P100 index includes 100
leading U.S. stocks and represents about 51% of the market capitalization of the U.S. equity market. The DJI30 index is a

5 See Kelly (2014) and Kelly and Jiang (2014) for similar assumptions on cross-sectional returns.
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Table 4
Numerical results for performance of MLE with sample size 1000, 5000, 10 000. Mean and S.D. are the sample mean and standard deviation of the MLE’s
obtained from 500 simulations. 90% C.I. reports the coverage rate of the 90% C.I. constructed from the estimated Fisher Information matrix; 95% C.I. and
99% C.I. report corresponding coverage rates.

N = 1000 γ0 γ1 γ2 γ3 β0 β1 β2 β3 µ

True value −0.068 0.890 0.330 5.33 −0.050 0.960 −0.051 6.68 −0.069
Mean −0.060 0.884 0.346 6.28 −0.051 0.956 −0.054 5.88 −0.066
S.D. 0.029 0.028 0.058 1.93 0.028 0.019 0.023 3.25 0.011
90% C .I. 81 82 90 91 85 81 75 78 88
95% C .I. 84 88 93 94 87 87 79 80 95
99% C .I. 88 92 97 97 95 94 87 85 98

N = 5000 γ0 γ1 γ2 γ3 β0 β1 β2 β3 µ

True value −0.068 0.890 0.330 5.33 −0.050 0.960 −0.051 6.68 −0.069
Mean −0.066 0.889 0.332 5.52 −0.051 0.959 −0.052 6.53 −0.069
S.D. 0.014 0.012 0.029 0.88 0.012 0.008 0.009 1.83 0.005
90% C .I. 88 87 90 85 88 87 88 87 86
95% C .I. 92 96 93 94 92 91 93 93 94
99% C .I. 95 99 98 99 98 98 97 97 99

N = 10 000 γ0 γ1 γ2 γ3 β0 β1 β2 β3 µ

True value −0.068 0.890 0.330 5.33 −0.050 0.960 −0.051 6.68 −0.069
Mean −0.067 0.890 0.330 5.44 −0.050 0.960 −0.051 6.55 −0.069
S.D. 0.010 0.007 0.018 0.61 0.007 0.005 0.006 1.37 0.003
90% C .I. 90 88 88 85 89 89 86 89 90
95% C .I. 93 94 94 94 92 94 93 94 98
99% C .I. 98 100 100 99 97 98 98 98 99

Table 5
MLE for cross-sectional maxima of negative daily log-returns for S&P100 (top) and DJI30 (bottom) from January 1, 2000 to December 31, 2014.

S&P100 γ0 γ1 γ2 γ3 β0 β1 β2 β3 µ

Mean −0.068 0.890 0.328 5.33 −0.050 0.961 −0.051 6.68 −0.069
S.D. 0.014 0.013 0.063 1.27 0.006 0.004 0.0072 1.01 0.006

DJI30 γ0 γ1 γ2 γ3 β0 β1 β2 β3 µ

Mean 0.023 0.895 0.261 16.32 −0.052 0.964 −0.047 7.38 −0.059
S.D. 0.016 0.013 0.041 3.529 0.005 0.004 0.0066 0.813 0.006

major U.S. stock index, consisting of 30 largest publicly owned companies based in U.S. Both indices are arguably the most
important and most-quoted U.S. financial market indicators and provide indications of sentiments in the entire U.S. stock
market. To maintain a better management of financial risk, it is essential for financial institutions, especially mutual funds
and banks, to understand the cross-sectional tail risks of S&P100 and DJI30.

We present the AcFmodeling result for S&P100 in detail. For each trading day t we calculate the negative daily log-returns
of each component stock in S&P100 to obtain {Xit}

100
i=1 and then obtain the daily cross-sectional maxima Qt = max1≤i≤100Xit .

The time series {Qt} has 3773 observations and is shown in the bottom panel of Fig. 3.
The estimation result of AcF is summarized in Table 5. The estimated autoregressive parameter β̂1 for the scale parameter

{σt} process is 0.96, which suggests a strong persistence of the {σt} series. The estimated scale parameter {σ̂t} (solid line)
is plotted in Fig. 4. For comparison, we also fit a GARCH(1,1) model for each component stock in S&P100 and plot the daily
average volatility given by the GARCHmodels (dashed line) across the 100 stocks in Fig. 4. The two series move very closely
with each otherwith an overall correlation of 0.918. It suggests that AcF’s dynamic scale parameter σt is an accuratemeasure
of market volatility.

The estimated autoregressive parameter γ̂1 for the tail index {αt} process is 0.89, indicating a strong persistence in the
tail index process. The estimated tail index {α̂t} is shown in the top panel of Fig. 3. The estimated tail index by AcF is roughly
in the range of 2 to 8, which agrees with the empirical finding of Massacci (2016) via a dynamic POT-GPD model. The two
periods of persistent small tail index (αt < 4) coincide with the early 2000s U.S. recession and the 2008 financial crisis. Note
that the difference between αt = 2 and αt = 8 is very significant. A Fréchet type random variable has its kth moment if
and only if α > k. It is also noted that almost all α̂t ’s are greater than 2, hence the conditional mean and variance of the
cross-sectional maxima always exist, which agrees with the existing literature (e.g. Hansen, 1994).

The stationary mean of (αt , σt , µ) of the estimated AcF is (5.73, 0.099, −0.069). We also fitted the static GEV model to
the data, assuming the Qt ’s are i.i.d. observations. The estimated parameters are (α̂, σ̂ , µ̂) = (2.56, 0.058, −0.025). It is seen
that the estimated tail index of the static GEV model is suspiciously low (see Figs. 1 and 3). It is clear that the static GEV
fails to adequately model the time-varying tail risk. On the other hand, the estimated tail index α̂t given by AcF matches the
general pattern of the estimated tail index obtained by the moving-window GEV in the ad-hoc analysis shown in Fig. 1. As
shown in Fig. 3, there is a clear negative association between the daily maxima {Qt} series and the estimated tail index {α̂t},
making α̂t a useful measure of the underlying market tail risk, i.e. a market stability index.
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Fig. 3. Estimated tail index {α̂t } (top) and cross-sectional maximum negative daily returns {Qt } (bottom) from January 1, 2000 to December 31, 2014 for
S&P100 Index.

Fig. 4. Estimated scale parameter {σ̂t } by AcF (solid line) v.s Estimated average volatility by GARCH (dashed line) from January 1, 2000 to December 31,
2014. Both series are standardized to be zero mean and unit variance for comparison.

Wehave also applied the sameprocedure toDJI30. The estimation result of AcF is shown in Table 5 and is similar to the one
obtained for S&P100. Due to limited space, we only present its estimated tail index plot (Fig. 5) here. The typical range of tail
index for DJI30 is [2.5, 10], with a slight up-shift compared to the one of S&P100, indicating that the tail risk of DJI30 is lower
than that of S&P100. This is reasonable considering that the companies in DJI30 are more stable and well-established than
those in S&P100. The correlation between the estimated scale parameter {σ̂t} fromAcF and the average volatility obtained by
fitting GARCHmodel to each stock is 0.909. It again indicates that the evolution scheme of AcF’s scale parameter captures the
dynamics of the underlying stock market volatility very well. Note that the tail indices of both S&P100 and DJI30 experience
some sudden downside movement around late 2007 (marked by vertical dashed lines in the Figures) to reach their lowest
level for the past several years. This unusual movement of tail indices may be seen as an early warning signal of the 2008
financial crisis and shows the possibility of using α̂t as a market stability indicator such as VIX.

The overall correlation between the estimated tail indices of S&P100 and DJI30 is 0.93, suggesting strong common trend
between tail risks of the two markets. Based on the estimated tail indices of S&P100 (denoted by {α̂S

t }) and DJI30 (denoted
by {α̂D

t }), we further investigate the tail-connectedness between the two major stock markets following the procedure
in Massacci (2016). Let α̂t = (α̂S

t , α̂
D
t ) be the estimated tail index from the two stock markets and let Σ̂ be the sample

covariance matrix of α̂t based on a sample {α̂t}
T
t=1. Using principal components as in Kritzman et al. (2011) and Billio et al.

(2012), Massacci (2016) proposes to use the ratio between the maximum eigenvalue of Σ̂ and the sum of all eigenvalues
of Σ̂ as a measure of tail-connectedness, which ‘‘monotonically increases in connectedness among the elements of α̂t and
quantifies the degree of dependence in tail risk among different assets’’ (in our case, S&P100 and DJI30). Following Billio
et al. (2012), we estimate the tail-connectedness measure using a 36-month (approximately 756 days) rolling window and
plot the estimated measures in Fig. 6. As expected, the two stock markets have strong connectedness with the maximum
eigenvalue explaining between 80% to almost 100% of the variation in tail risk. The two periods where the connectedness
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Fig. 5. Estimated tail index {α̂t } (top) and cross-sectional maximum negative daily return {Qt } (bottom) from January 1, 2000 to December 31, 2014 for
DJI30 Index.

Fig. 6. Estimated tail connectedness measures based on a 36-month rolling window between the tail indices of S&P100 and DJI30 from January 1, 2000 to
December 31, 2014.

measure is close to 1 correspond to the early 2000s U.S. recession and the 2008 financial crisis. Our results resemble those
in Diebold and Yilmaz (2009) and Massacci (2016), indicating the tail risks of financial assets are more connected during
market turmoil.

5.2. Intra-day maxima of 3-minute negative log-returns for USD/JPY foreign exchange rate

In this section, we consider the modeling of intra-daymaxima of 3-minute6 negative log-returns from USD/JPY exchange
trading. Specifically, we collect the historical 3-minute intra-day exchange rate of USD/JPY from January 1, 2008 to June 26,
2013. The 3-minute negative log-returns {Xit}

p
i=1 are obtained and intra-day maxima Qt are calculated. The total length of

the series is 1616. The maxima {Qt} series is shown in Fig. 7(a).
We fit AcF to the intra-day maxima series. Estimated parameters with their standard deviations are shown in Table 6.

Similar to the result in the stock market, the estimated autoregressive parameter β̂1 for {σt} is 0.89, showing a strong
persistence of the {σt} series; while the autoregressive parameter γ̂1 for {αt} is 0.59, indicating a less persistent tail index
series for the foreign exchange market. The stationary mean of (αt , σt , µ) is (3.47, 0.167, −0.051) under the estimated AcF,
while (α̂, σ̂ , µ̂) = (3.25, 0.180, −0.068) for the static GEV model. The static GEV model gives a relatively smaller estimated
tail index.

6 As pointed out by an anonymous referee, in general it is customary to use 5-minute intervals to avoid the effect of microstructure noise (Diebold and
Yilmaz, 2014). Here, we use the 3-minute interval data obtained from Zhang and Zhu (2016) and we believe the result should mainly stay the same if we
switch to the 5-minute interval data.
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Table 6
MLE for intra-day maxima of 3-minute negative log-returns for USD/JPY from January 1, 2008 to June 26, 2013.

γ0 γ1 γ2 γ3 β0 β1 β2 β3 µ

Mean 0.448 0.587 0.658 20.84 −0.120 0.890 −0.195 6.59 −0.051
S.D. 0.144 0.123 0.203 4.52 0.016 0.012 0.024 0.955 0.010

Fig. 7. (a) Daily maxima of 3-minute negative log-returns of USD/JPY from January 1, 2008 to June 26 2013; (b) Estimated tail index {α̂t } from the fitted
AcF; (c) Quantile–quantile plot of real data and simulated data from the fitted AcF.

The estimated tail index {α̂t} is shown in Fig. 7(b). It is seen that the tail index is small around 2009, showing a riskier
foreign exchange market during the financial crisis. Compared to the tail index of stock market, the tail index series here is
alsomore volatile due to the smaller autoregressive parameter γ̂1. The range of the tail index is roughly [3, 5], which suggests
that the high-frequency trading of USD/JPY has relatively high risks, as observed by Malinowski et al. (2015). We simulate
a {Qt} series of length 10000 from the estimated AcF and compare its stationary marginal distributions with the observed
series using a quantile–quantile plot in Fig. 7(c). It confirms that AcF is a suitable model for the series.

We further test the out-sample performance of AcF for predicting 1-day cVaRq for the intra-day maxima. First, we fit AcF
using the 1000 observations where 1 ≤ t ≤ 1000 (roughly 4 years). For the rest 616 observations where 1001 ≤ t ≤ 1616,
based on the fitted AcF and past information Ft−1, we calculate their 1-day cVaRq0 at q0 = 0.1, 0.05, 0.01, 0.005, 0.001. The
true daily maxima are then compared with the estimated cVaR and the number of violations is recorded. For comparison,
we also fit the static GEV model using the first 1000 observations and calculate the corresponding 1-day cVaR for the rest
616 observations.

Table 7 shows the comparison results. For each q0, the table presents the number of expected violations (616q0) and
the number of actual violations. We also report the p-value of a binomial test7 for the hypothesis that the actual violation
probability and the corresponding q0 are the same. It is clearly seen that the 1-day cVaR based on AcF performs extremely
well, with large p-values for all levels of q0. On the other hand, the static GEV tends to producemuchmore conservative cVaR
estimates. The comparison clearly demonstrates the time-varying nature of the tail index and the importance of having a
dynamic structure such that current market condition is incorporated in the estimation of cVaR.

6. Conclusion

In this paper, we propose a general dynamic GEV framework for the modeling of time series of maxima and the time-
varying tail risk. By allowing time-varying scale parameter and tail index of a conditional Fréchet distribution, AcF provides
a direct modeling of dynamics of maxima in financial time series and offers a new angle to study the tail risk dynamics in
financial markets. Probabilistic properties of AcF are investigated. We implement a maximum likelihood estimator for AcF
and investigate its asymptotic properties, using a set of unique technical tools due to the irregularity of the MLE. The real
data examples illustrate the efficacy of AcF in practice and its potential broad use in financial risk management and other

7 Under the null hypothesis, the number of violations should follow a binomial distribution with success probability q0 . See Kratz et al. (2016) for more
details of the binomial test.
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Table 7
Result of 1-day cVaR calculated from AcF and static GEV for intra-day maxima of negative log-returns of USD/JPY exchange rate.

q0 (%) Expected Violation AcF Static GEV

Violation p-value Violation p-value

10 61.6 60 0.89 32 0.00
5.0 30.8 35 0.41 17 0.01
1.0 6.2 8 0.41 2 0.10
0.5 3.1 4 0.56 1 0.39
0.1 0.6 0 1.00 0 1.00

types of tail risk monitoring. A separate empirical paper is being prepared to demonstrate the economic applications of AcF
more thoroughly.

The AcF can be extended to incorporate other structures and phenomenon observed in real applications. One potential
extension is to assume a parametric dynamic structure for the location parameter µ. An ARMA model is a natural choice
and is currently being studied. The choices for function η(·) may need further study when it comes to different applications.
Another natural extension is to construct multivariate AcF for multivariate maxima. Incorporating the idea of Chen and Fan
(2006), an extreme value copula can be used to ‘‘link’’ different univariate AcF models and thus provide a natural model for
multivariate time series of maxima. One limitation of AcF is that it cannot model time series with marginal distributions of
Weibull type, a distribution used in certain applications. Further investigation is required.

Appendix

A.1. Proof of stationarity and ergodicity

Proof of Theorem 1. The proof of Theorem 1 follows closely the result of Chan and Tong (1994) on non-linear dynamic
system. In the following, we assume {σt , αt} comes from an AcF with parameter θ ∈ Θ as specified in Theorem 1. Without
loss of generality, in the following proof, we assume µ = 0. In AcF, (log σt , logαt ) forms a non-linear dynamic system
according to the following equation,

log σt = β0 + β1 log σt−1 − β2 exp(−β3(σt−1Y
1/αt−1
t−1 )),

logαt = γ0 + γ1 logαt−1 + γ2 exp(−γ3(σt−1Y
1/αt−1
t−1 )).

To fit {log σt , logαt} into the framework of Chan and Tong (1994), we reparameterize the autoregressive equations as
follows:

log σt = [β0 − z1 + β1 log σt−1] +

[
z1 − β2 exp(−β3(σt−1Y

1/αt−1
t−1 ))

]
,

logαt = [γ0 + z2 + γ1 logαt−1] +

[
γ2 exp(−γ3(σt−1Y

1/αt−1
t−1 )) − z2

]
,

where z1 is a positive constant such that 0 < z1 < β2 (e.g. we can set z1 = β2/2) and z2 is a positive constant such that
0 < z2 = γ2 exp(

γ3
β3

log( z1
β2
)) < γ2. The reason for defining z1, z2 as above will be made more clear in the proof of Lemma 2.

Let Xt = (log σt , logαt ) and

T (Xt−1) = [β0 − z1 + β1 log σt−1, γ0 + z2 + γ1 logαt−1] ,

S(Xt−1, Yt−1) =

[
z1 − β2 exp(−β3(σt−1Y

1/αt−1
t−1 )), γ2 exp(−γ3(σt−1Y

1/αt−1
t−1 )) − z2

]
,

we can rewrite the nonlinear dynamic system of (log σt , logαt ) as

Xt = T (Xt−1) + S(Xt−1, Yt−1),

where {Yt} is a sequence of i.i.d. Fréchet innovations.
Following the terminology in Chan and Tong (1994), T (·) admits a compact attractor Λ =

(
β0−z1
1−β1

,
γ0+z2
1−γ1

)
, which is a

singleton inR2, and the domain of attraction forΛ isR2. In other words, for any x ∈ R2, we have that the iterates T n(x) → Λ

as n → ∞. We further define G =

(
β0−β2
1−β1

,
β0

1−β1

)
×

(
γ0

1−γ1
,

γ0+γ2
1−γ1

)
, which is an open rectangle in R2.

Lemma 1. G is absorbing for Xt .

Proof. We only prove the result for logαt , the proof for log σt is the same. Suppose logαt >
γ0

1−γ1
, then logαt+1 =

γ0 + γ1 logαt + γ2 exp(−γ3Qt ) > γ0 + γ1
γ0

1−γ1
=

γ0
1−γ1

. Similarly, we can show that logαt+1 <
γ0+γ2
1−γ1

if logαt <
γ0+γ2
1−γ1

. □

To prove the geometric ergodicity of Xt , we only need to verify conditions (a)–(e) of Theorem 1 in Chan and Tong (1994).
The verification of conditions (a), (b), (c) and (e) is trivial and thus is omitted. We verify condition (d) here.
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Lemma 2. For any x ∈ G, 0 is in the support of |S(x, Yt−1)| where | · | is the norm of the vector. And there exists a continuous and
positive function r(x) for x ∈ G, such that the second step transition probability for Xt , P2(x, dy), has an absolutely continuous
component whose probability density function is positive over B(T 2(x), r(x)) where B(x, δ) denotes the open ball in G with center
at x and radius equal to δ.

Proof. Since σt−1, αt−1 > 0 and 0 < Yt−1 < ∞, it is easy to see that for any Xt−1, there always exists a unique Y ∗

t−1
depending on Xt−1 such that Q ∗

t−1 = σt−1(Y ∗

t−1)
1/αt−1 = −

1
β3

log( z1
β2
). By the definition of z1 and z2 in |S(Xt−1, Yt−1)|, it can

be verified that given Xt−1, Y ∗

t−1 is the unique value that makes S(Xt−1, Y ∗

t−1) = 0. Hence for any x ∈ G, 0 is in the support of
|S(x, Yt−1)|. In the following, we denote Q ∗

= −
1
β3

log( z1
β2
).

We now show that there exists a positive constant r(x) = C such that P2(x, dy) has an absolutely continuous component
whose probability density function is positive over B(T 2(x), C). Given Xt−1, we have for Xt+1 = (log σt+1, logαt+1),

log σt+1 = T 2(Xt−1)[1] + [z1 − β2 exp(−β3Qt )] + β1 [z1 − β2 exp(−β3Qt−1)] ,
logαt+1 = T 2(Xt−1)[2] + [γ2 exp(−γ3Qt ) − z2] + γ1 [γ2 exp(−γ3Qt−1) − z2] ,

where T 2(Xt−1)[1] and T 2(Xt−1)[2] denote the first and second components of T 2(Xt−1) respectively. Given Xt−1, Xt+1
is a vector function of (Qt−1,Qt ), thus we denote Xt+1 = FXt−1 (Qt−1,Qt ). At (Q ∗

t−1,Q
∗
t ) = (Q ∗,Q ∗), we have Xt+1 =

FXt−1 (Q
∗,Q ∗) = T 2(Xt−1). It is easy to verify that the determinant of the Jacobianmatrix of Xt+1 = FXt−1 (Q

∗,Q ∗) at (Q ∗,Q ∗)
is exp(−(β3 + γ3)Q ∗)β2β3γ2γ3(β1 − γ1), which is not zero since θ ∈ Θ .

By the Inverse Function Theorem, we know that an inverse function to FXt−1 (·) exists in an open neighborhood of
Xt+1 = FXt−1 (Q

∗,Q ∗) = T 2(Xt−1). By the nature of the vector function FXt−1 (·), Xt−1 does not affect the size of the open
neighborhood. Thus for all Xt−1 ∈ G, we can find a uniform C such that B(T 2(Xt−1), C) is a subset of the open neighborhood.
The rest of the proof simply follows from the fact that (Yt−1, Yt ) are i.i.d. unit Fréchet random variables and there is a one-
to-one relationship between (Yt−1, Yt ) and (Qt−1,Qt ) given Xt−1. □

Nowwe have verified all five conditions of Theorem 1 in Chan and Tong (1994). Hence {log σt , logαt}, as a Markov chain
on G ∈ R2, is stationary and geometrically ergodic. □

A.2. Proof of conditional distribution of Qt in general factor model

Proof of Proposition 1. In the following,wedrop the time index t for notation simplicity. The conditioning onFt−1 is implicit
here. The proof follows standard procedure in the extreme value literature by deriving the cdf of (Qp − ap)/bp directly. Here,
Qp = max1≤i≤pXi, ap = 0 and bp = (

∑p
i=1σ

α
i )

1/α . We have

P
(
Qp − ap

bp
≤ x

)
= P

(
max1≤i≤p Xi − ap

bp
≤ x

)
= P

(
max
1≤i≤p

Xi ≤ ap + bpx
)

= P
(
fi(Z1, Z2, . . . , Zd) + σiεi ≤ ap + bpx, for all 1 ≤ i ≤ p

)
= P

(
εi ≤ bpx/σi − fi(Z1, Z2, . . . , Zd)/σi, for all 1 ≤ i ≤ p

)
= E

[
P
(
εi ≤ bpx/σi − fi(Z1, Z2, . . . , Zd)/σi, for all 1 ≤ i ≤ p

⏐⏐Z1, . . . , Zd)]
= E

( p∏
i=1

Fε

(
bpx/σi − fi(Z1, Z2, . . . , Zd)/σi

))
,

where the last equality follows from the independence between εi’s and the latent factors Zi’s. By the assumption that

sup
1≤p<∞

sup
1≤i≤p

|fi(Z1, Z2, . . ., Zd)| < ∞ a.s.

and

lim
p→∞

p∑
i=1

σ α
i = ∞ and lim

p→∞
sup
1≤i≤p

σ α
i∑p

j=1 σ α
j

= 0,

it is easy to see that, for any fixed x > 0,

lim
p→∞

inf
1≤i≤p

(
bpx/σi − fi(Z1, Z2, . . ., Zd)/σi

)
= ∞ a.s.

Together with the assumption that Fε is in the Domain of Attraction of Fréchet distribution, we have uniformly for all i,

Fε(bpx/σi − fi(Z1, Z2, . . . , Zd)/σi) ∼

1 − l(bpx/σi − fi(Z1, Z2, . . . , Zd)/σi)(bpx/σi − fi(Z1, Z2, . . . , Zd)/σi)−α a.s.,
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where ∼ has the same meaning as in Definition 1. Together with the fact that limx→∞l(x) = 1, we have
p∑

i=1

l(bpx/σi − fi(Z1, Z2, . . . , Zd)/σi)(bpx/σi − fi(Z1, Z2, . . . , Zd)/σi)−α

=
1
bα
p

p∑
i=1

l(bpx/σi − fi(Z1, Z2, . . . , Zd)/σi)(x/σi − b−1
p fi(Z1, Z2, . . . , Zd)/σi)−α

→ x−α a.s.,

where the last equality follows from the fact that bp → ∞ and sup1≤p<∞sup1≤i≤p|fi(Z1, Z2, . . ., Zd)| < ∞. By the bounded
convergence theorem, we have for any fixed x > 0,

P
(
Qp − ap

bp
≤ x

)
= P

(
max
1≤i≤p

Xi ≤ ap + bpx
)

→ exp
(
−x−α

)
, as p → ∞. □

In the following, we give Proposition 3, which handles the case when {εit}
p
i=1 have heterogeneous tail indices. Under the

general setting of Proposition 1, we assume that {εit}
p
i=1 are independently but not identically distributed. Specifically, we

assume that {εit}
p
i=1 form K groups of i.i.d. errors, indexed by G1,G2, . . . ,GK , where the distributions of εit in the same group

are identical and the distribution of εit for each group is in the Domain of Attraction of a Fréchet distribution with a different
tail index αt (k), k = 1, . . . , K . Without loss of generality, assume that αt (1) = min1≤k≤Kαt (k), i.e. Group 1 has the smallest
tail index. Note that for every 1 ≤ i ≤ p, there exists one and only one 1 ≤ k ≤ K such that i ∈ Gk and αit = αt (k).

As in Proposition 1, we assume that

lim
p→∞

p∑
i=1

σ
αit
it = ∞ and lim

p→∞
sup
1≤i≤p

σ
αit
it∑p

j=1 σ
αjt
jt

= 0.

In addition, we further assume that

lim
p→∞

∑
i∈G1

σ
αit
it∑p

j=1 σ
αjt
jt

= lim
p→∞

∑
i∈G1

σ
αt (1)
it∑p

j=1 σ
αjt
jt

= π > 0.

Intuitively, it means that the volatility of errors in Group 1 (with the smallest tail index αt (1)) is not ignorable compared to
the ones of the other Groups.

Proposition 3. Given Ft−1, denote apt = 0 and bpt =
(
π ·

∑p
i=1σ

αit
it

)1/αt (1), we have, as p → ∞,

Qt − apt
bpt

d
→ Ψαt (1)(x), (9)

where Ψαt (1)(x) is a Fréchet type random variable with tail index αt (1) and Ψαt (1)(x) = exp
(
−x−αt (1)

)
.

The proof of Proposition 3 follows the same line as the one of Proposition 1 and thus is omitted. Proposition 3 states
that under the case that the errors {εit}

p
i=1 have heterogeneous tail indices, the conditional distribution of maxima Qt =

max1≤i≤pXit can still be approximated by a Fréchet distribution, however, the tail index of Qt takes the value of the smallest
tail index αt (1) among the K different tail indices.

Remark: The setting of Proposition 3 is natural for cross-sectional multivariate stock returns, where stocks can usually be
clustered into different groups according to certain criteria such as industrial sector and it is expected that stocks within
the same group k share similar behavior such as tail index αt (k). For the cross-sectional setting, a common and sensible
assumption for heterogeneity of tail indices αt (k)’s (e.g. see Kelly (2014), Kelly and Jiang (2014)) is that αt (k) = ckαt , where
ck > 0. In other words, the tail indices αt (k)’s for different groups are different but they share the same time-varying
component αt . By Proposition 3, asymptotically the tail index of Qt then takes the value (min1≤k≤K ck) · αt , which is perfectly
correlated with the dynamics of the true αt . Thus the estimated α̂t by AcF should be highly correlated with the dynamics of
the true tail index αt .

A.3. Proof of consistency and asymptotic normality

To facilitate the proof of Theorems 2, 3 and Proposition 2, we first give several technical lemmas (Lemmas 3 to 15). As
mentioned in Section 3, the main technical difficulty is that the location parameter µ0 is unknown and the support of Qt
depends on µ0, so that the standard argument for MLE cannot be directly applied. Also, the true initial value (σ 0

1 , α0
1) is

unknown. New uniform convergence results about the log-likelihood function L̃n(θ ), its first and second order derivatives
need to be established. Themain result on uniform convergence is stated in Lemma14. Part of the proof follows that in Francq
and Zakoian (2004) for MLE of GARCH model.

In the following, we assume the conditions in Theorem 2 hold, i.e. the parameter space Θ is a compact set of Θs and the
observations {Qt}

n
t=1 come from a stationary and ergodic AcF with true parameter θ0 where θ0 is in the interior of Θ . We



Please cite this article in press as: Zhao Z., et al., Modeling maxima with autoregressive conditional Fréchet model. Journal of Econometrics (2018),
https://doi.org/10.1016/j.jeconom.2018.07.004.

18 Z. Zhao et al. / Journal of Econometrics ( ) –

use Yn,k and Qn,k to denote the kth order statistics of {Yt}
n
t=1 and {Qt}

n
t=1. In the following, τn ∼ n−r means τn/n−r

→ 1 as
n → ∞. We denote the upper bound of β1, γ1 in Θ by Cb < 1 and use C to denote a generic positive constant.

We first prove the identifiability of AcF in Lemma 3, which states that each parameter value θ defines a unique AcF.

Lemma 3 (Identifiability). If Qt (θ ) = Qt (θ0) a.s. for all t , then θ = θ0. Here a.s. is for the infinite product space generated by
{. . . , Y−1, Y0, Y1, Y2, . . .}, where Yi’s are i.i.d. unit Fréchet random variables.

Proof. Wedenote σt = σt (θ ), αt = αt (θ ) and σ 0
t = σt (θ0), α0

t = αt (θ0). Suppose there exist θ and θ0 such thatQt (θ ) = Qt (θ0)
a.s., then

µ0 + σ 0
t Y

1/α0
t

t = µ + σtY
1/αt
t , a.s.

Since Yn,1 ↘ 0 a.s., by the boundedness of (σt , αt ) and (σ 0
t , α0

t ), we have µ = µ0. After rearrangement,

Y 1/α0
t −1/αt

t = σt/σ
0
t , a.s.

Denote Ft = σ (Yt , Yt−1, . . .), we know that Yt ⊥ Ft−1 and αt , α
0
t ∈ Ft−1, so the above equation holds if and only if

σt (θ ) = σt (θ0) and αt (θ ) = αt (θ0) a.s. From the autoregressive equation of logαt , we know that if αt (θ ) = αt (θ0) a.s., we
have

γ 0
0 + γ 0

1 logαt−1 + γ 0
2 exp(−γ 0

3 Qt−1) = γ0 + γ1 logαt−1 + γ2 exp(−γ3Qt−1).

After rearrangement, we have

γ 0
0 − γ0 + (γ 0

1 − γ1) logαt−1 = γ2 exp(−γ3Qt−1) − γ 0
2 exp(−γ 0

3 Qt−1).

By the same argument as above, since αt−1 ∈ Ft−2 and Qt−1 ̸∈ Ft−2, we must have γ0 = γ 0
0 , γ1 = γ 0

1 , γ2 = γ 0
2 and γ3 = γ 0

3 .
Similarly, we can prove that β0 = β0

0 , β1 = β0
1 , β2 = β0

2 and β3 = β0
3 . □

Given parameter θ and an initial value (σ1, α1), {σt , αt}
n
t=1 can be recovered recursively by their autoregressive equations.

In the following, we use σt (θ ), αt (θ ) (or σt , αt for simplicity) to denote the scale parameter series and the tail index series
based on θ and true initial (σ 0

1 , α0
1), and use σ̃t (θ ), α̃t (θ ) (or σ̃t , α̃t for simplicity) to denote the ones based on θ and an arbitrary

initial value (σ̃1, α̃1). We denote the unobserved true hidden process by σt (θ0), αt (θ0) (or σ 0
t , α

0
t for simplicity).

By the compactness of Θ and the boundedness of −β2 exp(−β3Qt−1), γ2 exp(−γ3Qt−1), there exist uniform lower bound
and the upper bound of {σt , αt} and {σ̃t , α̃t} for all θ ∈ Θ . We denote the lower bound by (σL, αL) and upper bound by
(σU , αU ). The uniform boundedness plays a key role in the following proof.

Given (σt , αt ), the conditional log-likelihood function lt (θ ) of Qt is,

lt (θ ) = logαt + αt log σt − (αt + 1) log(Qt − µ) −

(
Qt − µ

σt

)−αt

.

By conditional independence, the log-likelihood function

Ln(θ ) =
1
n

n∑
t=1

lt (θ ) =
1
n

n∑
t=1

logαt + αt log σt − (αt + 1) log(Qt − µ) −

(
Qt − µ

σt

)−αt

.

We use l̃t (θ ) and L̃n(θ ) to denote the corresponding log-likelihood functions when (σ̃t , α̃t ) are used.
Lemma 4 gives the result about the behavior of score function and Fisher information matrix at the true parameter θ0

given true initial value (σ 0
1 , α0

1).

Lemma 4. Under the conditions in Theorem 2, Eθ0 (
∂
∂θ
lt (θ0)) = 0 and for M0, the Fisher information matrix at θ0, we have M0 =

Varθ0 (
∂
∂θ
lt (θ0)) = −Eθ0 (

∂2

∂θ∂θT
lt (θ0)) and M0 is well defined and positive definite.

Proof. At θ = θ0, all the first order partial derivatives ∂
∂θ
lt (θ0) and second order partial derivatives ∂2

∂θi∂θj
lt (θ0) can be

simplified and written as functions of {Yt , σ
0
t , α0

t }
n
t=1. The formulas for ∂

∂θ
lt (θ ) and ∂2

∂θi∂θj
lt (θ ) are postponed to Appendix A.4

due to their complexity.
By the fact that (σ 0

t , α0
t ) is bounded between [σL, σU ] × [αL, αU ], Yt ⊥ Ft−1 = σ (Ys, s ≤ t − 1) and (σ 0

t , α0
t ) ∈ Ft−1, it is

easy to prove that Eθ0 (
∂
∂θ
lt (θ0)) = 0,M0 = Varθ0

(
∂
∂θ
lt (θ0)

)
= −Eθ0 (

∂2

∂θ∂θT
lt (θ0)) andM0 is well defined, i.e.M0 < ∞.

To prove that M0 is positive definite, notice that M0 = Varθ0 (
∂
∂θ
lt (θ0)), so we only need to show that there does not exist

a c ∈ R9 such that cT ∂
∂θ
lt (θ0) = 0 a.s. The argument is the same as the one used in Lemma 3, where the essential idea is that

Yt ⊥ Ft−1. □

The result of Lemma 4 is standard and expected, since θ0 is the true parameter and we assume the data come from a
correctly specified model. Lemma 5 gives moment conditions for functions of {Qt}

n
t=1, which serve as building blocks for the

proof of latter lemmas.
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Lemma 5. Under the conditions in Theorem 2, we have (a) for any α > 0, 1
n

∑n
t=1(Qt − µ0)−α

→p Eθ0 (Q1 − µ0)−α < ∞, (b) for
any positive integer k, 1

n

∑n
t=1[log(Qt − µ0)]k →p Eθ0 [log(Q1 − µ0)]k < ∞.

Proof. By the boundedness of scale parameter {σ 0
t } and tail index {α0

t }, we have Qt − µ0 > σL min(Y 1/αL
t , Y 1/αU

t ), so
Eθ0 (Qt − µ0)−α < ∞ for any α > 0 since Y−1

t follows exponential distribution. The result of (a) follows from the ergodicity
of AcF and the Law of Large Numbers.

For (b), we have |log(Qt − µ0)|k = |log σt + 1/αt log Yt |
k
≤ 2k(C+1/αk

L |log Yt |
k). It is known that log Yt follows a Gumbel

distribution thus Eθ0 (|log Yt |
k) < ∞ for any positive integer k. The result of (b) follows from the ergodicity of AcF and the

Law of Large Numbers. □

As mentioned above, the main technical difficulty is that the support of Qt depends on the unknown location parameter
µ0. Lemma 6 to Lemma 14 aim to solve this difficulty by establishing uniform convergence between 1

n

∑n
t=1h(Qt − µn) and

1
n

∑n
t=1h(Qt − µ0) for µn within a neighborhood of µ0, where h(·) denotes some generic function that appears in the first

and second order derivatives of L̃n(θ ). The main result is stated in Lemma 14.
Lemma 6 gives an asymptotic bound on the distance between Qn,1 and µ0, stating that Qn,1 converges to µ0 at a rate that

is slower than polynomial.

Lemma 6. Under the conditions in Theorem 2, Qn,1 − µ0 ≥ Op((log n)−1/αL ).

Proof. Notice that when Yt < 1, we have Qt − µ0 = σtY
1/αt
t ≥ σLY

1/αL
t . Since Yn,1 < 1 a.s. as n → ∞, it is obvious that

Qn,1 − µ0 ≥ σLY
1/αL
n,1 a.s. as n → ∞. The result follows from the fact that (log n)Yn,1→p1. □

Lemma 7 gives the foundation for the uniform convergence result of first and second order derivatives of Ln(θ ) given in
Lemma 11, Lemma 14.

Lemma 7. Denote Sα
n (µ) = n−1∑n

k=1(Qn,k − µ)−α , α > 0 or Sα
n (µ) = n−1∑n

k=1 log(Qn,k − µ) or Sα
n (µ) = n−1∑n

k=1(Qn,k −

µ)−α
[log(Qn,k − µ)]m for m = 1, 2, 3. Under the conditions in Theorem 2, given positive sequence τn, s.t. τn ∼ n−r , r > 0, the

following result holds uniformly over |µn − µ0| < τn,⏐⏐Sα
n (µn) − Sα

n (µ0)
⏐⏐ ≤ Op(τn).

Proof. We prove the result for (a) Sα
n (µ) = n−1∑n

k=1(Qn,k − µ)−α , (b) Sα
n (µ) = n−1∑n

k=1 log(Qn,k − µ) and (c) Sα
n (µ) =

n−1∑n
k=1(Qn,k − µ)−α log(Qn,k − µ) , a similar argument with more involved calculus can be used for the proof of others. By

Lemma 6, we know that Qn,1 − µ0 ≥ Op((log n)−1/αL ), so (Qt − µn)−α and log(Qt − µn) are asymptotically well defined for
|µn − µ0| < τn.

(a) For Sα
n (µ) = n−1∑n

k=1(Qn,k − µ)−α , assume that µn > µ0, we have

|Sα
n (µn) − Sα

n (µ0)| ≤
1
n

n∑
k=1

|(Qn,k − µn)−α
− (Qn,k − µ0)−α

| ≤
1
n

n∑
k=1

(α + 1)|µn − µ0|

min{Qn,k − µn,Qn,k − µ0}
α+1

≤
τn

n

n∑
k=1

α + 1
(Qn,k − µn)α+1 =

τn

n

n∑
k=1

α + 1
(Qn,k − µ0 + µ0 − µn)α+1 ≤

τn

n

n∑
k=1

α + 1
(Qn,k − µ0 − τn)α+1 ,

where the second inequality follows from the fact that a − aα+1
≤ (α + 1)(1 − a) for all α > 0 and 0 < a < 1.

Since Qn,1 − µ0 ≥ Op((log n)−1/αL ), for any fixed 0 < ρ < 1, we have P(ρ(Qn,1 − µ0) > τn) → 1, so P(ρ(Qn,k − µ0) >

τn, for all 1 ≤ k ≤ n) → 1. With probability goes to 1, we have

τn

n

n∑
k=1

α + 1
(Qn,k − µ0 − τn)α+1 ≤

τn

n

n∑
k=1

α + 1
[(Qn,k − µ0)(1 − ρ)]α+1 = Op(τn),

which follows from Lemma 5(a). For µn < µ0, the proof is similar but easier.
(b) For Sα

n (µ) = n−1∑n
k=1 log(Qn,k − µ), assume that µn > µ0, we have

|Sα
n (µn) − Sα

n (µ0)| ≤
1
n

n∑
k=1

|log(Qn,k − µn) − log(Qn,k − µ0)|

=
1
n

n∑
k=1

log
(
1 +

µn − µ0

Qn,k − µn

)
≤

τn

n

n∑
k=1

1
Qn,k − µn

= Op(τn),

where the last inequality follows from the fact that log(1 + x) < x when x > 0 and the last equality follows from the result
for Sα

n (µ) = n−1∑n
k=1(Qn,k − µ)−α . For µn < µ0, the proof is similar but easier.
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(c) For Sα
n (µ) = n−1∑n

k=1(Qn,k − µ)−α log(Qn,k − µ), assume that µn > µ0, we have

|Sα
n (µn) − Sα

n (µ0)| ≤
1
n

n∑
k=1

(Qn,k − µn)−α
|log(Qn,k − µn) − log(Qn,k − µ0)|

+
1
n

n∑
k=1

⏐⏐(Qn,k − µn)−α
− (Qn,k − µ0)−α

⏐⏐ |log(Qn,k − µ0)|.

For the first term in the sum,

1
n

n∑
k=1

(Qn,k − µn)−α
|log(Qn,k − µn) − log(Qn,k − µ0)|

=
1
n

n∑
k=1

(Qn,k − µn)−α log
(
1 +

µn − µ0

Qn,k − µn

)

≤
τn

n

n∑
k=1

(Qn,k − µn)−(α+1)
= Op(τn),

where the last equality follows from the result for Sα
n (µ) = n−1∑n

k=1(Qn,k − µ)−α . For the second term in the sum,

1
n

n∑
k=1

⏐⏐(Qn,k − µn)−α
− (Qn,k − µ0)−α

⏐⏐ |log(Qn,k − µ0)|

≤
τn

n

n∑
k=1

α + 1
(Qn,k − µn)α+1 |log(Qn,k − µ0)| ≤ τn

(
1
n

n∑
k=1

(α + 1)2

(Qn,k − µn)2α+2

)1/2(
1
n

n∑
k=1

|log(Qn,k − µ0)|2
)1/2

= Op(τn),

where the last inequality follows from the Cauchy–Schwarz inequality and the last equality follows from Lemma 5 and the
result for Sα

n (µ) = n−1∑n
k=1(Qn,k − µ)−α . For µn < µ0, the proof is similar but easier. □

Lemmas 8 and 9 provide the impact of parameter difference |θ − θ0| on |αt − α0
t | and |σt − σ 0

t | uniformly over t .

Lemma 8. Denote Φ = (γ0, γ1, γ2, γ3) and Φ0 = (γ 0
0 , γ 0

1 , γ 0
2 , γ 0

3 ), if ∥Φ − Φ0∥ < τn and τn ↘ 0, under the conditions in
Theorem 2, we have

(a) sup
1≤t≤n

⏐⏐αt − α0
t

⏐⏐ = O(τn), (b) sup
1≤t≤n

⏐⏐⏐⏐∂αt

∂Φ
−

∂α0
t

∂Φ

⏐⏐⏐⏐ = O(τn), (c) sup
1≤t≤n

⏐⏐⏐⏐ ∂2αt

∂Φi∂Φj
−

∂2α0
t

∂Φi∂Φj

⏐⏐⏐⏐ = O(τn),

uniformly over ∥Φ − Φ0∥ < τn.

Proof. We only prove (a), the proof for others is similar but more involved. Using the fact that a continuously differentiable
function is Lipschitz continuous on a compact set, we only need to prove that sup1≤t≤n

⏐⏐logαt − logα0
t

⏐⏐ = O(τn). By
repeatedly applying the autoregressive relation, we can get

logαt = γ0

t−1∑
k=1

γ k−1
1 + γ2

t−1∑
k=1

γ k−1
1 exp(−γ3Qt−k) + γ t−1

1 logα0
1 .

We have

|logαt − logα0
t | ≤

⏐⏐⏐⏐⏐γ0

t−1∑
k=1

γ k−1
1 − γ 0

0

t−1∑
k=1

(γ 0
1 )

k−1

⏐⏐⏐⏐⏐+ ⏐⏐γ t−1
1 logα0

1 − (γ 0
1 )

t−1 logα0
1

⏐⏐
+

⏐⏐⏐⏐⏐γ2

t−1∑
k=1

γ k−1
1 exp(−γ3Qt−k) − γ 0

2

t−1∑
k=1

(γ 0
1 )

k−1 exp(−γ 0
3 Qt−k)

⏐⏐⏐⏐⏐ .
By the fact that

∑t
k=1γ

k−1
1 < 1/(1−γ1) ≤ 1/(1−Cb) and

⏐⏐⏐∑t−1
k=1(γ

0
1 )

k−1
−
∑t−1

k=1(γ1)k−1
⏐⏐⏐ ≤

⏐⏐⏐⏐ 1
1−γ 0

1
−

1
1−γ1

⏐⏐⏐⏐ ≤
τn

(1−Cb)2
= O(τn),

it is easy to see that the first two terms of the sum are O(τn) for any 1 ≤ t ≤ n. For the third term, we have⏐⏐⏐⏐⏐γ2

t−1∑
k=1

γ k−1
1 exp(−γ3Qt−k) − γ 0

2

t−1∑
k=1

(γ 0
1 )

k−1 exp(−γ 0
3 Qt−k)

⏐⏐⏐⏐⏐
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≤
⏐⏐γ2 − γ 0

2

⏐⏐ t−1∑
k=1

γ k−1
1 exp(−γ3Qt−k) + γ 0

2

t−1∑
k=1

⏐⏐γ k−1
1 − (γ 0

1 )
k−1
⏐⏐ exp(−γ3Qt−k)

+ γ 0
2

t−1∑
k=1

(γ 0
1 )

k−1
⏐⏐exp(−γ3Qt−k) − exp(−γ 0

3 Qt−k)
⏐⏐ .

The first two terms of the sum are O(τn) for any 1 ≤ t ≤ n by the boundedness of exp(−γ3Qt−k). For the third termwe have,

γ 0
2

t−1∑
k=1

(γ 0
1 )

k−1
⏐⏐exp(−γ3Qt−k) − exp(−γ 0

3 Qt−k)
⏐⏐

= γ 0
2

t−1∑
k=1

(γ 0
1 )

k−1Qt−k exp(−γ ′

3kQt−k)
⏐⏐γ3 − γ 0

3

⏐⏐ = O(τn), for any 1 ≤ t ≤ n,

where γ ′

3k > 0 is a number betweenγ3 and γ 0
3 depending onQt−k, and γ ′

3k → γ 0
3 uniformly over all k ≥ 1. By the compactness

of Θ , γ ′

3k ≥ C > 0 for all k ≥ 1. Mean value theorem is used to get the first equality and the uniform boundedness of
Qt−k exp(−γ ′

3kQt−k) is used to get the second equality. □

Lemma 9. Denote Ψ = (β0, β1, β2, β3) and Ψ0 = (β0
0 , β

0
1 , β

0
2 , β

0
3 ), if ∥Ψ − Ψ0∥ < τn and τn ↘ 0, under the conditions in

Theorem 2, we have

(a) sup
1≤t≤n

⏐⏐σt − σ 0
t

⏐⏐ = O(τn), (b) sup
1≤t≤n

⏐⏐⏐⏐∂σt

∂Ψ
−

∂σ 0
t

∂Ψ

⏐⏐⏐⏐ = O(τn), (c) sup
1≤t≤n

⏐⏐⏐⏐ ∂2σt

∂Ψi∂Ψj
−

∂2σ 0
t

∂Ψi∂Ψj

⏐⏐⏐⏐ = O(τn),

uniformly over ∥Ψ − Ψ0∥ < τn.

Proof. The proof is the same as the one for Lemma 8 and thus omitted. □

Lemma 10 is used for the proof of Lemma 11.

Lemma 10. Suppose τn ∼ n−r , r > 0 and sup1≤t≤n|αt − α′
t | = O(τn) where {αt} and {α′

t} represent two different series of tail
index. Under the conditions in Theorem 2, we have

1
n

n∑
t=1

⏐⏐⏐(Qt − µn)−αt − (Qt − µn)−α′
t

⏐⏐⏐ = Op(τn),

uniformly over |µn − µ0| < τn. The same result holds for 1
n

∑n
t=1

⏐⏐⏐(Qt − µn)−αt − (Qt − µn)−α′
t

⏐⏐⏐ [log(Qt − µn)]k, k = 1,2.

Proof. We only prove the result for 1
n

∑n
t=1

⏐⏐⏐(Qt − µn)−αt − (Qt − µn)−α′
t

⏐⏐⏐, the proof for others is the same. Assume α′
t > αt ,

the proof for the other direction is the same. By mean value theorem,

1
n

n∑
t=1

⏐⏐⏐(Qt − µn)−αt − (Qt − µn)−α′
t

⏐⏐⏐ ≤
C
n

n∑
t=1

(Qt − µn)−α∗
t |log(Qt − µn)| τn

≤
τnC
n

n∑
t=1

(
(Qt − µn)−αL + (Qt − µn)−αU

)
|log(Qt − µn)| = Op(τn),

where α∗
t ∈ (αt , α

′
t ). The last equality follows from Lemma 7. □

Lemma 11 gives the uniform convergence result of the second order derivatives of Ln(θ ) over a neighborhood of θ0, which
is used in the proof of Lemma 14(a). In the following, we denotemθiθj (θ0) = −Eθ0 (

∂2

∂θi∂θj
l1(θ0)).

Lemma 11. Under the conditions in Theorem 2, for all second order derivatives of Ln(θn), we have ∂2

∂θi∂θj
Ln(θn)→p − mθiθj (θ0),

uniformly over ∥θn − θ0∥ < τn, where τn ∼ n−r , r > 0.

Proof. We only prove the case for ∂2

∂µ2 Ln(θn), the proof for others is similar but more involved. By the Law of Large Numbers,

we know that ∂2

∂µ2 Ln(θ0)→pmµµ(θ0), so we only need to prove that ∂2

∂µ2 Ln(θn) −
∂2

∂µ2 Ln(θ0)→p0 uniformly over the claimed
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region.

∂2

∂µ2 Ln(θn) −
∂2

∂µ2 Ln(θ0) =
1
n

n∑
t=1

[
(αt + 1)(Qt − µn)−2

− (α0
t + 1)(Qt − µ0)−2]

−
1
n

n∑
t=1

[
αt (αt + 1)σ αt

t (Qt − µn)−(αt+2)
− α0

t (α
0
t + 1)(σ 0

t )
α0
t (Qt − µ0)−(α0

t +2)
]
.

We now analyze the difference term by term. For the first term,⏐⏐⏐⏐⏐1n
n∑

t=1

[
(αt + 1)(Qt − µn)−2

− (α0
t + 1)(Qt − µ0)−2]⏐⏐⏐⏐⏐

≤
1
n

n∑
t=1

⏐⏐(αt + 1)[(Qt − µn)−2
− (Qt − µ0)−2

]
⏐⏐+ Cτn

n

n∑
t=1

(Qt − µ0)−2
= Op(τn) → 0,

where the inequality comes from the fact that |αt −α0
t | = O(τn) uniformly for all 1 ≤ t ≤ n by Lemma 8(a), and the equality

comes from Lemma 7 and boundedness of {αt}. For the second term,⏐⏐⏐⏐⏐1n
n∑

t=1

αt (αt + 1)σ αt
t (Qt − µn)−(αt+2)

−
1
n

n∑
t=1

α0
t (α

0
t + 1)(σ 0

t )
α0
t (Qt − µ0)−(α0

t +2)

⏐⏐⏐⏐⏐
≤

1
n

n∑
t=1

αt (αt + 1)σ αt
t

⏐⏐(Qt − µn)−(αt+2)
− (Qt − µ0)−(αt+2)

⏐⏐
+

1
n

n∑
t=1

αt (αt + 1)σ αt
t

⏐⏐⏐(Qt − µ0)−(αt+2)
− (Qt − µ0)−(α0

t +2)
⏐⏐⏐

+
1
n

n∑
t=1

⏐⏐⏐αt (αt + 1)σ αt
t − α0

t (α
0
t + 1)(σ 0

t )
α0
t

⏐⏐⏐ (Qt − µ0)−(α0
t +2).

By Lemma 8(a), we know that sup1≤t≤n|αt − α0
t | = O(τn). The first two terms go to zero by Lemmas 7 and 10 respectively,

and the last term goes to zero by the boundedness of {σt , αt}, the differentiable continuity of αt (αt + 1)σ αt
t w.r.t. σt , αt and

Lemma 8(a), Lemma 9(a). □

Note that our ultimate goal is to establish uniform convergence result about L̃n(θ ). Lemmas 12 and 13 state that the impact
of arbitrary initial value (σ̃1, α̃1) on the behavior of L̃n(θ ) is asymptotically negligible over a neighborhood of µ0.

Lemma 12. Under the conditions in Theorem 2, there exists a positive constant C such that for all θ ∈ Θ and t ≥ 1,

(a) |αt − α̃t | ≤ C · C t−1
b , (b)

⏐⏐⏐⏐∂αt

∂Φ
−

∂α̃t

∂Φ

⏐⏐⏐⏐ ≤ C · tC t−1
b , (c)

⏐⏐⏐⏐ ∂2αt

∂Φi∂Φj
−

∂2α̃t

∂Φi∂Φj

⏐⏐⏐⏐ ≤ C · t2C t−1
b ,

(d) |σt − σ̃t | ≤ C · C t−1
b , (e)

⏐⏐⏐⏐∂σt

∂Φ
−

∂σ̃t

∂Φ

⏐⏐⏐⏐ ≤ C · tC t−1
b , (f)

⏐⏐⏐⏐ ∂2σt

∂Φi∂Φj
−

∂2σ̃t

∂Φi∂Φj

⏐⏐⏐⏐ ≤ C · t2C t−1
b .

Proof. We skip the proof since it is obvious. □

Lemma 13. Under the conditions in Theorem 2, we have 1
n

∑n
t=1

⏐⏐(Qt − µn)−αt − (Qt − µn)−α̃t
⏐⏐ →p 0, uniformly over |µn −

µ0| < τn, where τn ∼ n−r , r > 0. The same result holds for

1
n

n∑
t=1

⏐⏐(Qt − µn)−αt − (Qt − µn)−α̃t
⏐⏐ [log(Qt − µn)]k, k = 1, 2.

Proof. We only prove the result for 1
n

∑n
t=1

⏐⏐(Qt − µn)−αt − (Qt − µn)−α̃t
⏐⏐, the proof for others is the same. By Lemma 12(a),

we have |αt − α̃t | ≤ C · C t−1
b . Assume α̃t > αt , the proof for the other direction is the same. By mean value theorem,

1
n

n∑
t=1

⏐⏐(Qt − µn)−αt − (Qt − µn)−α̃t
⏐⏐ ≤

C
n

n∑
t=1

(Qt − µn)−α∗
t |log(Qt − µn)| C t−1

b

≤
C
n

n∑
t=1

(
(Qt − µn)−αL + (Qt − µn)−αU

)
|log(Qt − µn)| C t−1

b →p0
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where α∗
t ∈ (αt , α̃t ). The result follows from Lemma 7 and that

Eθ0

[∑
∞

t=1

(
(Qt − µ0)−αL + (Qt − µ0)−αU

)
|log(Qt − µ0)| C t−1

b

]
< ∞. □

Lemma 14 states the main uniform convergence result used in the proof of Theorems 2 and 3.

Lemma14. Under the conditions in Theorem2, (a) for all second order derivatives of L̃n(θ ), we have ∂2

∂θi∂θj
L̃n(θ )→p−mθiθj (θ0), uni-

formly over ∥θ−θ0∥ < τn, where τn ∼ n−r , r > 0 (b) for the score function of L̃n(θ ), we have (τ ∗
n )

−1
(

∂
∂θ
L̃n(θ0) −

∂
∂θ
Ln(θ0)

)
→p 0

if τ ∗
n n → ∞, e.g. τ ∗

n = 1/
√
n.

Proof (a). is a direct result of Lemma 11 and the fact that ∂2

∂θi∂θj
L̃n(θ ) −

∂2

∂θi∂θj
Ln(θ )→p 0 uniformly over ∥θ − θ0∥ < τn. The

proof of ∂2

∂θi∂θj
L̃n(θ )− ∂2

∂θi∂θj
Ln(θ )→p 0 uniformly is based on Lemmas 12 and 13. The argument is the same as that in the proof

of Lemma 11, thus we skip it.
We prove (b) for ∂

∂µ
L̃n(θ0), the proof for other first order partial derivatives is similar. Let g(σt , αt ) = αtσ

αt
t , by the fact

that |σt − σ̃t | ≤ C · C t−1
b , |αt − α̃t | ≤ C · C t−1

b , we have |g(σt , αt ) − g(σ̃t , α̃t )| ≤ C · C t−1
b .

1
τ ∗
n

(
∂

∂µ
L̃n(θ0) −

∂

∂µ
Ln(θ0)

)
=

1
nτ ∗

n

n∑
t=1

(
αt − α̃t

Qt − µ0
−

g(σt , αt )
(Qt − µ0)αt+1 +

g(σ̃t , α̃t )
(Qt − µ0)α̃t+1

)

=
1

nτ ∗
n

n∑
t=1

(
αt − α̃t

Qt − µ0
−

g(σt , αt ) − g(σ̃t , α̃t )
(Qt − µ0)αt+1 + g(σ̃t , α̃t )[(Qt − µ0)−(α̃t+1)

− (Qt − µ0)−(αt+1)
]

)
.

The first term is bounded by C
nτ∗

n

∑n
t=1

C t−1
b

Qt−µ0
and the second term by C

nτ∗
n

∑n
t=1

C t−1
b

(Qt−µ0)αt+1 . Both terms go to zero in probability
since nτ ∗

n → ∞ and Eθ0

[∑
∞

t=1C
t−1
b (Qt − µ0)−α

]
< ∞ for all α > 0. The same argument applies to the third term after

applying mean value theorem. □

Lemma 15 gives the standard Martingale CLT.

Lemma 15. Under the conditions in Theorem 2,

1
√
n

n∑
i=1

∂ lt (θ0)
∂θ

⇒ N(0,M−1
0 ),

where M is the Fisher Information matrix at θ0.

Proof. We prove this result by using CLT for martingale difference (Billingsley, 1961). It is easy to verify that,

Eθ0

(
∂ lt (θ0)

∂θ

⏐⏐Ft−1

)
= 0 and Varθ0

(
∂ lt (θ0)

∂θ

)
= M0 < ∞.

So for any λ ∈ R9, {λ′ ∂ lt (θ0)
∂θ

,Ft}t is a square-integrable stationary martingale difference. By CLT of Billingsley (1961) and
Wold–Cramér device, Lemma 15 is true. □

Proof of Theorem 2. The proof mainly uses Taylor expansion. Let {τn} be any sequence s.t. τn ∼ n−r and n1/2τn →

∞ (i.e. 0 < r < 1/2), let t ∈ R, y ∈ R8 and define fn(t, y) = τ−2
n L̃n(µ0 + τnt, φ0

+ τny), where we denote
φ0

= (β0
0 , β

0
1 , β

0
2 , β

0
3 , γ

0
0 , γ 0

1 , γ 0
2 , γ 0

3 ).
By Taylor Expansion we have,

∂

∂t
fn(t, y) = τ−1

n
∂ L̃n(µ0 + τnt, φ0

+ τny)
∂µ

= τ−1
n

∂ L̃n(µ0, φ
0)

∂µ
+

∂2L̃n(µ∗, φ∗)
∂µ2 t +

8∑
i=1

∂2L̃n(µ∗, φ∗)
∂µ∂φi

yi

= τ−1
n

(
∂ L̃n(µ0, φ

0)
∂µ

−
∂Ln(µ0, φ

0)
∂t

)
+ τ−1

n

(
∂Ln(µ0, φ

0)
∂µ

)
+

∂2L̃n(µ∗, φ∗)
∂µ2 t +

8∑
i=1

∂2L̃n(µ∗, φ∗)
∂µ∂φi

yi,

where the second equality comes from a Taylor expansion of ∂ L̃n(µ0+τnt,φ0
+τny)

∂t at (µ0, φ
0), and we have |µ∗

− µ0| < τnt and
∥φ∗

− φ0
∥ < τn∥y∥. The first term goes to 0 by Lemma 14(b) and the second term goes to 0 by Lemma 15 and the fact that

τn
√
n → ∞. By Lemma 14(a), the last two terms converge uniformly over t2 + ∥y∥2

≤ 1, i.e.,

∂2L̃n(µ∗, φ∗)
∂µ2 t +

∑
i

∂2L̃n(µ∗, φ∗)
∂µ∂φi

yi→p − mµµ(θ0)t −

8∑
i=1

mµφi (θ0)yi.
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So together we have ∂
∂t fn(t, y) = −mµµ(θ0)t −

∑8
i=1mµφi (θ0)yi + op(1). Similarly, we have ∂

∂yk
fn(t, y) = −mφkµ(θ0)t −∑8

i=1mφkφi (θ0)yi + op(1), for k = 1, . . . , 8, where op(1)’s are uniformly decaying over t2 + ∥y∥2
≤ 1. Let t2 + ∥y∥2

= 1, we
have

t
∂ fn
∂t

(t, y) +

∑
i

yi
∂ fn
∂yi

(t, y) = −t2mµµ(θ0) − 2t
8∑

i=1

yimµφi (θ0) −

8∑
i=1

8∑
j=1

yiyjmφiφj (θ0) + op(1) < 0,

where the negative sign follows from the fact that the Fisher Information matrixM0 is positive definite.
By the above argument and Lemma 5 in Smith (1985), we have that with probability going to 1, fn has a local maximum

over the open set t2+∥y∥2 < 1, so there exists a sequence of localmaximizer θ̂n of L̃n(θ ) such that θ̂n→pθ0 and ∥θ̂n−θ0∥ ≤ τn,
where τn ∼ n−r , 0 < r < 1/2. □

Proof of Theorem 3. Theorem 2 shows the existence of θ̂n with P(∥θ̂n − θ0∥ ≤ τn) → 1, where τn ∼ n−r , 0 < r < 1/2.
By Lemma 14(a), we have that the second derivatives of L̃n are asymptotically constant in this region. The result therefore
follows by standard Taylor expansion argument, Lemma 14(b) and Lemma 15. □

Proof of Proposition 2. The arguments used in the proof of Proposition 2 are similar to the ones used in the proof of
Theorems 2 and 3, thus we only give an outline of the proof since the actual argument is very tedious. In the following,
we use δ to denote a generic small positive value and denote φ = (β0, β1, β2, β3, γ0, γ1, γ2, γ3). As in Proposition 2,
Vn = {θ ∈ Θ|µ ≤ cQn,1 + (1 − c)µ0}. Note that for any 0 < c < 1, we have µ0 < cQn,1 + (1 − c)µ0 < Qn,1 and
cQn,1 + (1 − c)µ0 ↘ µ0 a.s.

Denote Θδ
n = {θ ∈ Vn

⏐⏐∥θ − θ0∥ ≥ δ}, Θµ
n = {θ ∈ Vn

⏐⏐∥θ − θ0∥ ≥ δ, µ > µ0} and Θδ
= {θ ∈ Vn

⏐⏐∥θ − θ0∥ ≥ δ, µ ≤ µ0}.
Note that Θδ

n = Θ
µ
n ∪ Θδ . We first prove that,

(I) for any δ > 0, P

(
sup
Θδ

n

L̃n(θ ) ≥ L̃n(θ0)

)
→ 0, as n → ∞.

By the same argument in Lemmas 7 and 13, it can be proved that supΘδ
n

⏐⏐⏐L̃n(θ ) − Ln(θ )
⏐⏐⏐→p0, as n → ∞. By the

same argument in Lemma 7, we can further prove supΘ
µ
n

|Ln(µ, φ) − Ln(µ0, φ)| →p 0, as n → ∞. Together, we have

supΘδ
n
L̃n(θ ) = supΘδ

n
Ln(θ )+op(1) = max

(
supΘδ Ln(θ ), supΘ

µ
n
Ln(θ )

)
+op(1) = max

(
supΘδ Ln(θ ), supΘ

µ
n
Ln(µ0, φ)

)
+op(1) ≤

supΘδ/2Ln(θ ) + op(1). The last inequality comes from the fact that Qn,1 ↘ µ0 a.s., so with probability going to 1, we have
{φ|φ ∈ Θ

µ
n } ⊆ {φ|φ ∈ Θδ/2

}. It is also easy to prove that L̃n(θ0) = Ln(θ0) + op(1)→pEθ0 (l1(θ0)). The rest of the proof for (I)
follows from the proof of Proposition 2 in Dombry (2015), which is based on the standard compactness argument.

DenoteΘδc
n = {θ ∈ Vn

⏐⏐∥θ − θ0∥ < δ},Θµc
n = {θ ∈ Vn

⏐⏐∥θ − θ0∥ < δ,µ > µ0} andΘδc
= {θ ∈ Vn

⏐⏐∥θ − θ0∥ < δ,µ ≤ µ0}.
Note that Θδc

n = Θ
µc
n ∪ Θδc . We now prove that there exists a δ∗ > 0 such that

(II) P
(
All Hessian matrices

∂2

∂θ∂θ T L̃n(θ ) over θ ∈ Θδ∗c
n is negative definite

)
→ 1, as n → ∞.

By the same argument in Lemmas 7 and 13, we can prove that

sup
Θδc

n

⏐⏐⏐⏐ ∂2

∂θi∂θj
L̃n(θ ) −

∂2

∂θi∂θj
Ln(θ )

⏐⏐⏐⏐ →p 0, as n → ∞,

and

sup
Θ

µc
n

⏐⏐⏐⏐ ∂2

∂θi∂θj
Ln(µ, φ) −

∂2

∂θi∂θj
Ln(µ0, φ)

⏐⏐⏐⏐ →p 0, as n → ∞.

Since µ ≤ µ0 over Θδc , it can be proved that supΘδc

⏐⏐⏐ ∂2

∂θi∂θj
lt (θ )

⏐⏐⏐ is integrable. By ergodicity of AcF and Uniform Law of Large
Numbers, we have

sup
Θδc

⏐⏐⏐⏐ ∂2

∂θi∂θj
Ln(µ, φ) − Eθ0

(
∂2

∂θi∂θj
l1(µ, φ)

)⏐⏐⏐⏐→p0, as n → ∞.

By Lemma 4, Eθ0

(
∂2

∂θ∂θT
l1(θ0)

)
= −M0 is negative definite. By the continuity of Eθ0

(
∂2

∂θ∂θT
l1(θ )

)
w.r.t. θ overΘδc , we can find

a δ∗ > 0 such that Eθ0

(
∂2

∂θ∂θT
l1(θ )

)
is negative definite for all θ ∈ Θδ∗c . Together with the above argument, we can prove (II).

By (I), with probability going to 1, the global maximizer of L̃n(θ ) over Vn is located within Θδ∗c
n . By Theorem 2, there

exists a sequence θ̂n of local maximizer of L̃n(θ ) such that ∥θ̂n − θ0∥ ≤ τn, where τn = Op(n−r ), 0 < r < 1/2. Thus
P(θ̂n ∈ Θδ∗c

n ) → 1. Also, we know that ∂ L̃n
∂θ

(θ̂n) = 0. Together with (II) and Theorem 2.6 in Makelainen et al. (1981), we can
prove Proposition 2. □
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A.4. First and second order partial derivative of lt (θ )

In this section, we give the formula for ∂ lt (θ )
∂θ

and ∂2 lt (θ )
∂θ∂θT

. Denote Φ = (γ0, γ1, γ2, γ3), i.e. we use Φ as a generic symbol for
(γ0, γ1, γ2, γ3). Similarly, we set Ψ = (β0, β1, β2, β3).

For the first order partial derivative, we have

∂ lt (θ )
∂µ

=
αt + 1
Qt − µ

−
αt

σt

(
Qt − µ

σt

)−(αt+1)

,

∂ lt (θ )
∂Φ

=

[
1
αt

− log
(
Qt − µ

σt

)
+

(
Qt − µ

σt

)−αt

log
(
Qt − µ

σt

)]
∂αt

∂Φ
,

∂ lt (θ )
∂Ψ

=

[
αt

σt
−

αt

σt

(
Qt − µ

σt

)−αt
]

∂σt

∂Ψ
.

For the second order partial derivative, we have

∂2lt (θ )
∂µ2 = (αt + 1)(Qt − µ)−2

− αt (αt + 1)σ αt
t (Qt − µ)−(αt+2),

∂2lt (θ )
∂µ∂Φ

=

[
1

Qt − µ
− σ

αt
t (Qt − µ)−(αt+1)

+ αtσ
αt
t (Qt − µ)−(αt+1) log

(
Qt − µ

σt

)]
∂αt

∂Ψ
,

∂2lt (θ )
∂µ∂Ψ

= −
α2
t

σ 2
t

(
Qt − µ

σt

)−(αt+1)
∂σt

∂Ψ
,

∂2lt (θ )
∂Φ∂Ψ

=

[
1
σt

−
1
σt

(
Qt − µ

σt

)−αt

+
αt

σt

(
Qt − µ

σt

)−αt

log
(
Qt − µ

σt

)]
∂σt

∂Ψ

∂αt

∂Φ
,

∂2lt (θ )
∂Ψi∂Ψj

=

[
αt

σt
−

αt

σt

(
Qt − µ

σt

)−αt
]

∂2σt

∂Ψi∂Ψj
+

[
−

αt

σ 2
t

−
αt (αt − 1)

σ 2
t

(
Qt − µ

σt

)−αt
]

∂σt

∂Ψi

∂σt

∂Ψj
,

∂2lt (θ )
∂Φi∂Φj

=

[
1
αt

− log
(
Qt − µ

σt

)
+

(
Qt − µ

σt

)−αt

log
(
Qt − µ

σt

)]
∂2αt

∂Φi∂Φj

+

[
−

1
α2
t

+

(
Qt − µ

σt

)−αt[
log
(
Qt − µ

σt

)]2]
∂αt

∂Φi

∂αt

∂Φj
.

A.5. Observation-driven functions η1(·), η2(·) implied by GAS

Under the GAS framework described in Creal et al. (2013), we give the formulas of η1(·) and η2(·) implied by GAS in the
dynamic GEV context. Set τt = logαt and ζt = log σt to ensure the positivity of parameters. Given (ζt , τt ), the conditional
distribution of Qt is Fréchet(µ, exp(ζt ), exp(τt )). The log-likelihood function lt (·) of Qt is

lt (Qt |µ, ζt , τt ) = τt + exp(τt )ζt − (exp(τt ) + 1) log(Qt − µ) −

(
Qt − µ

exp(ζt )

)− exp(τt )

.

To derive GAS, we need to obtain the score function of lt (Qt |µ, ζt , τt ) w.r.t. (ζt , τt ), which is

∂ lt
∂ζt

= exp(τt ) − exp(τt )
(
Qt − µ

exp(ζt )

)− exp(τt )

,

∂ lt
∂τt

= 1 − exp(τt ) log
(
Qt − µ

exp(ζt )

)
+ exp(τt )

(
Qt − µ

exp(ζt )

)− exp(τt )

log
(
Qt − µ

exp(ζt )

)
.

Following the recommendation in Creal et al. (2013), we take the scaling matrix function St = I and obtain the following
GAS model,

Qt = µ + σtY
1/αt
t

log σt = β0 + β1 log σt−1 + β2
∂ lt−1

∂ζt−1

logαt = γ0 + γ1 logαt−1 + γ2
∂ lt−1

∂τt−1
,
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where we assume 0 ≤ β1, γ1 < 1 and β2, γ2 > 0. Notice that the evolution scheme given by GAS is complicated. It is easy
to see that η1(Qt−1) = β2

∂ lt−1
∂ζt−1

is a monotone increasing function of Qt−1, which is expected for volatility clustering. It is also

easy to prove that η2(Qt−1) = γ2
∂ lt−1
∂τt−1

is an increasing function of Qt−1 when Qt−1−µ

σt−1
< 1 and decreasing when Qt−1−µ

σt−1
> 1,

which is quite counter-intuitive in terms of econometric meaning. On the contrary, for AcF, a larger Qt−1 always gives a
smaller αt .

By the fact that ∂ lt
∂ζt

≤ exp(τt ) and ∂ lt
∂τt

≤ 1, it is easy to see that (σt , αt ) of the GAS model is upper bounded.
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