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Abstract

Fusion learning methods, developed for the purpose of analyzing datasets from

many different sources, have become a popular research topic in recent years.

Individualized inference approaches through fusion learning extend fusion

learning approaches to individualized inference problems over a heteroge-

neous population, where similar individuals are fused together to enhance the

inference over the target individual. Both classical fusion learning and individ-

ualized inference approaches through fusion learning are established based on

weighted aggregation of individual information, but the weight used in the lat-

ter is localized to the target individual. This article provides a review on two

individualized inference methods through fusion learning, iFusion and

iGroup, that are developed under different asymptotic settings. Both proce-

dures guarantee optimal asymptotic theoretical performance and computa-

tional scalability.

This article is categorized under:
Statistical Learning and Exploratory Methods of the Data Sciences > Manifold
Learning
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling
Methods
Statistical and Graphical Methods of Data Analysis > Nonparametric Methods
Data: Types and Structure > Massive Data
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1 | INTRODUCTION

With the soaring development of data processing and data storage technologies, high volumed and complicated data
become available in economics, health care, financial services, internet, and other fields. Fusion learning methods,
developed for the purpose of analyzing datasets from many different sources, become a popular research topic in recent
years. Specifically, fusion learning is a known and well-established statistical methodology that aggregates information
learned from different studies, multiple sources, or distinct parts of a single study, to make a coherent overall inference
(Chen & Xie, 2014; Liu, Liu, & Xie, 2014; Liu, Liu, & Xie, 2015; Yang, Liu, Wang, & Xie, 2016). However, instead of
population-average, sometimes we may be interested in making inference for a specified individual, for example, in the
precision medicine problems and individualized marketing strategies (Collins & Varmus, 2015; Liu & Meng, 2016;
Qian & Murphy, 2011; Wang, Lagakos, Ware, Hunter, & Drazen, 2007; Yang, Miescke, & McCullagh, 2012; Zhao, Zeng,
Rush, & Kosorok, 2012). Such a need in many applications gives rise to the research of individualized inference. Individ-
ualized inference methods through fusion learning broaden the scope of population-level fusion learning to inference
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problems of specific individuals. In particular, the goal of individualized inference through fusion learning is to improve
the inference for the specified study/individual by combining inference results from different sources/individuals.
Instead of using all available data, individualized inference methods through fusion learning prefer to select the individ-
uals whose true parameter is the same or close to the target one's. The core of the classical fusion learning and the indi-
vidualized version is the weighted aggregation of estimating functions from a set of individuals. While in classical
fusion learning the weights are usually equal or the inverse of variance matrices of the parameter estimators from indi-
viduals, individualized inference through fusion learning assigns weights usually based on the similarity between indi-
viduals, which is the major difference between the classical fusion learning and the individualized one.

A classical approach that also exploits similar individuals in local neighborhoods is the k-nearest neighbor (k-NN)
method (cf., e.g., Hall, Park, & Samworth, 2008). In the k-NN approach, information from k similar individuals are
gathered to make a local inference. The similarity is usually measured based on covariates that are assumed without
measurement errors. Apart from k-NN, in individualized inference approaches through fusion learning, the covariates
used in similarity assessment are often assumed with measurement errors. In addition, the individual-level point esti-
mates of the parameter of interest, θ̂, can be utilized in identifying neighborhoods. Furthermore, fusion learning based
individualized inference methods are usually kernel-based. A large number of other individuals are fused with weight
functions that measures importance.

This article reviews an aggregation-based framework for fusion learning and discusses in detail two specific fusion
learning based individualized inference approaches: iFusion (Shen, Liu, & Xie, 2019) and iGroup(Cai, Chen, & Xie,
2019). The two approaches are established under different asymptotic settings and are therefore applicable for different
cases. iFusion considers a population with a finite number of individuals, but each individual can have an infinite num-
ber of observations. iGroup studies a population consists of an infinite number of individuals, each with a finite data
size. Individualized inference with fusion learning provides a tool to make individualized inference in a heterogeneous
population, which classical fusion learning cannot handle. Theoretically, both iFusion and iGroup have promising
asymptotic performances; for example, minimizing mean squared error and other generic risk functions. Computation-
ally, both are scalable for big data.

2 | PREVIOUS WORK ON FUSION LEARNING AND INDIVIDUALIZED
INFERENCE

The methodology of fusion learning can be traced back to the studies of meta-analysis. The terminology “meta-analysis”
was named by Glass (1976) as the “analysis of analyses”, where outcomes from different studies on the same object are
combined to provide a more powerful inference result. There are two important factors in meta-analysis: what to com-
bine and how to combine. Marden (1991) discusses p-value based meta-analysis approaches, where p-values as point
summary information are combined with equal weights. Model-based meta-analysis approaches (Normand, 1999)
including fixed-effects models and random-effects models are developed to deal with possibly unobserved heterogene-
ity. In fixed-effects models, the parameters of interest are assumed to be unknown and fixed, while in random-effects
models, the parameters of interest are supposed to be generated randomly from a distribution controlled by some
hyper-parameters. In both models, the summary information of different studies are combined with unequal weights,
which usually relate to their precision. Xie, Singh, and Strawderman (2011) unify these meta-analysis models under the
framework using confidence distribution (CD). We refer the aggregation-based meta-analysis approaches as “fusion
learning.”

The idea of data fusion or data aggregation has wide applications and has shown success in other areas of
researches. In parallel to the statistical studies in meta-analysis, a fusion approach was investigated by Voorhees and
Gupta (1995) to solve the collection fusion problem in researches of information retrieval, where an optimal inquiry
strategy is proposed to combine query results from multiple independent databases. In statistical learning, ensemble
learning fits a dataset with multiple models and combines the model outputs to generate a more accurate prediction
(Opitz & Maclin, 1999; Polikar, 2006).

The individualized inference problem originates from the studies in precision medicine (or personalized medicine)
(Hamburg & Collins, 2010; Insel, 2009). The goal of precision medicine is to provide an optimal treatment suggestion,
which is tailored to the situation of a particular patient. Specifically, the optimality of a treatment is measured over the
average effect of all controls with similar situations to the target patient. See Qian and Murphy (2011) for example. Van
der Laan and Rose (2011) apply the targeted inference and targeted maximum likelihood estimate approaches proposed
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in van der Laan and Rubin (2006) to the causal inference and precision medicine problem to reduce the bias in estimat-
ing the treatment effect.

Analogue to doctor assigning a personalized treatment to the target patient, Liu and Meng (2016) pointed out the concept
of individualized inference, where a statistician provides an individualized estimate for a target dataset utilizing information
from others. As a comparison, the precision medicine focuses on finding the optimal personalized treatment assignment func-
tion in the context of causal inference, while individualized inference is a broader topic containing other inference problems.

3 | FUSION LEARNING BASED ON AGGREGATION

Suppose the sample dataset contains K independent individuals. Each individual can be one study, an individual
patient, or in some cases a subset of observations according to a partition of the whole sample, depending on the con-
text of application. Let Sk be the dataset for individual k and θk be the corresponding parameter of interest for individ-
ual k. A general framework of fusion learning includes the following three steps: (a) For each individual k, information
about the parameter θk is summarized by an estimating function m θ;Skð Þ. (b) The aggregated estimating function is cal-
culated by a weighted average of individual functions

m cð Þ θð Þ=
PK

k=1wkm θ;Skð ÞPK
k=1wk

, ð1Þ

where m θ;Skð Þ is the kth individual-level estimating function and wk⩾ 0 are generic weights for the aggregation. (c) A
point estimation for θ is further inferred from the aggregated estimating function m(c)(θ). For example, m(c)(θ) can be
obtained by minimizing the aggregated loss function. The weights can be either fixed or adaptive based on data. The
estimating function m θ;Skð Þ can be log-likelihood function, pseudo-likelihood function, loss function, log CD function
(Schweder & Hjort, 2016; Xie, Liu, Damaraju, & Olson, 2013), or the individual level point estimate θ̂k . The purpose of
aggregating different individuals is to enrich the dataset in estimating the target parameter. Depending on the target
parameter, we classify fusion learning into two categories: the classical fusion learning, which aims to estimate a
population-wise parameter of interest, and the fusion learning based individualized inference, which focuses more on
estimating the parameter of a specified individual.

3.1 | Classical fusion learning

In classical fusion learning, it is usually assumed that all individuals share a common parameter of interest such that
θ1 = θ2 = � � � = θK = θ. The assumption is often imposed when the individuals are independent studies on the same
object or the information aggregation is from random subsets of a single dataset. In the classical meta-analysis litera-
ture, this assumption corresponds to the fixed effects model assumption. This assumption is also slightly relaxed to
assuming the parameters of each individual θk, k = 1, …, K, are independent identical realizations from a common dis-
tribution with parameter θ (see, e.g., Normand, 1999).

A class of fusion learning approaches is through aggregating the CD functions obtained from each individual. Spe-
cifically, a CD function is a sample-dependent distribution function defined on the parameter space. It can represent
confidence intervals of all levels for a parameter of interest (Xie et al., 2013). CD contains much richer information than
a point estimate or a specific confidence interval. Examples of CD include bootstrap distributions, likelihood functions,
Bayesian posteriors, and so forth (cf., Schweder & Hjort, 2016; Xie et al., 2013). It has been shown that combining infor-
mation through CDs can preserve all information across all individuals under some regularity conditions (cf., e.g., Xie
et al., 2011; Liu et al., 2014; Schweder & Hjort, 2016).

By extending the classical methods of combining p-values, Singh, Xie, and Strawderman (2005) proposed a general
framework for combining independent CDs using any given coordinate-wise monotonic function. Depending on the
choice of the monotonic function, the general framework unifies almost all existing information combination
approaches in meta-analysis and other fields (cf., Xie et al., 2011; Yang et al., 2016). A special class of the general frame-
work corresponds to the aggregation in (1), which plays an important role in meta-analysis. Specifically, let the estimat-
ing function in (1) be
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m θ;Skð Þ=F−1
0 Hk θð Þð Þ, ð2Þ

where F0(�) is a given cumulative distribution function and Hk(�) is a CD for θ induced from the dataset Sk . Then, the
combined estimating function m(c)(θ) in (1) corresponds to the outcome obtained using (2.2) of Xie et al. (2011). Xie
et al. (2011) show that sometimes the combination with (1) and (2) can be simplified to

m cð Þ θð Þ=
XK
k=1

wkHk θð Þ, ð3Þ

when F0 is chosen to be the cumulative distribution of the uniform distribution and wk's are normalized. Compared
with (2), the formula (3) has a more straightforward interpretation: the CDs from different resources are combined
together directly via a weighted average. Note that the combining weight wk used in the CD-based fusion learning
framework is determined by the data Sk . It can be either fixed or dependent on Sk , for example, wk is proportional to
the precision matrix of the parameter estimator of individual k. Specifically, in cases when all resources are symmetric
in terms of methodology used, number of observations, and so forth, the weights are set to be equal. When there is no
difference from individual to individual, the weighs are set to equal. When in fixed-effects models and random effects
models, the optimal choice of weights is proportional to the precision matrix of each individual. Otherwise, whether
fixed or adaptive weight is used depends on whether the precision is known. For instance, in fixed-effects models, if the
precision matrix can be calculated exactly then a fixed weight is used. In random-effects models, the precision matrix
often can only be estimated from the data and we typically would use data-adaptive weights.

The classical fusion learning framework is generic and powerful with a broad range of applications in challenging
problem settings, including robust fusion learning (Xie et al., 2011), discrete data (Liu et al., 2014), heterogeneous indi-
viduals (Liu et al., 2015), and split-conquer-combine approaches (Chen & Xie, 2014). A detailed review on CD based
fusion learning approaches with varies of examples is provided by Cheng, Liu, and Xie (2017).

There are also many fusion methods that do not directly utilize the CD framework. For instance, Gao and Carroll
(2017) proposed a fusion scheme with pseudo-likelihood functions, where the integrated pseudo-likelihood function is
an aggregation of individual pseudo-likelihoods.

ℓ cð Þ θð Þ=
XK
k=1

wkℓk θk;Skð Þ, ð4Þ

where ℓk θk;Skð Þ is the pseudo-likelihood function of kth individual with observations Sk. Data-structure-based practical
strategies for choosing the weight wk in (4) are provided in Varin and Vidoni (2006) and Joe and Lee (2009). Further
inference and variable selection are feasible with the combined pseudo-likelihood function ℓ(c) as shown in Gao and
Carroll (2017).

3.2 | Individualized inference through fusion learning

When potential heterogeneity exists in the population, the identical parameter assumption in fusion learning often does
not hold. Instead of assuming a common parameter of interest for all individuals, individualized inference through
fusion learning focuses on improving the inference efficiency of one specific study or individual by borrowing strength
from similar studies or individuals. Specifically, suppose the individual of interest is marked as individual 0 with the
parameter of interest θ0, the goal of fusion learning based individualized inference is to provide a better point estimator,
through the aggregation in (1), than that obtained based only on the data of individual 0.

The main challenge is that bias arises when fusing a heterogeneous population. On one hand, aggregating too many
other individuals brings extra bias due to heterogeneity. On the other hand, if few other individuals are fused, variance
reduction is limited. Individual level study yielding an estimator, say θ̂0 , is the extreme case with no bias but also no
variance reduction. The population-wise fusion learning, where all individuals are fused together with equal weights, is
another extreme that maximizes variance reduction but may potentially have a large bias. Individualized version of
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fusion learning alleviates the problem by taking control over the aggregation weight wk through a similarity measure
between Sk and S0. Particularly, the aggregation formula for individualized inference through fusion learning is

m cð Þ
0 θð Þ=

PK
k=0w0,km θ;Skð ÞPK

k=0w0,k
, ð5Þ

where the extra subscript 0 indicates the target individual of such an aggregation. In fusion learning, the aggregation in
(1) is constructed once and yields one point estimate for all individuals since they share the common parameter of inter-
est. However, in individualized inference, the corresponding individualized aggregation (5) is constructed for each indi-
vidual of interest.

There are two individualized inference approaches that are fusion learning based in the literature. They focuse on
two different settings.

The iFusion approach proposed by Shen et al. (2019) considers the asymptotic settings when the effective sample
size for each individual nk increases to infinite but the proportion converges to some value between 0 and 1 such that
nk/
P

knk = Op(1). Note that the effective sample size is formally defined with the variance of the individual level estima-
tor θ̂k such that 1=nk /Var θ̂k

� �
. Especially, for estimators of

ffiffiffi
n

p
error rate, nk equals the number of observations for

individual k. It is shown that under the settings, an individual's inference can be further improved by incorporating
additional information from similar individuals, which is referred as its clique group. To be more specific, their
approach aggregates individual log CD functions according to (5) by choosing a weight function w0,k which converges
to an indicator function of the clique group.

The iGroup approach (Cai et al., 2019) investigated a different asymptotic scheme when each individual has a finite
number of observations, but the number of individuals K approaches infinite. Different from iFusion where every con-
sistent individual estimator θ̂k is asymptotically unbiased with diminishing variance, θ̂k under the iGroup setting comes
with a nondiminishing error due to the finite sample size. In iGroup, either individual level estimators θ̂k or individual
level M-estimating functions can be aggregated through (5). Loss functions, log-likelihood functions, and other objec-
tive functions can all be viewed as the individual level M-estimating function. The weight function used is constructed
based on both individual estimators θ̂k and some exogenous variable zk that helps in measuring similarity. Cai et al.
(2019) show that iGroup approach can minimize the overall risk given the target individual.

Both iFusion and iGroup methods are established through the individualized aggregation (5), though they consider
different asymptotic schemes and construct m θ;Skð Þ and w0,k in different ways. Computationally, both methods can be
paralleled in nature and scales up easily for big data applications. More detailed reviews on the two methods are dis-
cussed in the following subsections.

3.2.1 | iFusion approach

Shen et al. (2019) proposed the iFusion (abbr. for individualized fusion) approach to make inference for an individual
study or subject, motivated by an application to build a dynamic forecast model based on the most recent
24–36 months data for each of more than 10,000 companies in a time series dataset. Fitting a unique model for each
company with its own data results in unstable and inefficient models due to the small data size. For each target individ-
ual, iFusion aims to find a group of similar individuals that share similar traits of the target one. The group is known as
the clique group for the target individual. The statistical inference based on the clique group improves the analysis of
the target individual in terms of variance.

More specifically, recall nk is the effective sample size for individual k and n=
PK

k=0nk is the total number of obser-
vations. Assuming nk/n! rk∈ (0, 1) for some rk = O(1) as n!∞, iFusion defines a clique for the target individual 0 as

C0 = θk : n
1=2 θk−θ0k k2 = o 1ð Þ, k=0,1,…,K

n o
, ð6Þ

where the true parameters {θ0, …, θK} are assumed to vary as the total sample size n changes. The boundary set ℬ0 and
the disperse set D0 can be defined in a similar way:
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ℬ0 = θk :n
1=2 θk−θ0k k2 ! c, for some constant c ∈ 0,∞ð Þ, k=0,1,…,K

n o
, ð7Þ

D0 = θk :n
1=2 θk−θ0k k2 !∞, k=0,1,…,K

n o
: ð8Þ

The three sets C0 , ℬ0, and D0 form a partition of the set of the true parameters of all K individuals {θ0,…, θK}, where
each θk is a series as n!∞. Inclusion of the individuals in C0 improves the inference of θ0 at the cost of negligible bias,
while inclusion of the individuals in D0 may incur non-negligible bias. In reality, the membership of all those three sets
is unknown and it is usually difficult to separate parameters in C0 from those in ℬ0. Shen et al. (2019) point out that if
the weight satisfies the property that

w0,k =
1+ op n−1=2

� �
if θk �∈D0;

op n−1=2
� �

otherwise:

(
ð9Þ

for all k, then the iFusion estimator obtained by θ̂
cð Þ
0 = arg maxθ m

cð Þ
0 θð Þ is consistent with a

ffiffiffi
n

p
-rate bias brought by the

individuals in the boundary set ℬ0. Especially, when ℬ0 = ;, iFusion approach fuses all individuals in the clique set C0
achieving the performance of the oracle estimator, where the oracle estimator knows the exact membership of all
parameters and attains the optimal mean squared error among all possible fusions. One common choice of the weight
function satisfying condition (9) is the kernel based weights such that

w0,k /K θ̂0− θ̂k
�� ��

2

bn

 !
, ð10Þ

where K �ð Þ is a given kernel function and bn is a sequence of bandwidths that satisfies

bn=d1 ! 0 and n1=2bn !∞,

where d1 =mink θ0−θkk k2 : θk ∈D0
� �

is the minimal distance between θ0 and any parameter in the disperse set.
In essence, iFusion enhances the efficiency of the target individual inference by combining CD functions from indi-

viduals in its clique set and boundary set. Members of the clique set and the boundary set can be asymptotically selected
by any individualized weight function that satisfies the condition (9). Theoretically, iFusion is shown to achieve the ora-
cle property under the absence of boundary set.

3.2.2 | iGroup approach

Cai et al. (2019) proposed the iGroup approach under the asymptotic setting when each individual has a finite number
of observations but the number of individuals goes to infinity. Under this setting, the error in θ̂k cannot be ignored due
to the finite sample size. iFusion with the weight function in (10) is not applicable for this setting, because as bn! 0 the
weight in (10) tends to select the θ̂k 's that is close to θ̂0, which cannot offset the error θ̂0−θ0, especially when θ̂0 is inac-
curate with a large variance.

iGroup considers the hierarchical structure shown in Figure 1, where π(�) is the population distribution of the true
parameters {θ0, …, θK} as K ! ∞ and is usually unknown. p(�;θk) is a probability model generating the observations xk
under parameter θk. The z model depicts how the exogenous variable zk is generated through a latent parameter ηk with
a continuous function g(�). z model works as an exogenous model, which does not show up in the estimation of θ̂ but
closeness between z's implies closeness between θ's. Under this setting, only xk and zk are observed and individual level
estimator θ̂k is estimated from xk.

iGroup approach is an individualized aggregation based approach as well, but the weight construction is different
from the one in iFusion. The weight w0,k in (5) for iGroup can be constructed based on θ̂, z or both, depending on their
availability. A typical weight function for iGroup has two parts:
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w0,k =w1 z0,zkð Þw2 θ̂0, θ̂k j z0,zk
� �

:

The first part w1 measures the similarity between z0 and zk through a kernel function K1 �ð Þ:

w1 z0,zkð Þ/K1
z0−zkk k
b1

� 	
,

where b1 is the bandwidth. The second part w2 calculates the similarity between θ̂0 and θ̂k conditioned on z0 and zk with
the noises in θ̂0 and θ̂k considered:

w2 θ̂0, θ̂k j z0,zk
� �

=

Ð
p θ̂kjθ
� �

p θ̂0jθ
� �

p θjz0ð Þdθ
p θ̂kjzk
� �

p θ̂0jz0
� � :

Theoretically, Cai et al. (2019) show that the iGroup estimator converges to the Bayes estimator under unknown popu-
lation “prior” π, which minimizes the expected loss for a given target individual with observations x0 and z0. In particu-
lar, if m θ;Skð Þ= θ̂k is aggregated as in (5), m cð Þ

0 converges to the posterior mean π θ j x0,z0½ � with asymptotic normality.
When a general estimating function is aggregated, the iGroup estimator θ̂

cð Þ
0 = argmaxθm

cð Þ
0 θð Þ converges in probability

to the Bayes estimator, arg maxδ L δ,θð Þ j x0,z0½ � , under certain loss function L. For example, when the log-likelihood
function is aggregated, the corresponding loss function L is the Kullback–Leibler divergence.

In summary, iGroup makes individualized inference on the target individual 0 by aggregating information from
similar individuals with a soft-threshold weight design, which takes both x, z and their errors into consideration.
iGroup estimator is shown to be asymptotically optimal in terms of minimizing the expected loss function given the
observed data. In practice, the bandwidth b1 can be estimated by cross-validation within a local set of individuals and
the weight function w2(�) can be approximated by bootstrapping as proposed in Cai et al. (2019).

4 | EXAMPLE IN FINANCE

In this example, we illustrate the methodology of iGroup with an application in estimating the value at risk in stock
returns. Specifically, denote the return of stock k in day t as rt,k. The one-day value at risk (VaR) of rt,k, denoted asdVaRt,k , is defined as the smallest quantity v such that the probability of the event rt, k< − v is no greater than a pre-
determined confidence level α (for example, 1%). Statistically, −v is the α quantile of rt,k. In quantitative finance and risk
management, VaR is widely used to estimate the possible losses in worse cases (e.g., 1% lower quantile) due to adverse
market moves. In practice, it is usually difficult to estimate the value of risk. On one hand, it requires a large size of data
to estimate small quantiles accurately. On the other hand, the market conditions change over time, which limits the
available sample size for one company. The large number of stocks in the market and the limited number of observa-
tions for each stock coincide with the setting of iGroup.

In this application, we consider the daily return of 490 stocks in S&P 500 for 2016. Three approaches to estimate
VaR are compared in estimating the 1-day VaR with α = 0.01.

Individual: A naive method to estimate 0.01 VaR for stock k is to use the empirical quantile of past 100 days observa-
tions rt − 1, k, …, rt − 100, k such that

dVaR t,kð Þ=min rt−1,k,…,rt−100,kf g:

FIGURE 1 Hierarchical structure and

parameter diagram
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Classical fusion learning: The second approach assumes all stocks are the same and aggregate them equally. The
value-at-risk could then be estimated by pooling historical returns of all stocks. In this case, the estimator is

dVaR t,kð Þ=Q0:01 [K
l=1

[100
s=1

rt−s,lf g
� 	

,

where Qα(A) is the empirical 0.01 quantile estimator given a set of observations A.
iGroup: The third approach is an application of the iGroup approach. Before applying any aggregation, we use their

Fama–French factors as the variable zk. Specifically, assume on each day, each stock return follows the Fama–French
three factor model (Fama & French, 1993):

rt,k = αt,k + rf + b0,t,k MKTt−rf
� �

+ b1,t,kSMBt + b2,t,kHMLt + ϵt,k,
ϵt,k �N 0,σ2k

� �
,

where MKT, SMB, and HML are the three Fama–French factors, and b0,k,t, b1,k,t, and b2,k,t are the corresponding coeffi-
cients for the stock labeled k at time t. The three coefficients characterize stocks by their sensitivity to the corresponding
factors. In this model, we assume the Fama–French coefficients b0, b1, b2 vary over time slowly. Therefore, the Fama–
French coefficients could be used as the variable z in the iGroup framework. To be more specific, the iGroup estimator is

dVaR t,kð Þ=Q wð Þ
0:01 [K

l=1
[S
s=1

rt−s,l,w zt,l;zt,kð Þð Þf g
� 	

,

where Q wð Þ
0:01 �ð Þ is the empirical 0.01 quantile estimator from a weighted sample and zt, k = (b0,t,k, b1,t,k, b2,t,k) are the

Fama–French coefficients of stock k fitted using the returns in the past 100 days. The weight function here is chosen to
be a Gaussian kernel

w zt,l;zt,kð Þ/ exp −
zt,l−zt,kk k22

2b2

� 	
:

The bandwidth b is the parameter to be tuned.

FIGURE 2 Prediction error (RMSE)

as a function of bandwidth
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Note that, the weighted empirical quantile function used in iGroup estimation is equivalent to aggregating the fol-
lowing objective function

Mk θ; tð Þ=
XS
s=1

j rt−s,k−θ j 0:011 rt−s,k > θf g +0:991 rt−s,k<θf g
� �

:

In this study, we use K = 490 stocks. The prediction error is measured over 250 trading days in the year 2016 for
490 stocks using

RMSE=
1
490

X490
k=1

1
250

X250
t=1

1
rt,k<cVaR t,kð Þ
� �−0:01

 !2" #1=2
,

where dVaR t,kð Þ is based on returns {rt− 1, k, …, rt− 100, k, k = 1, …, 490}.
Figure 2 shows the RMSE curve as a function of the bandwidth b. The bandwidth controls the bias-variance tra-

deoff. It is seen from the figure that the V-shaped RMSE curve decreases at the beginning and achieves a minimal value
at approximately b = 0.05 with minimum RMSE being 5.75 × 10−3. The RMSEs of each model are shown in Table 1.
The iGroup estimator improves the accuracy significantly.

5 | CONCLUSIONS

Individualized inferences through fusion learning provide a general framework to make individualized inferences with
techniques in fusion learning. Based on the individualized aggregation (5), both iFusion and iGroup are shown to
improve individualized inference by extracting useful information from a potential heterogeneous population. iFusion
and iGroup are applicable for different asymptotic settings, and both are proven to have promising theoretical results.
By focusing on the local structure around the target individual, fusion learning based individualized inference algo-
rithms can be easily paralleled and is computationally scalable. Overall, with the availability of big data and with the
increasing demands for personalized inference, individualized inference approaches through fusion learning can be a
powerful tool to make efficient individualized inferences with sound theoretical support.
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