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Additivity tests for nonlinear autoregression
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SUMMARY

Additivity is commonly used in the statistical literature to simplify data analysis, especi-
ally in analysis of variance and in multivariate smoothing. In this paper, we propose three
procedures for testing additivity in nonlinear time series analysis. The first procedure
combines some smoothing techniques with analysis of variance, the second is a Lagrange
multiplier test using nonparametric estimation, and the third is a permutation test which
uses smoothing techniques to obtain the test statistic and its reference distribution. We
investigate properties of the proposed tests and use simulation to check their performance
in finite samples. Applications of the tests to nonlinear time series analysis are discussed
and illustrated by real examples.

Some key words: Alternating conditional expectation; Analysis of variance; Lagrange multiplier test;
Permutation test; Tukey’s one degree of freedom test.

1. INTRODUCTION

Much research in nonlinear time series analysis has focused on parametric models such
as the threshold autoregressive model of Tong (1983), the exponential autoregressive
model of Haggan & Ozaki (1981), and the bilinear model of Granger & Andersen (1978)
and Subba Rao & Gabr (1984). Examples in the literature illustrate the usefulness of these
models (Priestley, 1988; Tong, 1990). However, it is often hard to choose an appropriate
class of models to entertain in a real application. To overcome this selection problem and
to make use of recent advances in computing and nonparametric regression analysis,
researchers have begun to use data-driven methods, such as nonparametric autoregression,
in nonlinear time series analysis. Indeed, ‘letting the data speak for themselves’ is now a
common principle for many practitioners and researchers in choosing nonlinear time series
models. Nonlinear autoregression provides a general framework for such developments.

A nonlinear autoregressive model for a time series y, is

yt=f(yt—k1>'"9yt—kp)+8t’ (1)

where k; and p are positive integers, f(.) is a p-dimensional real-valued function, and ¢, is
a white noise series with mean zero and finite variance (Jones, 1978). Nonparametric
estimation of this model has been considered by Robinson (1983) when y, is stationary
and strong mixing. However, estimating model (1) nonparametrically often encounters
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‘curse of dimensionality’. Substantial amounts of data are often needed in order to obtain
a variance-stable nonparametric estimate of a high-dimensional function f(.). As an
alternative to direct estimation of f(.), we seek dimension reduction to simplify nonlinear
time series analysis.

There are several tools available for dimension reduction, for example, the projection
pursuit of Friedman & Stuetzle (1981) and the sliced inverse regression of Li (1991). In
this paper, we use additivity to reduce the dimension. Additive models have been widely
used in nonparametric regression analysis (Hastie & Tibshirani, 1991). Our choice of these
models for nonlinear autoregression is based on several reasons. First, they are easier to
comprehend because they do not involve interactions. Secondly, they can provide adequate
approximations for many applications. Thirdly, under the additivity assumption, we can
use univariate smoothing techniques directly in nonparametric estimation, resulting in a
better understood estimate.

A nonlinear additive autoregressive model is of the form

Ve=F1e-i) + L2(Ve-i)) + -+ Hime,) + & (2)
where f;(.) are measurable, smooth functions, k; are positive integers, and {¢,} is a sequence
of independent and identically distributed random variables. This model was considered
by Chen & Tsay (1993a). When exogenous variables are available, the model can be
extended to a nonlinear additive autoregression with exogenous variables,

Ve=F1e-i) + oo+ (i) + 81— ) + o+ 8400 —1,) + &1

where x, denotes an exogenous variable. The nonlinear additive model in (2) is analogous
to the generalised additive model of Hastie & Tibshirani (1991) in regression analysis.
Empirical modelling of such a time series is much easier than that of the general nonlinear
model (1), needing only univariate smoothing. In addition, under additivity, the nonlinear
contribution of each explanatory variable to the response variable can be easily seen; it
can be displayed graphically and in some cases can be interpreted. Because additive models
can be estimated more accurately than the unrestricted nonlinear autoregressive models,
especially when the sample size is not large, they may provide more accurate forecasts.
However, the additivity assumption is strong and should be carefully examined in practice.
The goal of this paper is to provide three procedures that can be used to examine the
additivity assumption in nonlinear autoregression, hence to justify the reduction from
model (1) to model (2). In contrast to Auestad & Tjostheim (1990), our procedures do
not require numerical integration, nor multivariate smoothing.

The proposed testing procedures are described in §§ 2, 3 and 4, respectively. The first
test uses the local conditional mean estimator of Truong (1993) and employs a procedure
similar to the analysis of variance. The second test uses the alternating conditional expec-
tation (ACE) algorithm of Breiman & Friedman (1985) to fit an additive model to the data.
Additivity is then tested using a Lagrange multiplier type test. The third procedure also
uses the ACE algorithm, but fits permuted residuals to some cross-product terms of the
explanatory variables to obtain a reference distribution for the test statistic. Simulation
is used in § 5 to illustrate the relative strength and weaknesses of the three tests. Section 6
applies the proposed tests to some real examples, and § 7 provides a brief discussion.

2. A CONDITIONAL MEAN TEST

For simplicity, we only consider nonlinear autoregressive models of order two in this
section. The proposed test procedure applies equally well to higher-order models, even
though the amount of computation and the sample size required grow rapidly.
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For a stationary and ergodic nonlinear autoregressive time series y, of order two, we
propose a test of the additivity null hypothesis

Hy:y, = f1(Vi-1) + f2(Ve-i,) + & (3)

against the alternative H,:y, = f(V;x,, Vi—x,) + & for some k; and k,. Without loss of
generality, we assume k,; =1 and k, =2.

First, a set of points (d;, ..., d,) on the domain of y, is chosen. The local conditional
means of y, on the grid points (d;, d;) are estimated by

N 1
f@did)=—"% . (4)

ijtel;;
where
Ij={t:d;—6;/2<y,_1<d;+6;/2 and di—06;/2<y,_,<d;+6;/2},

n;; is the number of observations in I;;, and J; and 9; are the length of a rectangular
window around (d;, d;). Here we use different window sizes for different grid points to
control the sample sizes in windows at different locations. Using the empirical density of
the process, we can choose d; and §; so that the sample size in each cell is roughly the
same. Experiment shows that the estimate in (4) works reasonably well.

Under some regular strong mixing condition, Robinson (1983) and Truong (1993)
proved that, as the sample size n goes to infinity and the window sizes 6; and J; go to
zero,

(n8:8,2 (] (di» d) — [ (dss d;)} ~ N{O, 0*/p(d;, d;)},

where ¢ is the innovational variance and p(d;, d;) is the joint density of (Ve—1s Ve—2)
evaluated at (d;, d;). In addition, the f(d;, d;) are asymptotically mutually independent for
all (i, j). The optimal window size J; is shown to be of the order n~'* by Truong (1993).
In practice, the value of the joint density function p(y,—;, y,—,) at the point (d;, d;) can be
consistently estimated by p(d;, d;) = n;;/(nd;0;). Hence
n*{f(d;, d;) — f(d;, d;)} ~ N(0, 0%)

asymptotically. To test the null hypothesis H,, we can apply the likelihood ratio test,
which can be viewed as a two-way unbalanced analysis of variance by the following
observation. The conditional mean estimator is based on the idea that, when the function
f(.,.) is sufficiently smooth, the observations in the same block have roughly the same
mean values. This argument is true asymptotically as the window size goes to zero.
In addition, under the strong mixing condition, the observations in a window behave
like independent observations. Therefore, testing the additivity hypothesis f(x, y)=
f1(x) + f2(y) can be carried out using the conventional procedure of two-way analysis of
variance.

More precisely, we partition a shrunken range, 6(Ymax — Ymin)» Of the observations
Vi,..., Y, into m equal intervals. Namely, we construct intervals (a;, a;,;) for i=
0,...,(m—1), where

4; = Ymin + (1 - 5)(ymax - ymm)/2 + ié(ymax - ymin)/m

and 6 € (0, 1) is a shrinking factor. Here we shrink the data range in order to avoid the
complication of the ‘boundary effect’ often encountered in nonparametric smoothing pro-
cedures. Further, for simplicity in presentation, we use the same window size. For t =
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3,...,n,weclassify y, into the (i, j)th cell if y,_; € (a;—,, a;) and y,_, € (a;_1, a;) and denote
such an observation by x;;, where k is used to distinguish different observations in the
same cell. If y,_; or y,_, is outside the shrunken range, y, is dropped from further consider-
ation. Finally, an unbalanced two-way analysis of variance procedure is carried out to
obtain an F statistic for testing the null hypothesis H,: fij=0 for all i and j in the model
Xipe = p+ o + B+ fi; + &, where f;; denotes a nonadditive function.

Proofs of the following theorems are given in the Appendix.

THEOREM 2-1. Suppose the time series (3) is strongly mixing with a stationary density
p(.) and it satisfies the positivity condition of Besag (1974); i.e. under stationarity the joint
density p(y:, y.—1) >0 if and only if the marginals p(y,) and p(y,_,) are positive. Suppose
f1(.) and f,(.) are bounded continuous differentiable functions with bounded first derivatives.
Then as the sample size n goes to infinity and the window size goes to zero, the test statistic F
Jfollows asymptotically, under the null hypothesis, a F-distribution with degrees of freedom
(m—1)* and n* —m?, where n* is the number of observations used in the two-way
classification.

The proposed testing procedure can be proven to have absolute power against local
alternatives, when the sample size goes to infinity.

THEOREM 2-2. Under the conditions of Theorem 2-1, the power of the test against the
local alternative

f(di, d)) = f1(dy) + fo(d;) + g(dy, d;)m/n* 5)
goes to 1 as n*/m— oo and m— oo, where g(d;, d;) is a fixed nonadditive function.

It is interesting to note that the preceding two theorems reveal a conflict between the
local power and the accuracy of the F approximation to the test statistic in choosing m,
the number of grid points. On one hand, m should be chosen small to increase the local
power of the test. On the other hand, m must be chosen moderately large for the
F approximation to be appropriate. Simulation results in § 5 reflect these observations.

For fixed grid points, Theorem 2-1 says that one can achieve consistency by shrinking
the window size as the sample size increases. The optimal window size for the local
conditional mean estimator is O(n~/*) when the main interest is in estimating the function
f(.) (Truong, 1993). Our result, however, reflects that it is not necessary to have an accurate
knowledge of the nonparametric function f(.) for the purpose of testing additivity.

Because we have an unbalanced random design and time series data are often spatially
correlated in the space of (y;—y,, ¥,-x,), empty cells may exist, resulting in further difficulties
in applications. In such cases, minor modification is needed in order to obtain correct
degrees of freedom for the test statistic. One possible modification is to eliminate the entire
row in which an empty cell exists. In addition, the reference row should be chosen carefully.
Typically, cells in the centre row and column have more observations and may be chosen
as the reference row and column.

3. A LAGRANGE MULTIPLIER TEST

Nonlinear additive models have been studied extensively for independent data, and
many modelling procedures suggested. In particular, back-fitting algorithms such as the
alternating conditional expectation algorithm of Breiman & Friedman (1985) and the
additivity and variance stabilisation algorithm of Tibshirani (1988) are easy to use and
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have nice properties. Using these tools, we can build additivity tests similar to Tukey’s
one degree of freedom test (Tukey, 1949) based on the goodness of fit of an additive model.
Using the Volterra expansion, we can rewrite the nonlinear autoregressive model

yt=f(yt—k19 s Y-k, )+8t as

V= :u+z¢uytk+z¢uvytkytk+ Z Duow Y-, Ve—t,Vi—k,, T -

u= usv usSov<w

=u+ qu(yt k)t Z PuwVi—k,YVe—k, + Z Puow Y-, Y-k, Vi-k,, T - - + &> (6)

u=1 u<v usSvsw

where

frt(.Vt—ku) = ¢uyt—ku + ¢uuyt2—ku + ¢uuuy?—ku +...

is the collection of all the powers of y,_; and it is understood that u =v=w is excluded
from the summation of the third-order term. If the model is additive, all the coefficients
of the higher-order terms in the preceding equation should be zero. Based on this obser-
vation, we propose the following three-step test.

1. An additive model y, = f1(yi—x,) + ... + fp(yi-,) + & is estimated using the ACE
algorithm with the restriction that the response Varlable can only be linearly
transformed Denote the estimates of fi(.) by f,() and the residuals by

== X0y fiyeos)

2. Regress the cross- product terms Y, Ve—r;, ON Yikys- -5 Vi, for 1<i;<i,<p,
and the third-order cross-product terms y, ki Vimky, Yimiyy ON Vemkys s Vioky for
1<j; <j,<j3<p except for j, =j,=j; using "the AcE algorlthm This procedure
results in

K=p(p—1)2+{p(p+1)(p+2)/6 —p} =(p—1)p(p+7)/6

residual series, say, e;(?), . . . , ex(t). Here the transformations of the response variables
are also restricted to be linear.

3. Linearly regress the residual series &, obtained from step 1 on e;(¢), . . ., ex(t) obtained
from step 2. Compute the test statistic nR? where n is the sample size and R? is the
conventional coefficient of determination in linear regression analysis.

In applications, the orders p and k; can be chosen in several ways. For example, one
can use the nonparametric procedure of Tjostheim & Auestad (1994) to select significant
lagged variables. Another method is to let k;=i and to use a stepwise procedure in
choosing p, starting with p = 1. In step 2, the order of cross-product terms is not limited
to three. Higher-order cross-product terms can be included to increase the power of the
test if the sample size is sufficiently large.

To obtain the asymptotic distribution of the proposed Lagrange multiplier test, we
define the optimal transformations as functions f¥, ..., /5 that minimise

. . P 2
e(fi,. s f)=E {y: —c— ) f,-(yt-kj)}
j=1
among all f;(.) such that E{fi(y,)} =0. This definition is slightly different from that of
Breiman & Friedman (1985) because we do not require any transformation of the response
variable y,. Breiman & Friedman (1985) showed that, under some mild condition, the
optimal transformation exists. However, those optimal transformations may differ from
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the functions f;(.) of the regression model y, = f(y,—4,) + ... + f( Vi-1,) T &. Nevertheless,
it is easy to prove, following the argument of Theorem 5.2 of Breiman & Friedman (1985),
that, if the response variable is not transformed, then ¢+ X7_, f¥(.)=XF_, fi(.) in our
case.

LEMMA 3-1. Assume y, is a stationary ergodic time series satisfying

Ve=J1De-i) + oo+ fo(Vemi,) t &

where ¢, are independent and identical distributed white noise with zero mean and finite
fourth moment. The marginal density of y, is assumed to be positive on R'. The functions
J1()s -+ fp(.) and the joint density of (y,, Yi—y,>- - > Vi-r,) satisfy the necessary conditions
for the ACE algorithm to converge. In addition, we assume that the optimal transformations
f¥ are continuous. The smoothers used in the ACE algorithm are assumed to be linear,
uniformly bounded and uniformly consistent on any fixed compact set as the sample size n
goes to infinity. Then, for any fixed compact set, the estimate f™ obtained by the ACE
algorithm converges uniformly to the optimal transformation f¥ for i=1,..., p with prob-
ability one.

The lemma can be proven in the same way as Theorem A.2 of Breiman & Friedman
(1985) or Theorem 2.1 of Koyak (1990) with some minor modification, and hence is
omitted.

THEOREM 3:1. Under the conditions of Lemma 3-1, if the three-step testing procedure is
applied on a compact set of R, by discarding observations outside the compact set, the test
statistic nR? is asymptotically chi-squared with (p — 1)p(p + 7)/6 degrees of freedom.

Proof. Since f”ﬁ”)—> f¥ uniformly and almost surely on the compact set, and
c+ L f¥(i-r) = X fiyi—r,), Slutsky’s theorem ensures that & follows the same distri-
bution as ¢, asymptotically. The series e;(t) converges almost surely to the residual series
e (t) computed using the true optimal transformations at the observed data. Note that
e (t) depends only on y,_; for i > 0. Hence ¢, and e*(t) are uncorrelated. The rest of the
proof follows the same lines as that of Theorem 1 of Tsay (1986) or Lemma 3.1 of Keenan
(1985). O

Remark 1. The optimal transformations obtained by the ACE algorithm are generally
not the transformations in the regression model (Breiman & Friedman, 1985). However,
if the response variable is not transformed, the optimal transformations estimated by the
ACE algorithm are the regression functions.

Remark 2. The continuity of the optimal transformations depends solely on the joint
stationary distribution of the time series, and is usually difficult to check in practice. We
conjuncture that if the functions f; are continuous, the optimal transformations will be
continuous. This is, again, due to the fact that the response variable is not being
transformed.

Remark 3. The requirement that the smoother used be uniformly consistent on a com-
pact set is a mild condition. For example, a direct application of Lemma A.1 of Breiman
& Friedman (1985) shows that the nearest neighbour smoother is uniformly consistent
on a compact set.
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4. A PERMUTATION TEST OF ADDITIVITY
If we also group the high power terms in the Volterra expansion in (6), e.g. letting

ﬂu(yt—kuyt—k,,) = ¢uvyt—kuyt—k,, + ¢uuvv(yt—kuyt—k,,)2 + ¢uuuuuv(yt—k“))t—kv)3 + ... ’

then we have

p
Ve=u+ Z ﬁ;(yt—k“)+ Z f;w(.))t—k“yt—ku)_l_ Z f;ww(yt—k“yt—ku.))t—kw)-i_ ot g
u=1

u<v uSv<w

It is, therefore, of interest to test the null hypothesis

p
Hy:y,=u+ Z ﬁ;(yt—ku) + &

u=1

versus the alternative

p p
H,:y.=p+ Z ﬁ;(yt—ku) + Z fuv(.Vt—kuyt—kv) + &.
u=1 u<v
Although such a test is limited to the first order cross-product terms, it should have decent
power against a large class of nonadditive models. Here the usual F-ratio test is not
directly applicable because we use nonparametric tools such as the ACE algorithm in
model fitting, and hence it is difficult to compute the appropriate degrees of freedom.
Instead we propose a test based on simple permutations:

1. As for step 1 of § 3.

2. Regress the estimated residuals & from step 1 on the cross-product terms y,_; y,—,
for 1 <i<j < p using the ACE algorithm and obtain the sum of squares of residuals
of this regression.

3. Form a new series of residuals e(t) by permuting the &,. Regress it on the same cross-
product terms as those of step 2 using the ACE algorithm and obtain the sum of
squares of residuals. Repeat this step N times.

4. The p-value of the permutation test is determined by the proportion of the sum of
squares of residuals in step 3 that is smaller than sum of squares of residuals in step 2.

The proposed permutation test is based on the fact that, under the null hypothesis, the
residuals &, are asymptotically independent and identically distributed. Hence any permu-
tation of the & should have the same joint distribution as that of &,. Further, when these
residuals are regressed on the cross-product terms using the ACE algorithm, the residual
sum of squares for the original & should also have the same distribution as that for the
permuted ones. On the other hand, if the model is indeed nonadditive, a random permu-
tation of the & loses the information of the cross-product terms f,,(y; -« V:—«,) contained
in &, resulting in a larger sum of squares of residuals.

5. SIMULATION STUDY

5-1. Models used in the study

In this section, we demonstrate the performance of the proposed three tests by simu-
lation. Two sets of models are used; one for size consideration and the other for power
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study. The first set consists of four additive models:

Y =08y,-1—03y,_,+¢, (7)

Ve=05y,_1 +sin(y,5) + &, (8)

Ye=2exp (=0-1y7_ 1)y, —exp (=0 1y7 )y, 2 + &, )
Ve==2Y-11(y;-1 <0)+ 04y, 1 I(y,-1 > 0) + ¢, (10)

where I(x) is an indicator variable such that I(x) =1 if x holds. These models are used to
study the behaviour of the proposed tests under the null hypothesis. They represent time
series models commonly used in univariate analysis. For example, model (10) is a threshold
autoregressive model with an asymmetric limit cycle, and model (8) contains a sine func-
tion at lag 2. Trigonometric functions have been used in the time series literature to
describe periodic series (Lewis & Ray, 1993). Model (9) is similar to an exponential
autoregressive model, but uses different lag variables in the exponents so that the model
is additive. We chose the linear AR (2) model of (7) to ensure that the proposed tests work
well for this simple case. The threshold model is also used to check the performance of
the tests when the order is misspecified.
The second simulation considers four nonadditive models:

Yr=2exp (=0-1y7_1)y,—1 —exp (—O01y7_ 1)y, —» + &, (11)
Ve=Ye—18in (y,_,) + &, (12)

Ye=(0-5y,—1 — 04y, 5)I(y;—1 <O0) + (05y,—1 + 03y, )I(y,-1 =0) +¢,  (13)
V= 1427+ 046y,_ 1 — 002y, 1 (y,—, — 30); +0:047y,_1(30 — y,_,)+ + &, (14)

where (x), = x if x >0, and (x), = 0 otherwise. These models are used to study the power
of the proposed tests. They are either models commonly used in the literature or models
that were suggested for real time series. For example, model (12) is a functional-coefficient
AR (1) model with a sine function of lag 2 (Chen & Tsay, 1993b), and model (14), which
exhibits limiting cycle behaviour, is an adaptive spline threshold autoregression: see Lewis
& Stevens (1991), who show that such models are useful in real applications such as
modelling and forecasting the annual sunspot numbers.

5-2. Simulation results

For each of the models in (7)—(14), we applied the proposed three tests to 300 realis-
ations, each with 300 observations. The sample size of 300 or larger is common in nonlinear
time series analysis, especially in using nonparametric methods. It is often difficult to
obtain a reliable estimate of the high-dimensional surface when the sample size is small.
The innovations ¢, used are independent standard normal random variates. In applying
the conditional mean test of § 2, we used a shrinking factor 6 =0-8 and a 5 x 5 grid. For
each realisation, we computed the F-statistic and its p-value with respect to the correspond-
ing asymptotic F-distribution. Table 1(a) shows the percentiles of the asymptotic p-values
for models (7)—(10). From the table, we see that the asymptotic p-values are close to the
uniform distribution in the unit interval [0, 1], indicating that the proposed conditional
mean test follows closely the asymptotic F-distribution of Theorem 2:1 when the null
hypothesis holds. Table 2(a) shows the percentages of rejection by the conditional mean
test under different significance levels for models (11)—(14). The test has good power
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Table 1. Percentiles of p-values of the proposed additivity
tests under the null hypothesis

(@) The conditional mean test
Probability = Model (7) Model (8) Model (9)  Model (10)

0-01 0-016 0-007 0-016 0-017
0-05 0-040 0-045 0-051 0-052
0-10 0-091 0-105 0-119 0-098
0-25 0-282 0-219 0-295 0-240
0-50 0-507 0-427 0-574 0-507
0-75 0-748 0-696 0-802 0-748
0-90 0-897 0-886 0-915 0-919
0-95 0-946 0-928 0-955 0-960
0-99 0-996 0-982 0-990 0-993

(b) The Lagrange multiplier test
Probability = Model (7) Model (8) Model (9)  Model (10)

0-01 0-010 0-013 0-002 0-026
0-05 0-041 0-046 0-032 0-091
010 0-099 0-092 0-085 0-158
0-25 0-271 0-232 0-230 0-315
0-50 0-549 0-497 0-445 0-492
075 0-791 0-763 0-739 0-764
0-90 0-910 0914 0-907 0-912
0-95 0-959 0-951 0-951 0955
0-99 0-996 0-986 0-976 0-996

(¢) The permutation test
Probability =~ Model (7)  Model (8)  Model (9)  Model (10)

0-01 0-025 0-010 0-035 0-060
0-05 0-090 0-075 0-100 0-160
0-10 0-175 0-160 0-185 0-250
025 0-360 0-365 0-360 0-520
0-50 0-660 0-675 0-665 0-835
075 0-865 0-850 0-890 0-950
0-90 0-960 0-950 0-960 0-980
095 0-990 0-960 0-980 0-990
0-99 1-000 1-000 1-000 1-000

against threshold models and some functional-coefficient autoregressive models. However,
it has low power against the exponential model in (11).

Because the sample size used is 300 for each realisation, we added the term Vi 1y, to
step 2 of the proposed Lagrange multiplier test to increase the power of the test. This
results in using an asymptotic chi-squared distribution with 4 degrees of freedom for the
test statistic. Table 1(b) gives the p-values of the test statistics with respect to x for models
(7)—(10). Again, the proposed Lagrange multiplier test follows closely its limiting distri-
bution under the null hypothesis. Table 2(b) gives the power of the Lagrange multiplier
test under the alternative hypothesis. For the models considered, the test has good power.

Finally, Table 1(c) shows the p-values of the proposed permutation test of § 4 for models
(7)-(10). For ease in computation, we used 100 permutations for each realisation and
only considered the cross-product term y,_;y,—, in step 3 of the proposed test. Increasing
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Table 2. Percentages of rejection by the proposed tests under the
alternative hypothesis

(a) The conditional mean test
Significance level (%)  Model (11)  Model (12) Model (13)  Model (14)

10 0-403 1-000 0-740 0-873
5 0-267 1-000 0-627 0-817
1 0117 1-000 0-450 0-597

(b) The Lagrange multiplier test
Significance level (%)  Model (11)  Model (12) Model (13)  Model (14)

10 1-000 0-990 0-943 1-000
5 0-997 0-990 0-897 1-000
1 0-977 0967 0-723 1-000

(¢) The permutation test
Significance level (%)  Model (11)  Model (12) Model (13)  Model (14)

10 0-090 1-000 0-780 0-903
5 0-037 1-000 0-647 0-843
1 0-007 1-000 0-260 0-587

the number of permutations and the number of cross-product terms would substantially
increase the computing time. From the table, the p-values appear to be larger than for a
uniform distribution in [0, 1], resulting in smaller type-I errors. This might be due to the
fact that the ACE algorithm used tends to overfit the data in the finite sample case.
Table 2(c) gives the percentages of rejection by the permutation test for models (11)—(14).
The test has reasonable power against models (12)-(14), but fares poorly against
model (11). This latter behaviour will be discussed later.

5:2. Some discussion

The poor performance of the permutation test against model (11) is understandable,
because the nonadditivity of the model is in higher-order terms and we only used the
simple cross-product term y,_;y,_, in the test. We reran the test using the four cross-
product terms y,_;y;,_», Y71 V-2, Vi-1V, and y2_;y2_,. The percentages of rejection by
the test increase to 0-48, 0-36 and 0-17, respectively, for the significance level 10%, 5%
and 1%. In practice, it might be helpful to employ several cross-product terms in using
the permutation test.

Secondly, the permutation test encounters some difficulty in testing model (10), suggest-
ing that the test might be sensitive to model misspecification. On the other hand, the
conditional mean test works well for model (10).

Thirdly, to study the ‘bandwidth’ effect on the conditional mean test, we simulated
300 series, each with 500 observations, for each of the models in (11)—(14) and performed
the test using 5 x 5 and 7 x 7 grid points. The percentages of rejecting additivity are shown
in Table 3. Clearly, the choice of window size affects the power of the test, but not in a
unidirectional manner. The effects depend on the underlying functions of the model. For
threshold models which have discontinuity points, increasing the grid points, i.e. reducing
the window size, actually reduces the power of the test. Further study is needed to choose
the optimal window size in using the conditional mean test. Finally, comparing Table 2(a)
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Table 3. Power comparison of the conditional mean test for different window

sizes
Significance Model (11) Model (12) Model (13) Model (14)
level (%) 5x5 Tx7 5x5 Tx7 5x5 Tx7 5x5 Tx7
10 069 083 1-00 1-00 093 086 098 098
5 057 075 1-00 1-00 0-89 080 097 098
1 033 055 1-00 1-00 072 062 091 0-94

and Table 3, we see that, as expected, increasing the sample size improves the power of
the tests.

6. A REAL EXAMPLE

In this section we apply the proposed Lagrange multiplier test to the daily sea surface
temperature at Granite Canyon on the California coast. The data, in degrees centigrade,
were from 1971 to 1991 for 7361 observations. The objective of this application is to
illustrate that the proposed tests can be used to validate previous analyses available in
the literature and to reduce the dimension in model building.

Following Lewis & Ray (1993), we considered the logarithms of the data. First, using
p =4 and k; =i, the Lagrange multiplier test gives a p-value of 0-03 for the null hypothesis
of additivity, implying that interactions exist between the lagged values of the log sea
surface temperature. This result is in agreement with the study of Lewis & Ray (1993).

Secondly, we considered a log salinity series as an exogenous variable and employed
data from April 1986 to March 1991 only for 1915 observations. Figure 1 shows the log
temperature and log salinity series. Lewis & Ray (1993) further included wind speed and
wind direction as exogenous variables. However, because of their categorical nature, wind
speed and direction were dropped from our analysis. Using the first four lagged variables
of y, and the first four exogenous variables x,_; for i=0, ..., 3, we obtained a p-value of
0-134 for the Lagrange multiplier test. Thus, the additivity assumption appears to be
reasonable for the daily sea surface temperature data in the presence of salinity. Further
study found that an additive model that includes lagged temperature y,_; with i=1, 2,4
and lagged salinity series x,_; for i=0, 1, 3 fits the data well. Figure 2 shows the fitted
values and the residuals. The estimated residual standard error of the model is 0-038 which
is very close to 0-039 of Lewis & Ray (1993) who used a nonadditive model that employs
lagged temperature y,_; for i=1, 2, 8, 34, 39, lagged wind speed w,_; for i =1, 32, 44, and
two three-way interactions between y,_; and w,_;. One of the three-way interactions is

(225 = yi-34) + (V1-30 — 2:29) 4+ (249 — W, 1) 4,

which is hard to interpret.

Because of the large sample size and the number of lagged variables involved, we did
not use the conditional mean and permutation tests in this particular example. These two
tests require intensive computation. For this reason, they may encounter some limitations
in real applications.

7. DISCUSSION

We have shown that the conditional mean test is reliable under the null hypothesis.
However, it is practical only when the order of the autoregression is low. When the
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Fig. 1. Sea temperature and salinity data from April 1986 to March
1991. (a) Log daily sea temperature in degrees centrigrade. (b) Log daily
salinity in parts of solute per 1000 milligrams of water (ppb).

autoregressive order is high, the computation involved and the sample size required grow
exponentially. The Lagrange multiplier test is shown to be powerful. It can easily be
implemented, even for higher-order models, because it only involves one-dimensional
smoothing. However, the alternative models of the test are relatively limited and the test
could be sensitive to model misspecification. The permutation test is computationally
demanding, but it does not require any strong assumption on the innovations.
Consequently, the choice between the three tests in a real application would depend on
the particular circumstance. For example, if substantive prior information is available to
suggest possible nonlinear relation between the variables, then the Lagrange multiplier
test seems reasonable.
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APPENDIX
Proofs of Theorems 2-1 and 2-2

Proof of Theorem 2-1. If the support of p(.) is not a closed interval, we can find an ‘action
interval’ [a, b] such that p(x)>0 on [a, b] and p([a, b]) > for some 5 > 0. Denote by n* the
number of observations satisfying (y,_1, v,—,) € [a, b] x [a, b]. Clearly, n* = O(n) and n* - oo as
n—o0.Leta=ay<a; <...<a,=>b partition the interval [a, b] into m subintervals. Hence (a;, a;)
fori, j=0,...,mare (m+ 1)* grid points on the plane. Denote by c;; the small square with vertices
(@i-1,a;-1), (i, aj—1), (a;— 1, a;) and (a;, a;), and by n;; the number of observed (y,—y, y;-») € ¢;;- In
classifying y,, we let x;; = y, and write the model as x;; = fi + & if (y,—1, yi—2) € ¢;j, where k is
used to index the observations in c;;. Under the null hypothesis, fix = f1(yi—1) + f2(ye—2). It is
noted first that y,, y,_,, y,_, have the same marginal stationary distribution and

vii(f)=var [{f1(Y-1) + fo(Yi_2)H, ]
< 2max [var { fi(¥)I,,} + var { f5(¥)I;}]1 < 2po(Li + L3)/m?,
L,J
where variance is taken with respect to the stationary density p(.), I, is the usual indicator function
of the set ¢, ¢; =(a;—1, @;), L; =sup, {| fi(x)|} and p, = max, 4 p(x). Hence, under H,,
1

niy _ 1
1 k§1 (fije _fij.)2 = Op{vij(f)} =0, <$>,

nij_
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where fu is the average of f;; over the observations in cell c;;. By expanding the within-sample
sum of squares, we obtain that

SSw = Z i (i — fij.)z
njk=1
= Z ; (fin—fii )2 + Z %‘, (e — &) +2 2;, ; (fije — fii ) e — &:5.)-

Noting that n;;= 0(n*/m?) and ¥, (fiz — f;;)* = O(n;;/m®), we have

i i "2'(‘ (fie— fij P = O, (n* /m®).

i=1j=1k=1
Furthermore, since the cross-product terms are small and approximately independent with mean
zero, we can apply the Linderberg—Feller central limit theorem to obtain

(n* —m?)~* i i‘, ”i (fisk — Mip)&in— N(0, 02)

i=1j=1k=1
in distribution, where p;;= E[I. {f1(Y,-1)+ f2(¥,_,)}] is the true cell mean. Hence the cross-
product is of order O, {(n*/m®)*} because O(n* — m?) = O(n*). Therefore

n

m m f 1 1
D A B O]

i=1j=1k=1 i

Consequently, the larger m is, the better the F approximation. Typically, if m is of order O(n'/) or
less

m m n 1
DD 2(4 (e — %) = Z Z %“ (e — ;. + 0, <$>

* % __ 32
T =M T j=1k=1 nt—m

Similar arguments apply to compute the between-sample sum of squares ssg. Therefore
ssg/(m — 1)? 1
_ s/( ) = Fon_ 12 5% —m2 + 0, <$>,

T ssy/(n* —m?)
where m is of order O(n'/®) or less. This completes the proof. O

Proof of Theorem 2-2. From the previous theorem, it is clear that the local power of the proposed
test statistics is the same as that of an ordinary two-way classification with unbalanced cell counts.
Let D, be the corresponding design matrix for the two-way unbalanced additive analysis of variance
model so that D, is an n* x (2m — 1) matrix with rank 2m — 1, and let D, be the design matrix for
the two-way nonadditive analysis of variance model, so D, =(D;, D,) is a n* x m? matrix with
rank m?, where D, is orthogonal to D;. Let X = (x;5) be the vector of observations in each cell c; I
Then the residual sums of squares under the two models are

S2=X'{I—D,(D|D,)"'D}}X, S2=X'{I—D,(DyD,) D}}X.

Rewriting (5) as X =D1{F + D,Gm(n*)"* +¢, we have S%=¢{I —D,(D)D,)"*D)}e which is
distributed as y2«_,,2. On the other hand,

2m
(n*)*

2
- ! m ! ! !
S;}=¢{I—Dy(Di{D;)"'D}}e+ e I D6G 1> + ¢ Dy G,

where G is the nonadditive part. Since n* = O(n) and

n* min (g7) < || Do G |1* < n* max (g3),
J J

where the g;’s are the coordinates of the vector DyG, we obtain that S7 — 83 = y2,_,)2 + O(m?). The
result is proven. 0O
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