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Blind Restoration of Linearly Degraded 
Discrete Signals by Gibbs Sampling 

Rong Chen and Ta-Hsin Li 

Abstract-This paper addresses the problem of simultaneous parameter 
estimation and restoration of discrete-valued signals that are blurred by 
an unknown FIR filter and contaminated by additive Gaussian white 
noise with unknown variance. Assuming that the signals are stationary 
Markov chains with known state space but unknown initial and transition 
probabilities, Bayesian inference of all unknown quantities is made from 
the blurred and noisy observations. A Monte Carlo procedure, called 
the Gibbs sampler, is employed to calculate the Bayesian estimates. 
Simulation results are presented to demonstrate the effectiveness of the 
method. 

I. INTRODUCTION 
Suppose a discrete-valued (digital) signal {rf} is blurred by an 

FIR linear filter {dz} and contaminated by additive noise {e,}, so 
that the observed signal {y t }  can be written as 

The so-called blind restoration problem is to simultaneously estimate 
the filter { dZ } and to recover the signal { .rt } solely from the observed 
data record {y t }  along with some partial statistical information 
about { z t } .  This problem stems from the equalization of digital 
communication channels in which the signals take only discrete 
values (e.g., [l], [14]). 

In the absence of noise, the restoration (or deconvolution) problem 
can be approached in many different ways under the assumption 
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that the st are independent and identically distributed (i.i.d.) (e.g., 
[l], [4], [7]). In particular, an efficient method along the lines of 
inverse filtering has been proposed ([9]-[ 1 1 1 )  that explicitly utilizes 
the discreteness of {.rt} yet does not require the stationarity or other 
statistical information of { .rf }. 

In this correspondence, we deal with the blind restoration problem 
under a Bayesian framework and by Gibbs sampling. The Gibbs sam- 
pling has been successfully applied to the ordinary image restoration 
problem by Geman and Geman [6] under the assumption that the filter 
{ o1 } and the statistical parameters of {.rt } and { e t  } are all available. 
In the present correspondence, we include these parameters in the list 
of unknowns and estimate them simultaneously with the signal { x f  }. 

11. FORMULATION OF THE PROBLEM 
Assume that the signal { . r t )  in (1) is a stationary first-order 

Markov chain with known state space A := { ( i l : . . . ( i k }  but 
unknown initial probabilities 0, := pr(,r1-4 = a , )  and unknown 
transition probabilities B,, := pr(.rt = ciIIst-1 = (it). It is clear 
that the probabilities should satisfy the constraints E:=, 8 ,  = 1 and 
E:=, B,, = 1 for i = 1.. . . . k. Let B denote the collection of these 
probabilities, namely B := {e i ,  H , ,  : i .  j = 1.. . . . k}. Although 
extensions to higher order Markov chains are quite straightforward, 
we restrict our effort to the first-order case for the simplicity of 
presentation. Assume further that { e t  } in (1) is Gaussian white noise 
with zero-mean and unknown variance u2 and is independent of { .rf }. 

Under these assumptions, the main objective of this correspondence 
is to simultaneously reconstruct the signal z := {XI  -,.... . . r , , }  
and estimate the FIR filter q5 := [bo. .. . . og]’ along with the 
statistical parameters u2 and B on the basis of the data record y := 
{yl .....Y,~}. Note that the values . .ro (that are outside 
the observation interval) are also included in z for reconstruction 
and that the filter can be minimum phase or nonminimum phase. 
Noncausal FIR filters can be accommodated into the problem by a 
transformation of time index. 

111. BAYESIAN APPROACH 

The problem is solved under a Bayesian framework: First, the 
unknown quantities z. 4. u 2 ,  and 0 are regarded as realizations 
of random variables with suitable prior distributions. The Gibbs 
sampler, a Monte Carlo method, is then employed to calculate 
the minimum mean-squared error (MMSE) estimates and/or the 
maximum a posteriori  (MAP) estimates of the unknowns. 

A. Pr ior  Distributions 

In principle, prior distributions are used to incorporate our knowl- 
edge of the parameters, and less restrictive (or less informative) priors 
should be employed when such knowledge is limited. Computational 
complexity is another consideration that affects the selection. Conju- 
gate priors are usually used to obtain simple analytical forms for the 
resulting posterior distributions (e.g., [2]). To make the Gibbs sampler 
more computationally efficient, the priors should also be chosen such 
that the conditional posterior distributions, as we shall see next, are 
easy to simulate. 

For the restoration problem described above, the following priors 
are used in our procedure: to the filter q5, we impose a Gaussian 
distribution p ( 4 )  - SI), and to the noise variance u2 we 
impose an inverted chi-square distribution p ( u 2 )  - x - ~ (  v: A ) ,  
i.e., v X / a 2  - l2(v). Note that large values of CO and small 
values of v and X correspond to less informative priors. Further, 
we use independent Dirichlet distributions as priors of 0, and O,,. 
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More precisely, let D ( a )  denote the Dirichlet distribution with 
parameters a := {a1 . . . . ,  a k } .  ( a ,  > -1); the pdf of D ( a )  
is defined as p ( p : a )  := c n : = , p ; l  for p := {I) l.....pk} with 
0 < pt < 1 and E!=, p z  = 1, where c := c ( a )  is the normalizing 
constant. Note that Jeffery's noninformative prior corresponds to 
U, = -1/2 for i = l;.. . k  (e.g., [2]). We assume that Bo := 
{ H I  . . . . . e , }  and 0, := {#,I :... 0 , k ) .  i = l . . . . . k ,  are mutually 
independent with Bo - D ( a )  and 8, - D ( a , )  where a, := 
{a ,  1 .  . . . . a t k  }. Under this assumption, the following prior can be 
obtained for B = { B o .  B I  . .e,} in the Markovian case, namely 
I ) ( @ )  = p ( B o : a )  n:=, p ( B t : a L ) .  When {.rt} is an i.i.d. sequence (a 
degenerate Markov chain), the parameter set B reduces to BO and the 
prior distribution of 0 becomes p (  0) = p (  8: a). 

B. Bayesian Inference 

can be written as 
Under the Markovian assumption, the distribution of z given B 

r: k 

p ( z l B )  = ,SI (2. e) := n sf1 n 0;'' (2 )  

where T I , ,  is the number of pairs ( x - 1 .  .rt ) in z that are equal to 
( u t . < t J )  and b ,  is the indicator such that 6, = 1 if  TI-^ = n ,  and 
6, = 0 if . I ' I - ~  # U,. In the i.i.d. case, the distribution of 2 given 

r=l  1.,=1 

k 
p ( z l e )  = s o ( z . ~ )  := nqi% (3) 

!=I  

where t t ,  is the number of x t ' s  in z that are equal to U,. 

of the unknown quantities takes the form of 
Since { e t }  is white and Gaussian, the joint posterior distribution 

ll(4,U2.e.zly) ( i /U2)tL/2 

wheres(z,B) : = p ( z l B )  canbeei thers~(z.B) orso(z.O),depending 
on whether { . r t }  is a Markov chain or an i.i.d. sequence. 

Although the joint posterior distribution (4) is given explicitly (up 
to a normalizing constant), direct calculation of the MMSE and/or 
MAP estimates of the unknowns is computationally forbidding. For 
example, since the MMSE estimator of z is the posterior mean 
E(z(y), any direct evaluation of this estimator involves the multiple 
integration E(z ly)  = S z p ( 4 . a 2 . B . z l y ) r E 4 d u 2 d O d z ,  the compu- 
tational burden of which can be enormous. A similar problem arises 
in any direct calculation of the MAP estimator of z that maximizes 
the posterior marginal densityp(z.1~) = ~p(+.u2.B.zly) d4da2d0 .  

where 

and 

w i t h q  := [s, . . . . . ,  rt-,] ' .Infact,ifp(4.02.B.zly) in(4) i s  
regarded as a function of 4 by keeping other variables fixed, 
then it follows that 

p(41a2.e.z.y) x p(4.a2.e.21y) 

3) 

4) 

- ( 4  - 40"(4 - 40) 

x exp{-(d - +*)'X1(+ - d*)}.  
It can also be shown that 

p ( 2 1 4 . e . z . y )  - \-'(U,: A,) (6) 

where v* = v + 1 1 ,  A, := (vX + s')/v,, and sz := cy=, 
(y t  - 4 ' ~ ~ ) ' .  To verify this, it suffices to note that with 
fixed 4. B .  z, and y, p ( d I 4 . B . z . y )  M ( 1 / ~ ~ ) ( " + " + ~ ) / ~  

Let BL-,] := B \ B ,  for t = 0.1.' . . , k ;  then, in the Markovian 
case 

c s p { - ( V X  + S L ) / ( 2 U Z ) } .  

p(o,Id.oL.e[-,l.z.y) - ma:) ( 2  = i . . . . . k )  (7) 

where a: := { o : , . . . . . ~ : ~ }  with a:, := a,, + n,,. This can 
be derived from (4) upon noting that p(0,1q5.uL.B[-tl.z.y) 
x p ( 0 )  .'I (z. 0 )  x n:=, # ~ ~ J + " z J .  Similarly, one obtams 

P(Bo14.aL.B,-o].z.Y) - D ( a * )  (8) 

in both Markovian and i.i.d. cases, where a* := {a;. . . . . U;} 
with n: .= nt + / I L .  

For any fixed t' E { 1 - (I. . . . . n}, let Z[-~*I := z \ . r t -  ; then 
it follows that 

pr(.rt* = u L  14. oL. B .  z[-~*]. y )  

IV. GIBBS SAMPLING 
To avoid the direct evaluation of the Bayesian estimates that require 

multiple integration, we resort to a Monte Carlo method instead. The 
basic idea of the Monte Carlo method is to generate an ergodic 
random sample from the distribution (4) and then to average, for 
instance, the z components throughout the sample to obtain an 
approximation of E (  zly ). The Gibbs sampler provides a recursive 
way of generating such a sample. 

A. Conditional Posterior Distributions 

In our problem, the implementation of Gibbs sampling requires 
the following conditional posterior distributions that can be easily 
obtained (e.g., [2 ] ) .  

for i = l:...k, where z; := [.r; :".. r;-,]' and z* := 
{.t.;-,......r:t} with .I.;. := U ,  and .r; := .rt for t E 
(1 - 4 . " ' .  n }  \ t ' .  (Note that z; and z* can be obtained 
by substituting . r t *  with n ,  in zt and 2, respectively.) 

B. The Gibbs Sampler 
Using the conditional posterior distributions, the Gibbs 

sampler proceeds iteratively as follows: given initial values 
{ 1 9 ( 0 ) . ~ ~ ( 0 ) . z ( O ) )  and for ni = 1.2; . .  

1) Draw 4( m )  from p ( 4 1 0 2 ( m  - l ) . O (  m - l ) . z (m - 1). y) given 

2 )  Draw d ( m )  fromp(u21+(n).B(m - l ) . z ( m  - ~ ) . y )  given 
by ( 5 ) ;  

by (6);  
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3 -  

1 -  

1 .  

-3 . 

3) For i = 0.1  , . . . .  k ,  draw O , ( r n )  from p ( O J ~ ( 7 t i ) .  

0 2 ( t t L ) ,  8[- t j ( tn  - l),z(it/ - l ) . y )  given by (7) and 
(8), where O [ - t ~ ( m  - 1) := { O o ( t t i ) .  

k ( r t ~  - 1) ) ;  set e ( t t 1 )  := { O o ( t t i ) .  

. . . . I / ,  draw . r , * ( n i )  from pr(.rt* = 
a ,  IC$( i n ) .  cr'(n1 ). O( m ). z[-t  '1 (ni - 1 ). y )  given by (9), where 

1) :... .rTL(ni - I )} ;  set z (m)  := { . r - , , ( m ) .  
5) Set 7 n  = ni + 1 and go to Step 1. 
Standard routines can be used to generate these random samples. 

For example, in Step 3, 8,  N D ( a : )  can be obtained from beta 
random variables by first generating 11, from Beta(n:,.n:,,+, + 

. k - 1 and then setting @,I := P I .  H,, := 
(l-x:,z;8,t,)p, f o r j = 2  :... k - l , a n d H , n  = 1 - x I = , 8 , , .  
Under suitable conditions, it can be shown (e.g., [5], [6]) that 
the random sequences { & r n ) } .  {u ' ( tn ) } .  { @ ( / t i ) } ,  and {z(r t i ) }  

converge in distribution to the posterior marginal distributions p (  4 1 ~ ) .  
p(o'1y). p(8ly), and p(zly), respectively. The sequences can also be 
shown to be ergodic so that the sample averages converge to the 
corresponding ensemble averages as the sample size grows without 
bound. 

To ensure the convergence, the Gibbs sampler (Steps 1-5) 
is usually carried out S + -if times and the samples from 
the last AI iterations are used to calculate the Bayesian 
estimates. In particular, the MMSE and MAP estimates 
of .rt, i.e., E(.rfly) and argiiias,EA{pr(.rt = uly)}, 

are approximated by .tt := 7,,=_v+1 .rt(tn) and 
j., := arginax, , ta  A ~ f - l ~ ~ ~ ~ + l  S ( . r , ( r t i )  = n )  for 
t = 1 - q: . . .n ,  where S(.r = n )  = 1 if .P = (I and S(.r = a) = 0 
if .r # a .  Similarly, the sample means of { & / t i ) } .  {o ' (m)} ,  and 
( B ( r t 1 ) )  can be used to approximate the corresponding MMSE 
estimates. Furthermore, the sample variances of { q5( ni ) }. { cr2 ( r n  ) } . 
{0( / t i ) } ,  and { z ( t n ) }  are approximations to the posterior variances 
Tl'(4ly). Ir(n2ly).  17(Oly), and T7(zly), respectively, which reflect 
the uncertainty in estimating these unknowns on the basis of y. 

C. Remarks 

Blind deconvolution problems in general can only be solved up to 
an arbitrary time delay, and sometimes also up to an arbitrary sign, 
if no further restrictions are imposed on the filter {d,} (e.g., [l], [9], 
[12]). Particularly when 0,  z 0 for i = (1' + l : . . .y in (l), the 
time delay of the input signal { ,rt } is essentially unidentifiable. In 
fact, the models y, = E:='=, dt-T . r t+T-L + e t r  for T = 1. .  . . , q * ,  are 
all practically equivalent to (1). As a result, the posterior distribution 
can be a mixture of several distributions, each corresponding to a 
particular time delay. In this case, the convergence of Gibbs sampling 
may become very slow. If the distribution of { x t  } is symmetric about 
zero, the solution is also subject to the ambiguity of sign. 

To overcome this problem, one may adopt the following con- 
strained Gibbs sampler along the lines of [3] and [13]. In the 
constrained Gibbs sampler, the coefficient do is restricted to be 
positive so that 00 2 7 for some predetermined constant 71 > 0. To 
draw samples of 4 that satisfy this condition, the so-called rejection 
method can be used: after a sample is drawn from (5) in Step 1, check 
to see if the constraint is satisfied; if not, the sample is rejected and a 
new sample is drawn from ( 5 ) ;  the procedure continues until a sample 
is obtained that satisfies the constraint. If a desired sample has not 
been obtained after a large number of rejections, it is more appropriate 
to shift the &'s in the last sample until the first coefficient satisfies 
the constraint; the vacancies left at the end can be filled with zeros. 

Another plausible restriction is on the location of the largest oz. 
For example, one can require that os* 2 1 0 ~ 1  + 71 for i # q* and 

z [ - t * ] ( r t l  - 1) := { . ~ l - - y ( r ~ / ) . . . ' . S l * - l ( n /  

k - I  

,2f-1 -y+'" 

5 I 
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8 I 

-4 1: 
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1 

Fig. 1. Blind restoration by Gibbs sampling. (a) Markov signal { x t } ;  (b) 
observed data { y t }  (15 dB); (c) initial guess for { x t }  (i.i.d. with uniform 
distribution in A); (d) MMSE estimate { 2 ,  }from Gibbs sampling; (e) MAP 
estimate { S t  } from Gibbs sampling. 

some t /  > 0, meaning that the largest coefficient should be positive 
and occur at lag i = q * .  A random sample of 4 that satisfies this 
constraint can be obtained by first generating a sample from ( 5 )  in 
Step 1 and then shifting the 0 , ' s  in the sample, with zeros filling the 
vacancies, to make the largest coefficient appear at i = q'. 

V. SIMULATIONS 

To demonstrate the performance of the method, let us consider the 

Example 1:  Consider an MA(3) model with 4 = [-0.1833. 
following examples. 

0.9162.0.4812. -0.1987]', i.e. 

y t  = -0.1833~t + 0.9162.rt-1 + 0 . 4 8 1 2 ~ - 2  

- 0.1987.rt-1 + f t  (10) 

where { . r f }  is a first-order four-level Markov chain with A = 
{-3. -1.1.3). 8, = l / 4 ,  and 

0.4 0.2 0.2 0.2 
0.2 0.4 0.2 0.2 

0.1 0.2 0.3 0.4 

A realization of { . r t }  with tz = 100 is shown in Fig. l(a) and the 
corresponding { y t }  shown in Fig. l(b). The sample variance of { e t }  
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Fig. 2. 
set y of size (a) n = 50, (b) n = 200, and (c) 71 = 1000. 

Trajectory of the noise variance v*( 7n) (in dB) obtained from a data 

is adjusted so that the signal-to-noise ratio (SNR) of { y t }  equals 15 
dB. The parameters in the prior distributions are chosen as follows: 
do = 0. YO = 1000I1, U = 2, X = 0.3, and o ,  = a,, = 1. 
Fig. I(c) shows the i.i.d. uniform initial guess for { . r t }  in the Gibbs 
sampler. Fig. l(d) and l(e) present the MMSE estimate { i f }  and 
the MAP estimate { i t  }, respectively. These estimates are calculated 
from the last M = 500 samples of the total lo00 iterations of Gibbs 
sampling. The constraints 61 2 0.4 and 01 2 ( 0 ~ 1  + 0.2 for i # 1 
are used in order to remove the sign and shift ambiguities in the 
solution. The estimates of 4 and B are also obtained from their 
sample means and variances and given in the form of E(.Jy)  f ,/m by, respectively, (-0.1539.0.8924.0.4692. -0 . l i81)  31 
(0.0191.0.0195. 0.0202.0.0211) and 

0.45 0.15 0.22 0.18 0.11 0.08 0.09 0.08 
0.21 0.36 0.30 0.13 0.07 0.08 0.08 0.06 

0.08 0.06 0.10 0.09 [:::: ::Ai ::I;] * [0.03 0.07 0.08 O.OG]. 

It is evident, by comparing Fig. I(d) and l(e) with Fig. l(a), that the 
MAP estimate completely recovers the signal and the MMSE estimate 
recovers all except the last point at t = 100. The estimates of and 
0 are reasonably accurate given the large number of unknowns in this 
problem and the short length of the data record ( n  = 100). 

Example 2: Consider the same MA(3) model in (IO) but { . r t }  is 
now a 16-level i.i.d. sequence taking values uniformly in the state 
space A = { kl ,  *3, . . . . *15}. A similar model has been used in 
[8] for channel equalization problems. The standard deviation of the 
noise is taken to be U = 0.3144 so that SNR = 30 dB. In this 
example, we are interested in the convergence of Gibbs sampling 
for different lengths of data. Three cases are considered: they are 
n = 50. n = 200, and n = 1000. In each case, the Gibbs sampler 
is iterated 4000 times under the same constraints given in Example 
1. The parameters in the prior distributions remain the same as in 
Example 1 except that the prior of B = BO is taken to be D ( a )  

with = 4 for i t  = 50. a ,  = 10 for I /  = 200, and A, = 40 for 
t i  = 1000. Note that the growth of 11 necessitates the increase of 
in order for the contribution of the resulting prior to be comparable 
with that of the data in the conditional posterior distribution of B 
given by (8). 

As an indicator of convergence, the samples ~ ’ ( m )  are shown 
in Fig. 2 against the iteration index 7 n  for the three cases. The 
constant line represents the true value of U * .  Since U’( in ) measures 
the fit of the model at iteration i n ,  convergence of the Gibbs 
sampler is indicated by a small variation of { ~ ’ ( m ) } .  As we 
can see from Fig. 2, the Gihbs sampler needs more iterations to 
converge for a shorter data length than it does for a longer one. 
In addition, the variation of { U ’ (  m ) }  after convergence decreases as 
the data length grows. Another interesting feature to note is that the 
convergence is not achieved with a gradually decreasing variation of 
{ ~ ’ ( n i ) } ;  instead, it happens quite abruprly after a certain number 
of iterations. 

vr. CONCLUDING REMARKS 

The Gibbs sampling is applied to the blind restoration of discrete 
values signals when the blumng filter as well as the statistical 
parameters of the signal and the noise are unknown. This extends 
the existing methods in the literature to the simultaneous estimation 
of the parameters and the restoration of the signal. Simulations show 
that the method provides satisfactory solutions to the problem. A 
batch-processing-based adaptive procedure is also available (but not 
reported here) that can be used to track the changes of the FIR filter 
and/or the statistical parameters. Future research should extend the 
method to other signal and noise models. 
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