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Nonparametric estimation of conditional mean functions has been studied exten-
sively in the literature. This paper addresses the question of how to use extra infor-
mations to improve the estimation. Particularly, we consider the situation that the
conditional mean function E(Z | X ) is of interest and there is an auxiliary variable
available which is correlated with both X and Z. A two-stage kernel smoother is
proposed to incorporate the extra information. We prove that the asymptotic
optimal mean squared error of the proposed estimator is smaller than that obtained
when using the Nadaraya�Watson estimator directly without the auxiliary variable.
A simulation study is also carried out to illustrate the procedure. � 1996 Academic

Press, Inc.

1. INTRODUCTION

There have been many studies on nonparametric estimation of the condi-
tional mean functions using Kernel smoothing, spline smoothing and local
polynomial methods. For example, see Eubank [4], Ha� rdle [6], Collomb
[3], Ha� rdle and Marron [7], Hall [8], Cleveland and Devlin [2], Fan
[5], Stone [13, 14] etc. and the references therein. However, the question
of how to incorporate extra information into estimation has not been
investigated. In this paper we consider the case where the conditional
mean function E(Z | X) is of interest and there is an auxiliary variable Y
available which is correlated with both X and Z. We propose a two-stage
kernel smoother to improve the estimation by incorporating the auxiliary
variable Y.

This problem is of interest in many situations. For example, in measure-
ment error models we observe three variables, the response variable Z,
a true predictor Y and a predictor X measured with error. Since the true
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predictor usually is more expensive and difficult to measure in practice, we
are interested in predicting Z given only the less expensive predictor X.
This can be done by using the least square predictor E(Z | X ). Note that,
if we do not observe the Y variable, the conditional expectation E(Z | X )
can be estimated nonparametrically by directly smoothing Z on X. In our
problem setting, we do observe Y and we wish to utilize the extra informa-
tion to estimate E(Z | X) more accurately.

We will show that the proposed two-stage kernel smoother which incor-
porates the information in Y has smaller pointwise and integrated asymp-
totically mean squared error than the corresponding kernel estimator that
does not use this information. The amount of improvement depends on
two things: the ratio of the conditional variances E(Var(Z | X, Y )) and
Var(E(Z | X, Y )) and a function of the partial derivatives of the function
E(Z | X, Y ) with respect to x.

The following observation motivates the proposed procedure. Let
f (x, y)=E(Z | X=x, Y=y), Z*=f (X, Y) and Zi*=f (Xi , Yi ). We have

m(x)#E(Z | X=x)=E(E(Z | X, Y ) | X=x)

=E( f (X, Y ) | X=x)=E(Z* | X=x).

Since Var(Z* | X=x)�Var(Z | X=x), it is obvious that smoothing with
the pairs (Zi*, Xi ), i=1, ..., n, would provide a more accurate estimator
than using the pairs (Zi , Xi ). But, most of the time the function f ( } , } ) and
Z* are unknown and unobservable. However, note that the difference of Z
and Z* is of order Op(1). Hence, if we estimate the function f ( } , } ) with a
suitable estimator f� ( } , } ) that has a smaller error rate (with some bias),
then we can use the pairs (Z� i*, Xi ) to estimate m( } ) where Z� i*=f� (Xi , Yi ).
In this way, smaller errors may be achieved. We shall prove that this is
indeed the case.

The above observation motivates the following estimator of E(Z | X ),
which will be referred to as ``two-stage smoother''. It is defined as

m̂h1 , h2 , h3
(x)=

�n
k=1 K((x&Xk)�h3) Z� *k, h1 , h2

�n
k=1 K((x&Xk)�h3)

, (1)

where Z� *k, h1 , h2
=f� h1 , h2

(Xk , Yk) and

f� h 1 , h2
(x, y )=

�n
j=1 K((x&Xj )�h1) K(( y&Yj )�h2) Zj

�n
j=1 K((x&Xj )�h1) K(( y&Yj )�h2)

.

Note that f� is a regular two-dimensional Nadaraya�Watson (N-W)
estimator (Nadaraya [9], Watson [15]) of f (x, y)=E(Z | X=x, Y=y).
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We shall compare the proposed estimator (1) with the regular N-W
estimator

m~ h(x)=
�n

k=1 K((x&Xk)�h) Zk

�n
k=1 K((x&Xk)�h)

, (2)

which does not utilize the information in Y variable.
The rest of the paper is organized as follows. In Section 2, the asymptotic

pointwise and integrated mean squared error of the two-stage estimator (1)
are compared to that of the N-W estimator (2). Empirical comparisons via
a small simulation study are described in Section 3 and a brief summary is
presented in Section 4. Conditions and proof of the theorems are collected
in Section 5.

2. ASYMPTOTIC PROPERTIES OF THE
TWO-STAGE SMOOTHER

Throughout the paper, the following notations are used. First, p(x, y) is
used to denote the joint density of (X, Y ) and p(x) the marginal density
of X. The conditional means and variances are defined as follows:

m(x)=E(Z | X=x), f (x, y)=E(Z | X=x, Y=y),

v(x, y)=Var(Z | X=x, Y=y), u(x)=Var( f (X, Y ) | X=x),

w(x)=E(v(X, Y ) | X=x), and _2(x)=Var(Z | X=x).

It is important to note that _2(x)=u(x)+w(x).
Let K( } ) be a bounded kernel function with finite support and

� K(z) dz=1. To simplify our notation, define constants k1=� K2(z) dz,
k2=� z2K(z) dz. In addition, the following three functions are important
ingredients of our results.

s1(x)=m"(x) p(x)+2m$(x) p$(x),

s2(x)=| t1(x, y) dy, and d(%)=
1
k1

| L2
%(z) dz,

where

t1(x, y)=
� f 2(x, y)

�x2 p(x, y)+2
� f (x, y)

�x
�p(x, y)

�x
, (3)
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and

L%(z)=| K(z+%u) K(u) du. (4)

Theorem 2.1. Under conditions (C1)�(C5) presented in Section 5, if
h3 � 0, nh3 � �, h1=%h3 , h2=o(h3), and nh1h2 � �, then for a fixed
x # A, the asymptotic pointwise mean squared error of estimator (1) is

E(m̂(x)&m(x))2=
D1(x, %)

nh3

+
1
4

D2(x, %) h4
3+o \ 1

nh3

+h4
3+ , (5)

where

D1(x, %)=k1(u(x)+d(%) w(x))�p(x)

and

D2(x, %)=k2
2(s1(x)+s2(x) %2)2�p2(x).

It is well known (e.g. Collomb [3], Stone [14], Ha� rdle [6]) that the
direct smoother (2) have the property

E(m~ (x)&m(x))2=
D3(x)

nh
+

1
4

D4(x) h4+o \ 1
nh

+h4+ ,

where

D3(x)=k1_2(x)�p(x)=k1(u(x)+w(x))�p(x)

and

D4(x)=k2
2s2

1(x)�p2(x).

Comparing D1(x) and D3(x), we see that the two-stage smoothing
reduces the asymptotic variances, since d(%)<1. There is an extra term
s2(x)%2 in the asymptotic bias term D2(x). Its effect depends on the sign of
s2(x), comparing to s1(x). We will discuss it in detail later in the remarks.

Let r(x) be the ratio of minimum asymptotic pointwise mean squared
errors of estimators (1) and (2) and %* be the minimizer of

(u(x)+w(x) d(%))4 (s1(x)+s2(x) %2)2 (6)

with respect to %.
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Theorem 2.2. Under the conditions of Theorem 2.1,

(i) if s1(x) s2(x)>0, then

r(x)=\1&
1&d(%*)

1+(u(x)�w(x))+
4�5

\1+
s2(x)
s1(x)

%*2+
2�5

. (7)

(ii) If s1(x) s2(x)<0, then the minimum asymptotic pointwise mean
squared errors of the estimator (1) has smaller order than that of the
estimator (2).

(iii) If s1(x)=0, then r(x)=1 with %=0.

(iv) If s1(x){0 and s2(x)=0, then r(x)=(u(x)�_2(x))4�5 with %=�.

Remarks. 1. The function d(%) plays an important role in our results.
Figure 1 shows the function d( } ) with respect to Uniform, Triangle,
Epanechnikov and Quartic kernels. Note that they are essentially the same.
The normalizing constant k1 is included in the definition of d(%) so that
d(0)=1. It is easy to show that, for a fixed %, the function L% defined
in (4) behaves exactly as a kernel function, with � L%(z) dz=1 and
� zL%(z) dz=0. If the kernel K has bounded support, then L% has bounded
support as well. In addition, it can be easily shown that d(%) goes to zero

Fig. 1. The function d(%) with respect to uniform, triangle, epanechnikov, and quartic
kernels.
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as % goes to infinity. When % increases, d(%) decreases for many commonly
used kernel functions. But it is not so in general.

2. Figure 2 shows that the contour plot of r( } ) in (7) as the function
of the ratios u(x)�w(x) and positive s2(x)�s1(x) for Uniform kernel. The
function is essentially the same for other kernels, due to the similarity of
d(%). From the theorem, we can see that, when s1(x) s2(x)>0, the mean
squared errors of the two smoothers have the same order, but that of m̂(x)
is proportionately smaller than that of m(x). The amount of improvement
depends on the ratios u(x)�w(x) and s2(x)�s1(x).

3. When s1(x)=0, the bias of the direct smoother (2) is of higher
order of h4

3 . On the other hand, any smoothing using the Y variable will
create a bias of order h4

3 . Hence, it is the best not to use the two-stage
smoother, i.e. setting both h1=h2=0.

4. If X and Z are conditionally independent given Y, then
f (x, y)=f ( y), which implies s2(x)=0. In this case, the triple (X, Y, Z) has

Fig. 2. The contour plot of r( } ) (the improvement rate) in (7) as the function of the ratios
u(x)�w(x) and positive s2(x)�s1(x) for uniform kernel.
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the Markov property X � Y � Z. Since s2(x)=0, the % that minimizes (6)
is �, i.e. h1=�. This is saying that, only one-dimensional smoothing on
(Z, Y ) should be carried out in the first stage smoothing. Since d(�)=0,
the conditional variance w(x)=Var(E(Z | X, Y)) disappears in the expres-
sion of D1 . The result is equivalent to smoothing Z* on X, with known
function f (x, y). This actually is the result of Chen [1] where a similar
multi-stage smoother is introduced for a multi-step prediction problem in
a Markovian structure.

5. The greatest improvement can be made when s1(x) and s2(x) are
of opposite signs. In this case, not only the variance is reduced, but also
the biases created in the two stages of smoothing tends to cancel each
other out. Theoretically, an order lower than n&4�5 is achievable. This is
impossible in practice since one must have the exact knowledge of
s1(x)�s2(x) in order to obtain the correct %. Nevertheless, with %2 close to
&s1(x)�s2(x), the improvement can be significant. Also note that if the
integrated mean squared error is of concern, an order smaller than n&4�5

cannot be achieved, unless s1(x)�s2(x) is a negative constant over the range
of interest.

6. If w(x)=0 and s1(x) and s2(x) are of the same sign, then the %
that minimizes (6) is %=0. This is saying that, if Z=f (X, Y ), one should
not do the first stage smoothing at all since there is no variance to reduce
while smoothing only creates extra bias. When s1(x) and s2(x) are of
opposite signs, the two-stage smoothing is still beneficial since the bias can
be reduced. It actually can be used as a bias reduction tool.

7. Under mild conditions, we have

s1(x)=s2(x)+| f (x, y)
�p2(x, y)

�x2 dy&m(x) p"(x).

Hence, when X and Y are independent, we have s1(x)=s2(x). In this case,
the maximum improvement can be shown to be r=0.945 in (7) for the
Uniform kernel.

The next theorems compare the integrated mean squared errors of the
proposed two-stage smoother (1) and the N-W estimator (2).

Theorem 2.3. Under the conditions of Theorem 2.1, the asymptotic
integrated mean squared error of estimator (1) is

|
A

E(m̂(x)&m(x))2 dx=
D1(%)

nh3

+
1
4

h4
3D2(%) n&4�5+o \ 1

nh3

+h4
3+ , (8)
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where Di (%)=�A Di (x, %) dx. The asymptotic optimal bandwidth is h3=
(D1(%*)�D2(%*))1�5 n&1�5 where %* minimizes

\|A

u(x)+w(x) d(%)
p(x)

dx+
4

\|A \s1(x)+s2(x)%2

p(x) +
2

dx+ ,

with respect to %. The corresponding asymptotically optimal integrated mean
squared error is

|
A

E(m̂(x)&m(x))2 dx=1.25D1(%*)4�5 D2(%*)1�5 n&4�5+o(n&4�5).

Theorem 2.4. Under the conditions of Theorem 2.3, the ratio of mini-
mum asymptotic integrated mean squared errors of estimators (1) and (2) is

r=\1&
1&d(%*)
1+(u�w)+

4�5

\1+2
s12

s11

%*2+
s22

s11

%*4+
1�5

, (9)

where u=�A u(x)�p(x) dx, w=�A w(x)�p(x) dx, skl=�A sk(x) sl (x)�p2(x) dx
and the %* is that in Theorem 2.3.

3. SIMULATION STUDY

In this section, a simulation study is carried out to compare estimators
(1) and (2). Using the following model:

XtUniform(&0.5, 0.5), Y=10X+=, and Z=3 sin(Y ) cos(X)+e,

where =tU(&0.5, 0.5) and etU(&1.5, 1.5). Two hundred samples, each
with six hundred observations are generated. For each sample, estimators
(1) and (2) are evaluated at 160 equally spaced grids on the interval
(&0.4, 0.4) using Triangle kernels. Leave-one-out cross validation is used
to choose the bandwidth for both estimators. For each of the 160 points,
the squared errors for estimating the true conditional mean m(x)=
6 sin(0.5) sin(10x) cos(x) are computed and averaged across the 160 points.
Denote these averages by r1 and r2 , for the two-stage estimator (1) and the
ordinary N-W estimator (2) respectively. Table I shows that the percentiles
for the ratios r1�r2 from the two hundred samples. The theoretical improve-
ment of the integrated mean squared error using (9) for the above model
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on the interval (&0.4, 0.4) is r=0.139 for %*=3.2. The leave-one-out
cross-validation shows an average of 6.5 for %=h1�h3 in our simulation.

The computation of the leave-one-out cross validation criterion for the
two-stage estimator is very intensive. In Table I we also show the results
of an alternative approach where ordinary cross-validation computations
are used for each stage of the smoothing separately. First, the optimal
bandwidth (h1*, h2*) for the first stage two-dimensional smoothing is found
using ordinary leave-one-out cross validation. Then the function f� ( } , } ) is
estimated using an adjusted bandwidth (c1h1*, c2h2*) for some constants c1

and c2 . The adjustment is needed since the optimal bandwidth for the first
stage smoothing may not be optimal over all. After the first stage smooth-
ing, the bandwidth h3 for the second stage smoothing is then chosen to be
the optimal cross validation bandwidth for the pair (Z� i*, Xi ), where
Z� i*=f� (Xi , Yi ). In Table I, we show the simulation results for some of the
combinations of (c1 , c2).

From the table we can see that the bandwidth selected by leave-one-out
cross validation does well. Over 650 of the time the proposed two-stage
estimator improves the mean squared error, with a median of 100
improvement. It also shows that with small c2 , we can actually obtain
reasonable results using cross-validation criterion separately for each stage
of smoothing. This saves computation time. We have tried several other
examples and observed similar results.

TABLE I

Percentile: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CV: 0.66 0.75 0.80 0.83 0.90 0.94 1.04 1.09 1.25

(c1 , c2)

0.5, 0.1) 0.68 0.73 0.77 0.81 0.86 0.91 0.97 1.09 1.25
(1.0, 0.1) 0.67 0.72 0.76 0.81 0.86 0.90 0.97 1.09 1.25
(2.0, 0.1) 0.67 0.71 0.76 0.81 0.86 0.90 0.97 1.09 1.25

(0.5, 0.2) 0.64 0.71 0.77 0.81 0.85 0.90 1.01 1.12 1.33
(1.0, 0.2) 0.63 0.71 0.76 0.81 0.85 0.90 1.01 1.12 1.35
(2.0, 0.2) 0.63 0.70 0.75 0.80 0.86 0.90 1.01 1.12 1.36

(0.5, 0.5) 0.68 0.74 0.81 0.85 0.91 0.95 1.04 1.18 1.37
(1.0, 0.5) 0.67 0.75 0.82 0.86 0.91 0.95 1.03 1.18 1.38
(2.0, 0.5) 0.67 0.75 0.82 0.86 0.91 0.95 1.03 1.18 1.38

(0.5, 1.0) 0.90 1.00 1.06 1.12 1.20 1.27 1.34 1.47 1.73
(1.0, 1.0) 0.91 1.02 1.09 1.16 1.23 1.30 1.37 1.51 1.78
(2.0, 1.0) 0.91 1.03 1.11 1.18 1.25 1.32 1.39 1.54 1.83
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4. SUMMARY

In this paper, we proposed a two-stage kernel smoother to estimate the
conditional mean function when information on an auxiliary variable is
available. It is shown, both theoretically and empirically, that the proposed
smoother has smaller asymptotic mean squared error than the N-W
estimator.

There is one interesting observation. If multiplicative kernel density
estimators are used to estimate pX (x), pX, Y (x, y) and pX, Y, Z(x, y, z), then
an analogous derivation to that of the N-W estimator as in Eubank [4,
pages 169�170] results

m(x)t
�n

k=1 K((x&Xk)�h1) Z� k

�n
k=1 K((x&Xk)�h1)

,

where

Z� k=
�n

j=1 K((x&Xj )�h1) K((Yk&Yj )�h2) Zj

�n
i=1 K((x&Xi )�h1) K((Yk&Yi )�h2)

.

This estimator differs from (1) in that here Z� k=f� (x, Yk), instead of
Z� k=f� (Xk , Yk). However, it can be proved that this estimator does not lead
to an improvement in asymptotic mean squared error. This means that the
information in the auxiliary variable must be used in the right way in order
to improve the mean squared error.

We also note that the kernel estimator used in our approach can be
replaced with local polynomial estimators. Although details will be dif-
ferent, the effect of the two-stage smoothing remains the same.

5. ASSUMPTIONS AND PROOFS

In addition to all the functions defined in Section 2, the following func-
tions are needed for technical reasons:

t2(x, y)=
� f 2(x, y)

�y2 p(x, y)+2
� f (x, y)

�y
�p(x, y)

�y
, (10)

g1(x)=EY _ v(X, Y )
p2(X, Y ) } X=x& , g2(x)=EY _ v(X, Y)

p(X, Y) } X=x& ,

g3(x)=EY _ 1
p(X, Y ) } X=x& , and g4(x)=| t2(x, y) dy.
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For the purpose of estimating m( } ), the set of interest is assumed to be
a finite interval A, i.e., we are only interested in estimating E(Z | X=x) for
x # A. Let A= be the set of all the points in R which are distinct less than
= from A. The following conditions are assumed.

(C1) K( } ) is a bounded density function with compact support
satisfying � zK(z) dz=0 for k1 , k2<�.

(C2) The marginal density p(x) of X has finite second derivative and
is bounded away from zero in A= . The joint density p(x, y) of (X, Y) has
finite support Bx in the Y variable. Let B==�x # A= Bx . The joint density
of p(x, y) is twice differentiable with finite second partial derivatives both
in the x and y variables.

(C3) The function m( } ) is twice differentiable and the second
derivative is Ho� lder continuous such that |m"(x1)&m"(x2)|�c1 |x1&x2 | # 1

in A= for #1>0. The function f (x, y) is twice differentiable in both the x
and the y variables and the second derivatives are Ho� lder continuous such
that |(� f 2(x, y1)��y2)&(� f 2(x, y2)��y2)|�c2 | y1&y2 | # 2, uniformly for
x # A= , and |(� f 2(x1 , y)��x2)&(� f 2(x2 , y)��x2)|�c3 |x1&x2 | # 3, uniformly
for y # B= with #2>0 and #3>0.

(C4) The functions u(x), w(x), s1(x) and s2(x) are all well defined and
Ho� lder continuous such that |u(x1)&u(x2)|<c4 |x1&x2 | #4, |w(x1)&w(x2)|
< c5 |x1 & x2 | # 5, |s1(x1) & s1(x2)| < c6 |x1 & x2 | # 6, |s2(x1) & s2(x2)| <
c7 |x1&x2| #7 for #i>0, i=4, ..., 7. The function v(x, y) is Ho� lder continuous
in both x and y variables such that |v(x1 , y)&v(x2 , y)|<c8 |x1&x2 | #8 and
|v(x, y1)&v(x, y2)|<c9 | y1&y2 | #9 for #8>0 and #9>0 uniformly in x # A=

and y # B= .

(C5). The functions gi (x), i=1, ..., 4 are well defined and bounded
in A= .

We will adopt the conventional notation Kh(u)=h&1K(u�h). Let

p̂(x)=n&1 :
n

k=1

Kh(x&Xk) ,

and p̂(x, y)=n&1 :
n

k=1

Kh 1
(x&Xk) Kh 23 ( y&Yk).

Lemma 5.1. Under conditions C1�C5, h � 0, nh � �, h1 � 0, h2 � 0 and
nh1h2 � �, we have

| p̂(x)&p(x)| � 0 and | p̂(x, y)&p(x, y)| � 0 in probability.
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Conditional on X1 , Y1 , we have

| p̂(X1 , Y1)&p(X1 , Y1)| � 0 in probability.

These are well known results. For example, see Parzen [10], Silverman
[12] or Scott [11].

In what follows, AntBn means An=Bn+op(Bn), i.e. An equals Bn plus
a term that goes to zero in probability faster than Bn as n goes to �. Note
that if AntBn and Bn has finite support, then E(An)=E(Bn)+o(E(Bn)).
In this case, we write E(An)tE(Bn) as well. Also note that if AntBn , then
A2

ntB2
n .

Lemma 5.2. Under conditions C1�C5, h � 0 and nh � �, then for any
identically distributed random variables Wi we have

�n
i=1 Kh(x&Xi ) Wi

�n
i=1 Kh(x&Xi )

t
1
n

�n
i=1 Kh(x&Xi ) Wi

p(x)
.

Proof. Following Ha� rdle and Marron [7],

�n
i=1 Kh(x& i ) Wi

�n
i=1 Kh(x&Xi )

=
1
n

�n
i=1 Kh(x&Xi ) Wi

p(x)

+
1
n

�n
i=1 Kh(x&Xi ) Wi

p(x) \ p(x)
p̂(x)

&1+ .

By Lemma 5.1, it is easy to see that the second term is negligible compared
to the first.

Lemma 5.3. Under conditions C1�C5, h1 � 0, h2 � 0 and nh1h2 � �, for
any identically distributed random variables Zj , we have

�n
j=1 Kh1

(X1&Xj ) Kh 2
(Y1&Yj ) Zj

�n
j=1 Kh1

(X1&Xj ) Kh2
(Y1&Yj )

t
1
n

�n
j=1 Kh1

(X1&Xj ) Kh2
(Y1&Yj ) Zj

p(X1 , Y1)
.

Lemma 5.4. Under condition (C1)�(C3), and h1=o(1), h2=o(1), we
have

K(z1) K(z2)( f (X&h1z1 , Y&h2 z2)&f (X, Y ))=K(z1) K(z2) op(1),

and

K(z1) K(z2) p(X&h1z1 , Y&h2z2)=K(z1) K(z2)( p(X, Y )+op(1)),
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This comes from conditions (C3) and (C2) and the fact that K( } ) has
finite support.

Lemma 5.5. Under conditions (C1)�(C5) and h1=o(1), h2=o(1) we
have

| K(z1) K(z2)( f (X1&h1z1 , Y1&h2z2)

&f (X1 , Y1)) p(X1&h1 z1 , Y1&h2z2) dz1 dz2

= 1
2k2 h2

1 t1(X1 , Y1)+ 1
2k2h2

2 t2(X1 , Y1)+op(h2
1+h2

2+h1 h2),

where t1( } , } ), t2( } , } ) are defined in (3) and (10).

Since K( } ) has finite support, we can treat z1 and z2 as bounded. Then,
using a Taylor expansion and the fact that � zK(z) dz=0 and
� z2K(z) dz=k2 , the lemma can be easily derived.

Proof of Theorem 2.1. Let =j=Zj&f (Xj , Yj ). We have =i i.i.d with
E(=j | Xj , Yj )=0 and Var(=j | Xj , Yj )=v(Xj , Yj ). In the following deriva-
tion, we will repeatedly use Lemma 5.2 to 5.5 and the facts that (Xi , Yi , Zi )
are i.i.d and � zK(z) dz=0.

Let Zk*=f (Xk , Yk) and Z� k*=f� (Xk , Yk). For a fixed x # A,

E[m̂(x)&m(x)]2

=E _\m̂(x)&
�n

k=1 Kh 3
(x&Xk) Zk*

�n
k=1 Kh 3

(x&Xk) +
+\�n

k=1 Kh3
(x&Xk) Zk*

�n
k=1 Kh 3

(x&Xk)
&m(x)+&

2

=E _�n
k=1 Kh 3

(x&Xk)(Z� k*&Zk*)
�n

k=1 Kh3
(x&Xk) &

2

+E _�n
k=1 Kh3

(x&Xk)(Zk*&m(x))
�n

k=1 Kh3
(x&Xk) &

2

+2E _\�n
k=1 Kh 3

(x&Xk)(Z� k*&Zk*)
�n

k=1 Kh3
(x&Xk) +

_\�n
k=1 Kh3

(x&Xk)(Zk*&m(x))
�n

k=1 Kh3
(x&Xk) +&

#A+B+2C. (11)
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By Lemma 5.2, we have

At
1

p2(x)
E _n&1 :

n

k=1

Kh 3
(x&Xk)( f� (Xk , Yk)&f (Xk , Yk))&

2

=
1

n2p2(x)
[nE[Kh3

(x&X1)( f� (X1 , Y1)&f (X1 , Y1))]2

+n(n&1)(E[Kh 3
(x&X1)( f� (X1 , Y1)&f (X1 , Y1)) Kh3

(x&X2)

_( f� (X2 , Y2)&f (X2 , Y2))])]

#
1

n2p2(x)
[nA1+n(n&1) A2].

We first work with A2 . Let wij=Kh1
(Xi&Xj ) Kh 2

(Yi&Yj )(Zj&f (Xi , Yi )),
for i=1, 2. Then,

A2t
1
n2 E _Kh 3

(x&X1)
p(X1 , Y1) \ :

n

j=1

w1 j+ Kh3
(x&X2)

p(X2 , Y2) \ :
n

j=1

w2 j+&
=

1
n2 E _Kh3

(x&X1) Kh3
(x&X2)

p(X1 , Y1) p(X2 , Y2)

_(2w11w21+(n&2) w13 w23+w11 w22+w12w21

+2(n&2) w11w23+2(n&2) w12w23+(n&2)(n&3) w13w24)]

#
1
n2 (2A21+(n&2) A22+A23+A24+2(n&2) A25

+2(n&2) A26+(n&2)(n&3) A27).

Since w11=(h1h2)&1 K 2(0) =1 and w22=(h1h2)&1 K 2(0) =2 , it is obvious
that A23=A25=0. And we have

EZ 1
[=1(Z1&f (X2 , Y2)) | X1 , Y1 , X2 , Y2]

=E[=2
1 | X1 , Y1 , X2 , Y2]=v(X1 , Y1).

Letting X1=x&h3z1 , X2=x&h1z2 , Y2=Y1&h2z3 , we can show
A21=O((h1h2 h3)&1). Since

E=3
(Z3&f (X1 , Y1))(Z3&f (X2 , Y2))

=v(X3 , Y3)+( f (X3 , Y3)&f (X1 , Y1))( f (X3 , Y3)&f (X2 , Y2)),
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we have A22=A221+A222 , where

A221=E _Kh3
(x&X1)

p(X1 , Y1)
Kh3

(x&X2)
p(X2 , Y2)

v(X3 , Y3) Kh 1
(X1&X3) Kh2

(Y1&Y3)

_Kh1
(X2&X3) Kh 2

(Y2&Y3)&
and

A222=E _Kh 3
(x&X1)

p(X1 , Y1)
Kh3

(x&X2)
p(X2 , Y2)

Kh1
(X1&X3) Kh2

(Y1&Y3)

_( f (X3 , Y3)&f (X1 , Y1)) Kh1
(X2&X3) Kh 2

(Y1&Y3)

_(X3 , Y3)&f (X2 , Y2))&
By making the change of variables X1=X3+h1 z1 , X2=X3+h1z2 ,

X3=x&h3 z3 , Y1=Y3&h2 z4 and Y2=Y3&h2z5 and using

w(x)=| v(x, y) p( y | x) dy=|
v(x, y ) p(x, y)

p(x)
dy,

we find that

A221=h&1
3 | K \z3&

h1

h3

z1+ K \z3&
h1

h3

z2+ K(z1) K(z2)

_K(z4) K(z5) v(x&h3z3 , y3) p(x&h3 z3 , y3)

_p(x&h3z3 , y3) dz1 dz2 dz3 dz4 dz5 dy3

=h&1
3 | K \z3+

h1

h3

z1+ K \z3+
h1

h3

z2+ K(z1) K(z2)

_w(x&h3z3) p(x&h3 z3) dz1 dz2 dz3

=h&1
3 | K \z3+

h1

h3

z1+ K \z3+
h1

h3+ K(z1) K(z2)

_(w(x) p(x)+op(1)) dz1 dz2 dz3

=h&1
3 k1w(x) p(x) d(h1 �h3)+o(h&1

3 ).

By a similar argument as used for A221 and from Lemma 5.4, we can show
that A222=o(h&1

3 ). Hence A22=A221+A222=h&1
3 k1w(x) p(x) d(h1 �h3)+

o(h&1
3 ).
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Lastly, we substitute X3=X1&h1 z1 and Y3=Y1&h1z2 and use
Lemma 5.5 to get

A27={E _Kh3
(x&X1)

p(X1 , Y1)

_Kh 1
(X1&X3) Kh 2

(Y1&Y3)( f (X3 , Y3)&f (X1 , Y1))]&=
2

={EX 1 , Y1 _Kh3
(x&X1)

p(X1 , Y1)
k2 \1

2
h2

1t1(X1 , Y1)+
1
2

h2
2t2(X1 , Y1)

+o(h2
1+h1h2+h2

2)+&=
2

=
1
4

k2
2 {EX1 _Kh 3

(x&X1)
p(X1)

(h2
1s2(X1)+h2

2 g4(X1)

+o(h2
1+h2

2+h1h2))&=
2

=
1
4

h4
1k2

2s2
2(x)+O(h2

1h2
2+h4

2)+o(h4
1),

and combining all our calculations,

A2=
1

nh3

k1w(x) p(x) d(h1�h3)+
1
4

h4
1k2

2s2
2(x)

+O(h2
1h2

2+h4
2)+o \ 1

nh3++o(h4
1).

Similarly, we can show, under the conditions of the theorem, A1=o(h&1
3 ).

Hence,

A=
1

nh3

k1

w(x)
p(x)

d(h1�h3)+
1
4

h4
1k2

2

s2
2(x)

p2(x)
+O(h2

1 h2
2+h4

2)+o \ 1
nh3++o(h4

1).

For B in (11), it is well known (e.g. Collomb [3], Ha� rdle [6]) that

B=
1

nh3

k1

u(x)
p(x)

+
1
4

h4
3k2

2

s2
1(x)

p2(x)
+o \ 1

nh3++o(h4
3).

Similarly, we observe

C=
1
4

h2
1h2

3k2
2

s1(x) s2(x)
p2(x)

+O(h2
2h2

3)+o \ 1
nh3++o(h2

1h2
3).
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Putting everything back to (11), we have

E[m̂(x)&m(x)]2=
k1

nh3

w(x)
p(x)

d(h1 �h3)+
1
4

h4
1 k2

2

s2
2(x)

p2(x)
+

k1

nh3

u(x)
p(x)

+
1
4

h4
3k2

2

s2
1(x)

p2(x)
+

1
2

h2
1h2

3 k2
2

s1(x) s2(x)
p2(x)

+O(h2
1h2

2+h4
2)+o \ 1

nh3++o(h4
1+h4

3)

=
1

nh3

k1(u(x)+w(x) d(h1�h3))
p(x)

+
1
4

h4
3

k2
2(s1(x)+s2(x) h2

1 �h2
3)2

p2(x)

+O(h4
2+h2

2h2
3)+o \ 1

nh3

+h4
1+h4

3+ .

Equation (5) follows by setting h1=%h3 and h2=o(h3).

Proof of Theorem 2.2. From Theorem 2.1, it is easy to see that

(i) If s1(x) s2(x)�0, the asymptotic optimal choice of the bandwidth
of estimator (1) is h3(x)=(D1(x, %*)�D2(x, %*))1�5 n&1�5 where %* mini-
mizes (6) with respect to %, and the corresponding asymptotic mean
squared error is

E(m̂(x)&m(x))2=1.25D1(x, %*)4�5 D2(x, %*)1�5 n&4�5+o(n&4�5).

(ii) If s1(x) s2(x)<0, then if h3=o(n1�5) and nh3 � � and
%2=&s1(x)�s2(x), the asymptotic mean square error of estimator (1) is
E(m̂(x)&m(x))2=o(n&4�5).

And, it is well known (e.g. Collomb [3], Stone [14], Ha� rdle [6]) that, for
h � 0 and nh � �, the mean squared error of the N-W estimator (2) is

E(m~ (x)&m(x))2=
D3(x)

nh
+

1
4

D4(x) h4+o \ 1
nh

+h4+ ,

where D3(x)=k1_2(x)�p(x)=k1(u(x)+w(x))�p(x) and D4(x)=k2
2s2

1(x)�p2(x).
The optimal bandwidth h is (D3(x)�D4(x))1�5 n&1�5, corresponding to mean
squared error

E(m~ (x)&m(x))2=1.25D3(x)4�5 D4(x)1�5 n&4�5+o(n&4�5).

Theorem 2.2 follows immediately.

The proofs of Theorems 2.3 and 2.4 follow the result of Theorem 2.1.
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