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SUMMARY

We propose algorithms based on random draws from predictive distributions of unknown
quantities (missing values, for instance). This procedure can either be iterative, which is a
special variation of the Gibbs sampler, or be sequential, which is a variation of sequential
imputation. In the latter case one can update the posterior distribution with new
observations easily. The methods proposed have intuitive statistical implications and can
be generalized to accommodate other Bayesian-like procedures. We display some applica-
tions of the method in connection with the Bayesian bootstrap, classification, hierarchical
models and selection of variables. In particular, as an application of the method, we present
a unified treatment of switching regression models driven by a general binary process, and
we develop a Bayesian testing procedure. Some simulations and a real example are used to
illustrate the methods proposed.

Keywords: BAYESIAN TESTING; GIBBS SAMPLER; MARKOV CHAIN; ODDS RATIO; SEQUENTIAL
IMPUTATION; SWITCHING REGRESSION

1. INTRODUCTION

The idea of multiple imputation arose in the 1970s as a useful tool for dealing with
non-response in surveys. The growth of the methodology occurred along with the
development of various computational techniques, e.g. the EM algorithm (Dempster
et al., 1977), data augmentation (Tanner and Wong, 1987) and methods related to
importance sampling. These ideas and techniques led to a widespread recognition of
iterative sampling methods in Bayesian analysis (Gelfand and Smith, 1990). Some of
these early studies are nicely summarized in Rubin (1987), to which the methods
described in this paper are closely related. Here we start with a simple example to
introduce the idea of predictive updating for augmenting missing data and updating
posterior distributions with new observations. Generalizations to more complicated
problems are illustrated in the next few sections.

Suppose that y . = (¥1, . . ., y»,) is a simple random sample of size n; from an
unknown population, and let 6 represent all unknown parameters. Furthermore, we
assume that there are ny additional non-responses Y, = (Vn 41, - - -, Y») Missing
completely at random (Rubin, 1987), where n = ny + n,. Obviously, we can ignore
the non-responses in making inference for this problem. Here we wish to use this
simple example to illustrate the spirit of our proposals.

The key to multiple imputation and data augmentation (Tanner and Wong, 1987)

‘tAddress for correspondence: Department of Statistics, Sequoia Hall, Stanford University, Stanford, CA 94305-
4065, USA. ,
E-mail: jliu@playfair.stanford.edu

© 1996 Royal Statistical Society 0035-9246/96/58397



398 CHEN AND LIU [No. 2,

is the fact that the posterior distribution p(0|yobs) can be expressed as a mixture of
completed data posteriors. More precisely, it is recognized that the formula

D (0 Iyobs) = JP (0 |yobs’ Ymis) y4 (ymis Iyobs) deis

can be realized through Monte Carlo integration. The central task is, therefore, to
impute multiples of y, . = (¥4, 41, - - -, ¥,) by draws from its predictive distribution
P(Ymis|Yobs)- Given a draw 6* from p(6y,,,), it is possible to achieve this 1mputat10n
by drawing y,. from p(¥iYons, 6%). However, sampling from p(0|yobs) is generally
difficult, if not impossible. Many recent researches focus on how to circumvent the
difficulty. Several methods are available for producing proper multiple imputations
in complicated situations.

(@) Data augmentation: draw 6 from p(01Y s, Ymis); draw Yo from p(y,islYouss 0);
then iterate. After many iterations, the y,, obtained from this scheme follows
from p(YpiclYons)- Tanner and Wong (1987) and Gelfand and Smith (1990)
provide more details.

(b) Iterative predictive update (IPU): for i=n;+1, ..., n, we can iteratively
update y; (i.e. substitute by a new random draw) by drawing from its predictive
distribution

p(yi|YObs’ ymis[—i])’

i.e. iteratively each y; is updated by a draw from its pred1ct1ve distribution
conditioned on y,, and the current imputed value of y, 4. In the case of
independent and identically distributed (IID) observatlons from a normal
population with unknown mean and variance, under non-informative priors,
we only need to draw from a -distribution with n — 2 degrees of freedom in
each step. This is just a Gibbs sampler applied to draw y,,, from its target
(predictive) distribution p(¥i|¥obs)-

(c) Sequential predictive update (SPU): for i=n;+1,.. ., n, we sequentially
draw yf from its current predictive distribution p(yilyops, Y415 - - - ¥ 1). This
provides the desired imputation because of the decomposition formula

p(ymislyobs) =p(yn|+l|yobs) p(yn1+2|yobs’ yn|+1) e p(ynlyobs9 yn1+la LIRS yn—l)'
1

Again, in the normal population case, each step is accomplished by drawing
from a ¢-distribution with appropriate degrees of freedom. Compared with the
conceptual procedure that draws 0 from its full posterior distribution and then
draws y,;; from p(¥i|Yops> 6), the SPU suggests that the parameter uncertainty
can be properly reflected by sequentially using predictive distributions. This
point will be further illustrated in Section 2.1.

Although the updating schemes are special cases of Gibbs sampler or sequential
imputation, they stand out by themselves, for their intuitive statistical inter-
pretations, and for the fact that they can avoid directly modelling the parts of the
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mechanism that are not of immediate interest. In particular, some nonparametric
features can be built in by using the Bayesian bootstrap (BB) (Rubin, 1981) or
Dirichlet process modelling (Escobar, 1994; MacEachern, 1994). Furthermore, with
some parameters integrated out, we are actually applying the Gibbs sampler to a
smaller set of random variables, and therefore the sample autocorrelations and the
convergence rate of the resulting sampler are usually better behaved than a full Gibbs
sampler (Liu, 1994). In addition, the IPU and SPU methods can avoid unidentifiable
problems which occurred in the full Gibbs sampler when dealing with some mixture
models and model selection problems.

As a concrete application of the predictive updating schemes, in Section 3 we study
a classification problem associated with the switching regression model. This model is
a generalization of the mixture density models and can be applied to cases such as
threshold autoregressive models, robust regression and pattern recognition. Render
and Walker (1984) provided an overview of the EM algorithms for solving the mix-
ture problems. Gibbs sampling techniques have recently been applied to some of the
related problems. See, for example, Diebolt and Robert (1994), Lavine and West
(1992) and West (1992). More references are provided in Section 3.

The paper is arranged as follows. We display the range of applications of the
predictive updating methods in Section 2, which includes their .connection with the
BB, their use in classification, hierarchical models and selection of variables. Related
studies on some special cases can be found in Escobar (1994), Irwin et al. (1994) and
Lawrence et al. (1993). A Bayesian solution of the switching regression problem via
predictive updating is provided in Section 3. In Section 4, we propose a procedure for
calculating the posterior odds ratio in testing the Markovian dependence in the
switching mechanism. In Section 5, we analyse the gross national product (GNP)
data of the USA, previously studied by Hamilton (1989) and McCulloch and Tsay
(1992), using the techniques described in this paper.

2. PREDICTIVE UPDATING ALGORITHMS

2.1. Predictive Updating and Bayesian Bootstrap

The IPU and SPU procedures are closely related to nonparametric Bayes
procedures such as Rubin (1981)’s BB and Dirichlet process methods (Escobar, 1994;
Liu, 1994, 1995). They are especially useful when only part of the model structure is
of direct interest.

Specifically, with yy, . . ., y,, as IID realizations of a random variable Y, one BB
replication is generated by drawing p = (p1, . . ., pn,) from a Dirichlet(1, . . ., 1)
distribution. This p is the vector of probabilities to attach to the data values
Y1, - - -» Yn, in that BB replication. Another way to understand the BB is from the
viewpoint of a Dirichlet process. See Lo (1987) for details.

The BB was used for multiple imputations in Rubin (1987). For example, to
impute Yoi = (Jny41, - - -» Yn)» We can first draw a BB replication p to attach to yp,
and then draw ny IID samples from (y, . . ., y,) With weight p. In the case when
no = 1, the foregoing procedure is equivalent to drawing directly from (31, . . ., ¥n)
with equal probability 1/n,. This observation immediately gives us a sequential
updating procedure which imputes the missing data y,; sequentially as follows:
for t=n+1,...,n we let y, be a simple random draw from the pool
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{y1> ¥2> - - -» yi_1}. It is easy to show that the resulting y,;, drawn in this fashion is
equivalent to that drawn from the BB procedure by the telescope law (1) and can also
be seen as a Polya urn sequence.

This method can be understood as a ‘sequential bootstrap’ procedure. Although
similar to the bootstrap idea, the difference is that each current draw y is rein-
corporated to produce a future draw. This equivalence of the sequential bootstrap
and the BB (or Bayesian prediction) seems to be applicable to more general settings.
In addition, the SPU procedure suggests that the extra uncertainty of a future
observation (or missing data) due to the unknown parameters can be incorporated
sequentially through predictive distributions. For example, the ‘poor-man’s data
augmentation’ in Tanner (1993) typically underestimates posterior uncertainties and
produces improper imputations because it treats the unknown parameter as fixed at
its maximum likelihood estimate. However, if the procedure is applied sequentially to
each missing observation, which we call the ‘poor man’s sequential augmentation’,
proper multiple imputations will be generated.

The IPU procedure can also be modified to draw y,;, nonparametrically in place of
(but equivalent to) the BB procedure. In the above example, for instance, we can
iteratively update each y; by a simple random draw from {y,, Yimi_7}- After many
iterations, the joint distribution of y,;; will converge to that of the samples drawn by
the BB procedure. It ties with the Dirichlet process method of Escobar (1994) and
MacEachern (1994).

2.2. Predictive Updating for Classification

A traditional treatment of classification problems is through the use of finite
mixture models, typically normal mixture models. Computationally intensive
methods for the maximum likelihood estimates of the parameters of interest have
been developed, one of which is the celebrated EM algorithm (Dempster et al., 1977)
orits variations. See Everitt and Hand (1981) and Titterington et al. (1985) for a review
of the area. In applications of these mixture models, however, the classical asymptotic
results are no longer trustworthy. Hence, a full Bayesian analysis with appropriate
displays of marginal posterior distributions of certain parameters is of great interest.
With a data set of moderate size, an explicit analytical solution for a Bayesian analysis is
typically formidable. One usually has to employ either some ad hoc approximation
methods (e.g. Smith and Makov (1978)) or some Monte Carlo methods to complete the
analysis. Recent developments in Markov chain Monte Carlo methods for full
Bayesian analysis especially help to promote the application of the powerful Bayesian
machinery (Diebolt and Robert, 1994; Lavine and West, 1992; West, 1992).

Let y;,...,y, be a set of IID observations coming from a mixture model
61 o1y, ) + - - - + 6k pe(y, i), where 6, + . . . + 6, = 1. Here 6; > 0 are the mixing
proportions, and the u, are the parameters associated with each distribution.

LetI= (1, . . ., I,) be the vector of indicators, i.e. I; = [ if observation y; is from
class /. If we treat I as missing data, a natural data augmentation or Gibbs sampler
scheme can be implemented as illustrated in Diebolt and Robert (1994) and Lavine
and West (1992). However, predictive updating algorithms are more intuitive and
can be used to accommodate sequentially arriving data. Specifically, we have

p(Ix = llyl’ <o Y I[—i]) — P(yh c ey ynll[—x'b Ix = [) P(Iz = lll[—x]) (2)
P(Iz = mlyla < Yno I[—t]) P(yla cee ynll[—-i]a Iz = m) p(Ix = mll[—i])
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Here
P, -5 YD = J{HPI,-(Y;‘WQ} () - - w() dpy - dpsy
i=1

This formula gives us a convenient way for predictive updating, i.e. on the basis of
the current classification of the data excluding y;, we update the ‘membership’ of the
Jjth observation based on the above probability rule. If the procedure is iterated
indefinitely many times, the equilibrium distribution of the above sampler is the
posterior distribution of classification p(Ily,, . . ., ¥,)-

Let IV, . . ., I be multiple draws from the distribution p(Ily,, . . ., y,) obtained
by using some sampler. Now suppose that a new observation y,., arrives with
missing indicator I,.,. Apparently, the value of I, can be inferred by using the
multiple imputed I%s and the probability rule (2). A less obvious fact is that the old
classifications can be modified on the basis of this new observation, by giving a
weight

w(j) Ocp(ynewlyla s e yna I(j))

to each IY), i.e. each imputation I is weighted by its ability to predict y,.,. This
predictive probability is easy to compute in cases such as a normal mixture model
with conjugate priors. The general idea of sequential reweighting is explored in depth
in Kong et al. (1994).

2.3. Predictive Updating in Hierarchical Models

Let us consider a typical hierarchical model y; ~ p«(y|0,) for i=1, . . ., n, where
the y; are independent of each other given the 6; and the 6; are IID from some
distribution G(8; A). We observe the ys and want to make inference about the s and
G. In parametric hierarchical models (Morris, 1983), G has a known parametric
form. For example, it can be a normal distribution in normal hierarchical models or
a beta distribution when we are dealing with proportions and frequencies. In
nonparametric cases, however, G is not assumed to have any specific form. Robbins
(1955) and Good (1953) treated the unseen species problem under this nonparametric
hierarchical framework and obtained the famous ‘Robbins—Turing-Good’ formula.
More recently, Carlin et al. (1992) used hierarchical models and the Gibbs sampler to
analyse changepoint problems.

Predictive updating methods can be easily applied here to provide proper
inference. Suppose now that we consider 6; conditioned ony,, . . ., y, and ©_;. We
can combine two sources of information by the Bayes rule:

p(611©_3, Y) x p(y;16;) dG(6,1O_y). 3

Here dG(6,|©_,) represents the corresponding conditional distribution of G. This
updating scheme reflects the spirit of hierarchical Bayes modelling that the
estimation of a particular 6; can be improved by combining information from other
similar sources. Formula (3) is easy to implement for parametric models illustrated in
Morris (1983) (Gelfand and Smith, 1990). To bring in some nonparametric features,
we may wish to update dG(6;/©,_;) by nonparametric density estimation methods or
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Dirichlet process models. Escobar (1994), MacEachern (1984) and Liu (1994, 1995)
discussed the use of expression (3) in Bayesian nonparametric hierarchical models
where G is assumed to follow a Dirichlet process a priori.

2.4. Predictive Updating for Selection of Variables
George and McCulloch (1993) nicely illustrated Bayesian methods for the selection
of variables. We remark here that the idea of predictive updating can be applied
flexibly and has meaningful implications.
Let Y, an n x 1 vector, be the dependent variable, and let x;, . . ., X, be a set of
potential predictors among which we want to select a subset to fit the ‘best’ model of
the form

Y=X{Bf+ ... + X6 +e
Following the notation of George and McCulloch (1993), we introduce the indicator

variable v = (v, . . ., 7,), where v, =1 or ;=0 according to whether the ith
variable x; is selected or not. Then

p(’Yt = ll’Y[—i],YS b SEIRIRI xp) ___P(Y|X1: e Xp: 7[—1]: Vi = 1) p(’Yl = 1|7[_1]: X)
p(’Yt = OI’Y[—z]aYa b STIRIRI Xp) p(leh SRS Xp: 7[—1]5 Y= O) p(’Yt = 0|7[—z]5 X),

In George and McCulloch (1993), the last ratio is just 1 under an ‘indifference’ prior
and is p;/(1 — p;) under the prior

fo =TI prt—py'

Therefore, the main task involved in an iterative sampler using predictive updating is
to compute the predictive probability p(Y|x,, . . ., X,, ). By using suitable priors on
the coefficients 3, this computation is equivalent to integrating out the coefficients in
a linear model and can be carried out explicitly (Box and Tiao, 1973). Another
benefit of predictive updating in this problem is that it avoids the unidentifiability
problem (i.e. 3; = 0 or ; = 0 cannot be distinguished).

3. CLASSIFICATIONS IN SWITCHING REGRESSION

3.1. Background
To illustrate the use of predictive updating schemes, we now provide a detailed
analysis of the switching regression problem. Specifically, suppose that observations
XT, y1), . . (XT, yp) are from a switching regression model

s L XIB+e), ifh=1, @
X8+, ifL =0,

where the Xs are p-dimensional column vectors, " ~ N(0, ¢?) and €2 ~ N(0, o3)
are independent normal errors with possibly different variances. The variables
I,i=1, ..., n,areunobservable indicators that drive the switching mechanism. Our
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main interest is to identify the values of the indicator. In the later context, we write
I = (Il’ e ey In).

A brief literature review is as follows. Hosmer (1974) described a case in which the
length of halibut of each sex follows different regression models (on age) whereas the
sex of fishes cannot be determined cheaply. Quandt and Remsey (1978) used the
same model for wage regression. More recently, De Veaux (1989) used the switching
regression model to analyse data on musical perception. Shumway and Stoffer (1991)
studied a switching linear dynamic model. Those studies are all based on the
assumption that the switching indicator is a priori exchangeable. A switching
mechanism driven by a Markov chain is introduced by Goldfeld and Quandt (1973)
in describing housing market disequilibrium. Hamilton (1989) and McCulloch and
Tsay (1992), by applying this model to describe the growth in the US GNP, further
extended the Markovian structure to time series data.

3.2. Likelihood and Posterior Distributions
In the rest of this paper, we use 7 to denote all the distributions related to the
models and parameters. Let J; =1 — 1, and Y = {(X], y;), i =1, . . ., n}. The likeli-
hood of model (4) can be written as

1 ) —XTBY  T(y— XT3.)?
W(ylﬁla ﬁZ’ 01, 0, I) X =y n1 n—nl eXp[ ,E_l {It(yt 23_; ﬁl) + J‘(y‘ 25%1 '32) }]
)

where

A full Bayesian analysis can be conducted by further assuming prior distributions on
the Bs, os and 1. We shall show in Section 3.3 that structures of the switching
mechanism can be easily modelled via the prior distribution =(I).

For a given I, let n; = ¥} | I; and

Syxt = Z ItXtX;ra Sxyl = Z ;X Z Iyt ISxxl xpls
i=1 i=1
Sea =Y JXXI, Sgp=> JXy, A= Z Ty — 85285h S
i=1 i=1 i:

Let p be the number of covariates. The following proposition provides the posterior
distributions of the indicator vector I, up to a normalizing constant, in three
situations.

Proposition 1. For model (4) with flat priors on 3; and 3,, and prior 7(I) on I, the
posterior distribution of I is, by the Bayes theorem, 7(I|}) « 7(Y|I) 7(I), provided
that p < X7, I; < n — p, where
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(a) if the variances o? and o7 are known then

exp(—A, /202 — A,/203)

"I—P n—ny—p 172 2
g, |Sxxlex2| /

T o (6)

(b) if the variances are unknown but assumed equal, i.e. 02 = 0% = ¢%, and the
prior distribution for o is proportional to o~* exp (—6 /202) then

1

T y | 0.6 )
( l ) ((S + Al + A )(n_zp_l+a)/2|Sxx1Sxx2|1/2

(M
(c) if the variances are unknown and unequal and the priors for the variances are
proportional to o; * exp(—6;/202), for k =1, 2, then

M{(n —p+a;—3)/2}T{(n—n —p+ o, — 3)/2}
|Sxxl Sxell/2

m(YID) o

X(6l + A])‘(nl—P+a1—1)/2(62 + Az)—(n—nl—p+az—l)/2. (8)

Proof. First note that

Z Il(yl - X'ITIBI)Z = ,BTSxxlﬁl - Szylﬂl - IB’IFSxyl + Syyl
i=1

= (:31 S;xlsxyl)TSxxl (ﬁl xxl xyl) + SIyIS;x]l Sxyl'
Hence
1 1 - T 2 exp{ ( xxl xyl)/202}
Lp on exp{ 752 ;Ii()’i XiB) } dB; « nl/za”‘PlS N ©)

The same calculation can be carried out for 3, as well.
Now we prove expression (6). Since flat priors are used on 3, and 3,, the posterior
of I, when variances o2 and o% are known, is proportional to

]w(ywl, By, ) n(1) 4B, dB;.

Hence expression (6) can be proved by directly evaluating this integral by using

expression (9). To derive expression (8), we integrate out the variance parameters by

a simple change of variables: u = \/(6; + A,)/o; and v = /(6, + A,)/0,. Hence the

problem is reduced to an integral of the beta functions. Expression (7) can be derived

similarly. O
The proposition shows that

(a) computations involved in the IPU are easy and
(b) we must be careful when using improper priors.
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It is the case for all classification problems that either a proper prior or a restricted
space of I is required. The priors of 3, and 3, are not necessarily flat. When the os
are known, normal distributions are conjugate priors for the @s and can be easily
incorporated into the above formulae. When the os are not known, we assume a
priori independence between (8,, o1) and (3,, 0,) and let m(B,|ox) be N(by, c2o?) and

m(oy) ox oy “* exp(—6/ 20%),

for k =1, 2, where the b, ¢, o and §, are hyperparameters and can be input as
constants. With those priors, the formulae for 7(|I) will have the same forms as that
in our proposition, with slight modifications. The flat priors are used here only for a
simple presentation.

3.3.  Priors on Switching Mechanism
The switching mechanism can be characterized by introducing another hierarchical
parameter © which determines the prior distribution of I. Several commonly
encountered structures can be easily modelled.

3.3.1. Structure I—completely independent

In this case, the [;s are assumed independent Bernoulli random variables, being 1
with probability §; and 0 with probability 1 — ;. This situation occurs when the
population changes from observation to observation. It is easily seen that the
resulting 7(I|®) is proportional to

] ofa—oy"
i=1
If the 6;s are independent and 6; ~ beta(q;, b;) then

(M) oc [ ] it
i=1

3.3.2. Structure II—exchangeable

When all the observations are simple random draws from a mixture of two
subpopulations, a reasonable and commonly used mechanism is the exchangeable
structure in which the I; are assumed to be IID Bernoulli random variables with a
common unknown parameter 6. Hence, 7(I|®) = 6" (1 — 6)"™, where n; = £}, I,. If
a conjugate prior distribution 6 ~ beta(a, b) is used, then the resulting prior
distribution of I, after integrating # out, is

m(I) x T'(n; + @) T'(n — 1y + b).

In the switching regression literature, this structure has most commonly been used.
See Hosmer (1974). Quandt and Remsey (1978), Shumway and Stoffer (1991) and De
Veaux (1989) for their methods.



406 CHEN AND LIU [No. 2,

3.3.3. Structure ITI—Markovian dependent

When observations come in sequentially, it is reasonable to assume that the
switching mechanism is time dependent and the indicator variables follow a binary
process. The simplest binary process is the first-order two-state Markov chain, which
has been used by Hamilton (1989) and McCulloch and Tsay (1992) in a time series
model.

Assume that the transition probabilities for the indicator Markov chain are

m(lp =1L=10)=0y,
and
m(liy1 = OlI; = 0, ©) = Oy,
with initial state w(I; = 1|®) = §; then
n(1|©) = 671 (1 — 0,)" G5 (1 — o)™ 8"(1 — 8",

where 7; is the number of transitions from i to j among the sequence I, . . ., I,.
Computationally, ny; = B! LIy, nmo = Zio! IJiy, e = T JiJiyy and ng =
vl JiI,,, where J; =1 —I,. Suppose that the prior distribution of (6, 6;;) is a
product of independent beta distributions with parameters (a,, by) and (a;, b;), and
let 6 follow a uniform distribution on [0, 1]. Then the marginal prior distribution of I
is

['(ny; + ay) T(nyg + by) T(ngy + ao) Ty + bo)
T(ny; + ny + ay + by) T(ngy + 1oy + ao + by)

m(I)
The same approach can be easily extended to a k th-order Markov chain.

3.3.4. Structure IV—balance switching models
Let us consider a system where the probability of switching depends on the time
length since its previous switch, i.e.

7T(I, = lll'—l =1,.., I = 1, Iy = 0) = 0kl
and
7r(It = OII'—I =0,... Ii—k =0, Ii—k—l = 1) = 9k0

fork=0, 1, ..., n. We call the system the balance switching model if the 6;; decreases
as k increases. This structure might be particularly interesting to economists and
engineers since economic conditions and engineering systems have memory and tend
to change after a stable period.

One way to achieve balance is to introduce independent beta prior distributions for
the 6s, i.e. a priori we assume (61, Oxo) ~ beta(ax, bi1) beta(ar, bio), and let the a;
decrease and the b, increase. Specifically, since

w0©) =[] #WiL, - . . I, ©) = [[ 65 — 0)™ 62 (1 — 8i)™
i=1 k=0
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where n,; is the number of sequence (01. . .11) with total k + 1 1s, my, is the number
of sequence (01. . .10) with total k 1s, m is the number of sequence (10. . .00) with
total k + 1 Os and m, is the number of sequence (10. . .01) with total k£ Os, we have

() o ﬂ T(nyy + agy) T(myy + by) T + ayo) T(myg + byo)
3 T(ny + My + @y + biy) T + myg + @ + bio)

This strategy will be implemented in the GNP example of Section 5. Another way to
achieve balance might be to employ parametric functions 6;; = g(k, A;) and
010 = 8o(k, A,) where A, and A, are hyperparameters and the functions g, and g
decrease with k. With this structure, the parameter © can no longer be integrated out
easily in the posterior distribution.

3.3.5. Other structures

We mention two more structures that will not be studied in detail here. Tong

(1983) introduced the threshold autoregressive (TAR) model of the form

¢(11)x,_1 + ...+ ¢§,1)x,_p + € if x,_4<c,

Y= 4@ @) @ :

X+ Oy X, if x,_;=c.
If we let X;=(x.y, ..., xi,) and let I(c)=1 when x; ;<c, and let I(c)=0
otherwise, then the TAR model fits nicely into the switching regression framework,
conditioned on the first p observations. Since I is completely determined by c, the
problem of classification is reduced to that of determining c. With a flat prior on c,
the posterior disttibution of ¢ is proportional to m()|I) in expressions (6)—(8) with all
the I;s replaced by the I(c) defined above. In this case the computation can easily be
done. A similar Bayesian model has been studied by Geweke and Terui (1991) using
numerical integration procedures.

The switching mechanism can also be driven by a logistic regression model. In a
recent study by Rubin and Wu (personal communication), /; is assumed to follow a
Bernoulli distribution with parameter 6;, and logit(6;) = Zy, where Z; can be X;, a
subcomponent of X; or some exogenous variable. A multivariate normal prior, for
example, can be imposed on the logistic coefficient . This problem was studied by

Rubin and Wu by using an EM-type algorithm. A Gibbs sampling approach is easily
available.

3.4. Implementation

We applied the IPU procedure to produce random draws from the posterior
distribution of the indicator vector I. Specifically, for a fixed i, the conditional
posterior probability m(Z; = 1|Ii_3, V) is computed. We shall show that this step is
easy because of a recursive formula. Then a Bernoulli random variable is generated
with this probability and the 7; is updated accordingly. With trivial starting positions
and given hyperparameters of the prior distributions, the procedure runs through
i=1, ..., ntocomplete one cycle of IPU iteration. In practice, M + N iterations are
needed, of which the first M iterations are discarded and the last N iterations are
saved as posterior draws from the true posterior distribution of L.
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For each update only one observation’s membership is under consideration. The
computation of m(Y|I;, Ii_3) can be efficiently done by using the following recursive
formulae which do not require the computation of determinants and matrix
inversions. For a given I’, let S% , and S°_, be the correspondmg sample matrices as
defined in Section 3.2, and let Prb 1 and ngz be their respectlve inverses. Let I = w
with w being either 1 or 0, and Tet I* = Ii=1-w, I p)- To compute 7r()i|I*) we
only need the ratio m(Y|I*)/m(Y|I°), which can be v1ewed as the odds of removing the
ith observation (X}, y;) from its current group (regression line) and adding it to the
opposite group. The following relationships hold after I? has been changed from w to
1 —w:

P X XTP°
P,;xl — P())‘x1 T xx1 xx1 —,
P LXXTP°
P =::cx2 = P())cxl - 212 2

X tT P?cx2 i ( l)w ’
and for the determinants

I‘S”;xll = |S?cx1||X;rI>())cxlXi + (_l)wla

IS x2| = |ng2||X;'rP())cx1Xi - (_l)wl

These equations can be derived by using standard matrix algebra and the fact
that S*,, = 8%, — (=1)*X;XT and S*,, = 8%, + (—1)“X; X when the ith observa-
tion (X, y,) has been removed from its current group and added to its opposite
group. Similar computations can be found in Chen and Tsay (1993).

3.5. Simulation Study

To illustrate the performance of the proposed procedure, 400 observations were

simulated from the model
_ [0.7xy —0.3x, + ¢ if I, =1,
T 11-0.7x; +0.8x, + ¢ if ;=0

Where x; and x, were generated from a uniform distribution on [—4, 4] and the es
were normal random variables with mean 0 and standard deviation 0.5. The
indicator series I; were generated from a Markov chain with switching probability
0.05, i.e. w(l; = 1|I = 1)=n(l; =0|I,_; =0) =0.95. We computed the posterior
dlstnbutlons of I under both the exchangeable switching model and the Markov-
chain-driven switching model. In both cases, 1000 iterations of the IPU were carried
out and the first 500 were discarded. For the exchangeable model, a beta(l, 1)
distribution was used as the prior density for the common 6. For the Markovian
model, a product of two beta(1, 1) densities was used as the prior for (6,;, 6y). Fig. 1

shows the corresponding posterior probabilities m(Z; = 1|))). The dots are the ‘true’
indicators and the lines are the posterior probabilities. We can see clearly that the
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Fig. 1. Posteriors for J; for a data set generated from structure III (*, true indicator; —, posterior
probability): (a) Markovian and (b) exchangeable model

Markovian structure, which is the underlying true structure, works much better.
Another example with the I;s IID from a Bernoulli(0.5) distribution was simulated.
We carried out the same computations as in the previous example with the same
prior distributions. Since states 0 and 1 are highly mixed, a figure like Fig. 1 is not
suitable. In Fig. 2, we plot the posterior probability of 7(I; = I*|)) where I}*s are the
true state of the process generated. The classification via an exchangeable model was
as good as that via a Markovian model.

3.6. Discussion

It is noted that an unidentifiability problem is present since state 1 and state 0 are
exchangeable, i.e. marginally Z; is equally likely to be 1 or 0, which reveals a feature
of bimodality for the posterior distribution of I. Such a problem can be avoided in
two ways. The first is to choose the optimal classification I as the maximum a
posteriori, i.e. the classification that maximizes 7(I| ). The parameters §; and o; can
be estimated accordingly. A second way is to confine ourselves on one mode of the
distribution m(I|)) by imposing certain constraints on the (hidden) regression
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Fig. 2. Posteriors for I; for a data set generated from structure II (*, posterior probability =(J; = I*|))
where [;* are the true states of the generated process): (a) Markovian and (b) exchangeable model

parameters. More precisely, the Is sampled from 7(I|}) by the IPU are classified as
those with 3 smaller than 3, and those with §; greater than 3,. Then the two groups
correspond to the two modes of 7(I|)).

Another ad hoc method is to run a restricted IPU with some constraints such as
B > B2+ 6, i.e. the sampler only accepts those draws satisfying the constraints. This
amounts to putting a vague prior distribution on I and the resulting limiting
distribution will not be the same as m(I|)). We tested all the above methods. They
seem not to make any practical differences to the test data sets that we tried.

Our formulation can be easily generalized to multilevel Bayes models with the Is
taking values in more than two levels. In addition, sensible prior information on
various parameters can easily be incorporated, and hierarchical structures on the
switching mechanism can be imposed flexibly. The nuisance parameters are
effectively eliminated and thus the ‘core’ part of the likelihood function, m(Y|I), is
extracted, with a recursive formula for updating. The ‘three-scheme’ theorem of Liu
(1994) shows that, by eliminating all the nuisance parts (even if these parts can be
computed and drawn cheaply), the IPU procedure applied to the core part usually
converges faster and has lower autocorrelations between samples than a straight-
forward Gibbs sampler applied directly to the joint posterior distribution of all the
parameters. Therefore, our treatment is computationally more efficient than that of



1996] PREDICTIVE UPDATING 411

McCulloch and Tsay (1992), even when we are primarily interested in the regression
coefficients.

4. TESTING EXCHANGEABILITY AGAINST MARKOVIAN DEPENDENCE

Recently, hidden Markov models similar to structure III in Section 3.3 have been
developed and extensively studied in speech recognition (Rabiner, 1989) and other
fields. It is often desirable to test the necessity of this structure for a given set of data,
i.e. we would be more willing to use an exchangeable model if a Markovian
dependence model does not suggest itself.

Following the notation in structure III of Section 3.3, we let 6y; =1 — 6. We are
interested in testing Hy: 8y, = 0y, versus H,: 6p; # 61,. Note that the null hypothesis
corresponds to the exchangeable structure. If we impose a prior of the form

(001, 011) o @ mo(81) 6001 = 011) + (1 — @) (601, O11)s
where /(1 — ) is called the prior odds ratio, then the posterior odds ratio

r= amo(Y)
(I —a)ym()

is of interest to Bayesians. Since r cannot be computed explicitly in our problem, a
Monte Carlo method is needed. Liu (1994) noticed that a standard Gibbs sampler is
not directly applicable for such a computation because of the degeneracy of H, with
respect to H,. Thus a type of IPU as in Liu (1994) with the 0 integrated out is needed
to resolve the difficulty.

Suppose that conjugate priors m(fo1) = beta(a, b)) and (601, 611) = beta(ay,
bo) beta(ay, b)) are used for © and let o be 0.5. Then the posterior distribution of
Lis

71| Y) o 1Y D{A, (M) + 4,(D)}/2,

where
A (I) — F(nll + Noq + a) F(nlo + Nyo + b) F(a + b)
0 T'(ny; + ngy + 1y + ngy + a+ b) T(a)T(b)’
A,(T) = T(myy + ay) Ty + by) Do + bo) N(mor + a9)  T'(a + bo) Ty + by)

C(ny, +ny + a; + by) T(ng + 1oy + ap + bo)  T(ap) T'(bo) T(a;) T(by)

Note that the posterior distribution using prior my on © under H, is m(I|)) o
Ay w(Y|I) and that using prior m, on © is m(1|Y) o« 4,(I) 7(YV|I).

The IPU procedure is then applied to draw from m;(I|Y). Let IV, .. ., I™ be
samples obtained from such a geometric mixing sampler. For each sample I®), the
value Ay(I®)/4,(I%®) is computed. Then, by Liu (1994), the odds ratio can be
approximated by the ergodic average:
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, NL{AO(I“’) +Ao(1‘”’)}
Nl4a® "~ 4,a™)

By similar arguments, if we sample I from m(I) (the exchangeable model) and
compute the ratio 4,(I)/4,(I), their average converges to 1/r almost surely.

The above test via the IPU is closely related to the importance sampling idea. We
found that sampling I from the larger model, i.e. m;(I) in our case, usually resulted in
a smaller coefficient of variation of the ratio than that from the smaller model my(I).
This suggests that 7 (I) is more efficient.

5. REAL EXAMPLE

Assuming that the economy can be identified as in ‘contraction’ or ‘expansion’
states, Hamilton (1989) and McCulloch and Tsay (1992) studied the quarterly real
GNP of the USA (from the first quarter of 1947 to the first quarter of 1991) using
different autoregressive structures for the two states. The data are in billions of 1982
dollars, seasonally adjusted. The transformation y, = log(x,/x,_;) was taken. The
data are shown in Fig. 3(a). For detailed information, see McCulloch and Tsay
(1992). Here we repeat their analysis by using the methods proposed in this paper.

We applied the method in Section 4 to test whether a (hidden) Markov switching
mechanism, which is the basic assumption of the analysis of Hamilton (1989) and
McCulloch and Tsay (1992), is necessary for the data set. When flat priors are used
for ©, the posterior odds ratio r was estimated as 1.67 and 1.57 in two Monte Carlo
computations each with 6000 IPU runs (the first 1000 runs were discarded). The
evidence of Markovian dependence was not at all strong. This partially explains why
very strong priors on the indicator are needed to enforce a Markovian structure,
as in McCulloch and Tsay (1992), who used (6, 6,1) = beta(5, 45) beta(45, 5).
Interestingly, when their choice of m; was used against a flat m,, we obtained a much
smaller r. Two Monte Carlo computations estimated r as 1.47 x 10~ and
4.79 x 103 each with 6000 IPU runs.

With I=1 corresponding to the contraction state, Fig. 3(b) shows the posterior
probabilities 7(Z; = 1|)) from using a switching AR(2) model with a Markov chain
switching mechanism and a product of beta(45, 5) distributions as the a priori
distribution for (0, 6p). This choice is similar to that of Hamilton (1989) and
McCulloch and Tsay (1992). Our results were obtained by using 6000 IPU iterations
with the first 1000 runs discarded. Fig. 3(c) uses the balanced switching model with
prior beta(50 — 2k, 1+2k) for 6, and 6, k=0,..., 24, beta(2,45) for
k=25,...,30and 0 = 63,, and by = 63 for k > 30. The results are similar to
those of Hamilton (1989) and McCulloch and Tsay (1992), though the posterior
probabilities of contraction that we obtained are generally higher. In Figs 3(b) and
3(c), we also marked the time when the economy reached its peaks (at the bottom of
the figures) and troughs (at the top of the figures) of the business cycle. The dates of
these peaks and troughs are published by the National Bureau of Economic
Research, Inc. We can see that these dates are well fitted in the contraction and
expansion picture that we obtained. It is also seen that the date for a trough is usually
earlier than the time that the posterior probability of a contraction hits its local peak
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and the date of a peak is usually later than the time that the posterior probability of
expansion hits its local peak.
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