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Abstract: In this paper, a multistage kernel smoother is proposed to estimate

the conditional mean E(Z | X) in a Markovian structure where the observations

(Xi, Yi, Zi) are i.i.d. samples from a distribution that possesses the Markov prop-

erty E(Z | Y, X) = E(Z | Y ). We prove that the asymptotic mean squared error of

the proposed estimator is smaller than that using the Nadaraya-Watson estimator

directly on the pairs (Xi, Zi). A simulation study is also given.
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1. Introduction

In this paper we study the nonparametric multi-step ahead prediction prob-
lem in a Markovian structure. Specifically, assume the joint distribution of
(X,Y,Z) possesses the Markov property E(Z | Y,X) = E(Z | Y ). We are inter-
ested in predicting a future observation Z given X = x, without the knowledge
of Y , while a complete data set (Xi, Yi, Zi), i = 1, . . . , n, is available.

This problem is of interest in many situations. For example, it arises from the
measurement error models where Z is the response variable, X is the predictor
measured with error and Y is the corresponding true predictor. The underlying
assumption is that the response Z is related to X only through the true predictor
Y . Most of the time the true predictor Y is difficult and expensive to observe.
Hence it is of interest to predict Z using only X, the predictor measured with
error. The prediction function m(x) is to be estimated nonparametrically using
the complete data set where both Y and X are available.

A similar problem can be found in nonlinear time series analysis. With a first
order nonlinear autoregressive model Xt = f(Xt−1) + εt, two-step ahead least
squares prediction requires one to estimate E(XN+2 | XN = x) using the triples
(Xt+2,Xt+1,Xt) for t = 1, . . . , N − 2. However, the correlation between the
triples complicates the problem. In this paper, we concentrate on the regression
problem where available data are i.i.d. triples.

The best predictor in the least squares sense is, of course, the conditional
mean m(x) = E(Z | X = x). There is a very large body of literature on the
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nonparametric estimation of the conditional mean function in a regression set-
ting. For example, see Eubank (1988), Härdle (1990), Hall (1984), Stone(1980),
Cleveland and Devlin (1988), Fan (1993) and the references therein. However,
researchers have been focused mainly on estimating m(x) directly from the pairs
(Xi, Zi), which ignores the information on the variable Y . One commonly used
estimator is the Nadaraya-Watson (N-W) kernel estimator (Nadaraya (1964),
Watson (1964)).

m̃h(x) =
∑n

i=1 K((x − Xi)/h)Zi∑n
i=1 K((x − Xi)/h)

, (1)

where K(·) is a Kernel function and h is the smoothing parameter. Note that the
variable Y contains substantial information, particularly when (X,Y,Z) possesses
the Markov property. In this paper, we propose a multistage kernel smoother
which utilizes the information on Y to estimate the conditional mean function
E(Z | X); and we prove that the proposed smoother has a smaller mean squared
error than the direct estimator (1).

Let f(y) = E(Z | Y = y). Due to the Markov property, we have

m(x) ≡ E(Z | X = x) = E[E(Z | Y,X) | X = x] = E[E(Z | Y ) | X = x]

= E(f(Y ) | X = x).

Ideally, if the function f(·) were known, we would use the pairs {Xi, f(Yi)},
i = 1, . . . , n to estimate E[f(Y ) | X] = E(Z | X), since f(Y ) has all the available
information of m(·), with less variation, due to the fact that Var [f(Y ) | X =
x] ≤ Var (Z | X = x). When we use the pairs (Xi, Zi) to estimate E[f(Y ) | X]
directly as in (1), we are actually using Zi in place of f(Yi), which has an error
rate of O(1). On the other hand, if we estimate the function f(·) with a suitable
estimator f̂(·) that has a smaller error rate than Z and use the pairs {Xi, f̂(Yi)}
to estimate E[f(Y ) | X], we obtain smaller errors. We shall prove that this is
indeed the case. In fact, with a proper estimator of f(·), the mean squared error
of the proposed estimator is “almost” the same as if the true function f(·) were
known. The above observation motivates the following estimator for E(Z | X),
which will be referred to as the “multistage smoother”. It is defined as

m̂h1,h2(x) =
∑n

k=1 K((x − Xk)/h2)f̂h1(Yk)∑n
k=1 K((x − Xk)/h2)

, (2)

where

f̂h1(y) =
∑n

j=1 K((y − Yj)/h1)Zj∑n
j=1 K((y − Yj)/h1)

.

Note that f̂ is the regular N-W kernel estimator of f(y) = E(Z | Y = y). Here,
different smoothing parameters are used for each stage of smoothing.
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The above estimator can be derived in the following way, analogous to that
of the N-W estimator (Eubank (1988), p169-170). Let pX(x), pY (y) be the
marginal densities of X and Y respectively and pX,Y (x, y) and pY,Z(x, z) be the
joint densities of (X,Y ) and (Y,Z) respectively. If we are to use the following
one and two dimensional multiplicative kernel density estimators

p̂X(x) =
1

nh2

n∑
k=1

K((x − Xk)/h2); p̂Y (y) =
1

nh1

n∑
k=1

K((y − Yk)/h1);

p̂X,Y (x, y) =
1

nh1h2

n∑
k=1

K((x − Xk)/h2)K((y − Yk)/h1);

and

p̂Y,Z(y, z) =
1

nh1h3

n∑
k=1

K((y − Yk)/h1)K((z − Zk)/h3),

then, under the Markovian structure pZ|X,Y (z | x, y) = pZ|Y (z | y), we have

m(x) =
1

pX(x)

∫ ∫
zpY,Z(y, z)dz

pX,Y (x, y)
pY (y)

dy

∼ 1
p̂X(x)

∫ ∫
z

1
nh1h3

n∑
j=1

K((y − Yj)/h1)K((z − Zj)/h3)dz
pX,Y (x, y)

pY (y)
dy

∼ 1
p̂X(x)

∫ 1
nh1

n∑
j=1

K((y − Yj)/h1)Zj
pX,Y (x, y)

pY (y)
dy

∼ 1
p̂X(x)

∫ 1
nh1

n∑
j=1

K((y − Yj)/h1)

×Zj
nh1

nh1h2

∑n
k=1 K((x − Xk)/h2)K((y − Yk)/h1)∑n

l=1 K((y − Yl)/h1)
dy

∼ 1
p̂X(x)

1
nh2

n∑
j=1

Zj

n∑
k=1

[K((x − Xk)/h2)K((Yk − Yj)/h1)∑n
l=1 K((Yk − Yl)/h1)

]
(3)

=
1

p̂X(x)
1

nh2

n∑
k=1

K((x − Xk)/h2)
[∑n

j=1 K((Yk − Yj)/h1)Zj∑n
l=1 K((Yk − Yl)/h1)

]
,

which is that in (2). Also note that by (3), m̂(x) is a linear smoother.
The rest of the paper is organized as follows. In Section 2, the pointwise and

the integrated mean squared error of the multistage estimator (2) is calculated
and compared to that of the N-W estimator (1). Section 3 carries out a simulation
study for empirical comparisons of the two estimators. Section 4 provides a
brief summary. The detailed conditions and an outline of the proof of the main
theorem are given in the appendix.
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2. Asymptotic Properties

Let k1 =
∫

K2(z)dz, k2 =
∫

z2K(z)dz. The following conditional means and
variances are used.

m(x) = E(Z | X = x); f(y) = E(Z | Y = y); v(y) = Var (Z | Y = y);

u(x) = Var (f(Y ) | X = x); w(x) = E(v(Y ) | X = x); σ2(x) = Var (Z | X = x).

It is important to note that σ2(x) = u(x) + w(x), due to the Markov property.
We have the following theorems.

Theorem 1. Under Conditions (C1)-(C5) given in the Appendix, if nh1 → ∞,
h1 = o(h2), and h2 = {D1(x)/4D2(x)}1/5n−1/5, where D1(x) = k1u(x)/pX(x)
and D2(x) = k2

2{m′(x)p′X(x) + 1
2m′′(x)pX(x)}2/p2

X(x), then for a given x, the
asymptotic mean squared error of estimator (2) is

E(m̂(x) − m(x))2 = D1(x)4/5D2(x)1/5(41/5 + 4−4/5)n−4/5 + o(n−4/5). (4)

An outline of the proof of the theorem is given in the Appendix.

Corollary 1. The ratio of the minimum asymptotic mean squared errors of
estimators (1) and (2) is

r(x) =
{
1 +

w(x)
u(x)

}4/5
.

Proof. Let D3(x) = k1σ
2(x)/pX(x) = k1{u(x) + w(x)}/pX (x). It is well known

(e.g. Collomb (1977), Härdle (1990)) that, for h = (D3/4D2)1/5n−1/5, the mean
squared error of the N-W estimator (1) is

E(m̃(x) − m(x))2 = D3(x)4/5D2(x)1/5(41/5 + 4−4/5)n−4/5 + o(n−4/5).

The result follows immediately by comparing the above expression with (4).

Note that, if the true function f(·) is known, then the asymptotic mean
squared error of estimating E[f(Y ) | X = x] using the N-W estimator on the
pairs {Xi, f(Yi)} is exactly that in (4). Hence, asymptotically, the proposed
multistage smoother provides results as good as if we knew the function f(·). The
corollary also shows that although the mean squared error of the two estimators
are of the same order O(n−4/5), m̂(x) is smaller by a factor which depends on
the ratio of the conditional variances w(x) and u(x). Note that the asymptotic
result is quite insensitive to the extra bandwidth h1. As long as nh1 → ∞ and
h1 = o(h2), the result holds.
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Theorem 2. Let D1 =
∫
A D1(x)dx and D2 =

∫
A D2(x)dx, where A is the

interval of interest. Under Conditions (C1)-(C5), if h2 = (D1/4D2)1/5n−1/5 and
nh1 → ∞, h1 = o(h2), then the integrated mean squared error of estimator (2) is∫

A
E(m̂(x) − m(x))2dx = D

4/5
1 D

1/5
2 (41/5 + 4−4/5)n−4/5 + o(n−4/5).

Corollary 2. The ratio of the minimum asymptotic integrated mean squared
errors of estimators (1) and (2) is

r =
{
1 +

∫
A w(x)/pX (x)dx∫
A u(x)/pX(x)dx

}4/5
. (5)

3. Simulation Study

In this section, we compare the estimators (1) and (2) through a simulation
study. Consider the following model:

X ∼ Uniform(−3, 3); Y = 3 sin(X) + ε; Z = c1 sin(Y ) + c2e; (6)

where ε and e follow the standard normal distribution. For each combination
of (c1, c2) where c1 = 3, 6 and c2 = 1, 3, 6, two hundred sets of samples, each
with three hundred observations, are generated. For each set, estimators (1) and
(2) are evaluated at 250 equally spaced points on the interval (−2.5, 2.5) using a
quartic Kernel K(u) = 0.9375(1−u2)2I(|u| ≤ 1|). We did not use the full interval
[−3, 3] to avoid the complication of the edge effect. For the multistage estimator,
the bandwidth h1 for estimating f(·) is chosen to be h∗/b, b = 1, 5, 10, where
h∗ is the optimal generalized cross validation (GCV) bandwidth (Craven and
Wahba (1979), Li (1985)) for estimating E(Z|Y ) using the pairs (Yi, Zi). The
GCV is computed using the WARPing approximation (Härdle (1990)). Note
that by Theorem 1, the order of h1 should be smaller than that of the usual
optimal bandwidth. The second bandwidth h2 is chosen to be the optimal GCV
bandwidth for the pairs {Xi, f̂(Yi)}. For the N-W estimator (1), the optimal
GCV bandwidth is used. For each of the 250 points evaluated, the squared errors
are computed to the true conditional mean m(x) = c1e

−1/2 sin{3 sin(x)}. Then
the average of those squared errors are computed, denoted by mse1 and mse2, for
the ordinary N-W estimator (1) and the multistage estimator (2), respectively.
Then the ratio r = mse1/mse2 is obtained. Table 1 shows the first quartile,
the median and the third quartile of the ratios r from the two hundred sets of
samples under each coefficient and bandwidth combination. The column under
“true” is the theoretical asymptotic ratio

r(c1,c2)(x) =
(
1 +

2c2
2

c2
1(1 − e−1)[1 + e−1

∫
cos{6 sin(x)}dx]

)4/5
,
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using (5) for the above model on the interval (−2.5, 2.5).

Table 1. The quartiles (first, median, third) of the ratios r using model (6)
with sample size 300

(c1, c2) true h1 = h∗ h1 = h∗/5 h1 = h∗/10
(3,1) 1.25 1.03 1.19 1.39 1.01 1.15 1.32 1.00 1.11 1.24
(3,3) 2.98 1.60 2.06 2.81 1.39 1.69 2.04 1.19 1.41 1.72
(3,6) 7.62 2.08 2.89 4.38 1.61 2.05 2.79 1.38 1.68 2.14
(6,1) 1.06 0.96 1.04 1.12 0.99 1.01 1.09 0.97 1.02 1.08
(6,3) 1.55 1.18 1.44 1.85 1.13 1.32 1.53 1.07 1.24 1.44
(6,6) 2.98 1.58 2.06 2.73 1.22 1.55 1.88 1.12 1.28 1.54

From the table we can see that the performance of multistage smoother
depends on the ratio of c1/c2. The improvement can be quite significant in some
cases. With finite samples, the bandwidth h1 does have certain effect on the
improvement rate. It is surprised to see that the h1 = h∗

1 provides the best
improvement, though theoretically the bandwidth should be of smaller order
than the optimal bandwidth for the regular smoother. Note that, the cross-
validation selection of bandwidth was designed for one-stage smoothing. It may
not be a good choice in our situation. A more sophisticated bandwidth selection
procedure may be needed. We tried a leave-one-out cross-validation procedure to
select h1 and h2 simultaneously. The computation is much more time consuming
and there is no apparent improvement over the above procedure which selects
the bandwidth separately.

We observe that the sample size has little effect on the improvement rate.
Table 2 show the improvement rate using sample size 100, 300 and 500 in the
above example. The optimal GCV bandwidth is used for the first stage smoothing
in this example.

Table 2. The quartiles (first, median, third) of the ratios r using model (6)
with different sample sizes

(c1, c2) true 100 300 500
(3,1) 1.25 1.02 1.21 1.39 1.03 1.19 1.39 1.04 1.20 1.38
(3,3) 2.98 1.58 1.98 2.82 1.60 2.06 2.81 1.70 2.23 2.83
(3,6) 7.62 1.91 2.81 4.06 2.08 2.89 4.38 2.33 3.19 4.92
(6,1) 1.06 1.00 1.08 1.17 0.96 1.04 1.12 0.99 1.06 1.14
(6,3) 1.55 1.18 1.40 1.77 1.18 1.44 1.85 1.16 1.36 1.65
(6,6) 2.98 1.70 2.17 2.89 1.58 2.06 2.73 1.60 2.03 2.68

To see the effect of the function E(Y | X) and Var (Y | X), we investigated
the model

X ∼ Uniform(−3, 3); Y = c3 sin(X) + c4ε; Z = 3 sin(Y ) + 3e; (7)
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with different combinations of (c3, c4). The ε and e are generated from the
standard normal distribution. Table 3 is constructed the same way as Table 1,
using sample size 300. We observe similar results.

Table 3. The quartiles (first, median, third) of the ratios r using model (7)
with sample size 300

(c3, c4) true h1 = h∗ h1 = h∗/5 h1 = h∗/10
(2,0.5) 8.76 1.87 2.99 4.64 1.62 2.27 3.25 1.40 1.91 2.58
(2,1.0) 3.51 1.68 2.46 3.79 1.52 2.08 2.89 1.32 1.80 2.47
(2,2.0) 2.44 1.59 2.23 2.96 1.32 1.79 2.32 1.21 1.54 1.96
(3,0.5) 5.95 1.61 2.23 3.03 1.38 1.81 2.47 1.22 1.54 2.05
(3,1.0) 3.05 1.58 2.05 2.82 1.35 1.68 2.12 1.16 1.42 1.78
(3,2.0) 2.43 1.52 1.98 2.45 1.30 1.54 1.89 1.17 1.35 1.61

4. Summary

In this paper, we propose a multistage kernel smoother to estimate the con-
ditional mean function in a Markovian structure. It is shown, both theoretically
and empirically, that the proposed smoother has smaller mean squared error than
the regular smoother. We point out that the proposed smoother is not restricted
to two-stage smoothing. If the Markov chain is longer, say, (X1, . . . ,Xp), then
a p − 1 stage smoother can be used to estimate the p − 1 step ahead prediction
E(Xp | X1). It is also simple to extend the estimator to the cases where X or Y
are multi-dimensional.
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Appendix. Conditions and Proofs

Slightly different from the notation we used before, let p(x, y) be the joint
density of (X,Y ) and p1(y), p2(x) the marginal densities of Y and X respectively.
The derivatives of the functions are denoted by (k). For example, m(1)(x) is the
first derivative of m(·) evaluated at x.

The following functions are needed.

g1(x) = m(1)(x)p(1)
2 (x) +

1
2
m(2)(x)p2(x);

g2(x) =
∫

p(x, y)
p1(y)

dy; g3(x) =
∫

p2(x, y)
p2
1(y)

dy;

g4(x) = E
[f (1)(Y )p(1)

1 (Y ) + 1
2f (2)(Y )p1(Y )

p1(Y )
| X = x

]
.
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The set of interest is a finite interval A = [a1, a2], i.e. we are only interested in
estimating E(Z | X = x) for x ∈ A. Let Aε = [a1 − ε, a2 + ε]. The following
conditions are assumed.

(C1): K(·) is a bounded symmetric density function with compact support.
(C2): The marginal density p1(x) of X has finite second derivative and is

bounded away from zero in Aε. The joint density of p(x, y) is Hölder continuous
both in the x and y variables, i.e. |p(x1, y) − p(x2, y)| ≤ c1|x1 − x2|γ1 uniformly
for y and |p(x, y1) − p(x, y2)| ≤ c2|y1 − y2|γ2 uniformly for x where γ1 > 0 and
γ2 > 0.

(C3): The functions m(x) = E(Z | X = x) and f(y) = E(Z | Y = y)
are twice differentiable and the second derivative is Hölder continuous such that
|f (2)(y1) − f (2)(y2)| ≤ c3|y1 − y2|γ3 , |m(2)(x1) − m(2)(x2)| ≤ c4|x1 − x2|γ4 where
γ3 > 0 and γ4 > 0. In addition, f(y) is Hölder continuous such that |f(y1) −
f(y2)| ≤ c5|y1 − y2|γ5 .

(C4): The functions σ2(x), u(x), and w(x) are all well defined and bounded
in Aε. The function v(y) is bounded.

(C5): The functions gi(x), i = 1, . . . , 4 are all well defined and bounded in
Aε.

Conditions (C1) to (C4) are standard in nonparametric inference. In Condi-
tion (C5), the requirement for g1(x) is usual. The conditions for g2(x) to g4(x)
are less obvious. Note p(x, y)/p1(y) = pX|Y (x | y). Hence these conditions con-
cern the conditional density of X given Y = y as a function of y for fixed x.
Note that, given Condition (C2) and (C3), when the marginal density p1(y) is
bounded below from zero on a finite support, or when p(x, y) follows a joint
normal distribution, then g2, g3 and g4 are bounded in Aε.

Let p̂2(x) = (nh)−1 ∑n
k=1 K((x − Xk)/h) and p̂1(y) = (nh)−1 ∑n

k=1 K((y −
Yk)/h). To prove the main theorem, we need the following lemmas.

Lemma 1. Under Conditions C1-C5, and h → 0 and nh → ∞,

|p̂2(x) − p2(x)| → 0 and |p̂1(y) − p1(y)| → 0 in probability.

Conditional on Y1, we have |p̂1(Y1) − p1(Y1)| → 0 a.s.

These are well known results. For example, see Parzen (1962), Nadaraya
(1964), Silverman(1986). The last result is due to the fact that p̂1(·) is indepen-
dent of Y1.

In what follows, An ∼ Bn means An = Bn + op(Bn), i.e. An equals Bn plus
a term that goes to zero in a faster order than Bn as n goes to ∞. Note that
if An ∼ Bn and Bn has finite support, then E(An) = E(Bn) + o(E(Bn)). In
this case, we write E(An) ∼ E(Bn) as well. Also note that if An ∼ Bn, then
A2

n ∼ B2
n.
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Lemma 2. Under Conditions C1-C5 and n → ∞, h → 0, nh → ∞, for any
identically distributed random variables Wi, we have

∑n
i=1 K((x − Xi)/h)Wi∑n

i=1 K((x − Xi)/h)
∼ 1

nh

∑n
i=1 K((x − Xi)/h)Wi

p2(x)
.

Proof. Following Härdle and Marron(1985),
∑n

i=1 K((x − Xi)/h)Wi∑n
i=1 K((x − Xi)/h)

=
1

nh

∑n
i=1 K((x − Xi)/h)Wi

p2(x)
+

1
nh

∑n
i=1 K((x − Xi)/h)Wi

p2(x)

(p2(x)
p̂2(x)

− 1
)
.

By Lemma 1, it is easy to see that the second term is negligible compared to the
first.

Lemma 3. Under Conditions C1-C5 and n → ∞, h → 0, nh → ∞, for any
identically distributed random variables Zj, we have

∑n
j=1 K((Y1 − Yj)/h)Zj∑n

j=1 K((Y1 − Yj)/h)
∼ 1

nh

∑n
j=1 K((Y1 − Yj)/h)Zj

p1(Y1)
.

Lemma 4. Under Conditions (C1) and (C3), if h1 → 0, then

K(z){f(Y + h1z) − f(Y )} = o(1)K(z).

This is due to the fact that K(·) has finite support.

Proof of Theorem 1. Let εj = Zj − f(Yj). We have εj i.i.d. with E(εj) = 0
and Var (εj | Yj) = v(Yj) = O(1), by Condition C4. In the following derivation,
we repeatedly use lemmas 2 and 3 and the fact that (Xi, Yi, Zi) are i.i.d. and∫

zK(z)dz = 0. The notations k1 and k2 are defined in Section 2. We write
Kh(u) = K(u/h)/h.

For fixed x ∈ A, the mean squared error is

E[m̂(x) − m(x)]2 = E
[{

m̂(x) −
∑n

k=1 Kh2(x − Xk)f(Yk)∑n
k=1 Kh2(x − Xk)

}

+
{∑n

k=1 Kh2(x − Xk)f(Yk)∑n
k=1 Kh2(x − Xk)

− m(x)
}]2

= E
[∑n

k=1 Kh2(x − Xk){f̂ (Yk) − f(Yk)}∑n
k=1 Kh2(x − Xk)

]2

+E
[∑n

k=1 Kh2(x − Xk){f(Yk) − m(x)}∑n
k=1 Kh2(x − Xk)

]2
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+2E
[(∑n

k=1 Kh2(x − Xk){f̂(Yk) − f(Yk)}∑n
k=1 Kh2(x − Xk)

)

×
(∑n

k=1 Kh2(x − Xk){f(Yk) − m(x)}∑n
k=1 Kh2(x − Xk)

)]

≡ A + B + 2C. (8)

Here we outline the calculation of term A in detail. The approximation of term
B is standard and well known (e.g. Härdle (1989)). The calculation of term C
is similar to term A and hence omitted. By Lemma 2, we have

A ∼ 1
p2
2(x)

E
[ 1
n

n∑
k=1

Kh2(x − Xk){f̂ (Yk) − f(Yk)}
]2

=
1

n2p2
2(x)

{
nE[Kh2(x − X1){f̂(Y1) − f(Y1)}]2 +

+n(n−1)(E[Kh2(x−X1){f̂(Y1)−f(Y1)}Kh2(x−X2){f̂(Y2)−f(Y2)}])
}

≡ 1
n2p2

2(x)
{nA1 + n(n − 1)A2},

where, by Lemma 3,

A1 = E
[
Kh2(x − X1)

∑n
j=1 Kh1(Y1 − Yj){Zj − f(Y1)}∑n

j=1 Kh1(Y1 − Yj)

]2

∼ 1
n2

E
[Kh2(x − X1)

p1(Y1)
[

n∑
j=1

Kh1(Y1 − Yj)εj

+
n∑

j=2

Kh1(Y1 − Yj){f(Yj) − f(Y1)}]
]2

≡ 1
n2

E
[Kh2(x − X1)

p1(Y1)
(A11 + A12)

]2

=
1
n2

E
[K2

h2
(x − X1)
p2
1(Y1)

(A2
11 + A2

12 + 2A11A12)
]
.

It is obvious that E(A11A12) = 0, due to the independence of the εi’s. Taking
the expectation on εk and Yk, k = 2, . . . , n, conditioning on Y1, we have

E[A2
11 | Y1] =

1
h2

1

K2(0)E[ε2
1 | Y1] + (n − 1)EY2 [K

2
h1

(Y1 − Y2)v(Y2) | Y1]

= O(1/h2
1) + O(n/h1)

and

E[A2
12 | Y1] = E

[( n∑
j=2

Kh1(Y1 − Yj){f(Yj) − f(Y1)}
)2∣∣∣Y1

]
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= (n − 1)EY2 [K
2
h1

(Y1 − Y2){f(Y2) − f(Y1)}2 | Y1]

+(n − 1)(n − 2)(EY2 [Kh1(Y1 − Y2){f(Y2) − f(Y1)} | Y1])2,

where, by Condition C3, the first term can be easily shown to be o(n/h1) and
the second term o(n2). From now on we assume that nh1 → ∞. It will be shown
later that we, indeed, need this condition. Under this assumption, we have

A1 ∼ O(
1

nh1
)EX1,Y1

[K2
h2

(x − X1)
p1(Y1)

]
+ o(1)EX1,Y1

[K2
h2

(x − X1)
p2
1(Y1)

p2
1(Y1)

]

= O(
1

nh1h2
)
∫

K2(z)
p(x + h2z, y)

p1(y)
dzdy + o(1)

∫
K2

h2
(x − X1)dF (X1)

= O(1/nh1h2)(g2(x) + o(1)) + o(1/h2)

= O(1/nh1h2) + o(1/h2).

For A2, we have

A2 ∼ 1
n2

E
[Kh2(x − X1)Kh2(x − X2)

p1(Y1)p1(Y2)
×

( n∑
j=1

Kh1(Y1 − Yj){Zj − f(Y1)}
)( n∑

j=1

Kh1(Y2 − Yj){Zj − f(Y2)}
)]

=
1
n2

E
[Kh2(x − X1)Kh2(x − X2)

p1(Y1)p1(Y2)
× [2Kh1(0)ε1Kh1(Y1 − Y2){Z1 − f(Y2)}

+(n − 2)Kh1(Y1 − Y3){Z3 − f(Y1)}Kh1(Y2 − Y3){Z3 − f(Y2)}
+K2

h1
(0)ε1ε2 + Kh1(Y2 − Y1){Z2 − f(Y1)}Kh1(Y1 − Y2){Z1 − f(Y2)}

+2(n − 2)Kh1(0)ε1Kh1(Y2 − Y3){Z3 − f(Y2)}
+2(n − 2)Kh1(Y2 − Y1){Z2 − f(Y1)}Kh1(Y3 − Y2){Z3 − f(Y2)}
+(n − 2)(n − 3)Kh1(Y3 − Y1){Z3 − f(Y1)}Kh1(Y4 − Y2){Z4 − f(Y2)}]

]

≡ 1
n2

(2A21 + (n − 2)A22 + A23 + A24 + 2(n − 2)A25 + 2(n − 2)A26

+(n − 2)(n − 3)A27).

It is obvious that A23 = 0 and A25 = 0. Since EZ1[ε1{Z1 − f(Y2)} | Y1, Y2] =
EZ1[ε

2
1 | Y1, Y2] = v(Y1) = O(1) and let X1 = x + h2z1, X2 = x + h2z2 and

Y2 = Y1 + h1z3, we can show

A21 = Kh1(0)E
[Kh2(x − X1)

p1(Y1)
Kh2(x − X2)

p1(Y2)
v(Y1)Kh1(Y2 − Y1)

]

= O(1)
1
h1

∫
K(z1)K(z2)K(z3)

p(x+h2z1, y1)p(x+h2z2, y1+h1z3)
p1(y1)p1(y1+h1z3)

dz1dz2dz3dy1
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= O(1/h1)
∫ {p2(x, y1)

p2
1(y1)

+ o(1)
}
dy1

= O(1/h1)(g3(x) + o(1)) = O(1/h1).

Similarly, let X1 = x + h2z1, X2 = x + h2z2, Y1 = Y3 + h1z3, Y2 = Y3 + h1z4;
then we have

A221 = E
[Kh2(x − X1)

p1(Y1)
Kh2(x − X2)

p1(Y2)
v(Y3)Kh1(Y3 − Y1)Kh1(Y3 − Y2)

]
= O(1).

Using Lemma 4, we can show similarly that

A222 =E
[Kh2(x−X1)

p1(Y1)
Kh2(x−X2)

p1(Y2)
Kh1(Y3−Y1){f(Y3)

−f(Y1)}Kh1(Y3−Y2){f(Y3)−f(Y2)}
]
=o(1).

Hence A22 = A221 + A222 = O(1). Similarly, we can prove A24 = O(1) and
A26 = O(1). Lastly,

A27 =
{
E

[Kh2(x − X1)
p1(Y1)

Kh1(Y1 − Y3){f(Y3) − f(Y1)}
]}2

=
{
EX1,Y1

[Kh2(x − X1)
p1(Y1)

∫
K(z){f(Y1 − h1z) − f(Y1)}p1(Y1 − h1z)dz

]}2

=
{
EX1,Y1

[Kh2(x−X1)
p1(Y1)

k2h
2
1{f (1)(Y1)p

(1)
1 (Y1)+

1
2
f (2)(Y1)p1(Y1)+o(1)}

]}2

= k2
2h

4
1{EX1 [Kh2(x − X1){g4(X1) + o(1)}]}2 = O(h4

1).

Hence, A2 = O(1/n2h1) + O(1/n) + O(h4
1). By ignoring smaller order terms,

under the assumption that nh1 → ∞, we have

A = O
( 1
n2h1h2

)
+ o

( 1
nh2

)
+ O(h4

1).

For B in (8), it is well known (e.g. Collomb (1977), Härdle (1989)) that

B =
k1

nh2

u(x)
p2(x)

+
h4

2k
2
2

p2
2(x)

g2
1(x) + o

( 1
nh2

)
+ o(h4

2).

Similar computation yields C = o(1/nh2) + O(h2
1h

2
2). Putting everything to-

gether, we have

E[m̂(x)−m(x)]2 =
1

nh2
D1(x)+h4

2D2(x)+O
( 1
n2h1h2

+h4
1+h2

1h
2
2

)
+o

( 1
nh2

+h4
2

)
,

(9)
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where D1(x) = k1u(x)/p2(x) and D2(x) = k2
2g

2
1(x)/p2

2(x). To minimize the
asymptotic mean squared error, the optimal bandwidths are

h2opt = {D1(x)/4D2(x)}1/5n−1/5 and h1 = o(h2), nh1 → ∞.

The corresponding minimum mean squared error is

min
h1,h2

E(m̂(x) − m(x))2 = D1(x)1/5D2(x)4/5(41/5 + 4−4/5)n−4/5 + o(n−4/5).

The O(1/n2h1h2) term in (9) shows that the condition nh1 → ∞ is indeed
necessary.
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