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Summary 

Various features of a given time series may be analyzed by nonparametric techniques. Generally the 
characteristic of interest is allowed to have a general form which is approximated increasingly precisely 
when the sample size goes to infinity. We review nonparametric methods of this type for estimating 
the spectral density, the conditional mean, higher order conditional moments or conditional densities. 
Moreover, density estimation with correlated data, bootstrap methods for time series and nonparametric 
trend analysis are described. 

Key words: Kernel estimators; Smoothing techniques; Dependent observations; Bootstrap; Hermite expan- 
sions. 

1 Introduction 

The use of nonparametric techniques has a long tradition in time series analysis. As early as the 
late 19th century Schuster (1898) introduced the periodogram which may be regarded as the origin 
of spectral analysis. By now the latter technique is a classical nonparametric tool for analyzing time 
series. The increased data availability especially in finance and the explosion of computing power 
have made it possible to use a wide range of other modern nonparametric techniques in time series 
analysis recently. In this article we review some of these developments. 

For a given time series X1, ..., X, nonparametric techniques are used to analyze various features 
of interest. Generally, the idea underlying many of these techniques is that the characteristic of 
interest is allowed to have a general form which is approximated increasingly precisely with growing 
sample size. For example, if a process is assumed to be composed of periodic components, a general 
form of spectral density may be assumed which can be approximated with increasing precision when 
the sample size gets larger. Similarly, if the autocorrelation structure of a stationary process is of 
interest the spectral density may be estimated as a summary of the second moment properties. A 
brief review of this classical method of nonparametric time series analysis is given in Section 2. 

Because the final objective of many time series analyses is prediction, it is often of interest to 
study the conditional means, conditional variances or complete conditional densities in some period, 
given the past of the process. When a point prediction is the final objective, an estimate of some 
conditional mean may be desired, while the conditional variances are needed if interval forecasts 
or assessments of future volatility are desired. Moreover, if higher order moments of a series are 

potentially important, the focus may be on estimating the complete conditional density. 
In order to analyze the conditional mean nonparametrically one may, for instance, start from a 
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model of the form 

Xt = f(X,-1, Xt-2, ... ) + Et (1.1) 

where E, is a series of innovations which is independent of past X,. In this case f(.) represents the 
conditional expectation in period t, given past observations X-_, Xt-2, ... and it is the minimum 
mean squared error (MSE) 1-step predictor for Xt. In parametric time series analysis the function 
f(.) is chosen from some parametric class so that the specific candidate is obtained by specifying 
a fixed finite number of parameters. Nonparametric approaches on the other hand allow f(-) to be 
from some flexible class of functions and they approximate f( ) in such a way that the approximation 
precision increases with the sample size. For this purpose several different techniques and procedures 
are available. For instance, local approaches approximate f(.) in the neighborhood of any given 
argument by letting the neighborhood decrease and thereby increase the approximation precision 
with growing sample size. For this purpose the number of lagged X, used in the model is usually 
limited. In other words, f(Xt-1, Xt-2, ... ) is replaced by f(X-1, ..., Xt,p) for some fixed p. 
Alternatively, global approximators use parametric functions f, (), where the number of parameters 
and thereby the flexibility of the function may increase with the sample size n. The functions f,(-) 
are chosen such that they approach f(.) in a certain norm when the sample size increases. This way 
it is also possible to let the number of lagged X,'s increase with the sample size n and thus avoid 
assuming a fixed number of lags at an early stage of the analysis. A number of methods for estimating 
the conditional mean function of a process are discussed in Section 3. 

As mentioned earlier, in many situations point forecasting is too limited an objective and the 
future volatility and other higher order moments are of interest in addition to the conditional mean. 
Therefore the framework in (1.1) is often extended to a more general model 

X, = f(X,_1, Xt-2, ... ) + g(Xt_l, X.-2, .. .)-et (1.2) 

where g(.) is used to represent the conditional variance of the process in period t given the information 
from previous periods. Again various nonparametric approaches exist for joint estimation of f(*) and 
g(.). Of course, it is also possible to specify a parametric form of one of the two functions and treat the 
other one nonparametrically. Techniques for nonparametric analyses of model (1.2) are the subject of 
Section 4. More generally the complete predictive (conditional) density h (X, IX-i, X-2, ...) may 
be of interest when the shape of the conditional distribution and higher order moments are relevant 
to the analysis. For this case a number of different nonparametric approaches have been proposed as 
well. Some of them are also sketched in Section 4. 

There are numerous other nonparametric procedures and techniques that have been used in time 
series analysis. For instance, when a parametric time series model such as (1.2) with parametric 
functions f(-) and g(.) is specified it may be of interest to estimate the distribution of the residuals 
by nonparametric methods in order to improve the parameter estimators or to assess the statistical 
properties of the estimators. More precisely, density estimation for the residuals and bootstrap 
methods based on the residuals have been used in this context. These methods are reviewed in 
Se6tion 5. Another important characteristic of a time series is its trending behaviour. Deterministic 
trend functions have also been analyzed nonparametrically. In addition, there are a number of 
nonparametric tests for stochastic trends. They are also presented in Section 5. 

If very general assumptions are made, a rich data set is usually necessary to obtain a good idea 
about the features of interest. Therefore, many of the nonparametric techniques reviewed in this 
article are typically used when long time series are available. Therefore, these methods have, for 
instance, been used for analyzing financial time series which are observed with a high frequency and 
are consequently relatively long. Other fields of applications include survey of riverflow, the analysis 
of encepholographic data and of sleep states. Although we provide a fairly broad survey of many 
nonparametric analysis techniques for time series we are aware that such a survey is necessarily 
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limited neglecting many interesting and potentially promising facets of research in this area. In 
particular, we are unable to give a complete listing of related publications because of the recent 

explosion in the literature due to the increase in data availability and computing power. We apologize 
for any omissions of relevant related work: Further references may be found in Gyorfi, Hardle, Sarda 
& Vieu (1989), Tj0stheim (1994) and Hart (1996). 

2 Spectral Analysis 

Suppose {Xt} is a zero mean univariate stationary stochastic process with autocovariances Yk = 
E(XtXt+k). Then the spectral density of {Xt} is 

1 
00 1 00 

fx(wi) = -2 e- i 
2 

(Yo + 2 Yk cos wk), c e [-Tr, J ]. 
2rk=-oo 2k=l 

Here i = +?/-V as usual. Hence, the spectral density may be regarded as a weighted sum of cyclical 
components corresponding to frequencies w in the interval [-ir, 7r]. Since 

rn 

Yk e= eik fx(w)dw, 
-r 

the second order characteristics of the process can be recovered if the spectral density is available. In 
particular, yo = Var(Xt) = fr fx (w)dw and thus the spectral density represents the contributions 
of the frequencies to the variance of the process. Hence, the spectral density may be regarded as a 
summary of the cyclical components of the process or alternatively as a respresentation of the second 
order moments or autocovariance structure of the process. 

Given a time series X, ... , X the autocovariances of the generating process may be estimated 
as 

l n-k 

k = - (X -X)(Xt+k -X), 
t=l 

or by 
1 n-k 

Yk = -k E(Xt 
- X)(Xt+k - X), 

t=l 

k = 1,..., n - 1, where X = X /n is the sample mean. An obvious estimator of the spectral 
density at frequency w is the so called periodogram 

1 n-1 

fx(c)= 
- 

E Yke-i 
k=-(n-l) 

or similarly with Yk replacing Yk. Unfortunately, this estimator is not consistent. The reason is that 
too many quantities are estimated from the sample. 

To ensure consistency a smoothed estimator of the form 

M 

fx () = 
E Xkyke 

k=-M 

is usually used. The weights X-M,... , M represent the spectral window and M (< n - 1) is 
the truncation point which depends on the sample size. A number of different windows has been 

51 



W. HARDLE, H. LUTKEPOHL and R. CHEN 

proposed in the literature. The following are examples: 

Xk = 1- Ikl/M (Bartlett, 1950) 

k = 1 - 2a + 2a cos (- ) (Tukey, 1949, Blackman & Tukey, 1959) 

1 1 /+ os z7rk 
k = 1 + cos (M) (Tukey, 1949) 2 - m/- 

11 -6( )2 +6 I for Iki < 
Xk = 1) fr kM (Parzen, 1961). 

2(1 kl) for < lkl M 

A number of other windows are discussed in Priestley (1981, Sec. 6.2.3.). It may be worth noting that, 
for frequencies C)j = 2nrj/n, the resulting spectral density estimators may be obtained alternatively 
by averaging over the periodogram values of neighboring frequencies. Hence, 

1 h 

fx ()j) = 2- E K (aj, )j+m)fx(wj+m), 
m=-h 

where K (, *) is a suitable kernel function and h is the bandwidth of frequencies used in the weighted 
average. In other words, fx(wj) may be obtained by kernel smoothing techniques which are discussed 
in more detail in the context of estimating the conditional mean (see Section 3.1). These ideas extend 

directly to the multivariate case where Xt is a vector of variables. 
As mentioned in the introduction, spectral analysis of stationary processes is now a standard 

technique. It can be found in many time series textbooks and monographs. More recent developments 
in spectral analysis include nonstationary and nonlinear processes. For instance, Priestley (1981, 
Chapter 11) and Dahlhaus (1993) consider processes with time varying spectra. Priestley (1996) 
discusses the use of wavelets in this context. Nowadays spectral methods are used in various ways 
for analyzing time series both theoretically and empirically. Applications of these techniques include 
studies of seasonal behaviour of time series, approximation of the stationary part of more general 
processes, construction of testing and estimation procedures and examination of their properties (see, 
e.g., the chapters in Brillinger & Krishnaiah (1983) and in particular Robinson (1983a)). The related 
literature is too voluminous to be reviewed here. Hence, we regard our foregoing remarks on spectral 
analysis as a brief reminder that these techniques belong under the heading of this survey. 

3 Estimation of the Conditional Mean 

In this section we review some nonparametric methods for estimating the function f(.) in (1.1). 
We first present some smoothing approaches for locally approximating this function in the sense 
discussed in the introduction. For that purpose it is assumed that only a finite number of lagged X, 's 
enters f(.), that is, f(X,-i, Xt-2, . ..) = f(X-,, .... XI-p). Some of the methods discussed in 
this section impose further restrictions on f(.) by assuming e.g. additivity of the lags (see Section 
3.2). We also consider the problem of choosing the lag length p. Moreover, in Section 3.3 global 
approximations are reviewed which, in principle, allow an infinite number of lags of X, in f(.). 

The parametric approach to estimation of the conditional mean of a time series is to formulate 
a parametric model for f(.). Many parametric structures proposed for f(.) have been successful 
in practice and have provided parsimonious models that capture the linearity or nonlinearity of 
the underlying process. The most common nonlinear structures are the threshold autoregressive 
(TAR) models of Tong (1983), the exponential autoregressive (EXPAR) models of Haggan & Ozaki 
(1981 ), the smooth-transition autoregressive (STAR) models of Chan & Tong (1986) and Granger & 
Terasvirta (1993). In these models the structure for f(.) is supposed to be of threshold type where 
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the threshold functions are modeled in different ways. Many other related references can be found 
in Tong (1990) and Priestley (1988). 

The nonparametric approach has the advantage of letting the data speak for themselves. Hence, it 
avoids the subjectivity of choosing a specific parametric model before looking at the data. However, 
there is the cost of more complicated mathematical arguments and difficulties in practical imple- 
mentation, such as the selection of smoothing parameters. Also there is the cost of poor performance 
in high dimensions, often referred to as the 'curse of dimensionality'. Hence, the nonparametric ap- 
proach often serves as a guidance for choosing appropriate lower dimensional parametric models and 
for deciding between competing classes of models. Powerful computers and easy-to-use interactive 
statistical and graphical softwares such as S (Becker, Chamber & Wilks, 1988) and XploRe (Hardle, 
Klinke & Turlach, 1995) provide solid platforms for these operations. 

3.1 Unrestricted Local Smoothing Methods 

Model (1.1) has the format of a nonlinear regression problem for which many smoothing methods 
exist when the observations are independent. Hart (1996) demonstrates that these methods can be 
'borrowed' for time series analysis where observations are correlated by making use of the 'whitening 
by windowing principle'. This principle is introduced first. Then we list some common nonparametric 
smoothing methods for inference on the function f(-) in model (1.1). 

The Whitening by Windowing Principle 

Given an independent random sample X1, ..., Xn, which is drawn from a distribution with density 
function p(x), a popular method of estimating p(x) is based on the kernel estimator 

ph(x)= =- 1 K(x-Xi)) (3.1) 

where h > O is the so-called bandwidth and K () is a kernel function, typically with finite support. The 
bandwidth is taken as a sequence h = hn tending to zero as n -- oo. Note that, if the kernel function 
has support on [-1, 1], the estimator only uses the observations in the interval [x - h, x + h]. This 
is an important feature when we extend this method to dependent observations. When the estimator 
is applied to dependent observations, it is affected only by the dependency of the observations in a 
small window, not that of the whole data set. Hence, if the dependency between the observations is 
of 'short memory' which makes the observations in small windows almost independent, then most 
of the techniques developed for independent observations apply in this situation. Hart (1996) calls 
this feature the whitening by windowing principle. 

Various mixing conditions are the main tools for proving asymptotic properties of the smoothing 
techniques for dependent data. Basically these conditions try to control the dependence between Xi 
and Xj as the time distance i - j increases. For example, a sequence is said to be a-mixing (strong 
mixing) (Robinson 1983b) if 

sup IP(A n B) - P(A)P(B)I < ak 
A E ', B E '+4- 

where atk - 0 and f} is the a-field generated by X, . . ., Xj. A stronger condition is the ?-mixing 
(uniformly mixing) condition (Billingsley 1968) where 

jP(A n B) - P(A)P(B)I < PkP(A) 

for any A E f', and B E fn+k and qk tends to zero for k -- oo. The rate at which ak and (k go 
to zero plays an important role in showing asymptotic properties of the nonparametric smoothing 
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procedures. We note that generally these conditions are difficult to check. However, if the process 
follows a stationary Markov chain, then geometric ergodicity implies absolute regularity, which in 
turn implies strong mixing conditions. Te.chniques exist for checking the geometric ergodicity, see 
Tweedie (1975), Tj0stheim (1990), Pham (1985), Diebolt & Guegan (1990). 

Local Conditional Mean and Median 

Consider the general nonlinear autoregressive process of order p 

Xt = f(Xt-, ...,Xt-p) + et. (3.2) 

Let Yt = (X-1, ..., Xt-p), and choose S, > 0 as a function of the sample size n. For any 
y = (xl, . . ., xp) E 1RP, let In(y) = (i : 1 < i < n and \\Yi - ylI < 8n} and Nn(y) = #In(y). 

Here II *II denotes the Euclidean norm. The local conditional mean function estimator is given 
by f(xi..., xp) = fn(y) = Nn(y))-l EZiEl(y) Xi, that is, an average of all observations Xi 
corresponding to Yi in a small neighborhood of the argument y is used as the estimator. Alternatively, 
the local conditional median estimator given by f(xl,.... xp) = median[Xi, i E In(y)) may be 
used. Under strong mixing conditions, Truong (1993) proved strong consistency and asymptotic 
normality of these estimators, along with the optimal rate of convergence for suitable sequences 
An - 0. 

Nonparametric Kernel Estimation 

Robinson (1983b), Auestad & Tj0stheim (1990), Hardle & Vieu (1992), and others used a kernel 
estimator (or robustified versions of it) to estimate the conditional mean function f(X,_ ,..., X,_p). 
For this purpose the Nadcaraya-Watson estimator with product kerniels 

=p+l1 n =i K(xi - Xt-i)/hi}Xt 
f(xi . xp) = E_,+ K{(x - X)/h,} (3.3) 

is used where K (.) is again a kernel function with bounded support and the hi's are the bandwidths. 
In other words, a weighted average of the observations is used as an estimator of f (). 

Robinson (1983b) and Masry & Tj0stheim (1995a) show strong consistency and asymptotic 
normality for a-mixing observations. Bierens (1983, 1987) and Collomb & Hardle (1986) proved 
the uniform consistency of the estimator under the assumption of a 0-mixing process. Singh & Ullah 
(1985) extend this approach to multiple time series, where X, is a vector rather than a scalar random 
variable. 

Local Polynomial Regression 

Local polynomial regression techniques offer yet another alternative for estimating the conditional 
mean of time series nonparametrically. In this approach polynomials of a prespecified degree, say 
1 - 1, are fitted locally in the neighborhood of a given argument of f(.), where the size of the 
neighborhood shrinks with increasing sample size n. To state this estimator formally, suppose for 
simplicity that p = 1, that is, the model is X, = f(X,_1) + e,. We wish to estimate f(x). In this 
case the estimator is obtained by minimization of 

n 

Cn(x) = arg min (X, - cTU,n)2K((X,l - x)/h}. 
t=1 
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where K () is a kernel function, h is a positive bandwidth sequence, and 

Utn = F(Un), F(u) = (1, u,... , u-l-1/(1-1)!)T, Utn = (Xt- - x)/h. 

The estimator f(x) is given by f(x) = c,(x)TF(O). This estimator was first developed by Stone 
(1977) and Katkovnik ( 1979). In the context of independent observations Fan (1993) studied minimax 
efficiency and made the technique popular to applied statisticians. Tsybakov (1986) and Hardle & 
Tsybakov (1997) proved asymptotic normality of these estimators under conditions satisfying the 
assumptions of Tweedie (1975) and Diebolt & Guegan (1990). A multivariate extension of this 

approach is given by Hardle, Tsybakov & Yang (1996). 

Nonparametric Multi-step Prediction 

All these methods estimate the conditional mean of a nonlinear AR process and thereby pro- 
vide a one-step ahead predictor. Often forecasts for more than one step ahead are desired. Similar 
nonparametric techniques can be used for that purpose and we briefly mention some proposals here. 

Consider the nonlinear AR(1) model Xt = f(Xt-l) + Et. Since the conditional mean mk(x) = 

E(Xt+k I XI = x) is the least squares predictor for k-step ahead prediction, Auestad & Tj0stheim 
(1990), Hardle & Vieu (1992) and Hardle (1990) proposed using the ordinary Nadaraya-Watson 
estimator 

Mh,k(X) = tn-k K{(x Xt)/h} k (3.4) 
Et-j K{(x - Xt)/h} 

to estimate E(Xt+k I X, = x) directly. 
Note, however, that the variables X+l, ... , Xt+k- may contain information about the conditional 

mean function E(Xt+k I X,). Therefore Chen (1996) and Chen & Hafner (1995) proposed a mul- 
tistage kernel smoother which utilizes this information. For illustrative purposes consider two-step 
ahead forecasting. Due to the Markov property, we have 

m2(x)=-E[X,+2 I X,=x]=E[E(X,+2 I Xt+,X,) I Xt=x]=E[E(Xt+2 I Xt+) I Xt=x]. 

Define f (y) = E(X,+2 I XI+l = y). Ideally, if we knew f( ), we would use the pairs (f(Xt+i), Xt), 
t = 1, . . ., (n - 1) in estimating E(Xt+2 I X,), whereas the direct estimator (3.4) uses the pairs 
(Xt+2, Xt). Since Xt+2 is a noisy representative of f(X,+l) with Op(1) error, we can improve the 
estimation by using an estimator f(X,+i) with f(X,+1) - f(Xt+i) = Op(l). This motivates the 
'multistage smoother' 

n,, Et-' K{(x - Xt)/h2lfh (Xt+1) 
Mh,h2(x) = 

E K{(x - X,)/h2} 

where 
A ( -l K{(y- Xj)lh-lXj+l 

=I1 K{(y- Xj)/lhl} 

It can be shown that the new smoother has a smaller mean squared error than (3.4). 

Implementation Issues 

One of the important implementation issues of the nonparametric smoothing tools is the bandwidth 
selection in finite samples. There are many data-driven methods proposed for independent data, e.g. 
the cross-validation method of Rudemo (1982) and Bowman (1994) and the plug-in rules of Sheather 
(1983), Park & Marron (1990) and Park & Turlach (1992). 
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Again, for simplicity we assume a nonlinear AR(1) model Xt = f(Xt-1) + Et. For dependent 
data, one of the criteria for selecting the bandwidth is to minimize the averaged squared error 

n n 

dA(h) = - f (X ) - h(Xt)}w(X ), 
n t= 

which is an approximation of the integrated squared error 

di(h) = f{f(x)- fh(X)2(x) w(x )dx. 

Here q (.) denotes the density of the stationary distribution and w(*) is a weight function with compact 
support. The measure of accuracy dA(h) involves the unknown autoregression function f(.), so it 
cannot be estimated by a plug-in type approach. For the nonparametric kernel estimator, Hardle & 
Vieu (1992) and Hardle (1990) proposed to use the leave-on-out cross-validation function 

CV(h) = {Xt- fh,t(Xt-1)}2w(X,-1), 
t=2 

where 

-fh Ej, K{(x - Xj_)/ h}Xj 
n-1 Ej1, Kg(x - Xj-i)lh(3.5) 

to select the bandwidth. Let h be the bandwidth that minimizes CV(h). They proved that, under an 

a-mixing condition, 
dA(h) 

-, 1 in probability. 
infhdA(h) 

Similar results for density estimation were obtained by Hart & Vieu (1990). 

A Nonparametric Nonlinearity Test 

Hjellvik & Tj0stheim (1995) proposed a nonlinearity test which may help in deciding whether to 
use a nonlinear model rather than a linear one. It is based on the distance between the best linear 

predictor PkXt-k and the best nonlinear predictor mk(X,_k) = E[X, I XI-k] of X, based on Xt-k- 
The distance is defined as 

L(mk) = E[{mk(Xt-k) - PkXt-k 2W(X-k)] 

where w(x) is a weighting function with compact support and Pk is the autocorrelation between Xt 
and X-k, assuming X, has zero mean. The function mk(-) is estimated using the Nadaraya-Watson 
estimator. 

Lag Selection and Order Determination 

The lag selection and order determination problem is important for effective implementation of 
nonlinear time series modeling. Often the set of lagged variables and possibly additional exogenous 
variables is too large for an efficient application of nonparametric smoothing techniques. In that case 
one may wish to select the most significant components. For linear time series models, lag selection 
and order determination are usually done using information criteria as proposed by Akaike (1970, 
1974), along with other model checking procedures such as residual analysis. In a fully nonparametric 
approach to time series analysis, Auestad & Tj0stheim (1990) and Tj0stheim & Auestad (1994b) 
proposed the FPE (final prediction error) criterion and Cheng & Tong (1992) suggested using cross 
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validation. More specifically, Tj0stheim & Auestad (1994b) proposed to use an estimated FPE 
criterion to select lag variables and to determine the model order of the general nonlinear AR model 
in (3.2). Let XI be a stationary strong mixing nonlinear AR process and let i = (il, ..., i,) and 
Y(i) = (Xt-il .. .,X_i)T. Define 

FPE(i) = 1 - fY ))]wY(i) ,21 
-+ (nhP)-'JPB 

(3.6) 
FPE(i) n = 1[Xt f - (nhP)-l{2KP(O) - JPB (3 

where 

J= K (x)2dx, Bp =n-(i) 

and f{Yt(i)) is the kernel conditional mean estimator in (3.3) based on the lags specified in i 

and p{Yt(i)) is a multivariate kernel density estimator defined as in (3.1). Note that the FPE is 

essentially a sum of squares of residuals (RSS) multiplied by a term in (3.6) that penalizes small 
bandwidths h and a large order p. 

Cheng & Tong (1992) used a leave-one-out cross validation procedure to select the order of a 

general nonlinear AR model. Let Yt(p) = (Xt-, ..., Xt-p) and 

CV(p) = 1 
E[Xt 

- fAYt(p) ]2wYt(p) 

where fh,t is the kernel conditional mean estimator defined in (3.5) and w(.) is a weight function of 
finite support. They proved that, under regularity conditions, 

CV(p) = RSS(p){1 + 2K(O)yh-P/n + op(1/hPn)) 

where y = f w(x)dx/ f w(x)p(x)dx and h is the bandwidth. Again, this can be viewed as a 

penalized sum of squares of residuals. 

3.2 Restricted Autoregressive Approaches 

Since the nonparametric general approach suffers from the 'curse of dimensionality', unless the 
AR order p is very small, restrictions on the function f(.) have been proposed. Common structural 
restrictions are additivity, single index restrictions and/or data dependent coefficients in a 'linear' 
model. These restrictions result in better convergence rates and are easier to interpret, especially 
with graphics supported from interactive statistical computing environments. This is important since 

nonparametric models are not the end of an analysis. They are rather an exploratory tool for a 
better understanding of the underlying dynamics of the process and a starting point for finding more 

parsimonious models. 

Nonlinear Additive AR Models 

A nonlinear additive autoregressive (NAAR) model is defined as 

X, = c + fi(X,til) + f2(X,2) + *. + ,(X_-,,,) + t. (3.7) 

Additive models have been studied extensively in the regression context by Hastie & Tibshirani 

(1990). The NAAR model in (3.7) is a generalization of the first-order nonlinear AR model of 
Jones (1978). It is very flexible as it encompasses linear AR models and many interesting nonlinear 
models as special cases. These models naturally generalize the linear regression models and allow 

interpretation of marginal changes, i.e. the effect of one variable (or lagged variable) on the mean 
function. They are also interesting from a theoretical point of view since they combine flexible 
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nonparametric modeling of many variables with statistical precision that is typical for just one 
explanatory variable. Accurate estimation can be achieved with moderate sample sizes. Here we 
introduce three procedures for estimating the NAAR model. Order determination and lag selection 

problems are addressed as well. 

Chen & Tsay (1993a) use backfitting algorithms such as the Alternating Conditional Expectation 
(ACE) algorithm and the BRUTO algorithm of Hastie & Tibshirani (1990) to fit the additive model 
(3.7). Note that the AVAS algorithm of Tibshirani (1988) can also be used here. The main idea of 

backfitting is that if the additive model is correct, then for any k we have fk(Xt_ik) = E{X, - c - 

Ejok fj(Xt-ij) I Xt-i}). Consequently, we can treat Xt - c - EjOk fj(Xt-ij) as the conditional 

response variable and use nonparametric smoothers to estimate fk('). In practice, all fk(')'s are 
unknown so that the estimates are iterated until they all converge. The effective hat matrix of this 

algorithm is computed in Hardle & Hall (1993), showing that the iteration results depend on the 
starting index. 

One of the problems associated with the backfitting algorithms is that with highly correlated 
observations, the convergence can be slow, as noted in Chen & Tsay (1993a). Linton & Nielson 
(1995) and Chen et al. (1996) proposed an integration estimator for estimating the functions in 
additive regression models without using backfitting. At the same time, Tj0stheim & Auestad (1994a) 
and Masry & Tj0stheim (1995b) proposed the same estimator for NAAR models. Specifically, the 

'integration idea' is based on the following observation. If the model is of the additive form (3.7), and 

f(xi, ... , Xp) = c + EPI= fj(xj) is the conditional mean function, and p-j(-) is the joint density 
of Xt_i, ..X.,t Xt-ij i, , Xt-ip, then for a fixed x E ?R, 

fi(x)?+c= f (xi, ..., x, Xp)p-j(xl ...,xp) HIdxl, 

provided Efi(X,) = 0, / = 1,..., p. Using the Nadaraya-Watson estimator to estimate the mean 
function f(.), we average over the observations to obtain the following estimator. 

Let Kh(') = h-1 K(-/h), where K(.) is a kernel function. For 1 < j < p and any x in the domain 
of f (.), define, for hn > 0, h' > 0, 

f j 1 n 

j(x) - f (xt-i, ....Xt-ij, x, Xt-ij+,, ....i) 
t=1 

1 " -E.=i,+l [H i1j Kh, (Xs-il - Xt-i)]Kh,(Xs-ij -)X (3.8) 

t=ip,+l _ .=ip+l [lj Kh'n(Xs-ii Xt-ij)]Khn (X--ij -X) 

The asymptotic normality of this estimator was established by Chen et al. (1996) for independent 
observations and by Masry & Tj0stheim (1995b) under strong mixing conditions for time series 
observations. The rate of convergence for estimating f(.) is n2/5 which is typical for regression 
smoothing with just one explanatory variable. Hence, the estimator does not suffer from the 'curse 
of dimensionality'. 

Wong & Kohn (1996) use spline nonparametric regression to estimate the components of a 
NAAR model. They adopt an equivalent Bayesian formulation of the spline smoothing and use a 
Gibbs. sampler to estimate the components and the parameters of the model, through Monte Carlo 
simulation of the posterior distributions. 

Chen, Liu & Tsay (1995) propose three nonparametric procedures for testing additivity in nonlinear 
time series analysis. For lag selection, Chen & Tsay (1993a) propose a procedure that is similar to 
the best subset procedure in linear regression analysis. 
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Functional Coefficient AR Model 

A functional coefficient autoregressive (FAR) model can be written as 

Xt = fi(Xt-d)Xt-l + f2(Xt-d)Xt-2 + * * + fp(Xt-d)Xt-p + Et. 

The model generalizes the linear AR models by allowing the coefficients to change according to a 
threshold lag variable Xt-d. The model can be extended to allow for multiple threshold variables in 
the coefficient functions. The model is general enough to include the threshold AR (TAR) models of 
Tong (1983) and Tsay (1989) (when the coefficient functions are step functions) and the exponential 
AR (EXPAR) models proposed by Haggan & Ozaki (1981) (when the coefficient functions are 

exponential functions) along with many other models (e.g., the STAR models of Granger & Terasvirta 
(1993) and Ter-svirta (1994) and sine function models). Chen & Tsay (1993b) use an arranged local 

regression (ALR) procedure to roughly identify the nonlinear functional forms. For x E 1R and 
8, > 0, let In(x) = (t :1 < t < n, IXt-d - xI < 8n}. If we regress Xt on Xt_1,... , X,_p using 
all the observations X for which t E I (x), then then estimated coefficients can be used as estimates 
of fi(x), i = 1,... , p. One can then make inference directly or formulate parametric models 
based on the estimated nonlinear functional forms. Chen & Tsay (1993b) proved the consistency 
of the estimator under geometric ergodicity conditions. Note that the locally weighted regression of 
Cleveland & Devlin (1988) may be used for estimating FAR models as well. 

Adaptive Spline Threshold AR Model 

Lewis & Stevens (1991) propose the adaptive spline threshold autoregressive (ASTAR) model of 
the form X, = K-= cjKj(Xt-, ..., X,-p) + Et, where {Kj(x)}j=> are product basis functions of 
truncated splines T-(x) = (t - x)+ and T+(x) = (x - t)+ associated with the subregions [Rj}]=, 
in the domain of the lag variables (Xti, ..., Xt-p). For example, Lewis & Stevens (1991) use the 
following ASTAR model for the famous sunspot numbers: 

Xt = 2.711 + 0.96Xt_- + 0.332(47 - Xt-5)+ - 0.257(59.1 - Xt-9)+ 

-0.003X,t_(Xt_2 - 26.0)+ + 0.017Xt_1(44.0 - Xt-3)+ 

-0.032Xt,-(17.1 - Xt-4)+ + 0.004X,_-(26 - Xt-2)+(X,-5 - 41.0)+ 

where (u)+ = u if u > 0 and (u)+ = 0 if u < 0. The modeling and estimation procedures follow 
the Multivariate Adaptive Regression Splines (MARS) algorithm of Friedman (1988). It is basically 
a regression tree procedure using truncated regression splines. 

Index Models 

Bierens (1994) discusses another way of imposing constraints on the general model (1.1). He 
shows that for a rational valued process the conditional expectation can be written as a function of 
an index, i.e. E(Xt IXt_, X-2, . ) = f(,t), where the index ., is related to the past observations 
Xt-1, Xt-2,.... For instance, the index may be of the form 4, = Ei=? t17'-Xt-i for some Iq E 

(-1, 1). Obviously, in this case f( ) is one dimensional and is therefore relatively easy to estimate 
by kernel methods. For practical purposes, assuming that X, is rational is not restrictive because on 
a computer only a finite number of digits can be stored so that all observed time series are actually 
rational. 

Bierens shows that there is a wide range of indices to choose from and suggests the following 
procedure for applied work. In a first step the best fitting linear ARMA model should be constructed. 
The optimal linear one-step-ahead predictor from that model is then used as an index t. If especially 
designed specification tests indicate remaining nonlinearity the function f(.) may be chosen either 
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from some parametric family or by using nonparametric smoothing techniques. Of course, a linear 
model is maintained if no nonlinearity is detected. 

3.3 Global Approximators 

As mentioned previously, a sequence of parametric functions can be used as global approximators 
to approximate the conditional mean function f(.) in (1.1). As the sample size increases, the 
dimension of the parameter space also increases to achieve greater approximation accuracy. Thereby 
it is possible to allow f(.) to depend on infinitely many lagged variables although only a finite 
number of lags is considered for any given finite sample size. The approaches of this type differ in 
the class of parametric functions used. We begin with simple linear functions where just the number 
of lags in the model grows with the sample size. For this class it is particularly easy to discuss the 

assumptions usually made for deriving asymptotic properties of estimators. Then we consider neural 
networks as an important general class of nonlinear approximators. 

Linear Functions 

Suppose {X } is a zero mean purely nondeterministic causal stationary process, then it has an AR 

representation of potentially infinite order, 
00oo 

Xt = iXti +Et. 
i=1 

If the second order moment properties of the process are of interest only it suffices to obtain the 
above representation which is linear in lagged Xt. Hence, the second order moment properties of the 

process may be estimated by approximating its infinite order AR representation. The simplest way 
to accomplish this is by fitting finite order AR(Hn) processes 

Hn 

Xt =- CiXi Xt-i EH,t, 
i=I 

where the order Hn is an increasing function of the sample size n. To obtain desirable properties 
of the resulting estimators and quantities derived from them we need to assume that the AR order 

Hn goes to infinity at a much smaller rate than n so that there is eventually enough information for 

estimating the parameters efficiently. On the other hand, the approximation quality must improve 
sufficiently rapidly so as to avoid large bias. Hence, there must be an appropriate lower bound on the 
rate of divergence of Hn. More precisely, it may be assumed that 

(1.) Hn is o(n1/3), and 

(2.) a 'Ei>Hn ! el - 0, 

as n -> oo. Here the two conditions are upper and lower bounds, respectively, on the rate at which 
the AR order goes to infinity with n. Under these conditions and mild assumptions for {E, the least 

squares estimators of the ai are consistent and asymptotically normal. In fact, for consistency weaker 
conditions for H,, suffice. 

Akaike (1969), Parzen (1974), Berk (1974) and Bhansali (1978) use this approach for spectral 
estimation and prediction of univariate processes. Parzen (1977), Lewis & Reinsel (1985), Liitkepohl 
(1991, Ch. 9) and Lutkepohl & Poskitt (1996) discuss multivariate extensions. They also consider 
estimation of other quantities derived from the autoregressive coefficients. Most of these results can 
be extended to nonstationary integrated and cointegrated processes (see Section 5.3). 
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Note that Xt = Eili aiXt-i is the best (minimum MSE) linear 1-step predictor which may not 
be the conditional expectation and, hence, it may not be the optimal predictor in a more general class 
of nonlinear predictors. Consequently, it may be desirable to consider nonlinear functions fn(') to 

approximate the conditional mean function f(.). We will present one possible nonlinear approach 
next. 

Neural Networks 

Neural networks have been used in various fields to approximate complex nonlinear structures. 
Their name comes from the fact that they may be thought of as a network of neurons similar to (but of 
course much simpler as) the brain. The related computations may be extremely complex. Therefore 
neural network analysis nowadays represents a subfield of computer science or, more precisely, of 
artificial intelligence. Here we consider the single hidden layerfeedforeward network which may be 
best thought of as a class of flexible nonlinear functions of the form 

q 

fn(Xt-i, ..... Xt-p) 
= 

0 

o+ L G(Yoi + Yr Ty)i, (3.9) 
j=1 

where Yt = (X-i,.... Xt_p)T and the yj = (Yl, ... . y, pj)T are (p x 1) vectors for j = 1,... , q, 
and Po, Pi, .. . , fyq are scalar coefficients. The function G : R -+ [0, 1] is a prespecified cumulative 
distribution function. Typical examples are the logistic function G(x) = 1/(1 + e-X) and the 

hyperbolic function G(x) = tanh(x) = (ex - e-X)/(ex + e-X). Functions of the type (3.9) can 

approximate broad classes of functions if q is sufficiently large. Thus, if q increases with the sample 
size n, a good approximation of f(Xt-i,..., Xt-p) will eventually result. The function in (3.9) may 
also be estimated without specifying G(') by using the projection pursuit regression of Hutchinson, 
Lo & Poggio (1994). In the following we will, however, assume a given specific form of G(.). 

For practical purposes it will be advantageous to obtain a good approximation with small or 
moderate values of q. Therefore adding a linear AR term in (3.9) is often useful. Thus, in practice, a 

possible approximating function is 

p q 

fn(Xt-1, .... Xt_p) = -o + (otiXt-i + E G(yoj + Y Yj)pj. 
i=1 j=l 

For given p and q, estimation of the parameters of this model is possible with LS procedures. 
Asymptotic properties of the resulting estimators are available both for fixed q and q increasing with 
the sample size. Kuan & White (1994) provide a comprehensive survey of neural network models 
and estimation results for the present situation. Also it is possible to let the number of lags p (i.e., 
the AR order) increase with the sample size. This, however, results in further complications of the 

asymptotic theory. 

Since nonlinear optimization algorithms may be time consuming, it is undesirable to reestimate 
a model each time new observations become available. Therefore sequential estimation or learning 
procedures have been proposed which update the available estimates sequentially when new sample 
information becomes available. A prominent example is the backpropagation procedure (see Rumel- 
hart, Hinton & Williams 1986). Kuan & White (1994) present asymptotic results for this procedure 
as well. 

The network represented by (3.9) feeds the output of the neurons (the G(.)) directly into the overall 

output and there is also no direct interaction between the neurons. There are various generalizations 
of this simple architecture. For instance, mnulti-layer networks may be considered. An example of a 
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2-layer network is 

fn (X,- ..., Xt-p) = flo - G2 GI(yOI + Y- Tyl)fl 8j, 

where G1(-) and G2(0) are now prespecified cumulative distribution functions and the Yij, Pk and 8j 
are unknown parameters which have to be estimated. Another possible extension would be to allow 
for feedback between the neurons. The following is an example of a recurrent single hidden layer 
network: 

q 

fn,t(Xt-1, Xt-2,.... , X) = 0 + jpj, t = 0, 1, 2, ... 
j=1 

where 
q 

tj =G(zTyi + ,t-1,16lj), j = , 2,...,q. 
1=1 

Although the simpler single hidden layer feedforward networks have quite general approximation 
properties it may be useful in practice to consider more sophisticated architectures to obtain a good 
approximation with fewer terms (or neurons) than that in (3.9). Also there may be information on 
the structure of a data generation mechanism that suggests multi-layer or feedback architectures. 

In practice there will often be uncertainty regarding the most suitable architecture for a given time 
series and regarding the number of lags and neurons that guarantee a good approximation of the 
actual generation mechanism. Therefore methods have been proposed for model selection and for 

deciding on restrictions that may be imposed on a given neural network model. For instance, Murata, 
Yoshizawa & Amari (1994) proposed a model selection criterion which extends the ideas underlying 
the AIC criterion to the present situation. Specification tests are also reviewed by Kuan & White 
(1994). 

As mentioned earlier, neural networks establish a subfield of computer science and are applied 
in many areas. Therefore it is impossible to provide a complete survey of the literature in a limited 
review of this type. Those interested in this fascinating tool for nonparametric time series analysis 
may find the survey article by Kuan & White (1994) a useful point of departure for further studies. 

4 Estimating Higher Order Conditional Moments and Densities 

Techniques similar to those discussed for estimating the conditional expectation of a process 
may also be used for approximating higher order conditional moments which are often of interest, 
as we have argued earlier. Here we summarize some of these extensions. We begin with methods 
for estimating conditional variances in addition to conditional means. Then some possibilities for 
approximating the complete conditional density are presented. 

4.1 Conditional Variances 

Nonparametric Kernel Estimation 

Auestad & Tj0stheim (1990) and Tj0stheim & Auestad (1994a,b) use kernel estimation techniques 
for analyzing models like (1.2) assuming that both the conditional mean and the conditional variance 
function depend on at most p lagged Xt. The function f(.) may again be estimated by the Nadaraya- 
Watson estimator with product kernels as in Section 3.1, 

(x . ..Xp) _ Et I K{(x 
- 

Xt-)/hi}Xt 

Et=p+l n1=l 
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and the conditional variance g(.)2 nMay be estimated by 

(x, x 2 = ,p+l ni 
K{(x 

- 
X )/hi}X2 -f (xl, .,Xp)}2 , 

n=np+l H/=l K{(xi - Xt-i) hi} 

where again K () is a kernel function with bounded support and the hi's are the bandwidths. 

Masry & Tj0stheim (1995a) show strong consistency and asymptotic normality of these estimators 
for a-mixing observations and Tj0stheim & Auestad (1994a,b) consider model specification and lag 
selection in models of the form (1.2). 

Local Polynomial Regression and Other Techniques 

Local polynomial nonparametric regression techniques can be used in an analogous fashion to 
estimate the conditional mean and variance functions. Assume p = 1 so that the functions f(.) and 
g(.) depend on X-,1 only. Then they may be estimated by minimization of 

n 

Cn(x) = arg min Z(X, - cTU,n)2K{(Xti - x)/h} 
CEB?t t=l 

as in Section 3.1, and 
n 

Sn(x) = arg min Z(X2 - sTUtn)2K{(Xt - x)/h) 
t=l 

where h is again a positive bandwidth, and 

Utn = F(utn), F(u) = (1, . u ., ul-1/(- l)!T, Utn = (Xt- -x)/h. 

Here the degree of the approximating polynomial is assumed to be I - 1. The estimators f (x) and 
g(x) are given by 

.f(x) = cn(x)TF(0) and g(x) = Sn(x)TF(O) - {cn(x)TF(O)}2. 

Hardle & Tsybakov (1996) prove asymptotic normality of these estimators under similar conditions 
as in Section 3.1 where the conditional mean was estimated only. 

An extension of this model to nonparametric vector autoregression is presented in Hardle, Tsy- 
bakov & Yang (1996) who consider the model 

Xt = f(Yt) + l/2(yt) t = p, p + 1,... 

where X, = (X,1, Xt2, .. , Xtd)T E Rd, Et = (Etl, Et2... , td)T E 'd and Y, = (X,_-, Xt-2, 
... , X,-p) E R?dx is a matrix of lagged variables. 

'Alternatively, conditional heteroscedasticity can also be modeled with neural network methods 
(Weigend & Nix 1994). 

4.2 Estimating the Predictive Density 

Kernel Techniques 

For a stationary time series, Robinson (1983b) proposed a kernel estimator to estimate the one- 
step-ahead transition density h(y I x). Note that h(y I x) = p(x, y)/p(x), where p(x, y) is the joint 
density of (X,, X,+l) and p(x) is the marginal density of X,. Replacing the terms on the right-hand 
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side with corresponding kernel estimators, we have 

(nh2)-l E- K2[(x, y) - (Xt, Xt+l)}/h] 
X(y I x) = 

((nh)-'l Et K[(x- Xt)/h] 

where K2z() is a bivariate kernel function, commonly of the product form K2(u, v) = K(u)K(v). 
Note that the estimation of the transition density allows us to construct nonparametric multi-step- 
ahead prediction density functions as well. For extensions see Singh & Ullah (1985). 

Hermite Expansion Approach 

Gallant & Tauchen (1989) used Hermite expansions to approximate the one-step-ahead conditional 

density of the process given its past. This approach is based on the fact that a large class of density 
functions, h(y) say, is proportional to [P(Z)]2k(Z), where z = (y - uy)/ay, with Iy and ay location 
and scale parameters of the distribution, respectively, P(z) = 1 + flz + * - + 1*rzr is a polynomial 
of possibly infinite degree r and 0 (z) = (27r)- exp(-z2/2) is the standard normal density. Dividing 
[P(z)]20)(z) by a normalizing constant this is just the Hermite expansion of h(y). Hence, the density 
may be written as the product of a standard normal density and the square of a polynomial. 

In the present situation we are interested in the conditional density h(xt xt-1, Xt-2,...). By the 

foregoing considerations we have 

h(xtlx-, xt-2, .. . ) cO [P(zt)12(z,t) 

where Zt = (Xt - it)/ct with Lt and ct being location and scale parameters, respectively, of the 
conditional distribution. The former is assumed to be a linear function of the past, iLt = V + t XI,1 + 
* + - pXt_p, and the latter may be modeled as 

Ut = P | + PXt- q ? + P Xt- 

The specification of the conditional scale parameter at is similar but not identical to an ARCH 

process as originally proposed by Engle (1982). Alternative specifications may be used here. At 

any rate, the location and scale parameters ti and at are modeled parametrically whereas higher 
order moment terms are captured by the polynomial. Letting the polynomial degree increase with 
the sample size makes this approach nonparametric. Overall the approach has been termed semi 

nonparametric (SNP) because it combines parametric with nonparametric elements. 

To achieve a flexible adjustment of the model to higher order dynamics the polynomial coefficients 

1 ...*, !/fr may be made dependent on the past, that is, 

K K K 

-j(X . Xt.,Xt-K) = Jr0 + 1 ')x-k + EE 2 X,-kXt-h + 
k=l k=l h=l 

K K 

+ : 
... * eE 

- 

X,k *' Xt-h 
k=l h=l 

where usually small values of K and 1 are sufficient to guarantee a rich dynamic structure. Of course, 
for r = K = I = 0 we get 

h(xt x,-l, Xt-2, .... 
at 

so that we have a linear AR(p) process with conditionally heteroscedastic error term. 

For given values of p, q, r, K and I the parameters of the model may be estimated by maximum 
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likelihood which is easily accomplished by minimizing the normalized negative log likelihood 

L(0) = - logh(XtXt_ ..., Xt-p; ). 
n t=l 

Asymptotic properties of this estimation procedure are given by Gallant & Nychka (1987) who allow 
the order of the Hermite expansion to increase with the sample size. In principle, an extension of this 
approach to the multivariate case is possible (see Gallant & Tauchen 1989). 

5 Other Nonparametric Techniques for Time Series 

5.1 Density Estimation with Correlated Observations 

Kernel Methods 

There is a rich literature on density estimation for independent observations, see Silverman (1986) 
and the references therein. A popular method is the kernel estimator of the form (3.1) where the 
kernel function K(.) is typically a probability density function. The key in density estimation is 
the bandwidth selection. A number of different methods have been proposed, including the cross- 
validation (Rudemo 1982, Bowman 1984) and the plug-in rules of Sheather (1983), Park & Marron 
(1990) and Park & Turlach (1992). 

The earliest work on density estimation for stationary processes is that of Roussas (1969) and 
Rosenblatt (1970). The properties of the kernel estimator for dependent observations were investi- 
gated by Robinson (1983b) and Hall & Hart (1990a). They found that the bias of the estimator is 
not affected by the serial correlation. However, the variance is affected. The cross-validation method 
for dependent observations is studied by Hart & Vieu (1990), under certain regularity conditions. 
Detailed information and references can be found in Gyorfi, Hardle, Sarda & Vieu (1989), Prakasa 
Rao (1983) and Hart (1996). Density estimation for long range dependent data was studied by Hall, 
Lahiri & Truong (1994) and Csorgo & Mielniczuk (1995a). 

Testing for Serial Dependence 

Kernel density estimation techniques may also be used to test for independence, for instance, in 
checking the residual behavior of an estimated nonlinear time series model. Skaug & Tj0stheim 
(1993) proposed a nonparametric test for independence between two variables which is suitable in 
this situation. They propose to estimate the quantity 

I = i p(x, y)pl(x)p(y)2p(x, y)w(x, y)dxdy 

where p(x, y) is the joint density and pi (), p2(') are the marginal densities while w(., -) is a weight 
function with compact support. Using kernel density estimators, we obtain 

I = -1 {p(X, Y,t)- pl(Xt)p2(Yt)12w(Xt, t). n t 

which should be small under the null hypothesis that X and Y are independent and which can 
therefore be the basis for an independence test. 

5.2 Bootstrap Methods 

The bootstrap method is an important nonparametric tool which has also been used for time series 
analysis in a number of different ways. For instance, it may be used for assessing and improving 
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the properties of estimators and forecasts. Originally it was proposed for independent observations 
(Efron & Tibshirani 1993). Therefore an obvious extension to time series analysiis is to bootstrap 
the residuals of some model. This approach has been used in many applications. Efron & Tibshirani 
(1993) discuss estimating the standard errors of linear autoregressive parameter estimates using this 
approach. Bose (1988) evaluates the distribution of the parameter estimator of an AR(1) model by the 
bootstrap and Kreiss & Franke (1992) discuss its extensions to ARMA(p, q) processes. Furthermore, 
Franke & Hardle (1992) propose a bootstrap method for spectral estimation. 

It is also possible to apply a bootstrap directly to the time series observations by sampling blocks 
of observations rather than individual ones. This method is known as the moving blocks bootstrap. 
Specifically, given a time series X, . . ., X, all possible blocks of I < n consecutive observations 
are considered and random samples of blocks are drawn and joint together to form a bootstrap time 
series of roughly length n. This process is repeated B times so that B bootstrap time series are 
obtained. These artificial series may be used to investigate the distributional properties of the original 
time series. The moving blocks bootstrap for time series was introduced by Kiinsch (1989) and Liu 
& Singh (1992). An introductory exposition is given by Efron & Tibshirani (1993, Sec. 8.6). 

5.3 Trend Analysis 

In much of the previous discussion we have assumed stationary processes. In practice many 
time series have trends and are therefore nonstationary. These trends may be removed prior to an 
analysis of the stationary part of the process if the trend function is known. In most cases it is 
unknown, however. In that situation nonparametric techniques may be used for trend estimation or 
trend elimination. 

Estimating Trend Functions 

Here we consider the case when the trend is characterized by a smooth deterministic function. 
Suppose XI, ... , Xn is a possibly nonstationary time series with trend ui(t) = E(X,). Under the 
assumption that the trend is smooth, a traditional way of estimating the trend function is the running 
mean estimator described in Chatfield (1974). A more recent proposal is due to Hart (1991) who 
uses the kernel smoother of Gasser & Miiller (1979) of the form 

lith= xi j K ) du 
h E J(i-)/n ( h 

for trend estimation. Hart (1994) proposed a method called time series cross-validation for selecting 
the bandwidth h. He noted that the ordinary leave-one-out cross-validation tends to select a bandwidth 
many orders of magnitude too small, if the data are highly positively correlated. 

Nonparametric Regression with Dependent Errors 

Consider the fixed-design regression model 

Xin = m(Zin) + sin 

where zin = i/n and the errors {ein) are correlated, both the Gasser & Miiller (1979) estimator 

h nE t Zin z -t\) 
m,.(.) h-n (iz = in \ _, i=* S .. '"hn 
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and the Nadaraya-Watson type estimator 

^A() = 1 n- (Z -Zin Xi 

nhn , \= hn/ 

have been proposed and studied. See Hart & Wehrly (1986) and Hardle (1990). Hall & Hart (1990b) 
and Csorgo & Mielniczuk (1995b) studied the same problem with long-range dependent errors. 

Truong & Patil (1996) propose to use wavelet methods to estimate possibly discontinuous trends. 
Wavelet estimators have been shown to have extraordinary adaptability in handling discontinuity of 
the underlying.function with independent observations (Donoho & Johnstone 1992, Donoho et al. 
1995, and Hall & Patil 1995). They may be equally powerful in time series analysis. 

Nonparametric Unit Root and Cointegration Tests 

As an alternative to a deterministic trend, a time series may have a stochastic trend which can be 
removed by differencing. A process is said to be integrated of order d, I(d), if a stochastic trend 
can be removed by differencing d times. For example, a random walk X, = X,t- + Et with white 
noise error process Et is I(1) because X, - X,-1 =: AX, = E,. Nonparametric tests can be used for 

checking the order of integration of a process. 
The random walk is the simplest version of a stochastic trend. Fuller (1976) and Dickey & Fuller 

(1979) therefore consider an AR(1) model 

X, = pXt_1 + Et (5.1) 

and test Ho : p = 1 against H1 : p < 1. An obvious test statistic is the t-ratio based on the LS 
estimator p of p: 

p-1 
tp5= 

Sp 

where sp is the usual estimator of the standard error of p. Equivalently, this statistic may be obtained 
as the t-ratio of the parameter estimator in the model 

AXt = oaXt- + Et 

where a = p - 1. The resulting test is also known as Dickey-Fuller (DF) test. The t-statistic does not 
have the usual standard normal limiting distribution but it has a nonstandard distribution for which 
the relevant critical values have been tabulated in Fuller (1976). 

In practice, the model (5.1) is often too limited to be a reasonable approximation to the underlying 
data generating process. Therefore more general assumptions are often made for the error process 
{et}. For instance, it may be assumed to be a stationary process. Ignoring the dependency of 
the ?t in that case in constructing the test statistic may result in a badly biased test. Therefore 
nonparametric techniques are often used to model the dependence of the E,. One possible approach 
fits. autoregressions 

AX, = aoXt,- + 7 rAX,t _ + + rH AXt-H + Et (5.2) 

where H goes to infinity with the sample size (see Said & Dickey 1984). Alternatively, a correction 
for the t-statistic based on spectral techniques has been proposed by Phillips & Perron (1988). 

Tests of the foregoing type are often referred to as unit root tests. There is an extensive literature 
on these tests. Extensions allow also for deterministic terms such as intercepts and linear time trends 
(see Hamilton 1994, Chapter 17, for details). Also tests of the null hypothesis of a stationary process 
against the alternative of a unit root have been proposed (seeKwiatkowski, Phillips, Schmidt & Shin 
1992). Again spectral techniques are used in the latter variant of a unit root test to account for higher 
order dynamics of the data generating process. 
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Multivariate extensions of the DF tests were proposed by Johansen (1989, 1991). In a multivariate 
AR process, unit roots indicate that some or all of the components are integrated variables. There 

may be linear combinations of the variables, however, which are stationary or integrated of lower 
order. This phenomenon is known as cointegration. Therefore unit root tests in multivariate processes 
are treated under the heading of testing for cointegration. Nonparametric variants of the Johansen 
tests are considered by Saikkonen & Luukkonen (1997) who approximate the stationary part of the 
process by autoregressions of growing order when the sample size increases analogously to (5.2). 
Cointegration tests based on spectral techniques are discussed by Stock & Watson (1988). 

Further nonparametric generalizations of unit root tests are obtained by assuming that there may 
be an AR unit root in some unknown nonlinear monotone transformation of the original variables. 
To check the existence of such a unit root in the data generating process, DF or other unit root tests 
based on the ranks of X, may be used (see Granger & Hallman 1991, Campbell & Dufour 1993, 
Breitung & Gourieroux 1997). 

5.4 Adaptive Estimation 

In a model with finite dimensional parameter vector of interest 0, say, and an infinite dimensional 
nuisance parameter vector I4, say, the latter is often taken care of with nonparametric methods. If 
that is done in such a way that the estimator for 0 is asymptotically efficient, it is said to be estimated 

adaptively. In time series models the conditional mean and variance functions are often of foremost 
interest. They are therefore often parameterized in a specific way, for instance, as a linear function of 
the past. The remaining parts of the data generating process may then be estimated nonparametrically. 
A number of authors have dicussed adaptive methods in this context (e.g., Linton 1993, Kreiss 1987, 
Robinson 1, 1988, Steigerwald 992, Engle & Gonzales-Rivera 1991, Werker 1995, Drost, Klaassen 
& Werker 1994). 
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Resume 

Beaucoup des elements des series temporelles sont analysable par des methodes non-param6triques. L'objet d'interet a 
une forme generale qui est approxim6e plus et plus precisement le nombre d'obervations augmente. Cet article presente un 
survey des procedures non parametriques en analyse des series temporelles. Nous illustrons au moyen d'exemples portant sur 
l'estimation de densit6, sur le bootstrap et l'estimation de tendence. 
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