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Ozone Exposure and Population Density

in Harris County, Texas

R. J. CARROLL, R. CHEN, E. |. GEORGE, T. H. LI, H. J. NEWTON, H. SCHMIEDICHE, and N. WANG

We address the following question: What is the pattern of human exposure to ozone in Harris County (Houston) since 1980?
While there has been considerable research on characterizing ozone measured at fixed monitoring stations, little is known about
ozone away from the monitoring stations, and whether areas of higher ozone correspond to areas of high population density. To
address this question, we build a spatial-temporal model for hourly ozone levels that predicts ozone at any location in Harris
County at any time between 1980 and 1993. Along with building the model, we develop a fast model-fitting method that can
cope with the massive amounts of available data and takes into account the substantial number of missing observations. Having
built the model, we combine it with census tract information, focusing on young children. We conclude that the highest ozone
levels occur at locations with relatively small populations of young children. Using various measures of exposure, we estimate
that exposure of young children to ozone decreased by approximately 20% from 1980 to 1993. An examination of the distribution
of population exposure has several policy implications. In particular, we conclude that the current siting of monitors is not ideal
if one is concerned with population exposure assessment. Monitors appear to be well sited in the downtown Houston and close-in
southeast portions of the county. However, the area of peak population is southwest of the urban center, coincident with a rapidly
growing residential area. Currently, only one monitor measures air quality in this area. The far north-central and northwest parts
of the county are also experiencing rapid population growth, and our model predicts relatively high levels of population exposure
in these areas. Again, only one monitor is sited to assess exposure over this large area. The model we developed for the ozone
prediction consists of first using a square root transformation and then decomposing the transformed data into a trend part and
an irregular part, the latter modeled as a Gaussian random field with both time and space correlations. Due to the large number
of observations and high-dimensional optimization problem, we developed a fast method to estimate the parameters of the model.
The model and estimation method are general and can be used in many problems with space-time observations.

KEY WORDS: Data transformation; Gaussian random field; Missing data; Spatial statistics; Spatial-temporal modeling; Time

series analysis.

1. INTRODUCTION

Ambient ozone pollution in urban areas represents one
of the nation’s most pervasive environmental problems.
While the decreasing stratospheric ozone layer may lead to
increased instances of skin cancer, high ambient ozone
intensity has been shown to cause damage to the human
respiratory system as well as to agricultural crops and
trees (Lefohn and Runeckles 1987; Lippmann 1989). Four
metropolitan areas in Texas currently are not in compliance
with the National Ambient Air Quality Standard (NAAQS):
Houston, Beaumont/Port Arthur, El Paso, and Dallas/Fort
Worth. Among these, the Houston area was rated severe,
second only to the Los Angeles area in the entire nation. The
current project concentrates on the ozone pollution prob-
lems in the Houston area. The data analyzed are hourly
ozone measurements between 1980 and 1993, along with
concurrent meteorological variables and demographic vari-
ables. The project has three major goals:

* Provide information (and/or tools to obtain such in-
formation) about the amount and pattern of missing
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data, as well as the quality of the ozone and the me-
teorological measurements.

* Build a model of ozone intensity to predict the ozone
concentration at any given location within Harris
County at any given time between 1980 and 1993.

* Apply this model to estimate exposure indices that ac-
count for either a long-term exposure or a short-term
high-concentration exposure, and also relate census
information to different exposure indices to achieve
population exposure indices.

Ground-level ozone has been studied extensively in the
literature. For example, Cox and Chu (1992), Horowitz
(1980), and Smith and Huang (1993) studied daily max-
imum ozone concentration using extreme value theory.
Bloomfield, Royle, and Yang (1993a,b) constructed a non-
linear regression model for hourly average ozone data in the
Chicago area. Guttorp, Meiring, and Sampson (1994) used a
space—time model to analyze ground-level ozone data. Niu
(1996) used a nonlinear additive model for ozone series.
Cressie (1993, p. 274) listed a number of other references
to pollution data analyses and general space-time modeling
methods.

Most analyses use aggregation to cope with large datasets
or else incorporate only space or time correlation into mod-
els or else incorporate them separately. In this research we
attempt to reconstruct the ozone surface, particularly at lo-
cations other than monitoring stations. We note that we
have not used meteorological adjustment, which tends to
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estimate the ozone surface under idealized meteorology.
(References on meteorological adjustment can be found
in Bruntz, Cleveland, Graedel, Kleiner, and Warner 1974;
Lamb, Guenther, Gay, and Westberg 1987; National Re-
search Council 1991; and Pagnotti 1990). Our main con-
cern is the risk assessment of health to overall ground-level
ozone. Further research may include health risk assessment
of ozone due to emission, where meteorological adjustment
will be the main focus.

In Section 2 we describe the ozone and meteorological
data and discuss the quality and missingness of the data.
Despite a missingness rate of approximately 20%, we con-
clude that the quality and quantity of observed data warrant
building a model. This model, discussed in Section 3, con-
sists of first using a square root transformation and then
decomposing the transformed data into a trend part and an
irregular part, the latter modeled as a Gaussian random field.
Inspection of sample correlations of the detrended trans-
formed data strongly suggests an exponential form for the
space-time correlation function of the random field, which
depends on seven parameters. In Section 4 we discuss vari-
ous methods for estimating these parameters, including a
new fast cross-validation—type method that handles both
the massive amounts of data involved and the considerable
amount of missing data. We give the results of our methods
for modeling and predicting ozone in Section 5.

In Section 6 we discuss combining the ozone predictions
obtained from our model with measures of population den-
sity obtained from census data to obtain population ozone

Station number

e

0 31 59 9 120 151 181 202 43 23 4 I
days

Figure 1. Ozone Measurements for 1993. Observations at zero are
missing. The dotted lines indicate the end of each month.
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exposure indices. Such indices and their standard errors can
be calculated for any time and any location and can be sum-
marized if desired by averaging individual time-location
values over time and/or locations. An interesting implica-
tion of our results for Harris County is that there has been
a large decrease in the ozone exposure of children from
1980-1993. Finally, we present some conclusions in Sec-
tion 7.

2. THE OZONE AND WEATHER DATA

In this section we describe the data provided to us by
the Texas Natural Resources Conservation Commission
(TNRCC). Hourly measurements of the level of ambient
ozone (in parts per billion [ppb]) in Harris County from
1980-1993 were recorded by 9 to 12 monitoring stations,
the number varying by year. Figure 6 shows the locations
of the 11 monitoring stations operating in Harris County in
1993. Each station is marked with a station number. The
dotted lines are the major highways within the county. Be-
sides the ozone level, each station also recorded three me-
teorological variables: temperature, wind speed, and wind
direction.

2.1 Data Quality

With such a large dataset, we began our analysis by eval-
uating the quality of the data. This evaluation entailed two
aspects: (a) identifying the proportion and location of the
missing data, and (b) validating the accuracy of observed
data.

We first focus on the ozone measurements. These are
relatively high-quality data, because the monitors were cal-
ibrated weekly and review procedures were used to elimi-
nate measurements suffering from temporal inconsistency.
There is no known instrumental change for the period in
our study. A major issue faced in this (and indeed, any)
analysis of ozone is the pattern and extent of missing data.
Figure 1 displays the hourly ozone measurements for 1993
at each of the 11 stations; observations at zero are missing.
We see immediately that station 4 was shut down before
mid-year, whereas station 1 had significant periods of shut-
down. Overall, excluding station 4, about 20% of the ozone
measurements are missing.

Examination of Figure 1 clearly shows that the data are
not missing completely at random, but instead systematic
patterns of missingness occur. Stations go off-line for fixed
(sometimes long) periods, and the measurements are cali-
brated according to a fixed schedule. However, the figure
indicates that the missing data are missing at random in the
sense of Little and Rubin (1987); that is, observations are
missing because of factors other than the ozone measure-
ments themselves, such as scheduled calibrations, device
failures, and so on. There is no evidence from the plots
(or discussions with the TNRCC) that missing data tend to
be of a particular size (e.g., high or low). The assumption
that ozone measurements are missing at random is a cru-
cial part of our analysis, because, as we discuss in Section
4, the missing-at-random assumption allows us to do a form
of imputation.
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Temperature data also suffer from problems of missing
values. These data appear to be of somewhat lower quality
than the ozone data, principally because temporal inconsis-
tencies were not addressed prior to construction of the data
file. We calculated the differences in temperature between
consecutive times at a single station and the differences at
the same time among neighboring stations. When we found
gross discrepancies, we modified the suspicious observa-
tions to be missing.

Fortunately, both the ozone data and our modified tem-
perature data appear to be fairly high-quality data, with
reasonably low spatial and short-term temporal variability.
This enabled us to use missing-value imputation techniques
with these variables for our spatial and temporal modeling
of ozone concentration throughout Harris County. However,
other meteorological variables, such as wind speed, appear
to have substantial variability as well as significant num-
bers of missing values. These drawbacks complicate the
use of these variables in modeling ozone throughout Harris
County. We discuss wind speed and direction further in the
next section.

In what follows, it is important to keep in mind the vast
extent of the data base with which we are working. Even ig-
noring missing data, 11 stations providing hourly measure-
ments for 14 years provided more than 1,300,000 ozone
measurements. Fitting a spatial-temporal model with so
many observations while at the same time taking missing-
ness into account is not feasible unless one develops quick
computational techniques.
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Figure 2. Annual Proportion of Days Above 80 ppb, 100 ppb, and
120 ppb in Harris County, 1980—-1993.
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2.2 Proportional of Days Above Thresholds

To get a preliminary sense of ozone trends throughout
Harris County from 1980-1993, we tabulated the propor-
tion of days that any station reports any hour for which
ozone concentration is above a particular threshold. Miss-
ing values were simply ignored. Figure 2 displays for each
year the proportion of days above each of the three thresh-
olds 80, 100, and 120 ppb. The steady decline of these pro-
portions is clear from the plot. For example, the proportion
of days above 80 ppb declined from around .4 to below .2
during the time period. Although it is not shown here, there
is also a strong monthly effect in the number of days above
thresholds. The declines in high ozone days are apparent
in all summer months, and are particularly pronounced in
July.

3. BUILDING A SPACE-TIME MODEL FOR OZONE

Although the raw trends portrayed in Figure 2 provide
evidence of reduced ozone levels in Harris County, both
the missing-value structure and the spatial dimension have
been ignored. In this section we describe a comprehensive
model for the ozone level throughout Harris County. Using
the available data, this spatial-temporal model can be used
to obtain a map of the ozone intensity throughout Harris
County at any time from 1980-1993.

3.1

Let oz(xz,t) denote the ozone level at spatial location x
and time t, where z is the vector of longitude and lati-
tude. Extensive exploratory analyses (not shown here) of the
ozone data showed phenomena very similar to that found
by Haslett and Raftery (1989) in their analysis of long-term
records of wind speeds at 12 recording stations in Ireland—
namely, skewed distributions and standard deviations cor-
related with means. We thus decided to follow their lead
and use a square root transformation of the ozone data. We

thus define
Y (z,t) = \/oz(z,t).

Because ozone is highly related to sunlight and tempera-
ture, and these variables are quite variable during a 24-hour
period, we decided not to do any time aggregation of the
data.

The model we use is of the form

A Square Root Transformation

(1)

consisting of two components: g(t), a deterministic function
of month, hour, temperature, and possibly other meteoro-
logical data; and &(z,t), a random process which captures
spatial and temporal variation due to other factors. The rest
of this section deals with the details of these components.

Y(z,t) = g(¢t) + e(z,t),

3.2 The Deterministic Trend

Because we need a model that is predictive not just at the
monitoring stations, but throughout Harris County, any vari-
ables placed in the deterministic part of model (1) must be
observable or at least predictable throughout Harris County.
The fact that temperature is relatively constant throughout
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the county at any given time makes it easy to include it
in the deterministic part of the model. In fact, we include
linear and quadratic terms in the median temperature of the
monitoring stations as predictor variables in the model.

On the other hand, including wind speed and/or wind
direction in the deterministic trend is much more problem-
atic. As mentioned previously, wind speed appears to be
spatially very variable. For example, the average coefficient
of variation (the ratio of standard deviation to the mean)
of the 11 monitoring sites over the 8,760 hours in 1993 is
.8914. It is difficult to construct any function of wind speed
that would allow for reasonable extrapolation away from
the monitoring sites.

Another difficulty with incorporating wind speed has to
do with goodness of fit. It is well known in time series
analysis that noisy exogenous variables may help explain
a response variable, but typically are not very helpful in
prediction. Wind speed appears to be just such a variable.
We added wind speed and the interaction of wind speed
and temperature to our model and used ordinary regres-
sion techniques to predict the ozone concentration at mon-
itoring stations where wind speed was observed. We found
that including wind speed in the model actually increased
the prediction error for the 1993 data by 5%, compared to
the model without wind speed. So wind speed actually de-
creased the quality of the fit using this technique. Keeping in
mind that the main goal is to estimate population exposure
in Harris County, it seems reasonable to treat wind speed
and direction as part of the random process component
in (1).

Our model for g(t) is thus

9(t) = ahour + Bmontn + y1temp(t) + yotemp?(t), (2)

where temp(t) is the median temperature over Harris
County at time ¢. In this model a4, accounts for the over-
all hourly level of ozone, and Bponth accounts for the overall
monthly level.

Note that the trend is constant over space, which we feel
is justified both by the data and because Harris County is a
relatively small and flat area, without strong geographical
variations. Including linear and quadratic terms of longitude
and latitude in the deterministic trend does not reduce the
variance of the random field significantly.

Time Lag=0 Time Lag=2
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3.3 The Random Process

Spatial and temporal variation is dealt with by letting
e(z,t) be a real-valued stationary Gaussian random field
(GRF) with mean 0. GRF’s are standard models for nonde-
terministic spatial-temporal variation (see, e.g., Handcock
and Wallis 1994).

The commonly used kriging method (Cressie 1989;
Isaaks and Srivastava 1990; Journel and Huijbregets 1979)
and smoothing spline method (Laslett 1994; Wahba 1983)
are designed for spatial statistics without time direction cor-
relation. The work of Haslett and Raftery (1989) and Hand-
cock and Wallis (1994) tries to eliminate the time—direction
correlation before modeling the spatial structure.

The key feature of our GRF is that it deals with both
space and time correlation. To get a feel for the nature of
the correlation of the GRF in both the time and space do-
mains, we began by fitting the trend part of the model by
ordinary least squares and examining the resulting resid-
ual process. We calculated the autocorrelations and cross-
correlations for all pairs of monitoring stations for time lags
0, 1, 2, and so on, and for each time lag we plotted the cor-
relations as a function of the Euclidean distance in degrees
between stations. We noticed that each plot was exponential
in nature, and so we plotted the logarithm of the correla-
tions versus distance. In calculating these correlations, we
used only pairs of data at a fixed time lag when both values
were observed. The resulting plots for 1993 for time lags
0, 2, 4, and 6 are displayed in Figure 3, along with the least
squares line fit to the points on each plot. The plots for all
time lags are on the same scale so as to show a variety of
features. First, the scatter is strongly linear for each time
lag, and the lines steadily move down for increasing lags.
Second, the degree of scatter increases only slightly with
lag. For lag 0, the line appears to have an intercept close
to O but probably below 0. This arises later in terms of a
“nugget effect” in our final correlation model.

Thus we concluded that the sample log correlations ap-
peared to be well modeled by linear functions. We then
wondered whether the slopes and intercepts of these lin-
ear functions might follow some simple function of time
lag, so we plotted them for each year from 1980-1993 and
found that the plots followed closely quadratic functions
of time lag. To illustrate this, Figure 4 shows a plot of the
slopes and intercepts versus time lags 0-8 for 1991, 1992,

Time Lag=4 Time Lag =6
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Figure 3. Logarithm of Sample Cross-Correlations Versus Distance Between all Pairs of Stations for Detrended Transformed Ozone Data for

Time Lags 0, 2, 4, and 6 for 1993.
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Intercept
-05

-1.0

-1.5

0.2

0.4

Slope
0.6

-0.8

Time Lag

(b)

Figure 4. Intercepts (a) and Slopes (b) Versus Time Lag of the Least
Squares Lines for Fitting Log Sample Correlation Versus Distances:
, 1991, .-, 1992; - - - -, 1993.

and 1993. We have superimposed on each plot a quadratic
function fit to the points. The fit is remarkably good.

One final question that we had was whether the correla-
tion function of the GRF is isotropic; that is, whether the
spatial correlation for two stations is invariant to the relative
position of the two stations. In particular, we considered the
fact that the Houston area has a southeast-northwest pre-
vailing wind pattern.

Figure 5 is a plot of log correlation versus distance for
various time lags using two symbols, an “x” for two sta-
tions that lie along the prevailing wind region and an “o”
for stations in a region perpendicular to the prevailing wind.
Least squares lines for each of the two types are also plot-
ted. Because there do not appear to be large differences in
the lines, we concluded that isotropy is a reasonable as-
sumption.

Our space-time covariance function is thus of the form

cov(e(xy, ty),e(z2,t2)) = o2p(d,v),

Journal of the American Statistical Association, June 1997

where d is the Euclidean distance between locations z; and
X2, U = |ta — t1] is the time lag between two times, and the
correlation function p is given by

1 ifd=v=0
p(d,v) = { ¢d1p, otherwise,
where
log () = ao + arv + av®
and

log(¢y) = bo + b1v + bov?.

If ag is not 0, then we have the so-called nugget effect; that
is, spatial correlations less than 1 at very small distances.
This can be due to measurement error and other causes
(Cressie 1993; Journel and Huijbregts 1979). The nugget
effect cannot happen with continuous process. However, if
the observed process is the sum of a continuous process and
a white process (measurement error, say), then the nugget
effect is inevitable.

The correlation of the random field is the product of two
factors. The first factor, ¢g, depends on both the time differ-
ence and the distance between the two locations. The sec-
ond factor, v,,, depends only on the time difference. Finally,
note that counting o2, the model has seven parameters.

Although we have not been able to show analytically that
p is a positive definite function, we have inverted correla-
tion matrices based on it for a wide variety of time lags,
distances, and parameter values.

4. ESTIMATION AND PREDICTION

In this section we discuss possible estimation and predic-
tion methods for models such as ours and describe in detail
the methods that we decided to use for the ozone data.

4.1

In principle, it would be possible to obtain efficient esti-
mates of the parameters of the model component g(t) in (2),
using the correlation structure and generalized least squares.
To do this for a single year would require the inversion of an
n by n covariance matrix where n, equal to 87,600 for 1993
(8,760 hours for each of 10 stations after eliminating sta-
tion 4, the majority of whose values are missing), is the total
number of observations. This inversion can be simplified by
treating the data as a vector time series that is covariance

Trend Estimation

time lag 0 time lag 1 time lag 2 time lag 3
S I l 3 |
h]
e x x x x .
-
LA NN N ING # Hex X x o
LR & X N ST o4 N W
5 AN § 3] Syt 5| et 5] e o
: .| RN 2 7] oaw : L5 3 Y x : X
S x oux\e* > @ a9 X x* 8 XX hx x
HE: KU NN § ok §s BN § RS N
. x x .
2 R 2o 2 " NGk % 2 3 :‘ RN
N, X ? N
o xox NX x N x W XN
] x .\ o * Y N roxoe N
PER N ] RS X Ko Nx N\
- R - IR
. “\ o N ] Y o x
o RN ] R - ©
] R hd L “ x
00 01 02 03 04 05 06 00 01 02 03 04 05 06 00 01 02 03 04 05 06 00 01 02 03 04 05 06
distance dstance distance distance
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stationary because of the form of the correlation function
of the GRF. We let N be the number of hours and p be the
number of stations for a year, let e = (ef ..., e%)T, where
e; contains the p values of the GRF at time ¢ at the monitor-
ing stations; and let ¥ = var(e). Note that X, which is the
covariance matrix in the generalized least squares problem,
is a block Toeplitz matrix, and we could use the extensive
results on inverting such matrices (see e.g., Dietrich 1993
and references therein). This is still a large computational
task.

Not only is the inversion a large task, but we feel that it
is unnecessary. Under the missing at random assumption,
ordinary least squares using only the observed data pro-
vides a consistent estimate of the deterministic trend model
parameters. Although least squares may offer reduced effi-
ciency due to lack of independence, it nonetheless provides
consistent estimates of the parameters.

To further reduce computational overhead, in fitting the
random process we treated the deterministic trend as known
and equal to the least squares estimates. We feel that this
assumption is justified by noting that because of the large
number of observations, the least squares estimation error
was negligible compared to the observed ozone variation.
For example, the ratio of the average standard error of the
estimated trend to the standard deviation of the random field
was .017 for 1993.

4.2 Parameter Estimation for the Gaussian Random
Field

By treating the trend parameters as known, the data can
be adjusted at each location by subtracting out the estimated
trend.

4.2.1 Naive Estimators. Our first estimates of the a’s
and b’s in p are ordinary least squares estimates in fitting
the regression model

log(p(d,v)) = ag + a1v + azv® + (bo + byv + bov?)d + ¢,

where p(d,v) is the sample correlation coefficient of two
stations at distance d and time lag v.

4.2.2 Maximum Likelihood Estimators. At this point, it
would be attractive to use maximum likelihood to estimate
the parameters of the GRF. However, finding the maximum
likelihood estimators (MLE’s) requires repeated inversion
of the same huge covariance matrix discussed in Section
4.1. Again, because of the stationary vector time series
structure of the problem, it may be possible to phrase our
correlation structure into a state-space framework for the
vector time series e, and then apply Kalman filter methods
to evaluate the likelihood. This would be attractive also be-
cause such a method would handle our extensive missing
data (see, e.g., Shumway and Stoffer 1982).

We decided not to pursue MLE’s because the compu-
tations involved are still very large. Further, because the
primary use of our model is prediction, it is not obvious
that fully efficient MLE’s of the a’s and b’s are needed or
are most appropriate. (See Tiao and Xu 1993 for a discus-
sion of the relative merits of using MLE’s in formulas for
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predictors versus using parameters optimized for prediction
purposes, particularly when there is no absolute guarantee
of model correctness.)

4.2.3 A Fast Cross-Validation-Type Method. Given
values 6 of the parameters of the GREF, let z;(1;0), ..., z;(N;
0) be the univariate time series obtained as the errors in
predicting the GRF at the ith monitoring station using all
the other stations; that is, the time series z,...,z, are the
leave-one-station-out prediction errors for the p stations.
We discuss calculating such predictors in the next section.

Our proposed estimation procedure is to minimize

S0) =332 (16),

i=1t=1

where the sum is only over times and locations where ozone
is not missing.

To handle the missing observations, we use an EM-type
algorithm (Dempster, Laird, and Rubin 1977; Little and Ru-
bin 1987; Shumway and Stoffer 1982) to evaluate S(6) for
a specified 0. The first step of this algorithm is to fill in a
missing residual at time ¢ with the average of the observed
residuals at time ¢. If there are no residuals at time ¢, then
we fill in a 0. This gives us a full N by p matrix W,. We
then perform a sequence of “updating cycles” giving ma-
trices W1, Wa, and so on, until there is negligible change
in the matrices. Each cycle consists of a step for each mon-
itoring station. At the jth step (for j = 2,...,p — 1), the
missing data at the jth station are predicted using the ob-
served and filled-in data for stations 1,...,5 — 1 from the
current cycle and the observed and filled-in data for stations
j+1,...,p from the previous cycle. The first station is pre-
dicted from the last p— 1 of the previous cycle, whereas the
last station is predicted from the first p — 1 stations of the
current cycle.

Note that ordinary leave-one-observation-out cross-
validation (Allen 1974; Stone 1974; Wahba and Wold 1975)
would not be suitable here, because our ultimate purpose is
to predict ozone levels at locations other than monitor sites.

Our estimation procedure accomplishes two important
objectives. First, it gives us a sensitivity analysis on the
naive estimators; second, it provides a full dataset that we
can use in prediction.

4.3 Predicting the GRF

Predicting a value of the GRF ideally consists of find-
ing the conditional expectation of ¢(z,t) given all Np data
points, another massive computational task. To simplify
things, we consider finding the predictor at location x and
time ¢ given only the data within K time units of time ¢;
that is,

éK(x’ t) = E[&(ZB, t)lsK(t)]’

where Sk(t) = (ef g,....,el )T is a (2K + 1)p-
dimensional vector. Thus

éx(z,t) = 7k S Sk (t),
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Table 1. Trend Parameter Estimates for 1993

Hour 1 2 3 4 5 6
[ 5574 5.587 5.551 5513 5.330 5.161
Hour 7 8 9 10 11 12
[ 4.844 5.133 5.854 6.497 6.934 7.244
Hour 13 14 15 16 17 18
a 7.441 7.515 7.504 7.364 7.124 6.726
Hour 19 20 21 22 23 24
[ 6.179 5.764 5.557 5.449 5.432 5.486
Month 1 2 3 4 5 6
8 —.442 .888 1.067 1.567 .630 —1.644
Month 7 8 9 10 11 12
B —2.259 —1.854 —.782 .012 —.089 0

1 2
o —.147 .00162

where the elements of vx = cov[Sk(t),e(z,t)] and T =
var[Sk (t)] are easily found from the covariance function of
the GRF.

To find prediction intervals, we can use the fact that

Vi (z,t)

E{le(z,t) — éx(,t)]*ISk (t)}

o? — 7};2;{171{.

We discuss the choice of K and the effect of not using
all of the data in prediction in our discussion of our results
in Section 6.

4.4 Predicting Ozone

As we did with the GRF, we predict ozone level at a
location z and time ¢ given not all of the data but rather
all ozone data within K time units of time ¢. We define the
vector Qx (t) in the same way we defined Sk (t) except for
ozone rather than ¢’s. Then, treating the estimated trend as
the true trend, we have

0zx (z,t)

= Eloz(,1)|Qk (t)] = E{[g(t) + (z,)]*|Sk (t)}
9*(t) + 29(t) Ele(, 1)|Sk (t)] + Ele®(x,t)[Sk (t)]
[9(t) + éx (2, 8)]> + Vi (=,1).

If we let wg(z,t) = Ele?(x,t)|Sk(t)] =
Vi (x,t), then we have

€2 (x,t) +

Journal of the American Statistical Association, June 1997

var[oz(z,t)|Qx (t)]
E({oz(,t) — Eloz(z,1)| Qx (t)]}*|Qx (t))
E{[oz(z,t) — 02k (z,1)]*|Qk (t)}
E({2g9(t)[e(x,t) — Ex(z,1)] +€*(z, 1)
- wi(z,1)}*[Sk(t))
= 4¢*(t)Vk (z,t) + 4g(t)cov[e(x, ), €(x, t)|Sk (t)]
+ covie?(z, t), e%(x, t)|Sk (t)].

Because the ¢’s are jointly normally distributed, the &’s
given Sk (t) are also normally distributed and

e(z,t)|Sk(t) ~ N(ék(x,t), Vk (z,1)).
Hence
covle(z,t),e%(z,1)|Sk (t)] = 26k (z, t) Vi (z, )
and
covle?(z,t), e%(z, t)|Sk (t)]
= 4é% (z,t)Vk (z,t) + 2VE(z, 1),
and thus

varfoz(z, t)|Qx (t)]
= 49°(t)Vk (z,t) + 89(t)éx (,t) Vi (, 1)
+ 4é% (2, t) Vi (z,t) + 2V (x, t)
= 4[g(t) + éx (2, 1)]* Vi (z,t) + 2VE(x, t).

5. RESULTS

In this section we describe the results of applying the
methods of the previous section to the ozone data. Be-
cause of the amount of data involved and the possibility
of changes in the model parameters over time, we have an-
alyzed each of the 14 years of data separately.

5.1 Trend Estimates

In Table 1 we give parameter estimates for the trend part
of the model for 1993. The results for other years are sim-
ilar.

Table 2. GRF Parameter Estimates for 1980-1993

Year ap ai ag by by bo o?

80 —.1757 —.1608 —.0051 —1.8354 .2942 —.0205 4.672
81 —.2359 —.1310 —.0109 —1.4770 .1654 .0004 4.588
82 —.3147 —.1085 —.0104 —1.0178 .1493 —.0038 4.487
83 —.2815 —.1248 —.0097 —1.1111 721 —.0090 4.318
84 —.2453 —.1190 —.0115 —1.0405 .1807 —.0113 3.863
85 —.2426 —.1188 —.0068 —.9835 1737 —.0094 3.776
86 —.3506 —.1328 —.0091 —.9229 .1983 —.0155 3.469
87 —.3244 —.1384 —.0065 —1.0486 .1985 —.0090 3.763
88 —.2646 —.1303 —.0045 —.7383 1768 —.0118 3.909
89 —.2493 —.1091 —.0102 —1.0800 1704 —.0072 3.905
90 —.2781 —.1125 —.0076 —.8153 .1938 —.0160 4.035
91 —.2096 —.1216 —.0063 —.9088 .1962 —.0135 3.496
92 —.2159 —.1190 —.0083 —.9209 1612 —.0137 2.723
93 —.1708 —.1131 —.0044 —.9582 .1563 —.0142 2.431
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Table 3. Estimates of log vy in GRF Correlation Function for 1980-1993

Time lag

Year 0 1 2 3 4 5 6

1980 —.176 —.342 —.518 —.704 —.900 —1.107 —1.324
1981 —.236 —.378 —.542 —.727 —.935 —1.164 —1.416
1982 —.315 —.434 —.573 —.734 —.915 —1.117 —1.339
1983 —.282 —.416 —.570 —.743 —.936 —1.148 —1.379
1984 —.245 —.376 —.530 —.706 —.906 —1.129 —1.375
1985 —.243 —.368 —.507 —.660 —.827 —1.006 —1.200
1986 —.351 —.492 —.653 —.831 —1.027 —1.242 —1.475
1987 —.324 —.469 —.627 —.798 —.982 —1.180 —1.390
1988 —.265 —.399 —.543 —.696 —.857 —1.028 —1.207
1989 —.249 —.369 —.508 —.669 —.849 —1.051 —1.272
1990 —.278 —.398 —.533 —.684 —.849 —1.030 —1.226
1991 —.210 —.338 —.478 —.631 —.797 —.976 —1.167
1992 —.216 —.343 —.487 —.647 —.824 —1.017 —1.227
1993 —171 —.288 —.415 —.550 —.694 —.847 —1.009

Note that hour 1 corresponds to the hour between 12:00
AM. and 1:00 A.M. Therefore, the low coefficients corre-
sponding to hours 6 to 8 indicate that the early morning
between 5 and 7 A.M. has the lowest hourly average. Simi-
larly, the early afternoon hours between 1 and 4 P.M. have
the highest averages.

The estimated (3’s, the last of which is constrained to be
0, represent the monthly adjustments to the average ozone
measurements. The low coefficients in the summer months
are due to the fact that temperature variables are included
in the model.

5.2 The GRF Covariance Function

In Table 2 we give the estimates of the parameters of the
covariance function of the GRF for each year 1980-1993 as
well as the sample variances of the GRF. These estimates
are based on using K = 6 in the prediction algorithm. We
chose K = 6 by using values 1, 2, and so on until the
estimates changed very little. The estimators appear to be
quite consistent across years, and the estimates of ay do
not appear to be estimating 0. Because of the excellent fit
of the quadratic functions to the slopes and intercepts, our
final estimates of the a’s and b’s are actually very close to
the naive estimates described earlier.

Tables 3 and 4 contain the logarithms of the ’s and ¢’s
corresponding to the a’s and b’s. For 1993, the leave-one-
station-out prediction mean squared error for the detrended
random field data is .9768, compared to the variance of
the detrended random field itself, which is 2.4306, giving
an R2-type measure of 1 — (.9768/2.4306) = .598. For the
other years, this R2-type measure ranges from 42% to 60%.

6. ESTIMATING POPULATION OZONE EXPOSURE

A major payoff of the space-time model for ozone inten-
sity is that it can be used to construct meaningful indices of
population exposure to ozone. Such indices are obtained by
combining the ozone intensity maps with the actual popu-
lation density. The motivation for doing this is clear: High
levels of ozone matter in particular if they occur where
population density is high. We have focused our efforts on
children age 5 and younger. We have done so for two rea-
sons: (1) We want to consider a “sensitive group” within
the general population; and physiological development of
young children may be impaired by exposure to ozone; and
(2) the lack of mobility of young children makes a popula-
tion exposure index weighted by their population densities
at a given area more meaningful than one for a more mobile
subpopulation.

Table 4. Estimates of log ¢ in GRF Correlation Function for 1980-1993

Time lag

Year 0 1 2 3 4 5 6

1980 —1.835 —1.562 —1.329 —1.138 —.987 —.878 —.810
1981 —1.477 —1.311 —1.145 —.977 —.809 —.640 —.470
1982 —1.018 —.872 —.735 —.604 —.482 —.367 —.260
1983 —1.111 —.948 —.803 —.676 —.567 —.476 —.404
1984 —1.041 —.871 —.724 —.600 —.498 —.418 —.362
1985 —.984 —.819 —.674 —.547 —.439 —.350 —.280
1986 —.923 —.740 —.588 —.467 —-.377 —.318 —.290
1987 —1.049 —.859 —.687 —.534 —.398 —.280 —.181
1988 —.738 —.573 —.432 —.314 —.220 —.149 —.102
1989 —1.080 —.917 —.768 —.633 —.513 —.407 —-.316
1990 —.815 —.637 —.492 —.378 —.296 —.246 —.228
1991 —.909 —.726 —.570 —.441 —.339 —.264 —.216
1992 —.921 —.773 —.653 —.560 —.495 —.457 —.446
1993 —.958 —.816 —.703 —.618 —.561 —.533 —.533
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Figure 6. Population Densities for Children Age & and Younger for 1980 and 1990. Ozone monitoring stations are marked with the station
number. Dotted lines are the major highways in Harris County. Longitude is negative to reflect the fact that it is degrees west. A degree of latitude
is approximately 69.2 miles, whereas at 30 degrees latitude, a degree of longitude is approximately 64.4 miles. The thickness of the contour lines
serve as a visual cue to the rate at which the values change in the region. (The wider the contour lines, the more gradual the change.)

The section is outlined as follows. We first display maps
of population densities, we then discuss the concept of ex-
posure indices. Finally, we pick a particular exposure index
and display its trend since 1980.

6.1 Population Density

To determine the density of young children in Harris
County at the beginning and near the end of our time pe-

riod, we obtained the number of children age 5 and younger
at each of the 515 census tracts for 1980 and the 582 tracts
for 1990. (Some tracts split or combined between 1980 and
1990.) In the 1990 data, the census includes a latitude and
longitude for each tract, while we were able to reconstruct
what latitude and longitude were in 1980 using a census
tracts compatibility table. Given the latitudes and longitudes
and the numbers of children, we built the population den-
sity maps displayed in Figure 6 in a manner analogous to
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kernel density estimation with a uniform kernel. We super-
imposed a 25 by 25 rectangular grid on Harris County. We
calculated the density for a cell within the grid by summing
up the population sizes of all tracts within one bandwidth
from the center of the cell and then dividing by the number
of cells within the counting range. We chose the bandwidth
to be one cell size to keep the features of the data and to
obtain a smooth contour. From the 25 by 25 grid, we drew
the maps using the same methods we used in drawing the
ozone maps in Figure 8.

To obtain population densities between 1980 and 1990,
we used linear interpolation between the 1980 and 1990
measurements, assuming that the population size at each
location was either linearly increasing or linearly decreas-
ing. We also used the same linear functions to extrapolate
the population densities for the three years beyond 1990.

Within each year, we treat the population density as con-
stant, and we denote the value at a particular location z by
p(z). Figure 6 displays the population densities of children
age 5 and younger for 1980 and 1990. Note that both graphs
are on the same scale, and that the volumes under the two
surfaces are equal to the total populations of children for
the two years. (The populations of people of all ages in
Harris County were 2,409,547 and 2,818,199 in 1980 and
1990, whereas the populations of children age 5 and under
were 238,417 and 290,545.) The growth in total population
from 1980-1990 is clear, particularly in the decrease in the
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Figure 7. Prediction of Transformed Ozone for August 8—14, 1993.
The dots stand for observed data, the dashed lines for trend-only pre-
diction, and the solid lines for trend-plus-random-field prediction.

amount of low population areas from 1980-1990. Also, the
growth of population away from the south-central Houston
area toward all other areas is obvious.

One of the more striking aspects of Figure 6 concerns the
placement of monitoring sites. Although the sites in 1980
were located largely near areas with high population density
(the locations were largely consistent with those in 1993),
by 1993 an important area of high population density (the
area southwest of the center of Houston) was served by
only one monitoring site.

6.2 Exposure Indices

We define the exposure index e(A,T,z) in area A over
some time period 7" by

e(A,T,z)=/AAw(m,t,zl)i(w,t,zz)dxdt, 3)

where w(z, t, z1) is a weight function tailored to the purpose
at hand, i(z, t, z2) is the ozone intensity, and z = (21, 23) is
a vector of covariate variables. If w(z, ¢, z1) = p(z,t,21) in
(3), where p(z,t, z1) is the population density identified by
demographic variables z;, then we call e(A, T, z) a popula-
tion exposure index in area A over time T for covariate z;.
It is important to make the distinction between the average
amount of ozone, obtained using w(x,t,21) = 1, and the
per-person exposure to ozone. The former is an interest-
ing measure, but ultimately it is the latter that is of public
health interest.

Various exposure indices, based on average ozone or av-
erage per-person exposure, have been discussed in the liter-
ature. A critical defining factor is the time period of interest,
which generally can be classified into two categories: long-
term periods and short-term high-concentration periods. For
instance, average ozone contour maps over a given time pe-
riod T can be formed by plotting e(z,T,z) for a given T'
with w(z,t, z1) equal to 1.0; that is, without taking demo-
graphics into account. Population exposure contour maps
use w(z,t, 21) equal to the population density. Lefohn and
Runeckles (1987) have found that different ozone exposure
indices (long-term or short-term) should be used to explain
crop losses for different crop species. Similar results were
also found in human and animal studies (National Research
Council 1991, pp. 31-37). As mentioned at the beginning of
this section, the two major categories considered are long-
term average exposure and short-term high-concentration
exposure. Although we have performed many other anal-
yses, we focus on the time period March—October, 10:00
AM.—6:00 P.M.,—the period with the highest ozone levels
in 1993.

Average exposure and per-person population exposure in-
dices based on (3) can be easily calculated as follows. Let
Ac be a grid of points (z;,t;), where location z; is in area
A and time t; is in period T'. Given the ozone and popula-
tion exposure maps for a time period T' over Ag, we can
calculate

SO0 0z(i, t;)

o @

Eyir =
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Figure 8. Ozone Maps for 1980 and 1993.
> _ N6 Bpor 5) Finding standard errors of these indices is then a straight-
Ac, T = Ng ’ forward but time-consuming calculation involving the co-
variances of 0z.
and
N . .
. _ NG p(@i) B, 1 ©) 6.3 Trends in Population Exposure
Ag,T —E NG1 () Given parameter estimates of the spatial-temporal model,
i=

where Np is the number of time observations in 7' and
Ng is the number of locations in G. Note that (5) and (6)
are natural estimates of (3) when the w(z,t,21) equals 1.0
(average ozone) and p(z) (population exposure to ozone).

we can predict ozone at any time and place within Harris
County. In Figure 7 we display the results for one summer
week in 1993 at five monitoring stations. The time series
plots (dots) of the (transformed) ozone measurements for
one summer week are given, with the corresponding deter-
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ministic trends (dashed lines) and trend-plus-random-field
predictions (solid lines) overlaid. The important feature of
these graphs is that our model tracks peak ozone levels
much better than just using the trend.

To further illustrate prediction using our model, consider
the ozone maps for 1980 and 1993 in Figure 8, which we
constructed as follows. First, we placed a 25 by 25 grid
within the county, and at each time between 10:00 A.M.
and 6:00 P.M. during March—October 1993 (the times when
ozone levels are high in Houston), we predicted the value
of ozone at each point in the grid. Then, to summarize
ozone for the entire period, we averaged across time the
predictors at each grid point. Finally, we drew the map it-
self using the numerical interpolation routine in the MISHA
software developed by Hardin and Schmiediche (1992) and
Schmiediche and Hardin (1993). We chose a 25 by 25 grid
for two reasons. First, it seemed to be the coarsest grid that
we could use that preserved the features of ozone and also
led to a smooth map. Second, the size of the grid determines
how long it takes to calculate standard errors of further in-
dices based on the map, and it is desirable to make the grid
as coarse as possible. Figure 8 shows the dramatic decrease
in ozone from 1980 to 1993, particularly in the center of
Houston.

With the ability to predict ozone level at any time and
location, the annual population exposure indices described
in Section 6.2 can be calculated. These are the quantities of
most interest.

From an ozone map, we can construct a single annual
population exposure index for the 10:00 A.M. to 6:00 P.M,,
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Figure 9. Predicted Average Population Exposure (a) and Predicted
Average Ozone (b) Throughout Harris County for March—October, 10:00
AM.—6:00 PMm., 1980—-1993.
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March-October time period, by combining the mapped val-
ues with the population density at the 25 by 25 grid. Figure
9a displays these indices for each year from 1980-1993.
The display is striking, because it shows a steady decrease
in ozone exposure for young children, typically on the order
of 20% from the early 1980s to the present .The standard
deviation of the averages of the predicted ozone values can
be calculated, because it is only a function of the prediction
covariances. The index for a single year is an average over
our 25 by 25 grid and over all the hours from 10:00 A.M. to
6:00 p.M. in March—October. The covariance of two ozone
predictors is a function of the covariance matrix X. With
K = 6, it took approximately 20 cpu hours on a Sparc 20
to calculate one standard deviation. For 1993, the standard
deviation of the index is .15; those for other years range
from .15 to .22.

Figure 9b shows the average ozone level (an exposure in-
dex, if the population is uniformly distributed) from 1980—
1993. Again, we see a substantial decrease. For 1993, the
standard deviation is .19; those for other years are similar.

7. CONCLUSIONS

Ozone levels have clearly decreased in Harris County,
Texas in terms of the average ozone measurements through-
out the county, the average ozone in different parts of the
county, and in the per-person ozone computed taking pop-
ulation trends for young children into account. A simple
station-by-station analysis also shows decreases in ozone.
The distinguishing feature of our problem is that by fo-
cusing on per-person exposure, we have been forced to
build a model for any point in Harris County at any time
from 1980-1993, and not just as fixed monitoring stations.
The need for such a model has led us to consideration of
two types of predictor variables: those that are measured
with reasonable quality and show low spatial variability and
hence are predictable throughout the county, and those of
lower quality or with large spatial variability, which are
thus not predictable away from the monitoring stations.
The spatial-temporal model that we built has a determinis-
tic component based on time and temperature, with a GRF
component that accounts for other factors as well as random
variation.

The deterministic component of the model is simply es-
timated by ordinary least squares. The more interesting sta-
tistical problem is the estimation of parameters in the GRF.
Here we took account of three important features: (1) The
dataset is itself huge, making methods such as maximum
likelihood infeasible; (2) there are substantial amounts of
missing data; and (3) the goal is prediction throughout the
county. We have developed a simple, generally applicable
estimation procedure that optimizes prediction variance and
handles missing data.

We carried out an initial application of our procedure.
As indicated by Figure 9a, it appears that exposure to 0zone
among young children is decreasing substantially over time.
We have performed many other analyses of these data, all
of which point to the same conclusion.
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