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Rejection Control and Sequential

Jun S. Liu, Rong CHEN, and Wing Hung WONG

Importance Sampling

We discuss ways of combining rejection sampling and importance sampling methods in Monte Carlo computations and demonstrate
their usefulness in updating dynamic systems. Specifically, we propose the rejection controlled sequential importance sampling (RC-
SIS) algorithm, which is designed to simultaneously reduce Monte Carlo variation and retain independent samples in sequential
importance sampling. The proposed method is demonstrated by three examples taken from econometrics, hierarchical Bayes
analysis, and digital telecommunications. They all show significant improvements over previous results.

KEY WORDS: Blind deconvolution; Econometric disequilibrium model; Gibbs sampler; Markov chain Monte Carlo; Nonpara-
metric Bayes; Sequential imputation; Weighted Markov chain Monte Carlo.

1. INTRODUCTION

A dynamic system is defined as a sequence of evolv-
ing probability distributions 7 (x;) indexed by discrete time
t=1,2,..., where ¢; = (z;_1, ;). Here the word “evolv-
ing” emphasizes on the link between any two consecutive
distributions and implies that the change from m;_; to m
is not too drastic. In this article we propose a new Monte
Carlo method for studying such a system.

A typical dynamic system is the Bayesian learning proce-
dure (or Bayesian expert system) with sequentially observed
data. In such a system, the “learning” process is realized
mathematically by the Bayes theorem. The corresponding
sequence of evolving distributions 7 are the posteriors of
the parameters of interest conditioned on all the informa-
tion collected up to time ¢. Such examples have been given
by Berzuini, Best, Gilks, and Larissz (1997) and Spiegel-
halter and Lauritzen (1990), who built probabilistic expert
systems via graphical models for clinical monitoring.

A different avenue that leads to the consideration of a
dynamic system, even when the problem is not sequential
in nature, is in implementing a divide-and-conquer strategy
for solving computational problems. Specifically, when a
problem has a complex structure, it is often useful to de-
compose the target structure into a sequence of simpler but
dynamically evolving substructures. Then one can use the
information obtained by solving a sequence of easier and
smaller problems to help solve the ultimate target prob-
lem. The key to the success of this method is the ability
of gradually updating the system from the simplest struc-
ture to the target structure (Wong 1995). Two Markov chain
Monte Carlo (MCMC) schemes that capitalize on this idea
are the simulated tempering method (Geyer and Thompson
1995; Marinari and Parisi 1992) and the dynamic weight-
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ing method (Wong and Liang 1997). The sequential updat-
ing strategy has also been applied to solving difficult sim-
ulation/optimization problems, such as the genetic linkage
problem (Irwin, Cox, and Kong 1994), and the ancestral in-
ference problem (Geyer and Thompson 1995), and neural
network training and the traveling salesman problem (Wong
and Liang 1997).

In studying a dynamic system, we usually need to eval-
uate quantities that can be expressed as expectations of
some functions with respect to m(x;) at time ¢. In many
situations (e.g., Bayesian missing-data problems), x; also
evolves to include more random variables as the system
evolves. Because of the complexity of such dynamic sys-
tems, a closed-form solution is usually not available, and
updating the quantities of interest requires analytical or nu-
merical approximations, among which the Monte Carlo ap-
proach plays an important role.

To implement Monte Carlo for a dynamic system, we
need to have random samples generated from my(z;) at
any given time ¢. Because the system is dynamic, static
methods that include most of the popular MCMC schemes
can be very inefficient. An alternative strategy, sequential
imputation (SI), was proposed by Kong, Liu, and Wong
(1994) for Bayesian missing-data problems. Similar meth-
ods have been used in other application areas, including
protein structure simulation (Vasquez and Scheraga 1985),
nonlinear state-space models (Gordon, Salmon, and Smith
1993), and econometrics (Hendry and Richard 1991). Al-
though current Monte Carlo methods for dynamic systems
are effective for many problems, they have limitations and
difficulties. An inherent difficulty of SI is that when ¢ in-
creases, the importance sampling weights get increasingly
skewed, and the resulting Monte Carlo estimation tends to
be less accurate. Liu and Chen (1995, 1998) developed re-
sampling schemes and other generalizations to alleviate the
problem, and Berzuini et al. (1997) suggested using MCMC
to accomplish such resampling when calculating weights is
difficult. But the resulting samples from these resampling
schemes tend to be overcorrelated and quickly become de-
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generate as the number of resamplings increases. Estimat-
ing Monte Carlo variations also becomes difficult.

In this article we propose incorporating rejection control
steps in a sequential importance sampling scheme to im-
prove performance. By rejecting those samples with small
weights at an early stage and properly adjusting the weights
for the remaining samples, the rejection control method pro-
vides an effective way to build up a good importance sam-
pling distribution for dynamic system. We have applied the
method to three examples from different application areas.
All of them have shown significant improvements over the
plain SI method.

Section 2 describes the main algorithm of sequential im-
portance sampling with rejection control. Section 3 dis-
cusses issues related to actual implementations. Section 4
shows how the method works for several examples taken
from econometrics, Bayesian nonparametric inference, and
signal processing. The Appendix presents the necessary the-
oretical proofs.

2. THE MAIN ALGORITHMS

2.1 Sequential Importance Sampling

For a dynamic system m;(x;), We first reformulate the
ST method of Kong et al. (1994) as a more general scheme,
sequential importance sampling (SIS). Suppose that X; can
be drawn from g;(z1) (also denoted by g1 (z1|zo) for nota-
tional simplicity), which is close to 7 (z1), and that X, can
be drawn from g;(x; | ©;_1), which mimics 7;. Then with
wo = 1, the following steps can be implemented sequen-
tially for t = 1,...,7T"

* Draw X; = z,; from distribution g;(z: | ©z—1).
» Compute

_ ()
1 (Te—1)ge(@e | To—1)

Ut

and
Wt = Wg—1Ut. (1)

Here u, is called an “incremental weight.” At stage ¢, we
obtain a sample x; of the random vector X; from the trial
distribution

t

ge(as) = [ [ gs(zs [ ms-1). 2

s=1

Its importance sampling weight 7 (x:)/g:(x;) is easily
shown to be w,. The attractive feature of this scheme
is that it allows us to build up an importance sampling
distribution for x; sequentially in a simple fashion. For
Bayesian missing-data problems, Kong et al. (1994) chose
g+ as []%_, ms(xs | ®s—1). Liu and Chen (1998) provided a
systematic study and several extensions of this and other
related methods.

If the SIS procedure is carried out independently for m

times, then m iid draws, azil), o a:,gm), from g; are obtained
1) (m) Then for any func-

with respective weights w; ™, ..., w;
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tion h(x;), 0 = Er,{h(X})} can be approximated by
Y @)
O = = () ' (3)

E;'n=1 Wy

) streams. These streams are said

Henceforth we call the x;
to be properly weighted by the w,gj ) with respect to m; if
6., is \/m consistent for ¢ for any integrable function A.

It should be noted that the SIS method is valid only if
all of the weights w; have finite variance. Otherwise, (3)
may have infinite variance. With the Bayesian missing-data
setting and the g; chosen as by Kong et al. (1994), one
can show that the w; is proportional to the product of a
sequence of predictive probabilities and is often bounded
from above—and, thus has finite variance.

As t increases, the distribution of w; typically becomes
more skewed, implying that the chi-squared distance be-
tween g; and m; (equivalent to the coefficient of variation,
cv?, of w;) increases. Consequently, many streams carried
by the SIS will have minimal impact on the final estima-
tion. It is thus desirable to discard them at an earlier stage.
In the following section we propose a rejection scheme to
achieve this goal without creating any bias. In doing so, we
can continuously “guide” the SIS in light of .

2.2 Rejection Control Operation

Suppose that at time ¢, streams =", ... z{™

from g; and

are drawn

w?) = wi(@{) o my(x) g (x{), for j=1,...,m.

For any given threshold value ¢ > 0, we introduce the fol-
lowing operation to find rejection control at time ¢ (RC(2)):

e For j=1,...,m, accept stream w,ﬁj ) with probability

(4)
rij) = min{l,y}t—} .
c

+ If the jth steam mﬁj )

new weight w.™”

Pec = /min {1, Eu—t%vt—)} gi(xy) day.

Note that p. is maintained only for conceptual clarity, not
for computational need. This is because p. is a constant
across all of the streams and is not needed for the evaluation
of the ratio estimate (3).

The foregoing RC scheme can be viewed as a technique
for adjusting the trial density g; in light of current impor-
tance weights. The new trial density g¢; (x;) resulting from
this adjustment is expected to be closer to the target func-
tion 7 (x;). In fact, it can be seen that

97 (x) = p; " min{gs (), m(2¢) /c}. (4)

In Section 5 we show that g; is indeed closer to 7; in terms
of chi-squared distance. After applying rejection control, we

is accepted, then attach to it a

= pew? /7| where
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typically will have fewer than m samples. More samples can
be drawn from either g;(z) or g; (x;) (via rejection control)
to make up for the rejected streams.

2.3 The Rejection Controlled-Sequential Importance
Sampling Algorithm

For a given checking schedule 0 < ¢; <to < -+ <t <
... and a given threshold sequence (cy,cs . ..), we can con-
duct the RC operation described in the previous subsection
at each check point ¢, for the dynamic system. The com-
plete procedure can thus be summarized as follows:

1. At each checkpoint tg, start RC(t;) as described in

Section 2.2 with the threshold value ¢ = c;. If stream wgfc)

with weight w,gi) passes this checkpoint, then proceeds the
same way as in a standard SIS but with the old weight

replaced by wﬁjﬂ ) = max{wgi), Ck}-

2. For each rejected stream, start a new stream from
time ¢ = 0 and let it pass through all the check
points at ty,...,t,, with threshold values cy,...,ck. If
rejection occurs in any middle checkpoint, then restart
again.

Note that after the first rejection control [i.e., RC(¢1)],

the sampling distribution g; (x;) for Xt(j ) is no longer the

same as the one described in (2). In Section 5 we show
that for any time ¢, the streams a,-§9 ) resulting from rejec-
tion controlled sequential importance sampling (RC-SIS)
are properly weighted with respect to m; by their modified

weights w{*?.

2.4 Efficiency Issues

In light of the work of Casella and Robert (1996), one
can view an importance sampler as a Rao-Blackwellization
of the corresponding rejection method that is always sta-
tistically more efficient. Thus it is not obvious why incor-
porating a rejection control step in SIS can be useful. The
following example shows that the key benefit of RC in SIS
is to help simulate future samples more efficiently.

Example 2.1. Consider a simple dynamic system in
which the evolving distribution is

1
7Tt(11:1, .,.,,.ﬁl]'t) = m

for
(@1, @) € [1—ap, 1+ af".

Here a; = 1/t for t = 1,...,19 and agy = 0. Hence at
the end of process (¢ = 20), the target distribution 7 (220)
is uniform on the 20-dimensional cube [—1,1]%°. At each
stage, the “up-to-date” density m; approaches my but has a
longer tail. The symmetry for the 7, is not essential, but all
of the 7; must contain the support of the target distribution.

We choose g:(x¢|xi—1) = me(xe|ai—1), which is uniform
on [—1 — at, 1 + a¢]. Because the weight for each stream
is either 0 or 1, to study the efficiency of the plain SIS
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we need only count the number of streams with nonzero
weights. Suppose that at stage ¢ — 1 a stream x;_; has
nonzero weight. Then for it to have nonzero weight at stage
t, we need all of its components z1,...,z;—1 to fall in the
interval [-1 — a;,1 + a¢]. Hence if we let N; denote the
number of streams with nonzero weights left at time ¢,
then

l1ta t—1
E(Nt) = E(Nt—l) (mﬁ‘;) :

Consequently, at the end of process the expected number is

(1 + a20)20
(1 -+ (11)(1 -+ ag) e (1 -+ (120)

E(Ng) = E(No)

= E(No)/20 = .05m,

where m is the number of streams with which we start.
Note that with standard SIS, we must carry every stream to
the end.

RC-SIS enables one to discard those streams with zero
weights at an early stage. Let 7' denote the length of a
stream when either its weight first becomes 0 or it survives
after 20 stages. Then T is a random variable with probabil-

ity distribution
(1 + at)t_l 1— 14+ at41 ¢
1 + Qg

(1 +a1)-~(1+at_1)

P(T=t)=

for
2<t<19,

P(T =1) = (a1 — a2)/(1 + a1), and P(T = 20) = [[,2, (1
+ a¢)~!. Hence the expected length of the stream is E(T)
= 6.27. So using rejection control is equivalent to sim-
ulating streams of average length 6.27 compared to that
of length 20 without using RC. The amount of computing
needed is only about 30% of that needed by plain SIS.

This simple example illustrates two important require-
ments for RC-SIS to work well:

* The change from the current distribution ; to the fu-
ture distribution 7. should be modest. Indeed, if the
sequence of m; is not well behaved, (e.g., with 7; being
uniform [—2,2] for 1,...,19), then RC-SIS fails.

* The trial distribution g; must be reasonably similar
to .

3. IMPLEMENTATION OF REJECTION CONTROLLED
SEQUENTIAL IMPORTANCE SAMPLING

It is usually difficult to prescribe a set of effective thresh-
old values cy, ..., cg, ... in advance. Our strategy is to make
¢k a function of the current weights wéi). A useful empirical
formula is
ck =1 m]in(wii)) + P2y, + p3 m]aX(wii)),

p1+p2+p3=1, p>0. (5

where @, is the current average of the w,g] ). Percentiles of
the weights can also be used as threshold values. Note that
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this approach introduces only negligible bias and correla-
tion among the streams.

The values of p; can be adjusted to achieve a low-
threshold or a high-threshold effect. When the threshold
is low, the acceptance probability is high, and each RC step
needs less time to complete, and vice versa. But with low
threshold, the sampling distribution g; may not be suffi-
ciently modified. We have implemented both methods and
the results are comparable (see Sec. 4 for detailed exam-
ples). However, the low-threshold strategy seems to be more
robust with respect to the total computing time spent. It is
sensible to use a relatively high threshold at an early stage
and gradually decrease it, because much more computation
is required to make up the lost streams in a later stage than
in an early stage.

The checking schedule can be either deterministic or
dynamic. For deterministic schedule, we give values of
(t1,...,tx) in advance. For example, we can design that

i =1ix L, fori=1,2,..., where L is the lag value deter-
mined by how difficult the problem of interest is. Whereas
a difficult problem demands that L = 1, in an easy one L
can be as large as 30 to 50.

The dynamic checking schedule can be achieved by pre-
scribing a sequence of values dy, ..., d;, ... and monitoring
the coefficient of variation cv?(t) of the weights ng ) con-
stantly. Once the event cv?(t) > d; is observed, ¢ becomes
a checkpoint, and we conduct a RC operation.

The cv? sequence dj, should be adjusted to accommodate
the threshold sequence c;. When the ¢y, are high, the number
of times for rejection control should be small. Thus we
choose a geometric sequence d; = a;d;—; to control the
checking schedule, where a; = 1 if cv?(t — 1) < d;—; and
a¢ = p otherwise. The constant p was chosen around 1.1 ~
1.5. When the ¢ are low, we use a sublinear function of
time,

dy = dy +tr/€0,

where o < r < 1, to control the checking schedule.

4. EXAMPLES

4.1 Econometric Disequilibrium Models

Fair and Jaffee (1972) first proposed the disequilibrium
model as an alternative to the the postwar mainstream ap-
proach to economics, the equilibrium method. (See Quandt
1982, 1988 for reviews and discussions.) In this example we
show how the simple dynamic disequilibrium model used
by Hendry and Richard (1991) can be analyzed using the
RC-SIS method. The conceptual framework illustrated here
should be easy to generalize to more complicated settings.

Let ¢, = (q1,92¢), t = 0,1,..., be a sequence of bivari-
ate normal random variables with the conditional means
and covariance matrices given by the recursive relation-
ship

E(qut | gt—1) = ougit—1, cov(g | gi—1) =1,

fort =1,...,T, where I is the identity matrix and 0 < o; <
1. The observed data for this model are y; = min{qi¢, g2t }»
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fort=0,1,...,T. For simplicity in presentation, the initial
states g11 and g2 were taken to be 0 and assumed known.
Of interest is the likelihood function or the posterior distri-
bution of § = (ay, an).

Let \; = max{q1¢,q2:}, and let &; be 4 if y = g, If we
write x; = (A, 0t), ¢t = (0,21, ..., x+), and take a Bayesian
approach, then the target distribution of interest at time ¢ is

me(xe) = p(ae | yy) o< p(0) [ [ plas | 0,vs).

s=1

When the prior distribution for # is uniform, the marginal
m+(0) is also the likelihood function of §. If we have ob-
tained multiple samples wgf ) from m, then the likelihood
function of # can be approximated in two ways: by using
the marginal histogram of the 6 (this is achievable because
xzr = (0,21,...,27)), and by using a mixture of complete
data posteriors (Rao—Blackwellization). The second method
apparently is superior. Because obtaining direct samples
from 7y is difficult, we use the SIS strategy. That is, we
simulate X7 from a sequentially built-up trial distribution
pr and then weight the X properly. Finally, the likelihood
function of # can be approximated by a weighted mixture
of complete-data posteriors.

The SIS can be carried out as follows: generate 6 from its
prior, (e.g., the uniform distribution); then for ¢t = 1,2, ...,
we use

ge(ze | Te—1) = p(xe | 0, i1, ¥—1,Y¢)-

The incremental weight u; can be computed up to a nor-
malizing constant as

ug X p(ye | 9,51375—1>yt—1)~

More details are given in Section 5.

With initial value q11 = ¢g21 = 0, Liu and Chen (1998)
simulated 50 observations from the model with oy = g =
.6. Assuming symmetry (i.e., oy = az), they performed the
plain SIS method with m = 10,000 and resulted in a fi-
nal cv?=5.13. The procedure took 8.16 cpu seconds on a
Silicon Graphics workstation with R10000 microprocessor.
Here we first demonstrate how the method of RC-SIS with
a dynamic checking schedule can be applied to the same
setting, and then apply it to a more difficult case.

A geometric cv? threshold sequence with d; = 1.0 and
p = 1.1 (see Sec. 3) were first used together with the rejec-
tion threshold sequence described by (5), with p; = p3 = .5
and p; =0 (high thresholding). The RC operated four times
at time ¢ = 11, 32,41,46. The algorithm took 13.8 seconds
on the same Silicon Graphics workstation, and the resulting
cv? is 1.05. Using a rule of thumb in survey sampling, the
efficiency for using the rejection control increases at least
threefold. When using d; = 1.0 and p = 1.4, RC operated
twice at ¢ = 11 and 32, and the resulting cv? = 2.04. It took
9.8 seconds on the same machine.

A more dramatic improvement shows up in the asym-
metric case. Here we simulated 50 data points yi, ..., ¥so
from the model with a; = .9 and ay = 0. Because the pa-
rameters are unidentifiable, we constrained that a; > o. In
this case the plain SIS method failed miserably, with a cv?
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Table 1. Histogram of the Tack Data

Frequencies 0 1 2 3 4 5 6 7 8 9
Counts 0O 3 13 18 48 47 67 54 51 19

hovering around 200 to 500 and resulting in a very inac-
curate estimate of the quantity of interest. We applied RC-
SIS with a cv? threshold sequence of d; = 2.1 and p = 1.4.
The resulting final cv? is 3.9 with 92 seconds on the same
machine.

4.2 Hierarchical Bayes Model Analysis

Empirical Bayes and hierarchical modeling have attracted
much attention from statisticians since the mid-1970s. Its
usefulness in data analysis has been demonstrated repeat-
edly (Maritz and Lwin 1989). The simplest general setting
for a hierarchical model is as follows: The Y; are indepen-
dent observations from p;(y | ;), the ¢; are iid draws from
an unknown distribution F, and F' is determined by another
set of estimable parameters. In many cases, however, it is of
interest to treat F' nonparameterically. (See Laird 1978, and
Laird and Louis 1987 for early developments.) A Bayesian
solution to the same problem can be obtained by putting a
Dirichlet process prior on F. (See Escobar 1994 and Liu
1996 for recent discussions.)

To show how the RC-SIS works, we consider the non-
parametric hierarchical Bayes model for binary data (Berry
and Christensen 1979). The method illustrated here can be
readily extended to other hierarchical Bayes models, either
parametric or nonparametric ones. In a binomial-Dirichlet
nonparametric Bayes model, each observation (I;,y;) is
treated as y; ~ bin(l;, (;), and the ¢; are iid samples from
an unknown distribution F'. Furthermore, F' is assumed to
follow a Dirichlet process D, a priori, where « can be any
nonnegative measure on [0, 1] but is assumed to be Lebesgue
for simplicity.

In this example, the infinite dimensional parameter F' can
be integrated out via a Polya-urn argument. (See Ferguson
1973 for details.) Therefore, the involved dynamic variable
isx; = (C1,...,¢(), and the dynamic distribution of interest
is

ﬂt(wt) = p(c17"'7<t I y17"'7yt)

t
o [0 =¢) o)
s=1

X H a((s) + Z(SCj (Cs)
s=2 j=1

With samples from such a distribution, one could approxi-
mate, say, the posterior expectation of the unknown density
dF,

EldF(2) | Y] = a(z) + E[(d¢,(2) + - 6¢,(2)) | Y]

a(z) +Zpi(z 1Y),

Journal of the American Statistical Association, September 1998

where Y is the collection of all observations and
p;(] Y') is the marginal posterior distribution of (; evaluated
at z.

We consider the dataset of Beckett and Diaconis (1994),
which comprises 320 binary strings of length 9 from rolls
of thumbtacks. A 1 was recorded if the tack landed point
up, and a 0 was recorded if the tack landed point down.
In a nonparametric hierarchical Bayes setting, the nine out-
comes in each string are treated as independent Bernoulli
observations with a common parameter (;, and ¢; ~ F. The
data of 320 9-tuples can be reduced to their respective suf-
ficient statistics, the total number of ups in each string, and
is shown in Table 1. Liu (1996) applied the plain SIS with
m = 10,000 to the problem, and the resulting cv? was in the
range of 30 to 50. We repeated the same SIS procedure 250
more times for the same dataset but with randomly shuf-
fled orderings and obtained 250 cv?s with minimum 23.6,
median 68.8, mean 126.2, and maximum 2,016.6.

With m = 10,000, the average computing time for one
complete SIS process was 76 seconds on a Silicon Graphics
R10000 microprocessor. The histogram of the logarithms of
these cv?’s is plotted in Figure 1. This figure shows that the
original ordering was very favorable to the plain SIS and
that Liu (1996) was lucky to have obtained a good numerical
result. Quite often, however, the SIS with an unfavorable
process ordering can result in a disastrous cv? and lead to a
huge Monte Carlo variation. The rejection control method
can make the SIS process much more stable.

We picked one of the 250 results (from different data
ordering) at random and observed that the resulting cv? for
the plain SIS was in the range of 120-170. We applied
the RC-SIS to this new randomly ordered dataset, which
took 550 seconds of computing time, and the resulting cv?
was 7.6. It was a threefold efficiency gain compared to the
plain SIS after the extra computing time was taken into
account.

The following check schedules were used for low thresh-
olding: d; = .5 +¢3 and d; = .5 + t°/3. In high thresh-
olding, the geometric sequence with d; = 2.1 and p = 1.2
was used. The rejection threshold value ¢, for each check-

60

Counts
40

Logarithm of the cv-squares

Figure 1. The Histogram of the log(cv?) Resuiting From Processing
250 Randomly Permuted Tack Data of Beckett and Diaconis (1992) by
SIS. The vertical line indicates the log(cv?) resulting from the original
data ordering.
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Table 2. Three-Level Blind Deconvolution Simulation Results (MAP): RC-SIS With Deterministic
and Dynamic Checking Schedules Compared to the SIS With Rejuvenation

Real-time MAP Final MAP
RC-SIS SIS-r RC-SIS SIS-r
Schedule Schedule

Errors 50 30 10 cv 50 30 10 cv

0-2 7 17 24 29 16 74 125 157 168 132

3-5 57 69 89 91 98 82 50 35 26 56

6-8 62 60 61 56 57 32 21 7 5 8

9-11 38 31 15 17 16 8 3 1 1 0
12-15 27 15 11 7 9 4 1 0 0 1
16-20 8 7 0 0 1 0 0 0 0 0
21-25 0 1 0 0 0 0 0 0 0 1
26-30 1 0 0 0 1 0 0 0 0 0

point ¢ was computed using (5) with (p1,ps, ps) depend-
ing on t;,. We took p; = 0, p = &/ (¢, + 5), and p3 = 5/
(tx + 5) for high thresholding and took p; = tx /(¢ + 10),
pe = 8/(tx+10), and p3 = 2/(t +10) for low thresholding.

4.3 Blind Deconvolution

In digital communications, the following linearly de-
graded moving-average system is common:

q
yt=Zhixt_¢+€t, t 1,2,...,

i=0
where ¢; is Gaussian white noise with constant variance
o2. The y;’s are sequentially observed output signals com-
ing through the system. The main objective is to recon-
struct the input signal z;, which is discrete with known
levels s1,...,Sm, without knowing the system coefficients
ho,...,h, and without training data; that is, blind (see
Donoho 1981; Giannakis and Mendel 1989; Lii and Rosen-
blatt 1982).

Chen and Li (1995) first proposed a Bayesian solution
to the problem via Gibbs sampling. Because the algorithm
is static, it is not applicable to real-time communication,
though it is useful in seismology and underwater acoustics.
Liu and Chen (1995) proposed an SIS method for real-time
blind deconvolution and provided detailed formulas. In par-
ticular, they used a multivariate Gaussian prior for the co-

Table 3. Three-Level Blind Deconvolution Simulation Results
(Real-Time MAP Estimator) for Different Total Number of Streams

Number of streams
1,000 500 200 100 50
Errors  RC 1 RC rj RC 1 RC rj RC rj
0-2 29 16 27 24 26 20 17 14 12 13
3-5 91 98 95 74 80 64 73 57 58 38
6-8 56 57 57 64 61 44 57 38 51 20
9-11 17 16 14 21 20 21 31 21 33 12
12-15 7 9 6 10 12 19 14 13 19 11
16-20 0 1 1 4 1 5 7 10 16 8
21-25 0 0 0 1 0 3 1 6 7 5
26-30 0 1 0 2 0 4 0 7 0 6
>30 0 2 0 0 0 20 0 34 4 87

NOTE: RC-SIS with dynamic schedule, denoted by “RC,” compared to SIS-rejuvenation, denoted
by “rj."

efficients (h;) and integrated them out in the SIS procedure.
Hence the dynamic variables involved in this example are
only those true signals, [ie., ©; = (z1,...,7:)], and the
dynamic system is

Wt(wt)“/"'/p(yla'-'aytlmtahﬂa-"ahm)

X p(ho, ey hm)p(il}t) dho .. .dhm.

Noticing that the standard SIS often has extremely skewed
weight as more and more signals are processed, Liu and
Chen (1995) suggested using a rejuvenation approach that
resamples the streams according to their normalized weight,
when cv? gets large. Problems associated with such an ap-
proach are that the number of distinctive samples decreases
after rejuvenation, and that evaluating Monte Carlo varia-
tion is difficult. In this and the next sections, we demon-
strate how RC-SIS comes to a rescue, not only controlling
the effective sample size (following the custom of survey
sampling, this is defined as the ratio of the actual sample
size over 1 + cv?), but also providing independent (hence
distinct) samples.

Here we demonstrate the RC-SIS procedure for the three-
level example of Liu and Chen (1995) . The true blurring
equation is

Yp = Ty + .87y 1 — 4T o + &4y

with input signals iid from the set {0, 1, 3} with equal
probability. The system signal-to-noise ratio is fixed at
15 dB, which makes the standard deviation of the white
noise around .3. The prior distribution for the coeffi-
cients is a product of independent N(0,1,000)’s. We sim-
ulated 200 sequences, each with 100 observations from
the system, and tested the RC-SIS procedure with differ-
ent checking schedules. The total number of streams used
was 1,000, and the rejection thresholds sequence used was
(70%, 65%, 60%, . .., 20%, . .., 20%) quantiles of the current
weights. We tested the deterministic checking schedule with
t; = i x L for L = 10,30,50 and the dynamic checking
schedule using cv? threshold sequence with d; = m/20
(i.e., effective sample size is 6) and p 1.05. Table 2
presents the number of misclassification using real-time
MAP (i.e., maximum a posteriori) estimator with delay
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Table 4. Quantiles of Number of Misclassification for the 16-Level Example
1-200 51-200 101-200
Percentile 25% 50% 75% 25% 50% 75% 25% 50% 75%
Real-time (delay 3)
No. of misclassifications 40.00 66.50 92.25 6.00 29.00 56.25 .75 6.50 30.00
Final
No. of misclassifications 8.00 11.00 22.00 0 2.00 8.25 0 1.00 5.25

d = 3 (i.e., at time ¢ the signal z;_3 is estimated with cur-
rent weight using MAP) and final-weight MAP. For com-
parison, we also included the result from using Liu and
Chen’s (1995) method, the SIS with rejuvenation (hence-
forth, SIS-r), for the same sequences, with resampling in-
voked when the effective sample size is less than 3. Table 2
shows that dynamic scheduling performs better than deter-
ministic scheduling, and RC-SIS was generally better than
SIS-r.

To study the effect of total number of streams m, we
applied RC-SIS and SIS-r to the aforementioned system,
for different total number of streams m. Again, 200 simu-
lated sequences of length 100 were used. Table 3 shows the
number of misclassified signals using the real-time (delay
3) MAP estimator. Dynamic scheduling with d; = m/20
and p = 1.05 was used for RC-SIS. The effective sample
size threshold for SIS-r was 3. Table 3 reveals robust per-
formances of RC-SIS for small m, in which case the SIS-r
behaved very badly. We see that RC-SIS with m = 100 per-
formed as good as SIS-r with m = 1,000. In fact, there were
cases for the SI-r where the error rate exceeded 30%, im-
plying that there was not even one “good” stream. In such
cases, resampling from the existing streams could not help,
whereas RC-SIS helped by regenerating new streams from
the beginning, and it hence works well with small number
of streams and small memory.

4.4 A Tougher Test

A more convincing demonstration of the usefulness of the
method comes from solving the blind deconvolution prob-
lem when input signals have 16 levels. The main difficulty
that this problem entails is the lack of information at the
beginning stage of the SIS. Because of the large number
of possible input signal levels, the initial streams sampled
based on the prior distribution tend to be too diffused, and
most of the streams are “bad.” Liu and Chen (1995) used the
Gibbs sampler at the beginning stage of the signal process-
ing to finesse such a difficulty. But this extra MCMC step
sacrifices real-time feature of the scheme and also induces
dependencies among the streams.

We implemented the RC-SIS for the 16-level system,

ye = 9162z, — .1833z;_1 + 48122, — .1987z4_3 + &4,

Table 5. Percentiles of cpu Time Used in the Example in Section 4.4

Percentile 10% 25% 50% 75% 90%

cpu 40.28 45.76 52.46 62.45 73.43

where the input signals z; are uniformly distributed on
the set {—15,—13,...,—1,1,...13,15}. The noise &; is
independent Gaussian. The signal-to-noise ratio is con-
trolled at 30 dB, which makes the noise standard deviation
around .31.

Along with RC, we adopted a multistage processing
strategy. First, we applied the RC-SIS procedure to the
first 50 observed output signals, pretending that they were
generated from a simpler four-level system with levels at
{-12,—4,4,12}. A nearly noninformative prior on the sys-
tem coefficients was used. Second, we retained the resulting
posterior mean and 100 x (posterior covariance matrix) of
the system coefficients and used them as the prior mean
and prior covariance matrix of the system coefficients for
processing the 16-level system. This two-stage processing
scheme consumed much less computing time than process-
ing the 16-level system directly (with nearly noninformative
prior for the system coefficients) for the same performance.

For the four-level preprocessing, we set the checking
schedule as {10,20,...,50} with rejection thresholds at
{95%,90%, ...,75%} percentiles of the updated weights.
For the final processing of the 16-level problem, we set
the checking schedule as {20,40,...,200} with rejection
thresholds at {80%, 70%, . .., 20%,...,20%} percentiles of
the weights. The real-time classification delay was set at 3,
and the number of streams m was given as 100.

We simulated 200 signal sequences, each with 200
blurred signals. Table 4 displays the quartiles of the num-
bers of misclassification for real-time restoration and final
restoration. The numbers of misclassification were counted
for three time intervals 1-200, 51-200 and 101-200. Table
5 shows the percentiles of cpu time used (on a SunSparc
20) for processing each simulated series. Our method per-
formed very well for this simulated case. In contrast, the
plain SIS method failed to produce any meaningful result
even with m = 2,000, and we had to use the Gibbs sampler
to initialize the signal restoration.

5. DISCUSSION

From what we have seen in previous sections, the RC
procedure is effective when combined with SIS. It not only
saves memory space, but also enables the trial distribution
to approach the target more quickly. Many problems can
be formulated as a dynamic system and solved using tech-
niques described in this article; for example, those examples
of Berzuini et al. (1997), Irwin et al. (1992), and Wong and
Liang (1997). We hope that the results reported in this arti-
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cle can stimulate further interest in and efforts on this type
of problem.

There are other, more sophisticated ways of doing rejec-
tion control. For example, one may allow several redraws
of a new stream starting from the previous checkpoint to
obtain an acceptable sample, or allow resampling of a new
stream from existing good streams. Numerical and theo-
retical exploration of such “partial rejection” schemes are
in progress. Efficient procedures for on-line estimation of
common parameters that influence all of the data (such as
in a nonlinear state-space model with unknown parameters)
are also under development.

APPENDIX: PROOFS AND COMPUTATION

A.1 Proof for the Reduction of Chi-Squared Distance by
Rejection Control

Here we prove that the rejection control method indeed reduces
the chi-squared distance between the target distribution and the
modified trial distribution. In other words, we prove that

varg. {m(X)/g"(X)} < varg{m(X)/g(X)},

where g, g*, and 7 are as defined in (4) with ¢ omitted. For sim-
plicity, we suppress all the use of subscript ¢ in the following
derivation.

With w(z) = n(z)/g(z), the rejection probability p. in (4) can
be expressed as

(A1)

Pe = /min {g(x), @} dz = % Egmin{w(X),c}]. (A2)

On the other hand, we have

] AX)
e 20

- [Eg e

= (@) 7(x

~r- | St T

= /pc max{w(z), c}r(z) dz (A3)
= pcEg[max{w(X), c}w(X)]. (A4)

Now we show that for any wy > 0, w2 > 0,

h(wy,w2) = [min{ws,c} — min{ws, c}]
X |wi max{wi, ¢} — wz max{ws, c}]
> 0.

There are three cases: when w1 > ¢ and wa > ¢, h(wy, w2) = 0;
when wy < cand wg < ¢, h(wi, we) = c(wi —ws)? > 0; and when
c is between w1 and w2, we assume without loss of generality that
w1 < ¢ < we. Then

h(wl,wg) = (C — wl)(wg — cwl) Z 0.

Hence the two random variables min{w(X), c} and w(X)max
{w(X), c} are positively correlated. Together with the fact that
min{w(z), ¢} max{w(z),c} = cw(z), formulas (A.2) and (A.4),
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we have

m(X)
c {1 + varg. {g*(X) H

Ey[min{w(X), c}]Fymax{w(X), c}w(X)]

i

IA

Egmin{w(X), ¢} max{w(X), c}w(X)]

2 _ 7(X)
cEglw (X)) =c [1+Varg {E(—X—)}:' .

Hence we prove the result (A.1).

A.2 Proof That Rejection Control-Sequential Importance
Sampling Generates Properly Weighted Streams

Consider an individual stream up to time ¢: x; = (z1,...,2¢),
and has passed through & checkpoints at time 0 < t; < -+ <ty <
t with threshold values (ci,...,cx) . We introduce a notation for
s <t

t
9ls:t] (x[s:t] I xs—l) = ng(xz | Xz—l)'
1=s

Note that the sampling distribution for x;, is

LI ey (X
g1, (x¢;) = — min {gt1(xt1), t_l(_L)} ,
b1 1
and generally for any ¢ such that ¢, <¢ < x41, we have

gt*(xt) = gt*k. (th)g[(tk+l):t] (x[(tk+1):t] | th)'

Hence the importance sampling weight for x; at stage ¢ is

e (Xt) _ o (Xt,,)
gr(xe)  gf (%))

wi (%¢) =

where u, is defined in (1). Therefore, if x,, is properly weighted
with wy, (x:, ) with respect to m, , then x; must also be properly
weighted with w} (x¢).

Now let us examine whether x;, is properly weighted. Because
the sampling distribution for x;, is

* 1 . *
Gty (th) = p—k min gtk_l(th_l)g[(tk_l+1);tk]

Wta(xt.)
X (x[(fk—1+1):fk-] | Xty ), _kzk_k—} »

where the acceptance probability py is the same for all x;, and
the induced importance weight is

ka (Xz,,)

Di Ma; e (Xe) c
= pr max{ — ) Ch
950 (K 1)1 1 +1)0, ] R[(go_ g +1)185] | K1)

t—1

* I I
= pr Mmax wtk'—l Us41,Ck
s=tp_1

Hence the weights computed in Section 2 for RC-SIS are cor-
rect.

A.3 Computations For the Example in Section 4.1

We provide the following details only for completeness. For the
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weights, we must compute

p(ye | 0,%Xt~1,¥¢-1)
= ¢yt — a1q1t-1))[1 — P(¥: — a2q2(t-1))]

+ d(ys — 02ga—1))[1 — ®(ys — caqie—1))],
and for imputing missing data we need

p(0: =116,%¢t-1,yt-1,¥t)

_ By —nqie-n)[1 = P(ye — a2g2¢:-1))]

p(yt | 0, x¢-1, yt—l)

p(Ae | 6 =1,u1,0,X¢—1,y1-1)

B(Ae — 0‘2(12(t—1))
= I A < 9
1—®(y: — Oé2Q2(t_1)) (N <w1)

and
P(A¢ | 8¢ = 2,y1,0, %1, y1-1)

d(Ae —~ 01qi(t-1))
= I < yt).
1—®(y; — O‘1‘11(t—1)) (e <)

Suppose that the prior distribution for 6 is po(cu, a2). Then, given
complete observations, the posterior is

p(0 | a,...,q7) < po(6)

T ) )
§ : — - -« _
X exp { — (gt 191(t—1)) ;(q2t 202(:-1))

t=2

Without loss of generality, we take po(@) to be uniform on [0, 1]2.

Then the posterior distribution is simplified as

(1 —a1)® (a2 —a2)®
0 - —
p(@|q,...,qr) exp{ o o ;
0<a, az <1,
where
T —1/2
bl = Zq%(t—l) )
t=2
T
a; = b? Z q1tq1(t—1)
t=2
T —-1/2
b2 = qu(t—l) )
t=2
and

T
az = b3 Z q2tqa(t—1)-
t=2 '

When assuming that a1 > a2 and the complete data are observed,
the marginal distribution of o is

pla1 | q1,-..,q7) x [(I) <OCIT—;¢_2) -2 <—%§)]

(a1 —a1)?
X expy = o ¢
1

We use an acceptance-rejection strategy described by Geweke
(1991) and Robert (1995) to simulate from the foregoing trun-
cated normal distribution.

[Received August 1996. Revised November 1997.]
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