Robust Deconfounding with Instrumental Variables

Zijian Guo

Department of Statistics, Rutgers University

Guo, Z. (2021). Causal Inference with Invalid Instruments: Post-selection Problems and A Solution Using Searching and Sampling. *arXiv preprint arXiv:2104.06911*.

"Confounding is one of the most fundamental impediments to the elucidation of causal inferences from empirical data." (Pearl, 2009)

Causal inference with unmeasured confounders "remains a fertile field for methodological research." (Imbens, Rubin, 2015)

- Observational study: unmeasured confounders
- OLS or Lasso is biased.
- Construction of instrumental variables.

4 A N

Instrumental Variables

- Educ's effect on salary (Card, 1995): family background
- Instrumental variable (IV): proximity to college
- Mendelian Randomization: genetic variants as IVs.

A subset of existing literature:

- Orthogonality: Kolesár, Chetty, Friedman, Glaeser, and Imbens (2015); Bowden, Smith, and Burgess (2015).
- Majority/plurality rule: Bowden, Smith, Haycock, and Burgess (2016); Kang, Zhang, Cai, and Small (2016); G., Kang, Cai, and Small (2018); Windmeijer, Farbmacher, Davies, and Smith (2019); Windmeijer, Liang, Hartwig, and Bowden (2021).
- Heteroscedastic variance+homoscadastic correlation: Lewbel (2012); Tchetgen Tchetgen, Sun, and Walter (2021).

< ロ > < 同 > < 回 > < 回 >

Models and Research Problem

 $\begin{aligned} Y_i &= D_i \beta^* + Z_{j.}^{\mathsf{T}} \pi^* + X_{j.}^{\mathsf{T}} \phi^* + e_i \quad \text{with} \quad \pi^* = \kappa^* + \eta^* \in \mathbb{R}^{\rho_z} \\ D_i &= Z_{j.}^{\mathsf{T}} \gamma^* + X_{j.}^{\mathsf{T}} \psi^* + \delta_i \end{aligned}$

Inference for β^* when $\pi^* \neq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Identification and Post-Selection

< ロ > < 同 > < 回 > < 回 >

The reduced form model is

$$Y_{i} = Z_{i}^{\mathsf{T}} \Gamma^{*} + X_{i}^{\mathsf{T}} \Psi^{*} + \epsilon_{i} \quad \text{with} \quad \mathbb{E}(Z_{i}.\epsilon_{i}) = \mathbf{0}, \ \mathbb{E}(X_{i}.\epsilon_{i}) = \mathbf{0},$$

$$D_{i} = Z_{j}^{\mathsf{T}} \gamma^{*} + X_{j}^{\mathsf{T}} \psi^{*} + \delta_{i} \quad \text{with} \quad \mathbb{E}(Z_{i}.\delta_{i}) = \mathbf{0}, \ \mathbb{E}(X_{i}.\delta_{i}) = \mathbf{0},$$

where $\epsilon_i = \beta^* \delta_i + e_i$ and

$$\Gamma^* = \beta^* \gamma^* + \pi^* \in \mathbb{R}^{p_z}.$$

Construct unbiased estimators $\widehat{\Gamma}$ and $\widehat{\gamma}$ satisfying

$$\sqrt{n} \begin{pmatrix} \widehat{\Gamma} - \Gamma^* \\ \widehat{\gamma} - \gamma^* \end{pmatrix} \to N(\mathbf{0}, \operatorname{Cov}) \quad \text{with} \quad \operatorname{Cov} = \begin{pmatrix} \mathbf{V}^{\Gamma} & \mathbf{C} \\ \mathbf{C}^{\mathsf{T}} & \mathbf{V}^{\gamma} \end{pmatrix}$$

- A 🖻 🕨

Estimate $S = \{1 \le j \le p_z : \gamma_j^* \ne 0\}$ by hard-thresholding

$$\widehat{\mathcal{S}} = \left\{ 1 \leq j \leq p_{\mathrm{z}} : |\widehat{\gamma}_{j}| \geq \sqrt{\log n} \cdot \sqrt{\widehat{\mathbf{V}}_{jj}^{\gamma}/n}
ight\}$$

$$\widehat{\Gamma}_j = \beta^* \widehat{\gamma}_j + \pi_j^* \quad \text{for} \quad j \in \widehat{\mathcal{S}}.$$

Majority Rule: More than half of the relevant IVs are valid, that is,

$$|\mathcal{V}| > |\mathcal{S}|/2$$
 with $\mathcal{V} = \{j \in \mathcal{S} : \pi_i^* = 0\}.$

Bowden, Smith, Haycock, and Burgess (2016); Kang, Zhang, Cai, and Small (2016)

イロト イヨト イヨト イヨト

- Both TSHT and CIIV leverage majority rule to select valid IVs.
- Both TSHT and CIIV rely on $\widehat{\mathcal{V}} = \mathcal{V}$.
- It is challenging to detect locally invalid IVs

$$\left\{ j \in \mathcal{S} : \mathbf{0} < \left| \pi_j^* / \gamma_j^* \right| \le \tau_n \right\}$$
 with $\tau_n \asymp \sqrt{\log n/n}$.

Guo, Kang, Cai, & Small. (2018). Confidence intervals for causal effects with invalid instruments by using two-stage hard thresholding with voting. JRSSB. Windmeijer, Liang, Hartwig, & Bowden. (2021). The confidence interval method for selecting

valid instrumental variables. JRSSB.

How to construct uniformly valid CIs?

Zijian Guo (Rutgers Statistics)

Searching (Majority Rule)

æ

イロト イ団ト イヨト イヨト

$$\widehat{\Gamma}_j = \beta^* \widehat{\gamma}_j + \pi_j^* \quad \text{for} \quad j \in \widehat{\mathcal{S}}.$$

For any β , we estimate π_i^* by

$$\begin{split} & \left(\widehat{\Gamma}_{j} - \beta\widehat{\gamma}_{j}\right) - \pi_{j}^{*} = \underbrace{\widehat{\Gamma}_{j} - \Gamma_{j}^{*} - \beta(\widehat{\gamma}_{j} - \gamma_{j}^{*})}_{\text{Estimation Error}} + \underbrace{(\beta^{*} - \beta)\gamma_{j}^{*}}_{\text{Bias}}.\\ & \mathbb{P}\left(\max_{j\in\widehat{S}} \frac{|\widehat{\Gamma}_{j} - \Gamma_{j}^{*} - \beta^{*}(\widehat{\gamma}_{j} - \gamma_{j}^{*})|}{\sqrt{(\widehat{\mathbf{V}}_{jj}^{\Gamma} + [\beta^{*}]^{2}\widehat{\mathbf{V}}_{jj}^{\gamma} - 2\beta^{*}\widehat{\mathbf{C}}_{jj})/n}} \leq \Phi^{-1}\left(1 - \frac{\alpha}{2|\widehat{S}|}\right)\right) \geq 1 - \alpha. \end{split}$$

Threshold for the estimation error

$$\widehat{\rho}_{j}(\beta) = \Phi^{-1}\left(1 - \frac{\alpha}{2|\widehat{\mathcal{S}}|}\right) \cdot \sqrt{(\widehat{\mathbf{V}}_{jj}^{\mathsf{\Gamma}} + \beta^{2}\widehat{\mathbf{V}}_{jj}^{\gamma} - 2\beta\widehat{\mathbf{C}}_{jj})/n},$$

< 3 >

→ ∃ →

크

$$\widehat{\pi}_{j}(\beta) = \left(\widehat{\Gamma}_{j} - \beta\widehat{\gamma}_{j}\right) \cdot \mathbf{1} \left(\left|\widehat{\Gamma}_{j} - \beta\widehat{\gamma}_{j}\right| \ge \widehat{\rho}_{j}(\beta)\right) \quad \text{for} \quad j \in \widehat{\mathcal{S}}.$$
(1)
$$CI^{\text{search}} = \left(\min_{\{\beta \in \mathbf{R}: \|\widehat{\pi}_{\widehat{\mathcal{S}}}(\beta)\|_{0} < |\widehat{\mathcal{S}}|/2\}} \beta, \quad \max_{\{\beta \in \mathbf{R}: \|\widehat{\pi}_{\widehat{\mathcal{S}}}(\beta)\|_{0} < |\widehat{\mathcal{S}}|/2\}} \beta\right).$$
(2)

• Accept β if the number of invalid IVs $\|\widehat{\pi}_{\widehat{S}}(\beta)\|_{0}$ is less than $|\widehat{S}|/2$

Partial checking of majority rule: if no β satisfies $\|\widehat{\pi}_{\widehat{S}}(\beta)\|_0 < |\widehat{S}|/2$, we set $CI^{search} = \emptyset$.

Estimate π_i^* by

Example 1

set
$$\gamma^* = 0.5 \cdot \mathbf{1}_{10}, \pi^* = (\mathbf{0}_6, 0.05, 0.05, -0.5, -1)^{\mathsf{T}}, \beta^* = 1$$
 and $n = 2000$, The majority rule is satisfied. CI^{search} = (0.931, 1.099).

The proposed searching CI is related to the Anderson-Rubin test

< E

Sampling (Majority Rule)

æ

イロト イ団ト イヨト イヨト

Recall that the estimators $\widehat{\Gamma}$ and $\widehat{\gamma}$ satisfy

$$\sqrt{n} \begin{pmatrix} \widehat{\boldsymbol{\Gamma}} - \boldsymbol{\Gamma}^* \\ \widehat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}^* \end{pmatrix} \to \boldsymbol{N} \left(\boldsymbol{0}, \operatorname{Cov} \right) \quad \text{with} \quad \operatorname{Cov} = \begin{pmatrix} \boldsymbol{\mathsf{V}}^{\boldsymbol{\Gamma}} & \boldsymbol{\mathsf{C}} \\ \boldsymbol{\mathsf{C}}^{\mathsf{T}} & \boldsymbol{\mathsf{V}}^{\boldsymbol{\gamma}} \end{pmatrix}$$

Conditioning on the observed data, sample $\{\widehat{\Gamma}^{[m]}, \widehat{\gamma}^{[m]}\}_{1 \le m \le M}$ following

$$\begin{pmatrix} \widehat{\Gamma}^{[m]} \\ \widehat{\gamma}^{[m]} \end{pmatrix} \stackrel{\text{i.i.d.}}{\sim} N\left[\begin{pmatrix} \widehat{\Gamma} \\ \widehat{\gamma} \end{pmatrix}, \begin{pmatrix} \widehat{\mathbf{V}}^{\Gamma}/n & \widehat{\mathbf{C}}/n \\ \widehat{\mathbf{C}}^{\mathsf{T}}/n & \widehat{\mathbf{V}}^{\gamma}/n \end{pmatrix} \right] \quad \text{for} \quad 1 \le m \le M.$$
(3)

There exists

$$1 \le m^* \le M$$
 and $\lambda \asymp \left(\frac{\log n}{M}\right)^{\frac{1}{2|\widehat{S}|}}$

such that

$$\max_{j\in\widehat{\mathcal{S}}} \frac{|\widehat{\Gamma}_{j}^{[m^{*}]} - \Gamma_{j}^{*} - \beta(\widehat{\gamma}_{j}^{[m^{*}]} - \gamma_{j}^{*})|}{\sqrt{(\widehat{\mathbf{V}}_{jj}^{\Gamma} + \beta^{2}\widehat{\mathbf{V}}_{jj}^{\gamma} - 2\beta\widehat{\mathbf{C}}_{jj})/n}} \leq \frac{\lambda}{2} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2|\widehat{\mathcal{S}}|}\right).$$

Lower the threshold by a scale of λ !

< ロ > < 同 > < 回 > < 回 >

Define the thresholding step for $1 \le j \le |\widehat{\mathcal{S}}|$:

$$\widehat{\pi}_{j}^{[m]}(\beta,\lambda) = \left(\widehat{\Gamma}_{j}^{[m]} - \beta\widehat{\gamma}_{j}^{[m]}\right) \cdot \mathbf{1}\left(\left|\widehat{\Gamma}_{j}^{[m]} - \beta\widehat{\gamma}_{j}^{[m]}\right| \geq \lambda \cdot \widehat{\rho}_{j}(\beta)\right),\$$

イロト イポト イヨト イヨ

Define the thresholding step for $1 \le j \le |\widehat{\mathcal{S}}|$:

$$\widehat{\pi}_{j}^{[m]}(\beta,\lambda) = \left(\widehat{\Gamma}_{j}^{[m]} - \beta\widehat{\gamma}_{j}^{[m]}\right) \cdot \mathbf{1} \left(\left|\widehat{\Gamma}_{j}^{[m]} - \beta\widehat{\gamma}_{j}^{[m]}\right| \geq \lambda \cdot \widehat{\rho}_{j}(\beta)\right),$$

For $1 \le m \le M$, construct "sampled" searching CI $(\beta_{\min}^{[m]}(\lambda), \beta_{\max}^{[m]}(\lambda))$

$$\beta_{\min}^{[m]}(\lambda) = \min_{\left\{\beta \in \mathcal{B}: \|\widehat{\pi}_{\widehat{S}}^{[m]}(\beta,\lambda)\|_{0} < |\widehat{S}|/2\right\}} \beta, \quad \beta_{\max}^{[m]}(\lambda) = \max_{\left\{\beta \in \mathcal{B}: \|\widehat{\pi}_{\widehat{S}}^{[m]}(\beta,\lambda)\|_{0} < |\widehat{S}|/2\right\}} \beta.$$

If no β satisfies $\|\widehat{\pi}^{[m]}(\beta,\lambda)\|_0 < |\widehat{\mathcal{S}}|/2$, we set $(\beta_{\min}^{[m]}(\lambda),\beta_{\max}^{[m]}(\lambda)) = \emptyset$.

Figure: 102 of M = 1000 CIs are non-empty.

Define $\mathcal{M} = \{1 \leq m \leq M : (\beta_{\min}^{[m]}(\lambda), \beta_{\max}^{[m]}(\lambda)) \neq \emptyset\}$ and take a union,

$$ext{CI}^{ ext{sample}} = \left(\min_{m \in \mathcal{M}} eta^{[m]}_{\min}(\lambda), \max_{m \in \mathcal{M}} eta^{[m]}_{\max}(\lambda)
ight).$$

Plurality Rule (G., Kang, Cai, and Small, 2018)

$$|\mathcal{V}| > \max_{\nu \neq 0} |\mathcal{I}_{\nu}| \quad \text{with} \quad \mathcal{I}_{\nu} = \left\{ j \in \mathcal{S} : \pi_j^* / \gamma_j^* = \nu
ight\}.$$

Uniformly valid confidence intervals

Theoretical justification

- Uniform coverage, robust to locally invalid IVs.
- Parametric length

A .

Numerical Analysis

2

イロト イヨト イヨト イヨト

Set
$$\gamma^* = 0.5 \cdot \mathbf{1}_{10}$$
 and $\pi^* = (\mathbf{0}_4, \tau/2, \tau/2, -\frac{1}{3}, -\frac{2}{3}, -1, -\frac{4}{3})^{\mathsf{T}}$;

Kang, H., Lee, Y., Cai, T. T., & Small, D. S. (2020). Two robust tools for inference about causal effects with invalid instruments. Biometrics.

Zijian Guo (Rutgers Statistics)

China Family Panel Studies with 3758 observations. Baseline covariates: gender, urban, hukou. Include 9 IVs:

- the father's education level, the mother's education level, the spouse's education level, the family size, and the log transformation of the education expenditure in the past 12 months;
- the group-level years of education;
- the statement on the fair competition, the statement on the talent pay-off, and whether the subject reads some books or not in the past 12 months.

Method	CI	Method	CI
OLS	(0.0305, 0.0503)	Searching CI	(0.0409, 0.1698)
TSLS	(0.0959, 0.1190)	Sampling CI	(0.0552, 0.1268)
TSHT	(0.0946, 0.1178)	Union ($\bar{s} = p_z - 1$)	(-0.4915, 1.6043)
CIIV	(0.0948, 0.1175)	Union($\bar{s} = \lceil p_z/2 \rceil$)	(0.0409, 0.1342)

Table: Confidence intervals for the effect of education on earnings.

The family size is detected as the invalid IV.

글 🕨 🖌 글

TSCI with Machine Learning

- Fit the treatment model with machine learning
 - Random forests
 - Boosting
 - DNN
- In the outcome model, use "Curvature" to test against violation.

Guo, Z. & Bühlmann, P. (2022). Two Stage Curvature Identification with Machine Learning:

Causal Inference with Possibly Invalid Instrumental Variables. arXiv preprint arXiv:2203.12808.

< ロ > < 同 > < 回 > < 回 >

Other direction 2: Many Treatments?

Instrumental variable methods

- Many treatments requires many IVs
- validity?
- efficiency?

Spectral deconfounding

- Dense confounding.
- Trimming the top singular values of many treatments.
- Efficient inference.

Guo, Z., Ćevid , D. & Bühlmann, P. (2022) Doubly Debiased Lasso: High-dimensional Inference under Hidden Confounding. The Annals of Statistics 50(3): 1320-1347.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Robust deconfounding

- IV selection under majority/plurality rule
- Curvature identification (Guo, Bühlmann, 2022)
- Spectral deconfounding (Ćevid, Meinshaushen, Bühlmann, 2021; Guo, Ćevid, Bühlmann, 2022)
- o ...
- Address the post-selection problems: Searching and Sampling

Robust Causal Inference with Hidden Confounding

Reference and Acknowledgement

Guo, Z. (2021). Post-selection Problems for Causal Inference with Invalid Instruments: A Solution Using Searching and Sampling. *arXiv preprint arXiv:2104.06911*. Code is available at https://github.com/zijguo/RobustIV

Guo, Z. & Bühlmann, P. (2022). Two Stage Curvature Identification with Machine Learning: Causal Inference with Possibly Invalid Instrumental Variables. *arXiv preprint arXiv:2203.12808*. Code is available at https://github.com/zijguo/TSCI-Replication

Guo, Z., Ćevid , D. & Bühlmann, P. (2022) Doubly Debiased Lasso: High-dimensional Inference under Hidden Confounding. The Annals of Statistics 50(3): 1320-1347.

Code is available at https://github.com/zijguo/Doubly-Debiased-Lasso

Acknowledgement to NSF and NIH for fundings.

Shank you!

・ロト ・ 四ト ・ ヨト ・ ヨト