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High-dimensional linear regression

Ynx1 = anpﬁpm + €nx1-

» Number of covariates p > sample size n.
» When p > n, ||8]lo < k.
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High-dimensional linear regression

Ynx1 = anpﬁpm + €nx1-

» Number of covariates p > sample size n.
> When p > n, [|8]lo < k.

Estimation of 3: Basis Pursuit (Chen & Donoho, '94); Lasso (Tibshirani, '96); SCAD
(Fan & Li, '01); LARS(Efron, Hastie, Johnstone & Tibshirani, '04) Elastic Net (Zou &
Hastie, '05); Adaptive Lasso (Zou, '05); Dantzig Selector (Candes & Tao, '07); Lasso
and Dantzig (Bickel, Ritov & Tsybakov, '09); MCP (Zhang ’10); scaled Lasso (Sun &
Zhang, '10); square-root Lasso (Belloni, Chernozhukov & Wang, '11); - - -
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High-dimensional linear regression

Ynx1 = anpﬁpm + €nx1-

» Number of covariates p > sample size n.

» When p > n, ||8]lo < k.
Estimation of 3: Basis Pursuit (Chen & Donoho, '94); Lasso (Tibshirani, '96); SCAD
(Fan & Li, '01); LARS(Efron, Hastie, Johnstone & Tibshirani, '04) Elastic Net (Zou &
Hastie, '05); Adaptive Lasso (Zou, '05); Dantzig Selector (Candes & Tao, '07); Lasso
and Dantzig (Bickel, Ritov & Tsybakov, '09); MCP (Zhang ’10); scaled Lasso (Sun &
Zhang, '10); square-root Lasso (Belloni, Chernozhukov & Wang, '11); - - -
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Inference for Functionals

1. Linear Functionals n' 3

> B34
> 31— [
> Xpewl
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Inference for Functionals

1. Linear Functionals n' 3

> B34
> 31— [
> Xpewl

2. Quadratic Functionals
> 18113
> BTYS = Var(XT3)
> B5XaaBe = Var(X[56a)
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Inference for Functionals

1. Linear Functionals n' 3

> B34
> 31— [
> Xpewl

2. Quadratic Functionals

> 15113
> BTEpB = Var(X]B)
> B5XaaBe = Var(X[56a)

3. ¢4 Accuracy Functionals

> |13 - 8|13 (Accuracy assessment of B)
> |3 —pldfor1 <g<2.
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Overview of talk

0 Inference for 3;: Review of De-biasing
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Cl for 3;

P> Statistics: zhang & Zhang '14; van de Geer, Biihimann, Ritov & Dezeure

’14; Javanmard & Montanari ’'14;

» Econometrics: Chernozhukov, Belloni & Hansen '13; Chernozhukov,
Hansen & Spindler '15;
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Cl for 5,’

P> Statistics: zhang & Zhang '14; van de Geer, Biihimann, Ritov & Dezeure
'14; Javanmard & Montanari '14;

» Econometrics: Chernozhukov, Belloni & Hansen '13; Chernozhukov,
Hansen & Spindler '15;

» Main idea: Bias correction.

) : 1 2 .
B =arg min 5lly = XBlz + AlB]lr, win A < /log p/no

» De-biased Estimator:

-~

Correction term
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Construction of Projection Direction
Estimation error of 3;: 3j — B3i = e,T(E— B)

uT1 X7 (Y xB) =UTS(8—B)+ ur-XTe
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Construction of Projection Direction
Estimation error of 3;: 3j — B3i = e,T(E— B)

uT1 X (Y xB) =TS8 - B) + ﬂT%XTe

— el(F— B) + (TS — e)(5— B) + UTLXTe
N / n

Variance

Vv
Remaining Bias
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Construction of Projection Direction
Estimation error of 3;: 3j — B3i = e,T(E— B)

m1w(y mﬂzaﬁw_®+a%xw

&N (G- )+ (TS — )5 — B)+ T XTe
N > n

Vv
Remaining Bias

Variance
De-biased estimator
~ o 1 R
@:§5+w3w(y—x@.
u re min quu: fu—e- < |lejlloA
UgGRP ~— | |, < lleill 1

Variance ~~
Constrained Bias
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Construction of ClI for 54

> ~ ~ 1
Bi—fi=WUL—ef)p—p)+ UT,—7XTe
Y ——

Remaining Bias )
Variance

1. Variance /nu1 XTe | X ~ N(0, UTS0)

2. VA|(@E - )5 - )| < VAIZT - &l 8 Blls < K12

Ultra-sparse case k < % = Variance dominates.

Cl for j;
- N sparsity K
n
0 l;x/gﬁp log p

Zijian Guo High-dimensional Inference for Linear Functionals



Clover k < 2

lo

Clgy(K) = |Br = p(K),  Br +p(K)|,

with p(k) = %6+ Ckloip6
—_——

Account for remaining bias
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Overview of talk

e Minimaxity and Adaptivity

Zijian Guo High-dimensional Inference for Linear Functionals



Minimaxity and Adaptivity (Cai and G., '16)

Cl for
— sparsity K
n
0 lggﬁ;? log p
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Minimaxity and Adaptivity (Cai and G., '16)

Cl for j;
— sparsity K
\/7 n
0 Iog,;) log p
Fork < s 5

1. Minimax expected length of Cl for ;.
2. Possible regime to construct adaptive Cl for ;.
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Minimaxity and Adaptivity (Cai and G., '16)

Cl for j;
- N sparsity K
\/7 n
0 |0gr;) |ng
For k < |ogp,

1. Minimax expected length of Cl for ;.
2. Possible regime to construct adaptive Cl for ;.

Adaptivity: without knowing the true sparsity k, construct
Cl as well as we know k.
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Optimal expected length

» Coverage: Guaranteed coverage probability.
» Precision: As short as possible.

000 = {0= (5.T.0) 150 < k g1 < Arin(E) < Amae(E) < 1,0 < 7 < W |
1
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Optimal expected length

» Coverage: Guaranteed coverage probability.
» Precision: As short as possible.

1
000 = {0= (5.T.0) 150 < k g1 < Arin(E) < Amae(E) < 1,0 < 7 < W |
1

» For 0 < a < 1, CI has coverage for 3y over ©(k) if

inf P H)>1-a.
eelg(k) o €CI) = @

» For given k, the optimal length over ©(k),
L (O(k)) = inf sup E¢L (CI).

Ca having coverage gcg(k
for By over ©(k) (k)

Precision
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Optimal expected length

Theorem 1(Cai and G., ’16)

For k < cmin{p”, =} with 0 < v < 1,

" logp
- 1 log p
L(X(G(k))x%+k =

Zijian Guo High-dimensional Inference for Linear Functionals



Optimal expected length

Theorem 1(Cai and G., ’16)

For k < cmin{p”, =} with 0 < v < 1,

’ log p
- 1 log p
L' (©(k)) < \77+k P
a1 klogp
vn n
/_H — ~ .
sparsity K
N
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Optimal expected length

Theorem 1(Cai and G., ’16)

For k < cmin{p”, o5} with 0 < 4 <3
1 Iogp
L'(O(k)<x—+k
(© (k) T
a1 klogp
vn n
— —"~ ™~ .
sparsity K
°

Cls of Iength : NO coverage for << K S iogp
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Adaptive Procedures?

Length of Cl: (k) = %5 + Ck™ER5.

Adaptivity —

Without knowing k, possible to construct Cls as well as known k?
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Adaptive procedures?

k(unknown true sparsity) < k,(known upper bound), ©(k) C ©(ky)
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Adaptive procedures?

k(unknown true sparsity) < k,(known upper bound), ©(k) C ©(ky)

Is it possible to construct Cls for 34
1. coverage over O(k,)
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Adaptive procedures?

k(unknown true sparsity) < k,(known upper bound), ©(k) C ©(ky)

Is it possible to construct Cls for 34
1. coverage over O(k,)
2. forany 0 € ©(k),

|ogp7

EoL (CI) < \} +k
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Lack of adaptivity

Theorem 2(Cai and G., ’16)

Forany 6 = (8,1,0) € © (k) and k < k, < /P,

1 |
inf  EoL(CI)>c (— + kuﬂ> o
CI having coverage \/F) n

for 81 over ©(ky)
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Lack of adaptivity

Theorem 2(Cai and G., ’16)
Forany 6 = (8,1,0) € © (k) and k < k, < /P,

: 1 log p
>
inf EgL(CI)_C(\/_+k - >0

CI having coverage
for 81 over ©(ky)

For 20 <k, < i 0

logp ~ Y ~ logp’
Know k
/_/H
yd | \
\ \ ! P4 P4
N B Py

~
Don’t know k

High-dimensional Inference for Linear Functionals
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General Adaptation Benchmark

O(ky)
L% (O(k) LY (0(k), O(ky))
L*(0(k),0(k,)) = inf sup EoL (CI)

Ca having coverage 0€0(k)
for 34 over ©(ky)
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General Adaptation Benchmark

O(ky)
L% (O(k) LY (0(k), O(ky))
L*(0(k),0(k,)) = inf sup EoL (CI)

Ca having coverage 0€0(k)
for 34 over ©(ky)

L:(©(k),0(k,)) > inf EqL (CI)
CI having coverage
for 31 over ©(ky)
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General Adaptation Benchmark

O(ky)
L% (O(k) LY (0(k), O(ky))
L*(0(k),0(k,)) = inf sup EoL (CI)

Ca having coverage 0€0(k)
for 34 over ©(ky)

L:(©(k),0(k,)) > inf EqL (CI)
CI having coverage
for 81 over ©(ky)

L:(©(k),©(k,)) > L:(©(k)) = Impossible adaptive ClI.

(e
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Summary of Cl for 54

» First constructed Cl for 34 over k < 2

~ logp”
a1
vn
— .
sparsity K
%
——

Adaptive



Summary of Cl for 54

> First constructed Cl for 3; over k < 2.

]
i kRt
— —-
~ .
sparsity K
n
0 |;gp log p
_/
— —~
Adaptive Not adaptive
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Comparison with known ¥

’
vn
NS
o N .
sparsity kK
n
0 lgfp log p
— _/
~"
Adaptive

» ClI for 81 was constructed in Javanmard & Montanari ’15.
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Comparison with known ¥

’
vn
NS
o N .
sparsity kK
n
0 lgfp log p
— _/
~"
Adaptive

» ClI for 81 was constructed in Javanmard & Montanari ’15.

» Technical difference: unknown covariance structure
between Xj; and Xjz, - - -, Xip.
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Four scenarios

Table: Confidence Intervals for 73

Known X Unknown X
Sparse Loading 7
(e'g'a 61) / /
Dense Loading 7 n N
(e-g'! Zf):1 BI) " "
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Exact Loading: Sparse and Dense

We calibrate the sparsity levels as

1
k=p', k,=p" for O§7<7u§§,

We consider exact loadings.

max |n]|/ min |ni] < Gy,
sy 1l iy Il < Co

Inllo=p™ for 0<~, <1.
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Exact Loading: Sparse and Dense

We calibrate the sparsity levels as

1
k=p', k,=p" for O§7<7u§§,

We consider exact loadings.

max |n]|/ min |ni] < Gy,
sy 1l iy Il < Co

Inllo=p™ for 0<~, <1.

(E1) x.ew is called exact sparse if v, < 7;
(E2) x.w is called exact dense if v, > 2v;
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Cl for >, 8 (Cai and G., '16)

1. Centering at Lasso estimator

p p
- | . ~ [ R
Cly 5(k) = [E Bi — Cky/ oi 5, Y Bi+Cky/ oipcr] ,
i— pu

» NOT using de-biased estimator: Inflation of variance!
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Cl for >, 8 (Cai and G., '16)

1. Centering at Lasso estimator

P p
R | . logp .
Cly 5,(k) = [ZB;—CK\/ oi 5, Y Bi+Ckyf oipa] ,
i=1 i=1

» NOT using de-biased estimator: Inflation of variance!

2. CIy g,(k) achieves optimal expected length k '°g :

3. NOT possible to construct adaptive ClI.
» Without knowing k, ClI must be longer than k '°g .
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Cl for >, 8 (Cai and G., '16)

1. Centering at Lasso estimator

p p
- | ~ [ R
Cly 5(k) = [E Bi — Cky/ oi 5, Y Bi+Cky/ oipcr] ,
i— pu

» NOT using de-biased estimator: Inflation of variance!

2. CIy g,(k) achieves optimal expected length k '°g :

3. NOT possible to construct adaptive ClI.

» Without knowing k, ClI must be longer than k '°g .

4. The information £ is NOT useful.
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Confidence intervals for n75

Known X Unknown X
Sparse Loading n ||77|r|72 I7]l2 (f 4 klogp)
Dense Loading 7 \lf}llxk\/"’gp
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Confidence intervals for n75

Known X Unknown ¥
Sparse Loading 7 ke Inll2(J5 + “522)
Dense Loading 7 Hn||%k\/|°%p
Known X Unknown X
Sparse Loading n k < @ k < %
Dense Loading 7 Impossible

Tony Cai and Zijian Guo. Confidence intervals for high-dimensional linear regression:
Minimax rates and adaptivity. AOS, 2017.
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Overview of talk

@ Uniform Procedure for All loadings
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Beyond Minimaxity

The minimax results for dense n are pessimistic.
Let’s put the minimaxity aside first.

A practical question: Inference procedure for n73?
1. Works for all 7.
2. Requires no knowledge of sparsity.

Zijian Guo High-dimensional Inference for Linear Functionals



Literature for n73

Cai and Guo (2017) 7 iS sparse
Athey, Imbens, Wager (2018) | ||n||2 is bounded
Zhu and Bradic (2018) Certain sparse n

Susan Athey, Guido W Imbens, and Stefan Wager. Approximate residual balancing:
debiased inference of average treatment effects in high dimensions. JRSSB, 2018.
Yinchu Zhu and Jelena Bradic. Linear hypothesis testing in dense high-dimensional
linear models. JASA, 2018.

A uniform procedure for all x,., € RP

High-dimensional Inference for Linear Functionals



1 ~ ~ ~ 1
T_XT _ — T _ T_XT
u nX (Y Xﬁ) ur(p—p)+u nX €

~ N N, o~ 1
= —6](5— )+ (FU— €)' (5~ B) + U XTe
Bias-corrected estimator

A

Bii=elB+ DT%XT (Y— XB)

u= argmin U2 U : HZU — 6
UERP —

< |l €eill2A1
m J/

Variance ~~
Constrained Bias
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Cai and G. (2017); Athey et.al. (2018)

1 N e a1
- XT(Y Xﬁ)zuTZ(ﬂ—,BH—uTBXTe

~ 1
=B 8) + (ST — )" (8- B) + T XTe

Bias-corrected estimator

XlewB =105 + ﬁT%XT (Y— xB).

U = arg min AR HZU n
UERP —~—

. <Ml

Variance ~~
Constrained Bias

Zijian Guo High-dimensional Inference for Linear Functionals



Challenges for Dense Loadings

Dense 7n:

Feasible Set: Hfu—nH < |[nll2A1

Inll2A1 > ||n]lsc = U = O!

Example: If ;) is decaying as 7, =< j =, then |52 = pz~.
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Challenges for Dense Loadings

Dense 7n:

Feasible Set: Hfu—nH < |[nll2A1

Inll2A1 > ||n]lsc = U = O!

Example: If ;) is decaying as 7, =< j =, then |52 = pz~.

Bias-corrected estimator=plug-in estimator,
S ~ 1 R ~
w8 = "B+ U X (Y = XB) =B,

Curse of dimensionality from dense 7.

Zijian Guo High-dimensional Inference for Linear Functionals



New Projection Direction

U= argminu™>u
UERP

subject to Hfu—nH < |Inll2A1

R DT

The proposed estimator for 743 is

=i+ X7 (v - X) (1)

Zijian Guo High-dimensional Inference for Linear Functionals



Additional Constraint and Feasible Set

Additional constraint

» Small dashed: n = e;.
» Large dashed: dense n without additional constraint.
» Solid parallelogram: dense »n with additional constraint.

nTxu = [[nll3] < [Inl2As

Zijian Guo High-dimensional Inference for Linear Functionals



Bias-Variance Tradeoff

Bias and Variance Tradeoff.
» Minimizing variance with bias constrained.

(S n)(5 - B)| < 150 = nloll5 - Bll

» Minimizing variance with bias and variance
constrained.

U= argminU"xu
uERP

subject to Hfu— 77” < In)laA

Eu = |Inllg] < nl3A

Zijian Guo High-dimensional Inference for Linear Functionals



Enhancing Variance Lemma

Lemma 1 (Cai, Cai, G. (2018)).

Under regularity conditions, we have

Inlle /1~ o~ I7]2
co 2 [ ST < G2
“vn ~Vn = /n

» Lower bound does not hold without the additional
constraint

» Additional constraint leads to a dominating variance

Zijian Guo High-dimensional Inference for Linear Functionals



Theory

Theorem 2 (Cai, Cai, G. (2018)).

Under regularity conditions and ||3]|o < cv/n/log p, then

— (773 - w8) % N.1) @
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Theory

Theorem 2 (Cai, Cai, G. (2018)).

Under regularity conditions and ||3]|o < cv/n/log p, then

— (773 - w8) % N.1) @

V= % depends on 7.

Works if || 3]l < cv/n/log p.

Zijian Guo High-dimensional Inference for Linear Functionals



Overview of talk

° Further Discussion on Optimality
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Adaptive Optimal

O(ky)
L% (O(k) LY (0(k), O(ky))
L*(0(k),0(k,)) = inf sup EoL (CI)

e having coverage 0€O(k)
for 31 over ©(ky)

Adaptive optimal: a procedure achieving L (©(k), ©(k.))-

Zijian Guo High-dimensional Inference for Linear Functionals



Review of Exact Loading

We calibrate the sparsity levels as
k=p", k,=p"* for 0<~y<ny, <1,

< <C
% < max, Il /iy, Il < Co.

[nllo = p™ for 0 <, <1.

(E1) Xu.w is called exact sparse if ,, < 2v;
(E2) x.w is called exact dense if v, > 2v;

Zijian Guo High-dimensional Inference for Linear Functionals



Possibility of Adaptive Testing

Suppose that k < k, <

~ logp’
¥ Yus Vo L. (e(k)) Rel | L5 (©(k),O(ku)) | Adpt
KAl - KAl
(E1) <2y R = 2 Yes
(E2-a) | v << 37 | [Inlocky/ 82 | < | [nllockuy/ 2 | No
(E2b) | 7 < v < | Iimllocky/ 82 | < Il No

» Cut-off for “dense" and “sparse" occurs at v, = 2.

Zijian Guo
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Possibility of Adaptive Testing

Suppose that k < k, <

~ logp’
¥, Yus n Lz (9(k)) Rel | L3(©(k),©(ku)) | Adpt
(E1) T < 2y lale = Il Yes
(E2-a) | v < < g | Inllecky/ B2 | < | [nllockuy/ 82 | No
(E2b) | 7 < v < | IImlleoky/ ™82 | < Ll No
» Cut-off for “dense" and “sparse" occurs at v, = 2
> Ify, >3

57y, then the optimal test is of order lInll2

n
» In absence of accurate sparsity information, the

proposed inference procedure 773 is adaptive
optimal for all exact loadings 7

Zijian Guo
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Take Home Message

» The best we can aim for: L} (©(k),©(k.))
» Dense linear functionals are harder than sparse ones.
» Uniform Procedure over all loadings.

Zijian Guo High-dimensional Inference for Linear Functionals
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Cl for n' 5 (Cai and G., '16)

Fundamental difference in terms of minimaxity and
adaptivity,

1. Sparse loading 7 : j;

2. Dense loading : >°F . 3;
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Cl for n' 5 (Cai and G., '16)

Fundamental difference in terms of minimaxity and
adaptivity,

1. Sparse loading 7 : j;

2. Dense loading : >°F . 3;
Plug-in Lasso Estimators

Bi: Bri—pr= (e, 5—p)
n'B: 0 B—n"B=n5-5)
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Cl for n' 5 (Cai and G., '16)

Fundamental difference in terms of minimaxity and
adaptivity,

1. Sparse loading 7 : j;

2. Dense loading : >°F . 3;
Plug-in Lasso Estimators

Bi: Br—Bi= (e, 5P
"B ' B-n"B=npb-p
» Sparse n: Correct the bias = Similar to ;.
» Dense n: NOT correct the bias = Inflated variance.

Balance bias and variance.

Zijian Guo High-dimensional Inference for Linear Functionals



Simulation Setting

Simulation Setting with 75 = 1.08
» p=501,n=n=n
> B1o=-01,8;;=04(—-1)for1 <;j<10
> Boo=-058,;=02(j—1)for1 <j<5

> Xpew,j ~ N(0,1) for 1 </ <10 and
Xnew, ~ 0.2 N(0,1) for i > 11

Zijian Guo High-dimensional Inference for Linear Functionals



» Adaptive optimality: If the sparsity is unknown,
what is the optimal length of CI?

Zijian Guo High-dimensional Inference for Linear Functionals



The parameter space

Baz170—1
e(S) =<¢60= : H,BHO <s, 0 <ok < My, )\min(zk) >, fork=1,25,
ﬁ2722702

For a test ¢, its size is

a(s,¢) = sup Eyo. (3)

0eH(s)

with
Ho(s) ={0€0O(s):n"(8—B2) <0}

Zijian Guo High-dimensional Inference for Linear Functionals



Power

The local alternative parameter space

Hi(s,7) = {0 € ©(8) : Xy (B = B2) =7 > 0}

The power of ¢ over H4(s, 7) is defined as

= inf [Eyo. 4
w(Sﬂ', (b) 967[1?(8,7') O(b ( )

Optimality: identify the smallest ~
» The size is controlled over Hy(S);
» The corresponding power over H4(s, 1) is large

Zijian Guo High-dimensional Inference for Linear Functionals



Minimax Detection Boundary

Minimax detection boundary is defined as

Toini (Ky Xpew) = argmin< 7:  sup  w(s,7,¢0)>1—1n,.
T ¢:a(s,0)<a

A test ¢ is minimax optimal if

a(s,¢) <a and w(s,¢,7)>1-n for 7 =< Tmini(K, Xnew)

Minimax assumes s is known.

Zijian Guo High-dimensional Inference for Linear Functionals



Unknown Sparsity Level

Capture the optimality for unknown sparsity level?

We consider two sparsity levels, k < k.
» k denotes the true sparsity level,
» k, denotes an upper bound for the sparsity level.

The size is uniformly controlled over Ho(k.),

a(ky, ¢) = sup Ko < a. (5)
QEHo(ku)

Zijian Guo High-dimensional Inference for Linear Functionals



Adaptive Detection Boundary

The adaptive detection boundary 7,qap(Ku, K, Xnew)
Todap(Kus K, Xpew) = argmin< 70 sup  w(k,7,¢0) >1—n,.
T ¢ra(ku,¢)<a
A test ¢ is adaptive optimal if
alky, ) <a and w(k,7,¢) >1—n for 7 = Tuw(ku, K, Xnew)

An adaptive optimal test would be the best that we can
aim for if there is lack of accurate information on sparsity.

Zijian Guo High-dimensional Inference for Linear Functionals



Adaptive Hypothesis Testing

P 1 Toini (K, Xnew) < Tadap(Ku, K, Xaew ), the testing problem
is adaptive.

P 1 Toini (K, Xnew) << Tadap (Ku, K, Xnew ), the testing problem
is NOT adaptive.
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Numerical Comparison

Other methods
1. HITS
2. Plug-in scaled Lasso: X7, (3 — 3,)

3. Plug-in debiased Lasso: xgew(ﬁ— Bs)
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Numerical Comparison

Other methods
1. HITS
2. Plug-in scaled Lasso: X7, (3 — 3,)

3. Plug-in debiased Lasso: xgew(ﬁ— Bs)

Computation comparison
1. HITS: 4 Lasso
2. Plug-in scaled Lasso: 2 Lasso
3. Plug-in debiased Lasso: 1,004 Lasso (2p + 2)

Zijian Guo High-dimensional Inference for Linear Functionals



. 10 go—etsazooo o
07{ % ===
LS
\
\
06
08
2
05 5
w 4
2 8
& s
Sos
0.4
03
0.4
Lo
02
250 500 750 1000 250 500 750 1000
n n

Methods -e= HITS - Plugin Lasso —® Plugin Debiased

» Plug-in Lasso: hard to do inference
» HITS has smaller RMSE than Plug-in Debiased
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ITE and Cl

250 500 750 1000 250 500 750 1000 250 500 750 1000
n n n

Methods -e- HITS -e- Plugin Debiased

» Better coverage
» Computationally more efficient
» Comparable length and ERR
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Real Data Analysis

Rheumatoid Arthritis (RA)
» Treatment 1: methotraxate+ anti-TNF (92 patients)
» Treatment 2: methotraxate (91 patients)

» Outcome — log(CRP)
Higher value of Y — Better treatment response.

» 171 Predictors, including Clinical measurement, EHR
and SNP
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Real Data Analysis

» About 72% benefit from the combination therapy.
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Real Data Analysis

Patients | rs12506688 | SLE mention | rs2843401 | rs8043085 | - - -
A =0 >1 =0 >0 e
B >0 No >0 =0

(SLE= Systemic Lupus Erythematosus)

ITE

index

The treatment effect is heterogeneous across patients.
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