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ABSTRACT
Various Markov chain Monte Carlo (MCMC) methods are studied to improve upon random walk Metropolis
sampling, for simulation from complex distributions. Examples include Metropolis-adjusted Langevin algo-
rithms, Hamiltonian Monte Carlo, and other algorithms related to underdamped Langevin dynamics. We
propose a broad class of irreversible sampling algorithms, called Hamiltonian-assisted Metropolis sampling
(HAMS), and develop two specific algorithms with appropriate tuning and preconditioning strategies.
Our HAMS algorithms are designed to simultaneously achieve two distinctive properties, while using
an augmented target density with a momentum as an auxiliary variable. One is generalized detailed
balance, which induces an irreversible exploration of the target. The other is a rejection-free property for a
Gaussian target with a prespecified variance matrix. This property allows our preconditioned algorithms to
perform satisfactorily with relatively large step sizes. Furthermore, we formulate a framework of generalized
Metropolis–Hastings sampling, which not only highlights our construction of HAMS at a more abstract
level, but also facilitates possible further development of irreversible MCMC algorithms. We present several
numerical experiments, where the proposed algorithms consistently yield superior results among existing
algorithms using the same preconditioning schemes.
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1. Introduction

In various statistical applications, it is desired to generate obser-
vations from a probability density π(x), referred to as the target
distribution. The density function π(x) is often defined such
that an unnormalized density function π̃(x) ∝ π(x) can be
readily evaluated, but the normalizing constant

∫
π̃(x) dx is

intractable due to high-dimensional integration. A prototypical
example is posterior sampling for Bayesian analysis, where the
product of the likelihood and prior is an unnormalized poste-
rior density. For such sampling tasks, a useful methodology is
Markov chain Monte Carlo (MCMC), where a Markov chain is
simulated such that the associated stationary distribution coin-
cides with the target π(x). Under ergodic conditions, observa-
tions from the Markov chain can be considered an approximate
sample from π(x). See, for example, Liu (2001) and Brooks et al.
(2011).

One of the main workhorses in MCMC is Metropolis–
Hastings sampling (Metropolis et al. 1953; Hastings 1970).
Given the current variable x0, the Metropolis–Hastings algo-
rithm generates x∗ from a proposal density x∗ ∼ Q(x∗|x0), and
then accepts x1 = x∗ as the next variable with probability

ρ(x∗|x0) = min
{

1,
π(x∗)Q(x0|x∗)
π(x0)Q(x∗|x0)

}
, (1)

or rejects x∗ and set x1 = x0, where π(x∗)/π(x0) can be
evaluated as π̃(x∗)/π̃(x0) without requiring the normalizing
constant. The update from x0 to x1 defines a Markov tran-
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sition K(x1|x0), depending on both the proposal density and
the acceptance-rejection step, such that reversibility is satisfied:
π(x0)K(x1|x0) = π(x1)K(x0|x1). This condition is also called
detailed balance, originally in physics. As a result, the Markov
chain defined by the transition kernel K is reversible and admits
π(x) as a stationary distribution.

The Metropolis–Hastings algorithm is flexible in allowing
various choices of the proposal density Q. A simple choice,
known as random walk Metropolis (RWM), is to add a Gaussian
noise to x0 for generating x∗. However, RWM may perform
poorly for sampling from complex distributions. To tackle this
issue, various MCMC methods are developed by exploiting
gradient information in the target density π(x). A common
approach is to use discretizations of physics-based continuous-
time dynamics as proposal schemes, while staying within
the framework of Metropolis–Hastings sampling. One group
of algorithms include preconditioned Metropolis-adjusted
Langevin algorithm (pMALA) (Besag 1994; Roberts and
Tweedie 1996) and preconditioned Crank–Nicolson Langevin
(pCNL) (Cotter et al. 2013), related to (overdamped) Langevin
diffusion. Another popular algorithm is Hamiltonian Monte
Carlo (HMC), which introduces a momentum variable and
uses a leapfrog discretization of the deterministic Hamiltonian
dynamics as the proposal scheme combined with momentum
resampling (Duane et al. 1987; Neal 2011). A subtle point is that
the momentum can be artificially negated at the end of leapfrog
to ensure reversibility.
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There are also various MCMC methods, designed by simu-
lating irreversible Markov chains which converge to the target
distribution. One group of algorithms include guided Monte
Carlo (GMC) (Horowitz 1991; Ottobre et al. 2016) and the
underdamped Langevin sampler (UDL) (Bussi and Parrinello
2007), related to the underdamped Langevin dynamics. Another
group of algorithms includes irreversible MALA (Ma et al.
2018) and nonreversible parallel tempering (Syed et al. 2019),
related to lifting with a binary auxiliary variable (Gustafson
1998; Vucelja 2016). A third group of algorithms involve careful
construction of nonreversible Markov updates (Suwa and Todo
2012) or continuous-time Markov processes (Ohzeki and Ichiki
2015; Duncan, Pavliotis, and Zygalakis 2017), without introduc-
ing auxiliary variables. A fourth group of algorithms includes
the bouncy particle (Bouchard-Cote, Vollmer, and Doucet 2018)
and Zig–Zag samplers (Bierkens, Fearnhead, and Roberts 2019),
using Poisson jump processes.

The contribution of this article can be summarized as
follows. First, we propose a broad class of irreversible sampling
algorithms, called HAMS, and develop two specific algorithms,
HAMS-A/B, with appropriate tuning and preconditioning
strategies. Our HAMS algorithms use an augmented target
density (corresponding to a Hamiltonian) with a momentum as
an auxiliary variable. Each iteration of HAMS consists of a pro-
posal step depending on the gradient of the Hamiltonian, and
an acceptance–rejection step using an acceptance probability
different from the usual formula (1). The two steps are designed
to achieve generalized detailed balance and a rejection-free
property for Gaussian targets discussed below. Second, we
formulate a framework of generalized Metropolis–Hastings
sampling, which not only highlights our construction of HAMS
as a special case, but also facilitates possible further development
of irreversible MCMC algorithms. Third, we present several
numerical experiments, where the proposed algorithms consis-
tently yield superior results among existing ones.

Compared with existing algorithms, there are two important
properties which are simultaneously satisfied by our HAMS
algorithms. The first is generalized detailed balance (or gen-
eralized reversibility), where the backward transition is related
to the forward transition after negating the momentum. This
condition is known in the study of continuous dynamics in
physics (Gardiner 1997), where the acceptance–rejection step is
often ignored with small step sizes, but is in general crucial for
proper sampling from a target distribution (see Section 4). By
generalized detailed balance, the momentum can be accepted
without sign negation, which induces an irreversible exploration
of the target. Second, our algorithms satisfy a rejection-free
property (i.e., the proposal is always accepted) when the tar-
get distribution is standard Gaussian. By preconditioning, the
rejection-free property can also be satisfied when the target
distribution is Gaussian with a prespecified variance. For clar-
ity, our algorithms are said to satisfy the Gaussian-calibrated
rejection-free property. A similar motivation can be found in
the construction of the (reversible) pCNL algorithm (Cotter
et al. 2013). From our experiments, this property, combined
with irreversibility, allows our algorithms to achieve superior
results with relatively large step sizes, compared with existing
algorithms using the same preconditioning schemes. We expect
that the HAMS algorithms can perform well in a broad range
of problems, especially when the target distribution roughly
resembles standard Gaussian after preconditioning.

Notation. Assume that a target density π(x) is defined on
R

k. The potential energy function U(x) is defined such that
π(x) ∝ exp{−U(x)} as in physics. Denote the gradient of
U(x) as ∇U(x). The normal (or Gaussian) distribution with
mean μ and variance V is denoted as N (μ, V), and the density
function asN (·|μ, V). Whenever possible, we treat a probability
distribution and its density function interchangeably. Write 0 for
a vector or matrix with all 0 entries, and I for an identity matrix
of appropriate dimensions.

2. Related Methods

We describe several MCMC algorithms, related to our work, for
sampling from a target distribution π(x). Throughout, we write
the current variable as x0, a proposal as x∗, and the next variable
as x1 after the acceptance-rejection step. Denote as � a constant
variance matrix used as an approximation to the variance of the
target π(x).

Random walk Metropolis (RWM) sampling generates a pro-
posal x∗ by directly adding a Gaussian noise to x0 and then
performs acceptance or rejection.

RWM.

• Generate x∗ = x0 + εZ, where Z ∼ N (0, �) and ε > 0 is a
tunable step size.

• Set x1 = x∗ with acceptance probability ρ(x∗|x0) =
min(1, π(x∗)/π(x0)) by (1),
or set x1 = x0 with the remaining probability.

RWM does not exploit gradient information, and may be slow
in exploring the target π(x). On the other hand, RWM is oper-
ationally low-cost, without gradient evaluation.

The preconditioned Metropolis-adjusted Langevin algo-
rithm (pMALA) generates a proposal x∗ by moving along the
gradient from current x0 (Roberts and Tweedie 1996). Hence,
pMALA is more directed and encourages exploration to high
density regions.

pMALA.

• Generate x∗ = x0 − ε2

2 �∇U(x0) + εZ, where Z ∼ N (0, �)

and ε > 0 is a step size.
• Set x1 = x∗ with probability (1), where Q(x∗|x0) =

N (x∗|x0 − ε2

2 �∇U(x0), ε2�),
or set x1 = x0 with the remaining probability.

The preconditioned Crank–Nicolson Langevin (pCNL) algo-
rithm is originally designed for posterior sampling with a latent
Gaussian field model (Cotter et al. 2013). The target density is
π(x) ∝ exp{−U(x)} = exp{�(x)}N (x|0, C), a product of a
likelihood function and a normal prior with variance C. For easy
comparison, we use a parameterization in terms of the step size
ε and the potential gradient, ∇U(x) = −∇�(x) + C−1x.

pCNL.

• Sample Z ∼ N (0, C) and compute

x∗ =
√

1 − ε2x0 + ε2

1 + √
1 − ε2

C∇�(x0) + εZ
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= x0 − ε2

1 + √
1 − ε2

C∇U(x0) + εZ. (2)

• Set x1 = x∗ with probability (1), where Q(x∗|x0) =
N (x∗|x0 − ε2

1+√
1−ε2 C∇U(x0), ε2C),

or set x1 = x0 with the remaining probability.

It is interesting to compare pMALA and pCNL. On one hand,
pCNL is close to pMALA with the preconditioning matrix �

chosen to be C, as the step size ε → 0 and hence ε2

1+√
1−ε2 →

ε2

2 in Equation (2). On the other hand, as ε stays away from 0,
the coefficient ε2

1+√
1−ε2 associated with the potential gradient in

pCNL can differ considerably from ε2

2 in pMALA. As discussed
in Cotter et al. (2013), a simple advantage of pCNL is that when
the likelihood gradient ∇� is dropped, the proposal (2) becomes
x∗ = √

1 − ε2x0 + εZ, which is invariant and reversible with
respect to the prior N (0, C). Hence, for the target N (0, C), the
proposal x∗ is always accepted in pCNL, but not in pMALA. To
achieve such a rejection-free property for Gaussian targets also
plays an important role in our work.

From the preceding discussion, it is natural to define a mod-
ified pMALA algorithm, by replacing the update coefficient ε2

2
with ε2

1+√
1−ε2 in pMALA. Equivalently, this algorithm can also

be obtained from pCNL, by replacing the prior variance C with
a general preconditioning matrix �, which can be specified
as an approximation to the variance of the target distribution
π(x), depending on both the prior and the likelihood. The
modified pMALA algorithm is rejection-free (i.e., the proposal
x∗ is always accepted) when the target density is N (0, �). To
our knowledge, such an extension of pMALA and pCNL appears
not explicitly studied before. In Section 3.5, we obtain modified
pMALA (with � = I) as a boundary case of the proposed
HAMS algorithms (before preconditioning).

Modified preconditioned Metropolis-adjusted Langevin algo-
rithm (pMALA*).

• Generate x∗ = x0 − ε2

1+√
1−ε2 �∇U(x0) + εZ, where Z ∼

N (0, �).
• Set x1 = x∗ with probability (1), where Q(x∗|x0) =

N (x∗|x0 − ε2

1+√
1−ε2 �∇U(x0), ε2�),

or set x1 = x0 with the remaining probability.

We also point out that modified pMALA is distinct from
a related gradient-based algorithm, denoted as mGrad, in Tit-
sias and Papaspiliopoulos (2018), which is proposed in the
context of posterior sampling with the target density π(x) ∝
exp{−U(x)} = exp{�(x)}N (x| 0, C). The associated proposal
scheme can be written as

x∗ = 2
δ

C̃x0 + C̃∇�(x0) + Z = x0 − C̃∇U(x0) + Z,

Z ∼ N (0,
2
δ

C̃2 + C̃), (3)

where C̃ = ( 2
δ

I + C−1)−1 and ∇U(x0) = −∇�(x0) + C−1x0.
Compared with the pCNL proposal (2), when ∇� is dropped, the
proposal (3) is also reversible with respect to N (0, C), but the
coefficient matrix 2

δ
C̃ depends on C instead of being a multiple

of identity. Both pCNL and mGrad can be seen to use only
the prior variance C for preconditioning and hence in general
differ from pMALA*, which explicitly allows a preconditioning
matrix � to capture both the prior and the likelihood. See the
Supplement Section I for further discussion on preconditioning
and auxiliary variable derivations.

The following methods require augmenting the sample space
to include a momentum variable u ∈ R

k, which is assumed to
be normally distributed, u ∼ N (0, M). The variance M is also
called a mass matrix, and the quantity uTM−1u/2 represents
the kinetic energy in physics. The joint target density of (x, u)

becomes

π(x, u) ∝ exp{−H(x, u)} = exp{−U(x) − 1
2

uTM−1u}, (4)

where H(x, u) = U(x) + 1
2 uTM−1u, called a total energy or

Hamiltonian. For sampling from an augmented target distri-
bution π(x, u), HMC generates a proposal by first redrawing a
momentum variable and then performing a series of determin-
istic updates, based on molecular dynamics (MD) simulations
such that the Hamiltonian H(x, u) is approximately preserved
(Duane et al. 1987; Neal 2011).

HMC.

• Sample u∗ ∼ N (0, M), reset u0 = u∗, and set x∗ = x0.
• For i from 1 to nleap, repeat:

u∗ ← u∗ − ε
2∇U(x∗), x∗ ← x∗ + εM−1u∗,

u∗ ← u∗ − ε
2∇U(x∗).

• Set (x1, u1) = (x∗, u∗) with probability min(1, exp(H(x0, u0)
− H(x∗, u∗)))
or set (x1, u1) = (x0, −u0) with the remaining probability.

The steps within the for loop are called leapfrog updates,
which provide an accurate discretization of the Hamiltonian
dynamics, defined as a system of differential equations by New-
ton’s laws of motion such that the Hamiltonian H(x, u) is pre-
served over time. Although the update of u can be ignored, the
acceptance–rejection step above is stated such that the update
of (x, u) matches UDL and GMC later with c = 1, if the
momentum were not resampled. For HMC, both the step size
ε and the number of leapfrog steps nleap need to be tuned.
For automated tuning, it seems popular to use the No-U-Turn
Sampler (Hoffman and Gelman 2014). Nevertheless, HMC often
requires a large number of leapfrog steps for each update of
configurations, which can be computationally wasteful.

An important extension of the Hamiltonian dynamics is
Langevin dynamics, which can be defined as a system of stochas-
tic differential equations,

dxt = ut dt, dut = −η dxt − ∇U(xt) dt + √
2η dWt , (5)

where η > 0 is a friction coefficient and Wt is the standard
Brownian process. In the case of η → 0, the Langevin dynamics
reduces to the deterministic Hamiltonian dynamics, dxt = ut dt
and dut = −∇U(xt) dt. In the high-friction limit (i.e., large η),
the overdamped Langevin diffusion process is obtained: dxt =
−η−1∇U(xt) dt + √

2η−1 dWt . Hence, Equation (5) is also
called underdamped Langevin dynamics. Although Langevin
dynamics has long been used in molecular simulations (e.g., van
Gunsteren and Berendsen 1982), there is extensive and growing
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research related to Langevin dynamics in physics and chemistry
(e.g., Horowitz 1991; Scemama et al. 2006; Bussi and Parrinello
2007; Goga et al. 2012; Grønbech-Jensen and Farago 2013, 2020)
and machine learning and statistics (e.g., Ottobre et al. 2016;
Cheng et al. 2018; Dalalyan and Riou-Durand 2020). In par-
ticular, the Metropolized version of the algorithm in Bussi and
Parrinello (2007) can be described as follows, to accommodate
an acceptance-rejection step.

UDL.

• Sample Z1, Z2 ∼ N (0, M) independently, and compute

u+ = √
cu0 + √

1 − cZ1,
ũ = u+ − ε

2∇U(x0), x∗ = x0 + εM−1ũ,
u− = ũ − ε

2∇U(x∗),
u∗ = √

cu− + √
1 − cZ2,

where 0 ≤ c ≤ 1 is a tuning parameter and can be interpreted
as c = e−ηε .

• Set (x1, u1) = (x∗, u∗) with probability min(1, exp(H(x0, u+)

− H(x∗, u−)))

or set (x1, u1) = (x0, −u0) with the remaining probability.

There are several interesting features in UDL. First, the pro-
posal scheme in UDL contains a (deterministic) leapfrog update,
which is sandwiched by two random updates of the momentum.
Notably, the current momentum u0 is partially refreshed at the
beginning, where the amount of “carryover” is controlled by the
parameter c. At the two extremes, c = 0 or 1, UDL recovers
pMALA or Metropolized leapfrog, respectively. When c = 0,
the first updated momentum u+ = Z1 is independent of u0
and the final updated momentum u∗ = Z2 can be ignored. In
this case, UDL reduces to HMC with one leapfrog step (after
redrawing the momentum) and hence is equivalent to pMALA
as discussed in Neal (2011). When c = 1, UDL generates a
proposal by one leapfrog update and then accept or reject (with
u0 flipped) based on the change in the Hamiltonian.

Second, the proposal scheme in UDL is derived in Bussi and
Parrinello (2007) by a particular choice of operator splitting in
discretizing the Langevin dynamics (5). Compared with other
possible choices, the UDL proposal scheme is shown to satisfy
a generalized formulation of detailed balance. However, as dis-
cussed later in Section 4, whether a sampling algorithm leaves
a target distribution invariant also depends on how acceptance
or rejection is executed. While Bussi and Parrinello (2007)
only mentioned that acceptance–rejection can be performed
similarly as in Scemama et al. (2006), the acceptance-rejection
step above is explicitly added by our understanding. In the
Supplement, we verify the validity of the UDL algorithm in
leaving the target augmented density π(x, u) invariant, using
our proposed framework of generalized Metropolis–Hastings
sampling.

Third, the two momentum updates are in the form of an
order-1 autoregressive process, which leaves the momentum
distribution invariant. As discussed in Bussi and Parrinello
(2007), such updates using two independent noise vectors
are exploited to achieve generalized detailed balance. In fact,
it is instructive to compare UDL with a related algorithm in
Horowitz (1991), which uses only one noise vector per iteration

as described below. For this algorithm, invariance with respect
to π(x, u) is valid because each iteration is a composition of two
steps, first (x0, u0) → (x0, u+) and then (x0, u+) → (x1, u1) by
Metropolized leapfrog, and each step leaves the target π(x, u)

invariant. However, it seems difficult to show that generalized
detailed balance is directly satisfied by the GMC algorithm.
The discussion of GMC in Fang, Sanz-Serna, and Skeel (2014,
sec. V.B.) requires splitting the initial momentum update into
two updates presumably similar as in UDL, and does not
specify how acceptance-rejection would be performed after the
modification.

GMC.

• Sample Z1 ∼ N (0, M), and compute

u+ = √
cu0 + √

1 − cZ1,
ũ = u+ − ε

2∇U(x0), x∗ = x0 + εM−1ũ,
u− = ũ − ε

2∇U(x∗).

• Set (x1, u1) = (x∗, u−) with probability min(1, exp(H(x0, u+)

− H(x∗, u−)))

or set (x1, u1) = (x0, −u+) with the remaining probability.

Another interesting method is the irreversible MALA algo-
rithm in Ma et al. (2018). Compared with our method using an
augmented density with a momentum as an auxiliary variable,
this method relies on a binary auxiliary variable to facilitate
irreversible sampling, while using discretizations of continuous
dynamics in the original variable x as proposal schemes. See
Section 4 and Supplement Section III for further discussion.

3. Proposed Methods

We develop our methods in several steps. We first construct pro-
posal schemes using gradient information, then introduce mod-
ifications to derive a class of generalized reversible algorithms
HAMS, and finally study two specific algorithms, HAMS-A/B,
and propose tuning and preconditioning strategies. To focus
on main ideas, consider the augmented target density (4) with
momentum variance M = I, that is,

π(x, u) ∝ exp(−H(x, u)) = exp(−U(x) − uTu/2), (6)
until Section 3.6 on preconditioning. The proposed algorithms
are then placed in a more abstract framework of generalized
Metropolis–Hastings sampling in Section 4.

3.1. Construction of Hamiltonian Proposals

We provide a simple, broad class of proposal distributions,
which are suitable for use in standard Metropolis–Hastings
sampling from an augmented density π(x, u). These proposal
schemes will be modified later for developing irreversible algo-
rithms.

Given the current variables (x0, u0), a proposal (x∗, u∗) can
be generated as(

x∗
u∗

)
=

(
x0
u0

)
− A

(∇U(x0)
u0

)
+

(
Z1
Z2

)
,(

Z1
Z2

)
∼ N (0, 2A − A2), (7)
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where A is a (2k)×(2k) symmetric positive semi-definite (PSD)
matrix and Z1, Z2 ∈ R

k are Gaussian noises independent of
(x0, u0), with k the dimension of x and that of u. We require
0 ≤ A ≤ 2I, where inequalities between matrices are in the PSD
sense. This ensures that 2A−A2 is also symmetric PSD, although
allowed to be singular. The update in (7) takes a gradient step
from the current variables (x0, u0) and then injects Gaussian
noises (Z1, Z2). Hence, the proposal scheme (7) is similar to that
in pMALA. However, Equation (7) is applied to (x, u) jointly,
instead of x alone.

The proposal scheme (7) can be derived through an auxil-
iary variable argument related to Titsias and Papaspiliopoulos
(2018), but with at least two nontrivial differences: a momentum
variable is included and an over-relaxation technique (Adler
1981; Neal 1998) is exploited to allow I < A ≤ 2I. See
Supplement Section I for further discussion.

Another important motivation for the proposal scheme (7) is
that Metropolis–Hastings sampling using Equation (7) becomes
rejection-free, while generating correlated draws, in the canoni-
cal case where the target density π(x) is N (0, I), that is, U(x) =
xTx/2 with the gradient ∇U(x) = x. In fact, the proposal
scheme (7) in this case gives

(
x∗
u∗

)
= (I − A)

(
x0
u0

)
+

(
Z1
Z2

)
,

(
Z1
Z2

)
∼ N (0, 2A − A2).

(8)
See Law (2014) and Titsias and Papaspiliopoulos (2018), Section
3.4, for related discussion. The update from (x0, u0) to (x∗, u∗)
in Equation (8) can be seen to define an order-1 vector autore-
gressive process, VAR(1), which is invariant and reversible with
respect to N (0, I) due to symmetry of A (Osawa 1988). The
invariance can be easily verified: if (x0, u0) ∼ N (0, I), then
(x∗, u∗) is normal and the mean and variance are

E{(x∗T, u∗T)T} = 0,
var{(x∗T, u∗T)T} = (I − A)(I − A)T + 2A − A2 = I. (9)

The reversibility of Equation (8) with respect to N (0, I) implies
that when the augmented density π(x, u) isN (0, I), Metropolis–
Hastings sampling using the proposal scheme (8) is rejection-
free: the proposal (x∗, u∗) is always accepted. This can also
be shown by using the proposal density, Q(x∗, u∗|x0, u0) =
N (x∗, u∗|(I −A)(xT, uT)T, 2A−A2), and directly verifying that
the acceptance probability (1) with x replaced by (x, u) reduces
to 1.

Our discussion focuses on the proposal scheme (7) for a
Hamiltonian with momentum u ∼ N (0, I) and the VAR(1)
representation (8) in the canonical case x ∼ N (0, I), related to
the normal approximation (S2) in the Supplement with identity
variance I in the auxiliary variable derivation. The development
can be readily extended to handle general variance matrices,
for a momentum distribution u ∼ N (0, M) and a normal
approximation to π(x) with variance matrix �. Nevertheless, as
discussed in Section 3.6, it is convenient to set M = I and if an
approximation of var(x) is available, apply linear transformation
to x such that the target density π(x) can be roughly aligned with
an identity variance � = I.

3.2. HAMS: A Class of Generalized Reversible Algorithms

In this and subsequent sections, we exploit the class of proposals
(7) with general choices of matrix A, to first derive a broad class
of generalized reversible algorithms HAMS and then study two
specific algorithms HAMS-A/B more elaborately.

For simplicity, consider the following form of A matrix in
Equation (7),

A =
(

a1I a2I
a2I a3I

)
, (10)

where each I is a k × k identity matrix and a1, a2, a3 are scalar
coefficients. We require 0 ≤ a1, a3 ≤ 2, a1a3 ≥ a2

2, and (2 −
a1)(2 − a3) ≥ a2

2, such that 0 ≤ A ≤ 2I (in the PSD sense).
Substituting this choice of A into (7) yields

x∗ = x0 − a1∇U(x0) − a2u0 + Z1, (11)
u∗ = u0 − a2∇U(x0) − a3u0 + Z2, (12)

where (ZT
1 , ZT

2 )T ∼ N (0, 2A − A2) as before. As discussed
in Section 3.1, standard Metropolis-Hastings sampling using
this proposal scheme is rejection-free, that is, (x∗, u∗) is always
accepted, when the target density π(x) is N (0, I).

Modification for generalized reversibility. We first make a
modification to (11) and (12) by replacing the momentum u0
with −u0. Although a formal justification is to achieve general-
ized reversibility as shown in Proposition 1, we give a heuristic
motivation by noticing that a2u0 in Equation (11) and a2∇U(x0)
in Equation (12) are of the same sign. In contrast, for the
discretization of Hamiltonian dynamics using Euler’s method:

x∗ = x0 + εu0, u∗ = u0 − ε∇U(x0),

the momentum u0 and gradient ∇U(x0) are of the opposite
signs. This discrepancy can be resolved by setting u0 �→ −u0,
for which (11) and (12) become

x∗ = x0 − a1∇U(x0) + a2u0 + Z1, (13)
u∗ = −u0 − a2∇U(x0) + a3u0 + Z2, (14)

where (ZT
1 , ZT

2 )T ∼ N (0, 2A − A2) as before.
The proposal (x∗, u∗) in (13) and (14) can be accepted or

rejected, similarly as in standard Metropolis–Hastings sam-
pling but using a different acceptance probability, which we
derive through generalized detailed balance. Rewrite the pro-
posal scheme (13)–(14) as

Z̃1 = Z1 − a1∇U(x0) + a2u0, Z̃2 = Z2 − a2∇U(x0) + a3u0,
(15)

x∗ = x0 + Z̃1, u∗ = −u0 + Z̃2. (16)

Equations (15) and (16) determine a forward transition from
(x0, u0) to (x∗, u∗), depending on noises (Z1, Z2). To construct
a backward transition, define new noises

Z∗
1 = Z̃1 − a1∇U(x∗) − a2u∗, Z∗

2 = Z̃2 − a2∇U(x∗) − a3u∗.
(17)

Then (17) and (16) can be equivalently rearranged to

−Z̃1 = −Z∗
1 − a1∇U(x∗) + a2(−u∗),

−Z̃2 = −Z∗
2 − a2∇U(x∗) + a3(−u∗), (18)
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x0 = x∗ + (−Z̃1), −u0 = u∗ + (−Z̃2). (19)

Importantly, (18) and (19) can be seen to correspond to the
same mapping as (15) and (16), but applied from (x∗, −u∗)
to (x0, −u0) using the new noises (−Z∗

1 , −Z∗
2). In other

words, (18)–(19) are obtained from (15) and (16) by replacing
(x0, u0), (x∗, u∗), and (Z1, Z2) with (x∗, −u∗), (x0, −u0), and
(−Z∗

1 , −Z∗
2), respectively.

From the preceding discussion, the forward and backward
transitions of the proposals in (15) and (16), and (18) and (19)
can be illustrated as(

x0
u0

)
(Z1,Z2)−→

(
x∗
u∗

)
,

(
x∗

−u∗
) −(Z∗

1 ,Z∗
2 )−→

(
x0

−u0

)
, (20)

where the two arrows denote the same mapping, depending on
(Z1, Z2) or −(Z∗

1 , Z∗
2). For (ZT

1 , ZT
2 )T ∼ N (0, 2A − A2), the

proposal density from (x0, u0) to (x∗, u∗) is

Q(x∗, u∗|x0, u0) = N (Z1, Z2| 0, 2A − A2),

because the Jacobian of the transformation is 1. Moreover, eval-
uation of the same proposal density from (x∗, −u∗) to (x0, −u0)
gives

Q(x0, −u0|x∗, −u∗) = N (−(Z∗
1 , Z∗

2)| 0, 2A − A2),

because the transition from (x∗, −u∗) to (x0, −u0) is determined
by the same mapping as (x0, u0) to (x∗, u∗), only with the noises
(−Z∗

1 , −Z∗
2) used instead of (Z1, Z2).

By mimicking (and extending) the standard Metropolis–
Hastings probability, we set (x1, u1) = (x∗, u∗) with the accep-
tance probability

ρ(x∗, u∗|x0, u0) = min
(

1,
π(x∗, u∗)Q(x0, −u0|x∗, −u∗)

π(x0, u0)Q(x∗, u∗|x0, u0)

)
,

(21)

or set (x1, u1) = (x0, −u0) with the remaining probability. Then
the probability (21) can be calculated as

ρ(x∗, u∗|x0, u0)

= min

⎛
⎝1,

exp
{
−H(x∗, u∗) − 1

2 Z∗T(2A − A2)−1Z∗
}

exp
{−H(x0, u0) − 1

2 ZT(2A − A2)−1Z
}

⎞
⎠ ,

(22)

where Z = (ZT
1 , ZT

2 )T and Z∗ = (Z∗
1

T, Z∗
2

T)T. Note that u1 = u∗
upon acceptance, but u1 = −u0 in the case of rejection. The
resulting transition from (x0, u0) to (x1, u1) can be shown to
satisfy generalized detailed balance.

Proposition 1. For an augmented density π(x, u) in Equation
(6), let K0(x1, u1|x0, u0) be the transition kernel from (x0, u0) to
(x1, u1), defined by the proposal scheme (15) and (16) and the
acceptance probability (21). Then generalized detailed balance
holds for any (x0, x1)

π(x0, u0)K0(x1, u1|x0, u0) = π(x1, u1)K0(x0, −u0|x1, −u1).
(23)

Furthermore, the augmented density π(x, u) is a stationary
distribution of the Markov chain defined by transition kernel K0.

Condition (23), called generalized detailed balance (or
generalized reversibility), differs from detailed balance (or
reversibility) in standard Metropolis–Hastings sampling
because the momentum variable is negated in defining the
backward transition. Accordingly, the acceptance probability
(21) is called a generalized Metropolis–Hastings probability.
The concept of generalized detailed balance is known in
connection with Fokker–Planck equations in physics (Gardiner
1997, sec. 5.3.4). The momentum is called an odd variable,
for which the time-reversed variable is defined with sign
negation to achieve generalized detailed balance. Such a
generalized detailed balance is used in various algorithms in
physics (Scemama et al. 2006; Bussi and Parrinello 2007; Fang,
Sanz-Serna, and Skeel 2014), but overall seems to be under-
appreciated in the MCMC literature. See Section 4 for a further
extension.

Modification for updating momentums. To further broaden
our method, we introduce another modification to the proposal
scheme (15) and (16). In fact, a potential limitation of (15) and
(16), compared with the popular leapfrog scheme, is that the
updated momentum u∗ ignores the new gradient information
∇U(x∗). To incorporate ∇U(x∗) in updating the momentum,
we revise (16) with an additional term in u∗ as

x∗ = x0 + Z̃1,
u∗ = −u0 + Z̃2 + φ(Z̃1 + ∇U(x0) − ∇U(x∗)), (24)

where φ is a (constant) tuning parameter, and (Z̃1, Z̃2) remain
the same as in Equation (15). Moreover, the update Equation
(24) can be rearranged to

x0 = x∗ + (−Z̃1),
−u0 = u∗ + (−Z̃2) + φ(−Z̃1 + ∇U(x∗) − ∇U(x0)). (25)

With (Z∗
1 , Z∗

2) still defined as Equation (17), (15) and (24) and
(18) and (25) can be seen to be determined by the same map-
ping, similarly as illustrated in Equation (20). The forward
transition is from (x0, u0) to (x∗, u∗) depending on (Z1, Z2),
whereas the backward transition is from (x∗, −u∗) to (x0, −u0)
depending on −(Z∗

1 , Z∗
2). With the modified proposal (x∗, u∗),

the acceptance–rejection is the same as before: set (x1, u1) =
(x∗, u∗) with probability (21) or (x1, u1) = (x0, −u0) with
the remaining probability. Then generalized detailed balance
remains valid for the transition from (x0, u0) and (x1, u1).

Proposition 2. For an augmented density π(x, u) in Equation
(6), let Kφ(x1, u1|x0, u0) be the transition kernel from (x0, u0) to
(x1, u1), defined by the proposal scheme (15) and (24) and the
acceptance probability (21). Then generalized detailed balance
holds for any (x0, x1):

π(x0, u0)Kφ(x1, u1|x0, u0) = π(x1, −u1)Kφ(x0, −u0|x1, −u1).
(26)

Furthermore, the augmented density π(x, u) is a stationary
distribution of the Markov chain defined by transition kernel
Kφ .

General HAMS. Using the proposal scheme and acceptance
probability as in Proposition 2 leads to a class of generalized
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Algorithm 1: General HAMS
Initialize x0, u0
for t = 0, 1, 2, ..., Niter do

Sample w ∼ Uniform[0, 1] and

(Z1, Z2)
T ∼ N(0, 2A − A2) with A =

(
a1I a2I
a2I a3I

)
Z̃1 = Z1 − a1∇U(xt) + a2ut
Z̃2 = Z2 − a2∇U(xt) + a3ut
Propose x∗ = xt + Z̃1 and
u∗ = −ut + Z̃2 + φ(Z̃1 + ∇U(xt) − ∇U(x∗))
Z∗

1 = Z̃1 − a1∇U(x∗) − a2u∗
Z∗

2 = Z̃2 − a2∇U(x∗) − a3u∗
ρ = exp

{
H(xt , ut) − H(x∗, u∗) + 1

2 ZT(2A − A2)−1Z
− 1

2 Z∗T(2A − A2)−1Z∗}
if w < min(1, ρ) then

(xt+1, ut+1) = (x∗, u∗) # Accept
else

(xt+1, ut+1) = (xt , −ut) # Reject

reversible MCMC algorithms, which is called Hamiltonian-
assisted Metropolis sampling (HAMS) and shown in Algo-
rithm 1.

Although the modifications of the proposal scheme from
(11)–(12) to (13)–(14) and then to (15) and (24) are constructed
for different purposes, the resulting HAMS algorithm preserves
the rejection-free property for a standard normal target den-
sity π(x), which is satisfied by standard Metropolis–Hastings
sampling with proposal scheme (11)–(12). In fact, the second
modification from (16) to (24) has no effect when π(x) is
N (0, I), because in this case Z̃1 + ∇U(x0) − ∇U(x∗) = Z̃1 +
x0 − x∗ = 0. The justification for the first modification is
subtler. Whether rejection-free is achieved by a sampling algo-
rithm depends on both the proposal scheme and the associated
acceptance–rejection mechanism. When π(x) is N (0, I), our
HAMS algorithm is rejection-free, due to the fact the proposal
scheme (13) and (14) is used in conjunction with the general-
ized acceptance probability (21), not the standard Metropolis–
Hastings probability. We provide further discussion in Section 4,
where consideration of the rejection-free property for normal
targets is instrumental to a general approach for constructing
generalized reversible algorithms.

Corollary 1. Suppose that the target density π(x) is N (0, I).
Then the generalized acceptance probability (21) or equivalently
(22) reduces to 1, and hence (x∗, u∗) from the proposal scheme
(13) and (14) is always accepted under the HAMS algorithm.

The general HAMS algorithm involves four tuning param-
eters φ, a1, a2, and a3, which need to be specified for practical
implementation. In the following sections, we develop concrete
versions of HAMS with a reduced number of tuning parameters.

3.3. HAMS-A and HAMS-B

The noise term (Z1, Z2) in HAMS is 2k dimensional Gaussian
with variance matrix 2A − A2. There are related methods devel-
oped for simulating Langevin dynamics, using k dimensional

noises at each time step (Grønbech-Jensen and Farago 2013,
2020). We investigate HAMS where the variance matrix 2A−A2

is singular and hence only a k dimensional Gaussian noise is
used in each iteration. There are two possible choices: either A
itself is singular or 2I−A is singular, corresponding to HAMS-A
and HAMS-B below.

HAMS-A. First, we set A singular by taking a1 = a, a3 = b,
and a2 = √

ab in Equation (10). The constraint 0 ≤ A ≤ 2I
reduces to a ≥ 0, b ≥ 0, and a + b ≤ 2. To avoid trivial cases,
we also assume that a > 0. The noise variance becomes

var
(

Z1
Z2

)
= 2A − A2

=
(

a(2 − a − b)I
√

ab(2 − a − b)I√
ab(2 − a − b)I b(2 − a − b)I

)
. (27)

As expected, this implies that Z1 and Z2 are proportional: Z2 =√
b/aZ1. By definitions (15), (24), and (17), it can be easily

verified that Z̃2 = √
b/aZ̃1 and Z∗

2 = √
b/aZ∗

1 as well. The
proportionality between Z∗

1 and Z∗
2 is important, because it

ensures that both forward and backward transitions, illustrated
in Equation (20), can be determined using a single noise vector,
Z1 or −Z∗

1 . Hence, the proposal density from (x0, u0) to (x∗, u∗)
is N (Z1|0, a(2 − a − b)I) and that from (x∗, −u∗) to (x0, −u0)
is N (−Z∗

1 |0, a(2−a−b)I). The acceptance probability (21) can
be evaluated as Equation (28) below, while Equation (22) is not
well defined.

From the preceding discussion, the HAMS algorithm can be
simplified as follows, given the current variables (x0, u0):

Z̃ = Z − a∇U(x0) + √
abu0, Z ∼ N (0, a(2 − a − b)I),

x∗ = x0 + Z̃,

u∗ = −u0 +
√

b
a

Z̃ + φ(Z̃ + ∇U(x0) − ∇U(x∗)),

Z∗ = Z̃ − a∇U(x∗) − √
abu∗.

The proposal (x∗, u∗) is accepted with probability

min
(

1, exp
{

H(x0, u0) − H(x∗, u∗) + ZTZ − (Z∗)TZ∗

2a(2 − a − b)

})
.

(28)
With the choice of φ derived below, this algorithm is shown
as HAMS-A in Algorithm 2, after a transformation Z =√

a(2 − a − b)ζ with ζ ∼ N (0, I).
To derive a specific choice for φ, we examine the situation

where the target density π(x) deviates from standard normal.
As discussed in Section 3.2, the HAMS algorithm is rejection-
free, that is, the acceptance probability (28) is always 1, when
the target density π(x) is N (0, I). We seek a choice of φ such
that the acceptance probability can be minimally affected by the
deviation of γ from 1, when π(x) is N (0, γ −1I). For simplicity,
we study the behavior of the quantity inside exp() in Equation
(28) as γ varies.

Lemma 1. Suppose that the target density π(x) is N (0, γ −1I).
Then the quantity inside exp() in Equation (28) can be expressed
as a quadratic form,

H(x0, u0) − H(x∗, u∗) + ZTZ − (Z∗)TZ∗

2a(2 − a − b)

= (xT
0 , uT

0 , ZT)G(γ )(xT
0 , uT

0 , ZT)T,
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where G(γ ) is a 3 × 3 block matrix. For i, j = 1, 2, 3, the (i, j)th
block of G(γ ) is of the form gij(γ )I, where gij(γ ) is a scalar,
polynomial of γ , with coefficients depending on (a, b, φ). For
any a > 0, b ≥ 0 and a + b ≤ 2, the coefficients of the leading
terms of g11(γ ), g22(γ ), g33(γ ) are simultaneously minimized in
absolute values by the choice φ = √

ab/(2 − a).

It seems remarkable that a single choice of φ leads to simul-
taneous minimization of the absolute coefficients of the leading
terms of g11(γ ), g22(γ ), g33(γ ). Moreover, the particular choice
φ = √

ab/(2−a) also ensures that HAMS-A reduces to leapfrog
or modified pMALA in the special cases where a + b = 2 or
b = 0, as discussed in Section 3.5.

HAMS-B. For a singular 2A−A2, another possibility is to set
2I − A singular. We take a1 = 2 − ã, a3 = 2 − b̃ and a2 =

√
ãb̃

in (10), with the constraints that ã > 0, b̃ ≥ 0 and ã + b̃ ≤ 2.
The noise variance is then

var
(

Z1
Z2

)
= 2A − A2

=
(

ã(2 − ã − b̃)I
√

ãb̃(ã + b̃ − 2)I√
ãb̃(ã + b̃ − 2)I b̃(2 − ã − b̃)I

)
, (29)

which implies that Z1 and Z2 are proportional: Z2 = −
√

b̃/ãZ1.

However, it does not in general hold that Z∗
2 = −

√
b̃/ãZ∗

1 ,

except for the choice φ =
√

b̃/ã. Moreover, this choice of φ

is the only one such that any proportionality between (Z∗
1 , Z∗

2)

holds. This situation is in contrast with HAMS-A, where Z∗
2 =√

b/aZ∗
1 automatically holds for any choice of φ and additional

consideration is needed to derive a specific choice of φ.

Lemma 2. For the preceding choice of A in (10), it holds that
Z∗

2 = rZ∗
1 for a constant coefficient r ∈ R and arbitrary values

(x0, u0, Z1) by definitions (15), (24), and (17) if and only if r =
−

√
b̃/ã and φ =

√
b̃/ã.

To maintain the forward and backward transitions, illus-
trated in Equation (20), using a single noise vector, we take the

only feasible choice φ =
√

b̃/ã. Then the HAMS algorithm can
be simplified as follows, given the current variables (x0, u0):

Z̃ = Z − (2 − ã)∇U(x0) +
√

ãb̃u0, Z ∼ N (0, ã(2 − ã − b̃)I),

x∗ = x0 + Z̃, u∗ = u0 +
√

b̃
ã
(∇U(x0) + ∇U(x∗)),

Z∗ = Z̃ − (2 − ã)∇U(x∗) −
√

ãb̃u∗.

Similarly as discussed for HAMS-A, the acceptance probability
(21) can be evaluated as (28). To facilitate comparison with
HAMS-A, we use a reparameterization, a = 2 − ã and b =
ãb̃/(2 − ã), or equivalently ã = 2 − a and b̃ = ab/(2 − a).
The transformation is one-to-one between {(a, b) : a > 0, b >

0, a+b ≤ 2} and {(ã, b̃) : ã > 0, b̃ > 0, ã+b̃ ≤ 2}. The resulting
algorithm is shown as HAMS-B in Algorithm 2. By the (a, b)

parameterization, the two algorithms, HAMS-A and HAMS-B,
agree in the expressions for x∗.

Algorithm 2: HAMS-A/HAMS-B
Initialize x0, u0
for t = 0, 1, 2, ..., Niter do

Sample w ∼ Uniform[0, 1] and ζ ∼ N (0, I)
Propose
x∗ = xt − a∇U(xt) + √

abut + √
a(2 − a − b)ζ

if HAMS-A then
Propose u∗ =

(
2b

2−a − 1
)

ut −
√

ab
2−a (∇U(xt) +

∇U(x∗)) + 2
√

b(2−a−b)
2−a ζ

ζ ∗ =
(

1 − 2b
2−a

)
ζ −

√
a(2−a−b)

2−a (∇U(xt) +
∇U(x∗)) + 2

√
b(2−a−b)

2−a ut
if HAMS-B then

Propose u∗ = ut −
√

ab
2−a (∇U(xt) + ∇U(x∗))

ζ ∗ = ζ −
√

a(2−a−b)
2−a (∇U(xt) + ∇U(x∗))

ρ = exp
{

H(xt , ut) − H(x∗, u∗) + 1
2ζ Tζ − 1

2 (ζ ∗)Tζ ∗}
if w < min(1, ρ) then

(xt+1, ut+1) = (x∗, u∗) # Accept
else

(xt+1, ut+1) = (xt , −ut) # Reject

3.4. Default Choices of Carryover

While the (a, b) parameterization arises naturally in our devel-
opment above, the (ε, c) parameterization used in existing algo-
rithms (see Section 2) has a desirable interpretation, with ε

corresponding to a step size and c the amount of carryover
momentum. By matching leapfrog and modified pMALA in
special cases (see Section 3.5), our HAMS algorithms can be
translated into an (ε, c) parameterization with the following
formulae:

a = ε2

1 + √
1 − ε2

= 1 −
√

1 − ε2,

b = c(2 − a), 0 ≤ ε, c ≤ 1. (30)

Because a is expressed as a function of ε only, and b given a is
a function of c only, we also refer to a as a step size and b as a
carryover.

So far, the number of tuning parameters is reduced from
four in general HAMS (Algorithm 1) to two in HAMS-A/B
(Algorithm 2). To facilitate applications, we seek to further
reduce tuning complexity by studying the lag-1 auto-covariance
matrix for a HAMS chain in stationarity when the target density
π(x) is standard normal.

Lemma 3. Suppose that the target density π(x) is N (0, I), and
(x0, u0) ∼ N (0, I). Given step size a, the maximum mod-
ulus of the eigenvalues of the lag-1 auto-covariance matrix
cov((x0, u0), (x1, u1)) is minimized by the following choice of b:

HAMS-A: b = (
√

2 − √
a)2,

HAMS-B: b = a(2 − a)

(
√

2 + √
2 − a)2

. (31)

For convenience, the formulae (31) can be used as the default
choices of carryover b, given step size a. On the other hand, such
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choices are derived under an idealized setting, where the target
density π(x) is N (0, I). For the default tuning to be effective, we
often need to first apply transformations to bring π(x) closer
to N (0, I), which will be discussed in Section 3.6. If such a
transformation is not available for various reasons, then it is
preferable to tune both a and b instead of using the default values
in (31).

Our strategy in identifying choices of a, b, φ involve various
considerations, including Lemmas 1 and 3 based on normal
targets. These ideas share certain similarity with the integration
schemes for HMC proposed in Blanes, Casas, and Sanz-Serna
(2014), where integration coefficients are optimized in terms
of a criterion related to acceptance rates under the standard
normal target. A notable difference, however, is that the HAMS
algorithm is, by construction, rejection-free (with acceptance
rates equal to 1) under standard normal.

3.5. Special Cases of HAMS-A/B

Recall that the constraints on the step size and carryover are a ≥
0, b ≥ 0, a+b ≤ 2. In the following, we examine three boundary
cases.

The first case is when a + b = 2 (or equivalently c = 1). For
both HAMS-A and HAMS-B, the updates become deterministic
from (x0, u0) to (x∗, u∗) . To help understanding, we introduce
an intermediate variable ũ. Then the updates can be written as

ζ ∼ N (0, I), ζ ∗ = −ζ (HAMS-A), ζ ∗ = ζ (HAMS-B),

ũ = u0 −
√

a
2 − a

∇U(x0) = u0 − ε

1 + √
1 − ε2

∇U(x0),

x∗ = x0 + √
a(2 − a)ũ0 = x0 + εũ,

u∗ = ũ −
√

a
2 − a

∇U(x∗) = ũ − ε

1 + √
1 − ε2

∇U(x∗),

where the Metropolis ratio is ρ = exp(H(x0, u0) − H(x∗, u∗)).
The above is similar to the leapfrog discretization of the Hamil-
tonian dynamics but with step size ε/(1 + √

1 − ε2) instead
of ε/2 for momentum updates. The proposal (x∗, u∗) can be
accepted or rejected (with u0 flipped) based on the change in
the Hamiltonian from the update. Incidentally, this modified
leapfrog scheme can be used in place of the usual leapfrog
scheme in HMC or UDL such that the Gaussian-calibrated
rejection-free property is satisfied.

The second case is when b = 0 (or equivalently c = 0). We
introduce another intermediate variable ζ̃ to the updates. Then
HAMS-A and HAMS-B reduce to

ζ ∼ N (0, I), u∗ = −u0 (HAMS-A), u∗ = u0 (HAMS-B),

ζ̃ = ζ −
√

a
2 − a

∇U(x0) = ζ − ε

1 + √
1 − ε2

∇U(x0),

x∗ = x0 + √
a(2 − a)ζ̃ = x0 + εζ̃ ,

ζ ∗ = ζ̃ −
√

a
2 − a

∇U(x∗) = ζ̃ − ε

1 + √
1 − ε2

∇U(x∗),

where the Metropolis ratio is ρ = exp(U(x0)−U(x∗)+ 1
2ζ Tζ −

1
2 (ζ ∗)Tζ ∗). Hence, u0 remains unchanged in HAMS-B, and is

negated in HAMS-A, although the update of u0 is irrelevant
in this case. The update of x0 to x∗ and acceptance-rejection
coincide with modified pMALA in Section 2, which differs from
ordinary pMALA because the step size ε2/(1 + √

1 − ε2) is
associated with ∇U(x0) for updating x0, instead of ε2/2.

The third case is when a = 0 (or equivalently ε = 0).
This case is not interesting because x remains constant. Our
discussion is for completeness. When a = 0, HAMS-B sets all
variables constant: x∗ = x0, u∗ = u0, and ζ ∗ = ζ . HAMS-A
gives the updates

ζ ∼ N (0, I), x∗ = x0,

u∗ = (b − 1)u0 + √
b(2 − b)ζ ,

ζ ∗ = (1 − b)ζ + √
b(2 − b)u0.

In this case, the Metropolis ratio is always 1. Hence, HAMS-A
can be viewed as an autoregressive process on u while x remains
constant.

Finally, we note that our HAMS-A/B algorithms differ from
UDL (Bussi and Parrinello 2007), which uses two noise vectors
per iteration, although UDL also recovers leapfrog and pMALA
in the extreme cases of c = 1 and c = 0, respectively.

3.6. Preconditioning

As commonly recognized in MCMC literatures, if there is infor-
mation about the variance structure of the target density, then
the performance of MCMC samplers can be improved by apply-
ing a linear transformation, that is, preconditioning. Suppose
that � is an approximation to Var(x), or M is an approximation
to Var−1(x). Then RWM and pMALA involve preconditioning
using the approximate variance � on x, whereas HMC and UDL
involve preconditioning using M as the momentum variance.
These two approaches are conceptually equivalent, as discussed
in the context of HMC by Neal (2011), although one can be more
preferable than the other in computational implementations.

We use the first approach of preconditioning: applying a
linear transformation to the original variable x while keeping
the momentum u ∼ N (0, I). Let L be the lower triangu-
lar matrix obtained from the Cholesky decomposition M =
LLT. The transformed variable is x̃ = LTx. If x is approxi-
matelyN (0, M−1), then x̃ is approximatelyN (0, I). Application
of HAMS-A/B in Algorithm 2 to the transformed variable x̃
leads to HAMS-A/B algorithms with preconditioning, which are
shown in Algorithm 3. The gradient of the potential after the
transformation, denoted as ∇U(x̃), is L−1∇U(x).

Our Algorithm 3 is carefully formulated, such that trans-
forming x and keeping u ∼ N (0, I) improves computational
efficiency, compared with using the original variable x and
u ∼ N (0, M). See the Supplement Section IV.8 for details of
simplification. Excluding the evaluation of U(x) and ∇U(x),
Algorithm 3 involves 2 matrix-by-vector multiplications per
iteration, (LT)−1x̃∗ and L−1∇U(x∗). Moreover, computation of
the Metropolis ratio ρ is also optimized, requiring only 1 inner
product instead of 4 as in Algorithm 2. In contrast, UDL as
described in Section 2 needs 5 matrix-by-vector multiplications
per iteration: 2 for sampling from N (0, M), 1 for computing
x∗, and 2 in the Metropolis ratio. In the simulation studies,
we implement UDL with reduced runtime in a similar way as
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Algorithm 3: HAMS-A/HAMS-B (with preconditioning)
Initialize x0, u0, x̃0 = LTx0 and ∇U(x̃0) = L−1∇U(x0).
for t = 0, 1, 2, ..., Niter do

Sample w ∼ Uniform[0, 1] and ζ ∼ N (0, I)
ξ = √

abut+√
a(2 − a − b)ζ , x̃∗ = x̃t−a∇U(x̃t)+ξ

Propose x∗ = (LT)−1x̃∗
∇U(x̃∗) = L−1∇U(x∗), ξ̃ = ∇U(x̃∗) + ∇U(x̃t)

ρ = exp
{

U(xt) − U(x∗) + 1
2−a (ξ̃ )T(ξ − a

2 ξ̃ )
}

if w < min(1, ρ) then
xt+1 = x∗, x̃t+1 = x̃∗, ∇U(x̃t+1) = ∇U(x̃∗)
# Accept
if HAMS-A then

ut+1 =
(

2b
2−a − 1

)
ut + 2

√
b(2−a−b)

2−a ζ −
√

ab
2−a ξ̃

if HAMS-B then
ut+1 = ut −

√
ab

2−a ξ̃

else
xt+1 = xt , ut+1 = −ut , x̃t+1 = x̃t , ∇U(x̃t+1) =
∇U(x̃t) # Reject

Algorithm 3, in order to make fair comparisons with HAMS-
A/B.

4. Generalized Metropolis–Hastings Sampling

Our development in Section 3 presents a concrete class of gener-
alized reversible algorithms, HAMS, using an augmented target
density originated from a Hamiltonian in physics. In this sec-
tion, we discuss a flexible framework of generalized Metropolis–
Hastings sampling for a target distribution satisfying an invari-
ance property. This framework not only accommodates and
sheds light on our construction of HAMS at a more abstract
level, but also facilitates possible further development of irre-
versible MCMC algorithms.

Importance of rejection. Before describing our generaliza-
tion, it is instructive to discuss a fictitious generalization of
Metropolis–Hastings sampling, which satisfies a reversibility-
like condition upon acceptance of a proposal, but in general fails
to leave a target density invariant due to improperness incurred
when a proposal is rejected.

Let π(y) be a prespecified probability density function on a
space Y . By abuse of notation, we allow that π(y) be directly a
target density π(x) in the context of Section 1 or an augmented
target density π(x, u) with auxiliary variables u. Consider an
MCMC algorithm with the following transition kernel given a
current value y0.

A fictitious generalization of Metropolis–Hastings sampling.

• Sample y∗ from a (forward) proposal density Q(·|y0);
• Set y1 = y∗ with the acceptance probability

ρ̃(y∗|y0) = min
(

1,
π(y∗)Qb(y0|y∗)
π(y0)Q(y∗|y0)

)
,

or set y1 = y0 with the remaining probability, where Qb(·|y∗)
is a backward proposal density.

Let K̃(y1|y0) be the (forward) transition kernel from y0 to
y1 for the sampling scheme above. Then for any y1 
= y0 (i.e.,
a proposal is accepted, y1 = y∗), it can be easily shown that
K̃(y1|y0) = Q(y1|y0)ρ̃(y1|y0) and, by a symmetry argument,

π(y0)K̃(y1|y0) = π(y1)K̃b(y0|y1), (32)

where K̃b(y0|y1) = Qb(y0|y1)ρ̃(y0|y1). If (32) were satisfied for
y1 = y0 as well (i.e., a proposal is rejected), then integrating (32)
over y0 would indicate

∫
π(y0)K̃(y1|y0) dy0 = π(y1), that is, the

transition kernel K̃ leaves π(·) invariant. Standard Metropolis–
Hastings sampling corresponds to choosing Qb = Q, in which
case (32) holds trivially for y1 = y0 as well as for y1 
= y0, Such
a condition (32) with K̃b = K̃ is known as detailed balance
or reversibility. For Qb 
= Q, however, (32) may not hold for
y1 = y0, in spite of the fact that (32) is satisfied for y1 
= y0.
Therefore, the preceding sampling scheme in general fails to
leave π(·) invariant, for the complication caused by rejection of
a proposal.

Our discussion above uses an heuristic interpretation of the
transition kernel K̃ in the case of rejection of a proposal. The
issue is also reflected in the difficulty to obtain a more rigorous
justification similar as in Tierney (1994). See (Ma et al. 2018, sec.
3.3), for a related discussion on a naive approach for construct-
ing irreversible samplers.

Generalized Metropolis–Hastings sampling. As motivated by
our construction of HAMS algorithms, we propose generalized
Metropolis–Hastings sampling provided that a target density
π(y) is invariant under an orthogonal transformation. Let J be
an orthogonal matrix J such that π(J−1y) = π(y) for y ∈ Y . By
the change of variables with | det(J)| = 1, this is equivalent to
requiring that for any set C ⊂ Y ,∫

J(C)

π(y) dy =
∫

C
π(y) dy. (33)

where J(C) = {Jy : y ∈ C} ⊂ Y . Consider a sampling algorithm
defined by the following transition kernel given a current value
y0.

Generalized Metropolis–Hastings sampling (GMH).

• Sample y∗ from a (forward) proposal density Q(·|y0).
• Set y1 = y∗ with the acceptance probability

ρ(y∗|y0) = min
(

1,
π(J−1y∗)Q(Jy0|J−1y∗)

π(y0)Q(y∗|y0)

)
, (34)

or set y1 = Jy0 with the remaining probability.

Condition (33) is trivially satisfied for J = I (the identity
matrix), in which case the preceding algorithm reduces to stan-
dard Metropolis–Hastings sampling.

There are two notable differences compared with the ficti-
tious generalization earlier. First, the backward proposal density
is explicitly defined as Q(Jy0|J−1y∗). It is helpful to think of
the proposal density Q(y∗|y0) as being induced by a stochastic
mapping, y∗ = M(y0; Z) for a noise Z. Then Q(Jy0|J−1y∗)
corresponds to the density of Jy0 given J−1y∗ under the same
mapping, Jy0 = M(J−1y∗; Z∗), but with a new noise Z∗ consid-
ered to be identically distributed as Z. See, for example, (36) and
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(37) below. Hence, the forward and backward transitions of the
proposals can be illustrated, similarly to Equation (20), as

y0
Z−→ y∗, J−1y∗ Z∗−→ Jy0,

where the two arrows denote the same mapping, depending on
Z or Z∗. Second, the next variable y1 is defined as Jy0 instead of
y0, in the case of rejection. The generalization can be shown to
be valid in leaving the target distribution π(y) invariant.

Proposition 3. Suppose that invariance (33) is satisfied. Let
K(y1|y0) be the (forward) transition kernel from y0 to y1 for
generalized Metropolis–Hastings sampling. Then generalized
detailed balance holds for any (y0, y1):

π(y0)K(y1|y0) = π(y1)K(Jy0|J−1y1), (35)

Moreover, the target density π(y) is a stationary density of the
Markov chain defined by the transition kernel K(y1|y0).

To connect with HAMS, generalized Metropolis–Hastings
sampling is discussed above in terms of continuous variables.
However, our framework can be broadened to accommodate
both continuous and discrete variables, by allowing Jy to be an
orthogonal-like mapping, for example, flipping a binary variable
from one value to the other. In the Supplement Section III,
we show that the irreversible jump sampler (I-Jump) in Ma
et al. (2018) can be obtained as a special case of generalized
Metropolis–Hastings sampling with a symmetric, binary auxil-
iary variable. Hence, our HAMS algorithm differs from I-Jump
in using a momentum as an auxiliary variable, and exploiting
symmetry of mean-zero normal distributions.

Generalized gradient-guided Metropolis sampling. The frame-
work of generalized Metropolis–Hastings sampling allows a
flexible specification of the proposal density Q. Our HAMS
algorithms use a proposal scheme which takes a gradient step
and then adds Gaussian noises. Using a similar update scheme,
Equation (36), in generalized Metropolis–Hastings sampling
leads to a class of gradient-guided sampling algorithms. Simi-
larly as in Section 3.1, let 0 ≤ A ≤ 2I be a symmetric matrix
in the order on PSD matrices. For a target π(y), a potential
function U(y) is defined such that π(y) ∝ exp{−U(y)}. This
potential U(y) can be the augmented potential U(x)+uTu/2 in
Section 3.

Generalized gradient-guided Metropolis sampling (G2MS).

• Generate y∗ as

y∗ = y0 − B∇U(y0) + Z, Z ∼ N (0, 2A − A2), (36)

where B = I − (I − A)J and 2A − A2 = B + BT − BBT.
Compute Z∗ by

Jy0 = J−1y∗ − B∇U(J−1y∗) + Z∗, (37)

obtained by replacing (y0, y∗) with (J−1y∗, Jy0) and Z with Z∗
in Equation (36).

• Set y1 = y∗ with the acceptance probability (34), simplified
as

ρ(y∗|y0) = min
(

1,
π(y∗)N (Z∗|0, 2A − A2)

π(y0)N (Z|0, 2A − A2)

)
, (38)

or set y1 = Jy0 with the remaining probability.

Corollary 2. Suppose that invariance (33) is satisfied. The con-
clusions of Proposition 3 hold with transition kernel K defined
by generalized gradient-guided Metropolis sampling.

In addition to exploiting gradient information, the G2MS
algorithm is carefully designed to achieve the rejection-free
property when the target density π(y) is N (0, I), which satisfies
invariance (33) for any orthogonal matrix J. In this case, U(y) =
yTy/2 with gradient ∇U(y) = y, and hence the proposal scheme
(36) becomes

y∗ = (I − A)Jy0 + Z, Z ∼ N (0, 2A − A2). (39)

The update from y0 to y∗ defines a VAR(1) process, which
admits N (0, I) as a stationary distribution, that is, if y0 ∼
N (0, I) then y∗ ∼ N (0, I), by similar calculation as in Equation
(9). However, stationarity of Equation (39) with respect to
N (0, I) does not automatically imply rejection-free. In fact,
because (I − A)J may be asymmetric, the VAR(1) process in
Equation (39) is in general irreversible. Standard Metropolis–
Hastings sampling using the proposal scheme (39) is not
rejection-free when π(y) is N (0, I). Otherwise, the resulting
Markov chain is irreversible, which contradicts reversibility
of standard Metropolis–Hastings sampling. Nevertheless, the
G2MS algorithm achieves rejection-free when π(y) is N (0, I),
due to the combination of the proposal scheme (39) with the
generalized acceptance probability (38). In other words, the
backward proposal density induced from Equation (37) agrees
with the conditional density of y0 given y∗ if y0 ∼ N (0, I) and
y∗ is generated by Equation (39). See the proof for details.

Corollary 3. Suppose that the target density π(y) is N (0, I).
Then the generalized acceptance probability (38) reduces to 1,
and hence y∗ from the proposal scheme (36) is always accepted
under the G2MS algorithm.

From the preceding discussion, the G2MS algorithm can be
seen as being extended from a VAR(1) process in the form
Equation (39). For completeness, we remark that the form of
Equation (39) depending on A and J is universal. In fact, con-
sider a general VAR(1) process

y∗ = (I − B̃)y0 + Z, Z ∼ N (0, B̃ + B̃T − B̃B̃T), (40)

where B̃ is a possibly asymmetric matrix such that B̃+ B̃T − B̃B̃T

is (symmetric and) PSD. Let I − B̃ = O1
O2 be a singular value
decomposition, where O1 and O2 are orthogonal matrices, 
 is
a diagonal matrix containing the singular values of I − B̃. Then
I − B̃ can be written as

I − B̃ = (O1
OT
1 )(O1O2) = (I − Ã)J̃,

where Ã = I − O1
OT
1 is symmetric and J̃ = O1O2 is

orthogonal. Moreover, the noise variance becomes B̃ + B̃T −
B̃B̃T = I−(1−B̃)(I−B̃)T = I−(I−Ã)2 = 2Ã−Ã2. Therefore,
the VAR(1) process (40) can be put in the form Equation (39).

Back to HAMS. The invariance (33) can be satisfied by an
augmented target density defined with auxiliary variables. In
fact, our HAMS algorithms can be recovered as special cases
of generalized Metropolis–Hastings sampling, with π(y) =
π(x, u) in Equation (6) and J a block-diagonal matrix with
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(I, −I) on the diagonal. The invariance (33) is satisfied due
to evenness of mean-zero normal distributions. The HAMS
algorithm studied in Proposition 1 is a special case of G2MS
with matrix A in Equation (10). The HAMS algorithm in Propo-
sition 2 is not contained in G2MS due to a modification with
φ 
= 0, but can still be treated in the framework of generalized
Metropolis–Hastings sampling, with the forward and backward
proposal schemes discussed in Section 3.2. The general discus-
sion here broadens our understanding of HAMS algorithms and
opens doors for further development.

5. Simulation Studies

We report simulation studies comparing HAMS-A/B with
RWM, pMALA, pMALA*, HMC, UDL, GMC, and mGrad
(see Section 2). We include RWM as a performance baseline.
The simulations include a multivariate normal distribution,
a multilevel logistic (MLogit) regression model, a stochastic
volatility (SV) model and a log-Gaussian Cox model. For space
limitation, the normal and SV experiments, mGrad results in
the other two experiments, and plots for GMC and pMALA*
are deferred to the Supplement.

For the latent-variable models, all algorithms except mGrad
are implemented using the same preconditioning schemes.
Two sets of experiments are conducted. First, for sampling
latent variables with fixed parameters, constant preconditioning
matrices are derived by taking the model expectation of the
Hessian in the SV and Cox experiments (Girolami and Calder-
head 2011), or evaluating the Hessian at fixed latent variables in
the MLogit experiments. Second, for Gibbs sampling which
alternately samples latent variables and parameters, a two-
stage procedure is applied: first no preconditioning to obtain
rough parameter estimates, and then sampling using fixed
preconditioning matrices (evaluated at the rough parameters)
for latent variables and parameters, respectively. Further details
are provided in the subsequent sections and the Supplement.
Our preconditioned HMC implementation is equivalent in the
first set of experiments to Riemann manifold HMC (RMHMC)
in Girolami and Calderhead (2011), but differs in the second
set of experiments from RMHMC, where the preconditioning
matrices are continuously updated in the two blocks of Gibbs
sampling, hence with even greater computational cost.

For ease of comparison and tuning, we use the (ε, c) param-
eterization for HAMS-A and HAMS-B, which is equivalent to
the (a, b) parameterization by Equation (30). For the stochastic
volatility and log-Gaussian Cox experiments, we fix the num-
ber of leapfrog steps for HMC similarly as in Girolami and
Calderhead (2011): nleap = 50 in sampling latent variables or
nleap = 6 in sampling parameters. For the multilevel logistic
experiments, we fix nleap = 20 in sampling latent variables and
nleap = 7 in sampling parameters, after trial runs using nleap in
{10, 20, . . . , 50} and {5, 6, 7, 8} respectively. When precondition-
ing is applied, the c values for HAMS-A/B as well as UDL and
GMC are determined in terms of ε, by translating the default
choices of b given a in Equation (31). Without preconditioning,
the c values are specified by the following consideration. Recall
that the first momentum update of UDL is u+ = √

cu0 +√
1 − cZ1 in the form of an AR(1) process. With the noise Z1 ∼

N (0, 1), the lag-h auto-covariance for AR(1) is γ (h) = ch/2.

Heuristically, to mimic refreshing momentums after leapfrog
steps in HMC, we choose c = γ (h)2/h with h = nleap and a
small value, 0.001, for γ (h). For example, we set c = 0.76 or
0.1 corresponding to nleap = 50 or 6 and c = 0.5 or c = 0.14
corresponding to nleap = 20 or 7.

For tuning, we adjust step size ε during a burn-in period
to achieve reasonable acceptance rates: 25–45% for RWM, 50–
60% for mGrad, and 70–80% for all other methods. See the
Section V.4 (supplementary material) for details. Samples are
then collected after the burn-in.

To evaluate MCMC samples, a useful metric is the effective
sample size, ESS = n/{1 + 2

∑∞
k=1 ρ(k)}, where n is the total

number of draws and ρ(k) is the lag-k correlation. We report two
estimators of ESS that are both suitable for irreversible Markov
chains obtained by HAMS-A/B as well as UDL and GMC. The
first one is Bartlett’s (1948) window estimator as in Ma et al.
(2018):

ESS1 = n

1 + 2
∑K

k=1

(
1 − k

K

)
ρ(k)

, (41)

where the cut-off value K is a large number (taken to be 3000
in our results). For repeated simulations, the ESS1 estimates are
averaged from individual chains. The second one (labelled as
ESS2) is defined from the within and between variances from
multiple chains in repeated simulations. Suppose that we have
m Markov chains each with n draws, denoted as {xij : i =
1, . . . , n, j = 1, . . . , m}. Then ESS can be estimated by

ESS2 = n
W
B

, W = 1
m(n − 1)

∑
i,j

(xij − x̄.j)
2,

B = n
m − 1

∑
j

(x̄.j − x̄)2, (42)

where x̄.j = n−1 ∑n
i=1 xij and x̄ = m−1 ∑m

j=1 x̄.j. In fact,
B/n is an estimator of the variance of the average of n draws,
whereas W is an estimator of the marginal variance of x. The
estimator ESS2 is based on directly measuring consistency
between repeated simulations, whereas ESS1 is determined
solely by auto-correlations within individual simulations. Both
ESS estimators are computed from each coordinate for a multi-
dimensional distribution. As in Girolami and Calderhead
(2011), we report the minimum ESS over all coordinates,
adjusted by runtime, as a measure of computational efficiency.

5.1. Multilevel Logistic Regression

Consider a multilevel logistic regression model (Gelman and
Hill 2007, chap. 14), where the outcome is the political sup-
port according to polling data before the 1988 U.S. presidential
election, defined as yi = 1 or 0 for Republican or Democratic
supporters, i = 1, ..., 2015. The outcome is associated with
sex (male or female), race (black or other), age (4 categories),
education (4 categories), states (49 categories), and the previous
voting records as

P(yi = 1) = expit(β1 + β2 femalei + β3 blacki + β4 blacki

× femalei + β5 previousi + xage
k[i] + xedu

l[i]
+ xage×edu

k[i]×l[i] + xstate
j[i] + xregion

m[i] ),
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Table 1. Runtime and ESS comparison for sampling latent variables in the multilevel logistic regression.

Method Time (s) ESS1 (min, median, max) minESS1
Time ESS2 (min, median, max) minESS2

Time

HAMS-A 21.2 (13034, 17315, 22773) 614.8 (2750, 5242, 9950) 129.7
HAMS-B 20.3 (43659, 57046, 71749) 2149.1 (11639, 17191, 29344) 573.1
UDL 20.1 (1815, 2557, 3336) 90.3 (541, 796, 1416) 26.9
GMC 20.1 (2553, 3378, 4223) 127.2 (671, 985, 1945) 33.4
HMC 257.8 (10085, 15846, 32386) 39.1 (28, 255, 1068) 0.1
pMALA 19.4 (1337, 1838, 2254) 69.0 (342, 523, 970) 17.6
pMALA* 18.9 (11457, 14795, 19089) 605.5 (2870, 4735, 7852) 151.7
RWM 6.9 (11, 22, 36) 1.5 (0.3, 1.1, 1.9) 0.04

NOTE: Results are averaged over 50 repetitions.

Figure 1. Time-adjusted trace and ACF plots of one latent variable from an individual run for sampling latent variables in the multilevel logistic regression.

where the multilevel coefficients or latent variables (78 in total)
are independently Gaussian:

xage
k ∼ N (0, σ 2

1 ), k = 1, ..., 4,

xedu
l ∼ N (0, σ 2

2 ), l = 1, ..., 4,

xage×edu
k,l ∼ N (0, σ 2

3 ), k, l = 1, ..., 4,

xstate
j ∼ N (0, σ 2

4 ), j = 1, ..., 49,

xregion
m ∼ N (0, σ 2

5 ), m = 1, ..., 5.

The parameters of interest are θ = (βT, σ T)T, with β =
(β1, . . . , β5)

T and σ = (σ1, . . . , σ5)
T. Denote as y the outcome

vector (y1, . . . , y2015)
T and as x the vector of 78 latent variables.

Two sets of experiments are conducted. First, we fix param-
eter values and sample latent variables from p(x|y, θ). Then
we perform Bayesian analysis and sample both latent variables
and parameters from p(x, θ |y). See Supplement Section V.1 for
expressions of gradients and preconditioning matrices used.

For the first experiment, we only sample latent variables
and fix parameters at the estimates obtained from the R
package lme4, β = (−3.49, −1.64, −0.09, −0.17, 7.02)T and
σ = (0.002, 0.105, 0.150, 0.197, 0.174)T. For preconditioning,
we approximate the inverse variance var−1(x) by the Hessian
M = −∇2 log p(x|y, θ) evaluated at x = 0 for HAMS-
A/B, UDL, GMC and HMC and use the approximate variance
� = M−1 for pMALA, pMALA* and RWM. As mentioned
earlier, we use nleap = 20 for HMC and choose c given ε by
(30) and (31) for HAMS-A/B and UDL. All algorithms are run
for 5000 burn-in iterations, and then samples are collected from
5000 iterations. The simulation process is repeated for 50 times.

Table 1 shows the runtime and ESS comparison. Clearly,
HAMS-B has the best performance in terms of time-adjusted
minimum ESSs, followed by HAMS-A and pMALA*. The
superior performances of HAMS-A/B and pMALA* can be
attributed to the fact that larger step sizes are used by these
three methods than others, while maintaining high acceptance



14 Z. SONG AND Z. TAN

Figure 2. Time-adjusted and centered plots of sample means of all latent variables over 50 repetitions for sampling latent variables in the multilevel logistic regression.

Table 2. Comparison of posterior sampling in the multilevel logistic regression.

Method Time (s) Sample Mean minESS1
Time

minESS2
Time

β1 (sd) β5 (sd) σ4 (sd) σ5 (sd) (β , σ) (β , σ)

HAMS-A 43.9 −3.38 (0.315) 6.77 (0.487) 0.22 (0.023) 0.39 (0.079) (1.885, 0.461) (0.222, 0.093)
HAMS-B 43.8 −3.37 (0.522) 6.81 (0.382) 0.23 (0.023) 0.47 (0.345) (1.711, 0.422) (0.092, 0.038)
UDL 43.9 −3.47 (0.437) 6.83 (0.630) 0.21 (0.055) 0.42 (0.278) (1.649, 0.713) (0.113, 0.029)
GMC 43.8 −3.31 (0.591) 6.88 (0.838) 0.21 (0.063) 0.44 (0.387) (1.773, 0.462) (0.070, 0.027)
HMC 404.8 −3.42 (0.118) 6.86 (0.092) 0.22 (0.014) 0.44 (0.037) (1.844, 0.297) (0.233, 0.087)
pMALA 44.4 −3.21 (1.151) 6.55 (0.805) 0.22 (0.041) 0.65 (0.629) (1.421, 0.366) (0.017, 0.026)
pMALA* 44.3 −3.46 (0.377) 6.96 (0.621) 0.23 (0.042) 0.42 (0.167) (0.749, 0.240) (0.173, 0.070)
RWM 22.7 −3.33 (0.489) 6.76 (0.743) 0.22 (0.055) 0.49 (0.292) (1.632 0.537) (0.168, 0.047)

NOTE: Standard deviations of sample means are in parentheses. Results are averaged over 20 repetitions.

rates. See the supplementary material, Figure S4, where the
step sizes for these three methods increase to almost 1, and
the acceptance rates are still over 90%. A possible explanation
for these differences is that HAMS-A/B and pMALA* (but not
pMALA) satisfy the Gaussian-calibrated rejection-free property
and hence is more capable of achieving reasonable acceptance
rates with relatively large step sizes when the target density is
roughly standard Gaussian after preconditioning.

An interesting phenomenon about the ESSs from HAMS-
A/B, pMALA* as well as HMC is that an ESS value estimated by
both (41) and (42) can exceed the number of draws, 5000, due
to negative auto-correlations. Figure 1 shows trace plots of one
latent variable and auto-correlation function (ACF) plots from
an individual run. The plots for each method are adjusted for
runtime after burn-in: we keep the number of draws inversely

proportional to the runtime, with RWM keeping all 5000 draws
as the baseline. All time-adjusted plots are produced similarly
in this and subsequent sections. From the trace plots, HAMS-
A and HAMS-B appear to mix better than other methods.
Moreover, the ACFs of HAMS-A and HAMS-B decay faster
to 0 compared with other methods, while exhibiting negative
auto-correlations. For HAMS-B, its large ESS values might be
explained by the negative auto-correlations at several consecu-
tive small lags.

Figure 2 shows the time-adjusted plots of the sample means
of all latent variables for each method over 50 repeated runs.
For each latent variable located on the x-axis, the 50 sample
means are plotted along the y-axis. The plots are centered at the
corresponding averages, and narrower spreads indicate that a
method is more consistent across repeated simulations. Clearly,
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Figure 3. Time-adjusted posterior density plots of parameters (20 repetitions overlaid) in the multilevel logistic regression. The estimates fromlme4 are marked by vertical
lines.

Table 3. Runtime and ESS comparison for sampling latent variables in the log-Gaussian Cox model.

Method Time (s) ESS1 (min, median, max) minESS1
Time ESS2 (min, median, max) minESS2

Time

HAMS-A 2013.5 (1015, 1530, 3950) 0.50 (207, 464, 1084) 0.10
HAMS-B 1998.5 (629, 953, 1931) 0.31 (143, 290, 1005) 0.07
UDL 1997.8 (361, 576, 1187) 0.18 (87, 172, 563) 0.04
GMC 1999.1 (397, 625, 1465) 0.20 (98, 185, 532) 0.05
HMC 44425.1 (1011, 7381, 12824) 0.02 (29, 330, 3567) 0.001
pMALA 2862.4 (246, 382, 797) 0.09 (55, 113, 263) 0.02
pMALA* 2873.0 (611, 903, 1955) 0.21 (145, 272, 696) 0.05
RWM 1217.6 (7, 11, 22) 0.01 (0.1, 0.3, 0.7) 0.0001

NOTE: Results are averaged over 50 repetitions.

HAMS-B and HAMS-A are the most consistent, followed by
UDL and pMALA. Much more variability is associated with
HMC and RWM.

In the second experiment, we perform Bayesian analysis and
sample both latent variables and parameters from the posterior
p(x, θ |y). As in Gelman and Hill (2007), the priors are π(βj) ∼
N (0, 1002) and π(σj) ∝ 1, j = 1, ..., 5, independently. Under
these priors, β and σ are conditionally independent given (y, x),
and each σ 2

j follows an inverse Gamma distribution (Gamerman

1997). Hence, we employ the following Gibbs sampling scheme:
sample x ∼ p(x|y, β , σ 2) and β ∼ p(β|y, x) using MCMC
and directly sample σ 2 ∼ p(σ 2|y, x) as inverse Gamma. In the
first experiment, the preconditioning matrix for latent variables
are computed only once because the parameters are fixed. In
the current experiment, to avoid reevaluating the precondition-
ing matrix every Gibbs iteration, we first run each algorithm
without any preconditioning to obtain crude estimates of the
parameters, and then fix the preconditioning matrix evaluated
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Figure 4. Time-adjusted trace and ACF plots of one latent variable from an individual run for sampling latent variables in the log-Gaussian Cox model.

at the estimates. Each stage includes a burn-in period before
sample collection. For HMC, the numbers of leapfrog steps are
20 for latent variables and 7 for parameters. The initial values
of parameters are dispersed over the intervals βj ∈ [−3, 3] and
σ 2

j ∈ [0.1, 2] for j = 1, ..., 5. For all methods, 10, 000 draws are
collected after 10, 000 iterations, which includes a stage without
preconditioning and a burn-in period with preconditioning.
The simulation process is repeated for 20 times.

Posterior sampling results are shown in Table 2 for several
selected parameters (see the Supplement for full results). Time
adjusted ESSs are reported for β and σ separately, because of
their different ranges. Overall, HAMS-A has the best perfor-
mance in terms of time adjusted ESSs. For posteriors means, all
methods except pMALA produce comparable averages, whereas
pMALA deviates from the others in β1, β2 and σ5, which along
with its large standard deviations are caused by inconsistency
during repeated runs. However, HAMS-A produces smaller
standard deviations than other methods except HMC, which
yields the smallest standard deviations with the same sample
size but at the cost of about 10 times longer runtime. The
relatively high ESS1 for σ from RWM should be interpreted
with caution. The posterior means from RWM exhibit large
variations, notably in β5 and σ1, indicating inconsistency among
repeated runs (see supplementary material, Table S2).

Figure 3 shows time-adjusted density plots for the selected
parameters (see the supplement for full results). The number of
draws used is inversely proportional to the run time, with RMW
keeping all 10,000 draws. Each plot shows estimated densities

from 20 repeated runs overlaid together. Clearly, for β1 and
β5, HAMS-A yields the most consistent density curves followed
by HAMS-B, UDL and HMC, then pMALA and RWM, which
sometimes produce outlying curves. For σ4, curves of HAMS-
B are the most consistent, whereas for σ5, curves of HAMS-
A and HMC are the most consistent. HMC density curves are
wiggly after adjusted for runtime, which demonstrates its high
computational cost.

5.2. Log-Gaussian Cox Model

Consider a log-Gaussian Cox model, where the latent variables
x = (xij)i,j=1,...,m are associated with an m×m grid (Christensen,
Roberts, and Rosenthal 2005; Girolami and Calderhead 2011).
Assume that xij’s are normal with means 0 and a covariance
function C[(i, j), (i′, j′)] = σ 2 exp(−√

(i − i′)2 + (j − j′)2/
(mβ)). By abuse of notation, we denote x ∼ N (0, C), of dimen-
sion n = m2. The observations (yij)i,j=1,...,m are independently
Poisson, where the mean of yij is λij = n−1 exp(xij + μ),
with μ treated as known. Hence, the unknown parameters
are θ = (σ 2, β)T. Given a prior π(θ), the posterior density
is

p(x, θ |y) ∝ π(θ)| det(C)|−1/2 exp
{
−1

2
xTC−1x

}

× exp

⎧⎨
⎩

∑
i,j

(yij(xij + μ) − λij)

⎫⎬
⎭. (43)
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Figure 5. Time-adjusted and centered plots of sample means of all latent variables for sampling latent variables in the log-Gaussian Cox model.

As in Section 5.1, we conduct two sets of experiments: one is
sampling latent variables with fixed parameters, and the other is
sampling both parameters and latent variables. See Supplement
Section V.3 for details of associated calculations.

For latent variables sampling, we take m = 64 and generate
n = 642 = 4096 observations using the parameter values
σ 2 = 1.91, β = 1/33, and μ = log(126) − 0.5(1.91) as
in Girolami and Calderhead (2011). From Equation (43), the
gradient of the negative log-likelihood is ∇U(x) = n−1 exp(x+
μ)+C−1x−y. The expected Hessian is E[∇2U(x)] = D+C−1,
taken with respect to the prior of x, where D is a diagonal
matrix with diagonal elements n−1 exp(μ + 1

2σ 2). Hence, for
preconditioning, we set �−1 = M = D + C−1. The number
of leapfrog steps is 50 for HMC. For all methods, 5000 draws
are collected after a burn-in of 5000. The simulation process is
repeated for 50 times.

Table 3 summarizes runtime and ESSs. Clearly, HAMS-A
has the best performance in terms of time-adjusted minimum
ESSs, followed by HAMS-B. Figure 4 shows time-adjusted trace
plots of one latent variable and corresponding ACF plots from
an individual run. From both plots, HAMS-A and HAMS-B
appear to mix better than the other methods. Figure 5, simi-
larly as Figure 2, shows the time-adjusted and centered plots
of sample means for each method over 50 repetitions. The

spreads corroborate the ESS results: HAMS-A and HAMS-B
are more consistent than the remaining methods over repeated
simulations.

Similarly as in Section 5.1, the superior performances of
HAMS-A/B are related to the Gaussian-calibrated rejection-
free property, which facilitates use of relatively large step sizes
while reasonable acceptance rates are obtained. See Figure S24
(supplementary material).

Our final experiment is sampling both latent variables and
parameters for Bayesian analysis. The grid size remains 64 × 64
and the dimension of latent variables is n = 4096. We still
simulate observations y using the ground truth σ 2 = 1.91,
β = 1/33, and μ = log(126) − 0.5(1.91). The priors are
σ 2, β ∼ Gamma(2, 0.5), independently. Then, we perform
Gibbs sampling, alternating between p(x|y, θ) and p(θ |y, x),
after log transformations of (σ 2, β). HMC takes 50 leapfrog
steps for latent variables and 6 for parameters. For each method,
5000 draws are collected after 9000 iterations, which include
a stage without preconditioning and a burn-in period with
preconditioning. The simulation process is repeated for 15 times
using dispersed starting values for the parameters σ 2 ∈ [1, 3]
and β ∈ [0.01, 0.2]. Compared with the first experiment, the
computational cost substantially increases here, mainly because
the n × n matrix C needs to be inverted numerically whenever
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Table 4. Comparison of posterior sampling in log-Gaussian Cox model.

Method Time (1000 s) Sample mean ESS1
ESS1
Time ESS2

ESS2
Time

σ 2 (sd) β (sd) (σ 2, β) (σ 2, β) (σ 2, β) (σ 2, β)

HAMS-A 161.1 2.08 (0.086) 0.04 (0.010) (178, 24) (1.105, 0.147) (10.9, 1.0) (0.068, 0.006)
HAMS-B 161.0 3.26 (1.309) 0.57 (0.560) (554, 468) (3.441, 2.908) (2.4, 0.7) (0.015, 0.005)
UDL 161.0 2.11 (0.109) 0.04 (0.006) (109, 31) (0.677, 0.190) (7.7, 2.0) (0.048, 0.012)
GMC 160.8 2.18 (0.112) 0.03 (0.007) (91, 31) (0.566, 0.194) (8.0, 1.2) (0.050, 0.007)
HMC 1366.9 2.45 (0.850) 0.21 (0.436) (342, 375) (0.250, 0.274) (1.9, 0.4) (0.001, 0.0003)
pMALA 162.5 2.08 (0.207) 0.04 (0.019) (75, 17) (0.462, 0.103) (2.8, 0.4) (0.017, 0.003)
pMALA* 162.4 1.97 (0.092) 0.05 (0.029) (116, 32) (0.714, 0.195) (19.0, 0.7) (0.117, 0.004)
RWM 82.5 2.42 (1.074) 0.16 (0.158) (304, 279) (3.685, 3.377) (1.1, 0.6) (0.013, 0.007)

NOTE: The runtimes reported are in 103 seconds. Standard deviations of sample means are in parentheses. Results are averaged over 15 repetitions.

Figure 6. Time-adjusted posterior density plots (15 repetitions overlaid) in log-Gaussian Cox model. The true parameter values are marked by vertical lines.

the density (43) and its gradient are evaluated at new parameters
in Gibbs sampling. The experiment with 15 repeated runs took
16 days on high-performance computing (HPC) clusters (120
Intel Haswell cores with 120 gigabytes of memory) at Rutgers
University.

Table 4 summarizes the results of posterior sampling. For
both parameters, HAMS-B, HMC, and RWM not only show
large variations but their average posterior means deviate far
away from the data-generating values. The relatively high ESS1
values from HAMS-B and RWM should be interpreted with
caution, because ESS1 is determined from the auto-correlations
in each run separately and cannot capture the inconsistency
between repeated runs. Moreover, pMALA and pMALA* show
large variations in the posterior means for σ 2 and β , respectively.
Hence, only HAMS-A, UDL, and GMC give posterior means
with reasonable averages and standard deviations. Among them,
in terms of σ 2, HAMS-A yields the highest ESSs and has the
smallest standard deviation. In terms of β , UDL, and GMC
are comparable to each other, and both lead HAMS-A slightly.
Figure 6 shows time-adjusted overlaid density plots for the
parameters. The curves from HAMS-A and UDL are among the
most consistent, whereas there are noticeably outlying curves

from HAMS-B, HMC and RWM. This comparison is in agree-
ment with that from Table 4.

6. Conclusion

We propose a broad class of HAMS algorithms and develop two
specific algorithms, HAMS-A/B. From our numerical experi-
ments, HAMS-A/B demonstrate consistent and sometimes sub-
stantial advantages over existing methods. The performance of
HAMS-A is consistently among the best for sampling latent
variables only or posterior sampling of parameters and latent
variables, whereas that of HAMS-B varies for posterior sampling
but remains among the best for sampling latent variables only.
In addition, alternative HAMS algorithms can be derived by
using two noise vectors per iteration. It is interesting to further
study these algorithms, together with other algorithms related
to underdamped Langevin dynamics. The improvement from
HAMS may depend on the preconditioning schemes used, and
further comparison is desired in settings where preconditioning
is more difficult than in our experiments. Finally, our framework
of generalized Metropolis–Hastings can also be exploited to
develop other possible irreversible sampling algorithms.
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