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Abstract. There has been considerable interest in designing Markov chain Monte Carlo al-
gorithms by exploiting numerical methods for Langevin dynamics, which includes Hamiltonian dy-
namics as a deterministic case. A prominent approach is Hamiltonian Monte Carlo (HMC), where
a leapfrog discretization of Hamiltonian dynamics is employed. We investigate a recently proposed
class of irreversible sampling algorithms, called Hamiltonian assisted Metropolis sampling (HAMS),
which uses an augmented target density similarly as in HMC but involves a flexible proposal scheme
and a carefully formulated acceptance-rejection scheme to achieve generalized reversibility. We show
that as the step size tends to 0, the HAMS proposal satisfies a class of stochastic differential equations
including Langevin dynamics as a special case. We provide theoretical results for HAMS, including
algebraic properties of the acceptance probability, the stationary variance from the HAMS proposal,
and the expected acceptance rate under a product Gaussian target distribution and the convergence
rate under standard Gaussian. From these results, we derive default choices of tuning parameters
for HAMS such that only the step size needs to be tuned in applications. Various relatively re-
cent algorithms for Langevin dynamics are also shown to fall in the class of HAMS proposals up
to negligible differences. Our numerical experiments on sampling high-dimensional latent variables
confirm that the HAMS algorithms consistently achieve superior performance compared with several
Metropolis-adjusted algorithms based on popular integrators of Langevin dynamics.
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1. Introduction. Stochastic simulations are widely used in scientific computing
across various fields (e.g., Brooks et al., 2011). Examples include molecular dynam-
ics (MD) simulations in physics and chemistry and posterior simulations in Bayesian
statistical analysis. For convenience, we distinguish two basic modes of stochastic sim-
ulations, although ideas from the two modes can be combined such as in Metropolis-
adjusted MD algorithms (e.g., Bou-Rabee, 2014).

One mode of simulations involves generating Markov chains as numerical dis-
cretizations of continuous-time processes defined by stochastic differential equations
(SDEs). In particular, consider underdamped Langevin dynamics defined by the SDE:

dxt = ut dt, dut = −η ut dt−∇U(xt) dt+
√
2η dWt,(1)

where xt is a position variable, ut is a momentum variable, U(x) is a potential function,
η ≥ 0 is a friction coefficient, and Wt is the standard Brownian motion. See the end
of this section for our notation. The stationary distribution of (1) has the augmented
density defined as

π(x, u) ∝ exp{−H(x, u)} = exp {−U(x)− uTu/2} ,(2)

where H(x, u) = U(x) + uTu/2 is called the Hamiltonian. The marginal distribution
of x is called the Boltzmann distribution with density π(x) ∝ exp{−U(x)}. The
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A2090 ZEXI SONG AND ZHIQIANG TAN

momentum u can be considered an auxiliary variable, with a standard Gaussian dis-
tribution. For simplicity, unit mass and temperature are used, and the Boltzmann
constant is set to 1. Various algorithms have been proposed for Langevin dynamics
in computational physics and related fields, including early development (van Gun-
steren and Berendsen, 1982; Brünger, Brooks, and Karplus, 1984) and more recent
contributions (Mannella, 2004; Bussi and Parrinello, 2007; Melchionna, 2007; Goga
et al., 2012; Leimkuhler and Matthews, 2012; Grønbech-Jensen and Farago, 2013).
For small step sizes, the Markov chains can be shown to provide pathwise accurate
approximations to the solutions of (1) and be ergodic with stationary distributions
which are close to π(x). Hence these algorithms can be used to estimate both dynamic
properties under Langevin SDE (1) and equilibrium expectations from Boltzmann
distribution π(x).

Another mode of simulations is Monte Carlo simulations, also known as Markov
chain Monte Carlo (MCMC). The primary goal in MCMC is to sample from a target
distribution defined with a density function in the form π(x) ∝ exp{−U(x)} for
some analytically tractable function U(x), which can be interpreted as a potential
function. For MCMC, Markov chains are directly constructed in discrete time such
that the associated stationary distribution gives exactly the target distribution π(x).
One of the main workhorses in MCMC is Metropolis–Hastings sampling (Metropolis
et al., 1953; Hastings, 1970). Given the current variable x0, the Metropolis–Hastings
algorithm generates x∗ from a proposal density Q(x∗|x0) and then accepts x1 = x∗

as the next variable with probability

min

{
1,

π(x∗)Q(x0|x∗)

π(x0)Q(x∗|x0)

}
(3)

or rejects x∗ and sets x1 = x0, where π(x
∗)/π(x0) can be evaluated as exp{−U(x∗)+

U(x0)} without requiring the normalizing constant. The update from x0 to x1 de-
fines a Markov transition K(x1|x0), depending on both the proposal density and
the acceptance-rejection step, such that reversibility is satisfied: π(x0)K(x1|x0) =
π(x1)K(x0|x1). This condition is also called detailed balance in physics. As a re-
sult, the Markov chain generated by Metropolis–Hastings sampling is reversible with
stationary distribution π(x).

Metropolis–Hastings sampling provides a versatile framework, where different
choices of the proposal density Q lead to different methods. For example, random
walk Metropolis is obtained when the proposal x∗ is generated by adding a Gauss-
ian noise to x0. To exploit gradient information in π(x), various algorithms have
been developed by using discretizations of physics-based SDEs as proposal schemes.
For the Metropolis-adjusted Langevin algorithm (MALA) (Besag, 1994; Roberts and
Tweedie, 1996), the proposal x∗ is defined as Euler’s discretization of the overdamped

Langevin process, dxt = −η−1∇U(xt) dt +
√

2η−1 dWt, which can be deduced from
(1) in the high-friction limit with the momentum dropped out. Hamiltonian Monte
Carlo (HMC) can be formulated as a Metropolis–Hastings algorithm where the pro-
posal x∗ is defined from a leapfrog discretization of Hamiltonian dynamics, (1) with
η = 0, initialized by x0 and a resampled momentum (Duane et al., 1987; Neal, 2011).
For these methods, the Markov chain obtained is reversible for π(x) in the position
space.

To induce irreversible sampling, discretizations of the irreversible Langevin dy-
namics (1) can be used as proposal schemes, but acceptance-rejection needs to be
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IRREVERSIBLE METROPOLIS SAMPLING A2091

carefully determined, in the (x, u) space.1 It is instructive to examine the guided
Monte Carlo (GMC) algorithm (Horowitz, 1991; Bou-Rabee and Vanden-Eijnden,
2012; Ottobre et al., 2016). Each iteration in GMC can be described as follows, given
the current variables (x0, u0):

• Sample Z0 ∼ N (0, I), and compute u+ = cu0+
√
1− c2Z0 with c = e−ηϵ and

(x∗, u−) from (x0, u
+) by one or multiple leapfrog updates with a step size ϵ.

• Set (x1, u1) = (x∗, u−) with probability α = min{1, π(x∗, u−)/π(x0, u
+)}, or

set (x1, u1) = (x0,−u+) with the remaining probability.
The proposal step, (x0, u0) → (x∗, u−), forms an integrator for (1) based on split-
ting into an Ornstein–Uhlenbeck process, dxt = 0 and dut = −η ut dt +

√
2η dWt,

and a Hamiltonian dynamics, dxt = ut dt and dut = −∇U(xt) dt. However, the
acceptance-rejection step differs from standard Metropolis–Hastings sampling in that
the acceptance probability α depends on the augmented density ratio at (x∗, u−) ver-
sus (x0, u

+) instead of (x0, u0), and the next momentum u1 is defined as u− upon
acceptance but −u+ in the case of rejection. In fact, each iteration in GMC can be
decomposed into two updates, each leaving the target π(x, u) invariant. The first is
a momentum update, (x0, u0) → (x0, u

+). The second is a Metropolized leapfrog
integrator, (x0, u

+)→ (x1, u1), which can be justified as a composition of two transi-
tions, each satisfying detailed balance for π(x, u). Nevertheless, the entire transition
kernel in GMC is irreversible for π(x, u).2 See Neal (2011, section 5.5.3) for related
discussion.

Recently, Song and Tan (2021) proposed a new class of irreversible sampling
algorithms, called Hamiltonian assisted Metropolis sampling (HAMS), using the aug-
mented target density (2) similarly as in GMC. There are two main ingredients in
HAMS, in parallel to those in Metropolis–Hastings sampling. Given the current vari-
ables (x0, u0), HAMS first generates (x∗, u∗) from a proposal density Q(x∗, u∗|x0, u0),
as defined by (6)–(8) later. Then HAMS performs acceptance-rejection: Set (x1, u1) =
(x∗, u∗) with acceptance probability α, and set (x1, u1) = (x0,−u0) with the remain-
ing probability, where

α = min

{
1,

π(x∗, u∗)Q(x0,−u0|x∗,−u∗)

π(x0, u0)Q(x∗, u∗|x0, u0)

}
.(4)

Compared with the usual formula (3), the momentum is negated in defining the
backward proposal in acceptance probability (4). The Markov chain defined by the
HAMS update is irreversible and satisfies the following generalized reversibility (or
generalized detailed balance):

π(x0, u0)K(x1, u1|x0, u0) = π(x1, u1)K(x0,−u0|x1,−u1),(5)

where K(x1, u1|x0, u0) denotes the transition kernel for the HAMS chain, depending
on both the proposal and acceptance-rejection schemes.

1Inserting a consistent discretization of (1) in the usual Metropolis–Hastings algorithm may lead
to a high rejection rate (Scemama et al., 2006; Ma et al., 2018). Ottobre, Pillai, and Spiliopoulos
(2020) studied sampling algorithms where a discretization of an irreversible SDE is combined with
the Metroplis–Hastings accept-reject scheme. For a product Gaussian target, such algorithms are
shown to perform differently in two asymptotic regimes.

2The Metropolized leapfrog can be decomposed as follows: First update (x0, u+) → (x∗,−u−)
or (x0, u+) with probability α or 1 − α, and then set (x1, u1) by negating the momentum. The
transition kernel in GMC is irreversible in (x, u), including the special cases of c = 0 or 1. MALA
or HMC combines one or multiple leapfrog updates with momentum resampling and produces a
reversible chain in the position space.

D
ow

nl
oa

de
d 

08
/0

1/
22

 to
 1

28
.6

.3
6.

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2092 ZEXI SONG AND ZHIQIANG TAN

More broadly, a framework of generalized Metropolis–Hastings sampling is formu-
lated in Song and Tan (2021) to achieve generalized reversibility, where the acceptance
probability (4) is used in conjunction with a general proposal density Q, including
but not restricted to the HAMS proposal. For example, the second step in GMC, i.e.,
the Metropolized leapfrog integrator described above, can be obtained as a special
case, where the proposal Q is defined by the (deterministic) leapfrog discretization of
Hamiltonian dynamics, and the ratio in Q in (4) reduces to 1 due to time reversibility
of leapfrog.3 The proposal Q can also be defined by a discretization of Langevin dy-
namics (1), which together with (4) leads to various Metropolis-adjusted algorithms.
See supplemental section SM1 for details.

In this article, we further investigate HAMS in several directions, together with
existing algorithms related to Langevin dynamics. Our main findings can be summa-
rized as follows. First, we show that under an appropriate parametrization with a step
size tending to 0, the HAMS proposal satisfies a class of SDEs which include Langevin
dynamics as a special case (section 3). In fact, two specific versions of HAMS using
one noise per iteration, called HAMS-A and HAMS-B in Song and Tan (2021), are
associated with two extreme cases, respectively, the underdamped Langevin SDE (1)
and a different SDE in which the position x appears to be dampened instead of the
momentum u as in (1).

Second, we study HAMS in general with two noise vectors used per iteration from
various perspectives, including the acceptance probability, the stationary variance, the
expected acceptance rate under a product Gaussian target or harmonic oscillator (sec-
tions 4–6), and the convergence rate under standard Gaussian (section 7). From these
studies, we derive default choices of tuning parameters for HAMS such that only the
step size needs to be tuned in applications. We also identify a particular version of
HAMS which uses two noise vectors per iteration and exhibits a favorable trade-off be-
tween the expected acceptance rate and the convergence rate. This algorithm, called
HAMS-k, is close to HAMS-A and incorporates a small amount of friction on the
position as in HAMS-B in addition to dampening the momentum. Theoretically, our
analysis reveals that HAMS-k (including HAMS-A) tends to achieve higher expected
acceptance rates than other algorithms with the same step size when the target distri-
bution can be made roughly product Gaussian with many variance components near
1 after preconditioning. This provides an explanation for the superior performance of
HAMS reported in Song and Tan (2021) and the simulation study here.

Third, we demonstrate that various relatively recent algorithms for Langevin dy-
namics can all be put into the class of HAMS proposals up to negligible differences
compared with the associated leading terms of the step size (section 8). Examples
include Mannella’s leapfrog (Mannella, 2004; Burrage, Lenane, and Lythe, 2007), OB-
ABO (Bussi and Parrinello, 2007; Bou-Rabee and Vanden-Eijnden, 2010), stochastic
position Verlet (Melchionna, 2007), impulsive Langevin leapfrog (Goga et al., 2012),
BAOAB and ABOBA (Leimkuhler and Matthews, 2012), and the Grønbech-Jensen–
Farago (GJF) algorithm (Grønbech-Jensen and Farago, 2013). These results not only
shed new light on the relationship between the existing algorithms but also attest to
the broad scope of HAMS.

Finally, we conduct several numerical experiments (section 9) to compare dif-
ferent versions of HAMS and Metropolis-adjusted OBABO, BAOAB, and ABOBA

3The GMC algorithm itself, although leaving π(x, u) invariant, does not satisfy generalized re-
versibility (except when η = 0). The symmetrized version, Metropolis-adjusted OBABO algorithm
(Bussi and Parrinello, 2007), can be put in the HAMS class, satisfying generalized reversibility, as
shown in Song and Tan (2021).
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IRREVERSIBLE METROPOLIS SAMPLING A2093

algorithms, which are derived by incorporating acceptance-rejection in the framework
of generalized Metropolis–Hastings sampling mentioned earlier. The newly identified
HAMS-k algorithms lead to the smallest errors in configurational sampling in our dou-
ble well experiment. Moreover, the HAMS algorithms consistently achieve superior
performance in terms of two measures of effective sample sizes in two experiments on
sampling high-dimensional latent variables.

Related work. Sampling algorithms related to Langevin dynamics have been
extensively studied, including those based on underdamped Langevin dynamics and
Hamiltonian dynamics. We discuss directly related work to ours in addition to the
earlier discussion.

For SDE-based Markov processes, introducing an appropriately chosen nonre-
versible component is known to improve sampling performance in the case of mul-
tivariate Gaussian equilibrium distributions (Hwang, Hwang-Ma, and Sheu, 1993;
Lelièvre, Nier, and Pavliotis, 2013) and in general settings (Duncan, Lelièvre, and
Pavliotis, 2016; Guillin and Monmarche, 2016; Rey-Bellet and Spiliopoulos, 2016).
For example, a nonreversible perturbation of the overdamped Langevin dynamics can
be obtained by adding a skew-symmetric drift term in the position space. In contrast,
the underdamped Langevin dynamics are directly defined in the position-momentum
space, and the evenness of the momentum distribution is crucial for achieving gener-
alized reversibility (Song and Tan, 2021).

For Gaussian diffusions, the optimal nonreversible drift term in maximizing the
spectral gap has been fully characterized by Lelièvre, Nier, and Pavliotis, (2013). See
also Bou-Rabee and Eberle (2020, section 4.2). Those results are concerned with
convergence of the associated SDEs under an arbitrary multivariate Gaussian target,
hence mainly relevant to discretization-based algorithms as the step size tends to
zero. For comparison, our study of tuning parameters to optimize convergence rates
in section 7 is restricted to a multivariate standard Gaussian target but applicable to
HAMS and related algorithms with a fixed step size. As expected, our results agree
with those in Lelièvre, Nier, and Pavliotis, (2013) in the limit of small step sizes.

Scemama et al. (2006) and Bussi and Parrinello (2007) discussed Metropolized
integrators based on Langevin dynamics to achieve generalized reversibility, which
can be explicitly defined as (5) for the Markov transition kernel. The discretization
schemes such as OBABO are specifically chosen with two noise vectors used per itera-
tion to induce a proper transition density in the (x, u) space. However, our formulation
of generalized Metropolis–Hastings sampling allows discretization schemes using only
one noise vector, for example, to derive HAMS-A/B and Metropolis-adjusted BAOAB
and ABOBA algorithms.

Bou-Rabee and Vanden-Eijnden (2010) formally studied the pathwise convergence
of the Metropolis-adjusted OBABO algorithm to the solutions of SDE (1) in addition
to the ergodicity with respect to the stationary distribution π(x, u). On the other
hand, Bou-Rabee and Vanden-Eijnden (2012) and Bou-Rabee (2014) mainly discussed
Metropolis-adjusted MD algorithms, where the Metropolized leapfrog integrator is
used as in GMC to discretize Hamiltonian dynamics in the splitting of (1) including
in the OBABO splitting.

Recently, there has been considerable research on nonasymptotic analysis of
Langevin-related algorithms. Examples include Dalalyan (2017) and Durmus and
Moulines (2019) on the unadjusted overdamped Langevin algorithm, Mangoubi and
Smith (2019), Chen and Vempala (2019), and Bou-Rabee and Eberle (2021) on unad-
justed HMC, and Cheng et al. (2018), Eberle, Guillin, and Zimmer (2019), Dalalyan
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A2094 ZEXI SONG AND ZHIQIANG TAN

and Riou-Durand (2020), and Cao, Lu, and Wang (2020) on unadjusted underdamped
Langevin algorithms. In addition, Metropolis-adjusted algorithms have also been
studied, including Chen et al. (2020) on HMC and Dwivedi et al. (2019) on MALA.

Organization. We provide a review of HAMS in section 2. Then we study SDE
limits in section 3, algebraic properties of the acceptance probability, the station-
ary variance implied by the HAMS proposal, and the expected acceptance rate with
acceptance-rejection under a product Gaussian target in sections 4–6, and the con-
vergence rate quantified by the spectral radius under a standard Gaussian target in
section 7. We discuss matching with existing algorithms in section 8, present numer-
ical studies in section 9, and give a conclusion in section 10. Additional information
is collected in the appendix and online supplement.

Notation. Assume that a target density π(x) is defined on Rd. The potential
energy function U(x) is defined such that π(x) ∝ exp{−U(x)}. Denote the gradient
of U(x) as ∇U(x) and Hessian ∇2U(x). The (multivariate) normal distribution is de-
noted as N (µ,Σ) with mean µ and variance-covariance matrix (or, for short, variance
matrix) Σ, and the density function as N (·|µ,Σ). A mean-zero product Gaussian
distribution is defined in the form N (0,diag(γ−1

1 , . . . , γ−1
d )), where (γ−1

1 , . . . , γ−1
d ) are

marginal variances. Write 0 for a vector or matrix with all 0 entries and I for an
identity matrix of appropriate dimensions.

2. Review of HAMS. We give a description of HAMS, a class of irreversible
sampling algorithms in Song and Tan (2021). Throughout, we write the current
variables as (x0, u0), a proposal as (x∗, u∗), and the next variables as (x1, u1) after
the acceptance-rejection step.

Given the current variables (x0, u0), HAMS generates a proposal (x∗, u∗) as fol-
lows.

• Sample

Z0 =

(
Z

(1)
0

Z
(2)
0

)
∼ N (0, 2A−A2), with A =

(
a1I a2I
a2I a3I

)
,(6)

where each I is a k×k identity matrix, with k the dimension of x, and a1, a2, a3
are scalar coefficients such that 0 ≤ A ≤ 2I (in the positive semidefinite
sense), hence ensuring that 2A−A2 is a variance-covariance matrix.

• Compute (
x∗

u†

)
=

(
x0

−u0

)
−A

(
∇U(x0)
−u0

)
+

(
Z

(1)
0

Z
(2)
0

)
,(7)

u∗ = u† + ϕ(x∗ − x0 −∇U(x∗) +∇U(x0)),(8)

where ϕ is a scalar coefficient.
There are four tuning parameters, a1, a2, a3, and ϕ. The proposal scheme (6)–(8)
is derived in several steps (Song and Tan, 2021): first applying an auxiliary variable
argument and an overrelaxation technique to obtain a reversible proposal, introducing
negation of the momentum to obtain (7), and incorporating the new gradient ∇U(x∗)
in the momentum update (8).

To describe the acceptance-rejection scheme, it is helpful to rewrite the update
formulas (7) and (8) as follows:
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IRREVERSIBLE METROPOLIS SAMPLING A2095

Z̃(1) = Z
(1)
0 − a1∇U(x0) + a2u0, Z̃(2) = Z

(2)
0 − a2∇U(x0) + a3u0,(9)

x∗ = x0 + Z̃(1),(10)

u∗ = −u0 + Z̃(2) + ϕ(Z̃(1) +∇U(x0)−∇U(x∗)).(11)

Equations (9)–(11) determine a forward transition from (x0, u0) to (x
∗, u∗), depending

on the noise vector Z0. For a backward transition, we compute the new noise vector
Z∗ = ( (Z(1)∗)T, (Z(2)∗)T )T, with

Z(1)∗ = Z̃(1) − a1∇U(x∗)− a2u
∗, Z(2)∗ = Z̃(2) − a2∇U(x∗)− a3u

∗.(12)

Then as shown in Song and Tan (2021), the mapping from (x0, u0) to (x∗, u∗) in (9)–
(11) using the noise vector Z0 is also satisfied from (x∗,−u∗) to (x0,−u0) using the
noise vector −Z∗ in (12). The forward and backward transitions can be illustrated as(

x0

u0

)
Z0−→
(
x∗

u∗

)
,

(
x∗

−u∗

)
−Z∗

−→
(

x0

−u0

)
,(13)

where the two arrows denote the same mapping, depending on Z0 or −Z∗.
Once (x∗, u∗) are obtained, HAMS sets the next variables (x1, u1) = (x∗, u∗) with

probability α and (x1, u1) = (x0,−u0) with the remaining probability 1− α, where

α = min

[
1,

exp{−H(x∗, u∗)}N (Z∗|0, 2A−A2)

exp{−H(x0, u0)}N (Z0|0, 2A−A2)

]
= min[1, exp{G(x0, u0, Z0)−G(x∗, u∗, Z∗)}] = min[1, exp(−∆G)],(14)

with ∆G = G(x∗, u∗, Z∗) − G(x0, u0, Z0) and G(x, u, Z) = H(x, u) + 1
2Z

T(2A −
A2)−1Z. We can view G as a generalized Hamiltonian, being analogous to the Hamil-
tonianH but also incorporating the noise vector Z. Notice that in the case of rejection,
while the configuration x remains the current x0, the momentum is reset by negating
the current u0.

There are two desirable properties simultaneously achieved by HAMS. First, the
HAMS algorithm produces irreversible Markov chains with the augmented density
π(x, u) as a stationary distribution. In fact, HAMS can be understood as an example
of generalized Metropolis–Hastings sampling as discussed in section 1. The proposal
density in the forward transition is Q(x∗, u∗|x0, u0) = N (Z0|0, 2A−A2) by the change
of variables where, given (x0, u0), Z0 is the noise vector transformed to (x∗, u∗) by (9)–
(11) and the Jacobian determinant of the transformation from Z0 to (x

∗, u∗) is 1.4 The
proposal density in the backward transition is Q(x0,−u0|x∗,−u∗) = N (−Z∗|0, 2A−
A2), because the transition from (x∗,−u∗) to (x0,−u0) is determined by the same
mapping as (x0, u0) to (x∗, u∗), only with the noise vector Z0 replaced by −Z∗, as
illustrated in (13). Hence, by Proposition 3 in Song and Tan (2021), HAMS satisfies
the generalized detailed balance (5) and admits π(x, u) as a stationary distribution,
where K(x1, u1|x0, u0) denotes the transition kernel from (x0, u0) to (x1, u1), defined
by both the proposal and acceptance-rejection schemes.

Second, the HAMS algorithm becomes rejection-free; i.e., the proposal (x∗, u∗) is
always accepted when the target density π(x) is standard Gaussian. In this case, the
proposal scheme (7)–(8), with ∇U(x) = x, reduces to

4The transformation Z0 → (x∗, u∗) can be decomposed as (Z
(1)
0 , Z

(2)
0 ) → (Z̃(1), Z̃(2)) by (9) and

(Z̃(1), Z̃(2)) → (x∗, u∗) by (10)–(11). The first transformation is a translation, whereas the second
transformation has a Jacobian matrix which is triangular with both diagonal components 1.
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A2096 ZEXI SONG AND ZHIQIANG TAN

(
x∗

u∗

)
= (I −A)

(
x0

−u0

)
+

(
Z

(1)
0

Z
(2)
0

)
,(15)

which, by definition of Z0 in (6), yields an irreversible vector autoregressive (VAR)
process in (x, u) with N (0, I) as a stationary distribution. Moreover, the acceptance
probability in (14) can be directly calculated to be α ≡ 1. A subtle point is that
the rejection-free property of HAMS under a standard Gaussian target π(x) depends
on using both the proposal scheme (7)–(8) and the generalized Metropolis–Hastings
probability (14) derived from (4). If the standard Metropolis–Hastings probability
similar to (3) were used, HAMS would not achieve the rejection-free property under
standard Gaussian; otherwise, the resulting Markov chain would be reversible, which
contradicts the irreversibility of (15).

Two special cases of HAMS are further investigated in Song and Tan (2021),
where the noise variance matrix 2A−A2 is singular (hence only a single noise vector
is needed) and a specific choice of ϕ is derived. The first is called HAMS-A, where A
is singular with

a1 = a, a3 = b, a2 =
√
ab, ϕ =

√
ab/(2− a),(16)

subject to a, b > 0 and a + b ≤ 2. The second is called HAMS-B, where 2I − A is
singular with

a1 = 2− ã, a3 = 2− b̃, a2 =
√
ãb̃, ϕ =

√
b̃/ã,(17)

subject to ã, b̃ > 0 and ã+ b̃ ≤ 2. In addition, a concrete choice of b given a in HAMS-
A and that of b̃ given ã in HAMS-B are identified by studying the lag-1 stationary
auto-covariance matrix of HAMS under a standard Gaussian target π(x). Extensions
of these choices of ϕ and (a, b) or (ã, b̃) are studied in sections 4 and 7.

3. Appropriate SDE limits. The HAMS algorithm is derived from the per-
spective of MCMC as in Metropolis–Hastings sampling, where a discrete-time Markov
chain is simulated by generating and then accepting or rejecting a proposal. In this
section, we show that under an appropriate parametrization depending on a step size,
HAMS leads to continuous-time limits characterized by SDEs related to Langevin
dynamics.

We introduce the following parametrization of (a1, a2, a3) for the matrix A in (6):

a1 = 2− c1

(
1 +

√
1− ϵ2

)
, a3 = c2

(
1 +

√
1− ϵ2

)
, a2 = ϵ

√
c1c2,(18)

where ϵ ∈ [0, 1] is a step size and c1 ≥ 0 and c2 ≥ 0 are carryover coefficients. For
c1 > 0 and c2 > 0, the constraint 0 ≤ A ≤ 2I is satisfied if and only if 0 < c1 ≤ 1 and
0 < c2 ≤ 1. To derive an SDE limit, we further impose the relationship

c1 = e−η1ϵ/2, c2 = e−η2ϵ/2, ϕ = O(ϵ),(19)

where η1 ≥ 0 and η2 ≥ 0 are friction coefficients similarly as in Langevin dynamics,
and the form of ϕ can be flexible, subject to being of order O(ϵ). For any fixed
ϵ > 0, the preceding relationship about (c1, c2) and (η1, η2) is one-to-one and hence
unrestricted. However, as ϵ→ 0, the relationship (19) implies that c1 → 1 and c2 → 1
for any fixed (η1, η2).
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Proposition 1. For a target density π(x) on Rd, suppose that ∇2U(x) exists,
and the spectral norm ∥∇2U(x)∥ is bounded in x by a constant. Then the HAMS
proposal (x∗, u∗) in (7)–(8) with the parametrization (18)–(19) and fixed (η1, η2), up
to higher-order terms as ϵ→ 0, is equivalent to Euler’s discretization for the following
SDE: (

dxt

dut

)
= −

(
η1I −I
I η2I

)(
∇U(xt)

ut

)
dt+

(√
2η1 dW

(1)
t√

2η2 dW
(2)
t

)
,(20)

where W
(1)
t and W

(2)
t are independent, standard Brownian motions.

Informally, we say that the HAMS proposal satisfies the SDE (20) as ϵ→ 0. The
preceding result can be generalized under weaker conditions on the spectral norm
∥∇2U(x)∥. Nevertheless, the present form already gives several informative implica-
tions.

First, the SDE (20) falls into a general class of SDEs which admit the augmented
density π(x, u) ∝ exp{−H(x, u)} as a stationary distribution (Duncan, Lelièvre, and
Pavliotis, 2016; Ma et al., 2018), where H(x, u) = U(x) + uTu/2. In fact, (20) can be
put into the form

dzt = −(D +Q)∇H(zt)dt+ (2D)1/2dWt,

where zt = (xT
t , u

T
t )

T, Wt = (W
(1)T
t ,W

(2)T
t )T, D is a positive semidefinite matrix, and

Q is a skew-symmetric matrix, defined as follows:

D =

(
η1I 0
0 η2I

)
, Q =

(
0 −I
I 0

)
.

Moreover, by Theorem 2 in Ma et al. (2018), the Markov process (20) satisfies gener-
alized reversibility with respect to π(x, u), where the backward process is defined by
the SDE: (

dxt

dut

)
= −

(
η1I I
−I η2I

)(
∇U(xt)

ut

)
dt+

(√
2η1 dW

(1)
t√

2η2 dW
(2)
t

)
.(21)

Interestingly, the Markov process defined by (21) is equivalent to that defined by (20)

but with ut and W
(2)
t replaced by −ut and −W (2)

t ; that is, (21) is equivalent to(
dxt

−dut

)
= −

(
η1I −I
I η2I

)(
∇U(xt)
−ut

)
dt+

( √
2η1 dW

(1)
t

−
√
2η2 dW

(2)
t

)
.

Hence the backward process (21) is stochastically the same as the forward process
(20) except for the sign reversal of the momentum. This relationship between the
forward and backward processes represents a continuous-time limit of that between
the forward and backward transitions of the proposals in HAMS, as illustrated in (13).
The generalized reversibility of (20) as a limit of the HAMS proposal implies that
HAMS with the parametrization (18)–(19) leads to an acceptance rate which tends
to 1 in the limit of ϵ → 0. Similarly as emphasized in Ma et al. (2018), the limiting
acceptance rate of 1 would not be obtained if the HAMS proposal were plugged into
standard Metropolis–Hastings sampling. This point also echoes the discussion after
(15) about the rejection-free property of HAMS under standard Gaussian.
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Second, it is interesting to examine two special cases of the SDE (20). On one
hand, setting η1 = 0 in (20) yields the underdamped Langevin dynamics, i.e., (1) with
η = η2: (

dxt

dut

)
= −

(
0 −I
I η2I

)(
∇U(xt)

ut

)
dt+

(
0√

2η2dW
(2)
t

)
.(22)

On the other hand, setting η2 = 0 in (20) leads to the SDE,(
dxt

dut

)
= −

(
η1I −I
I 0

)(
∇U(xt)

ut

)
dt+

(√
2η1dW

(1)
t

0

)
.(23)

The case η1 = η2 = 0 corresponds to the deterministic Hamiltonian dynamics. There
are interesting differences between (22) and (23), in relation to the Hamiltonian dy-
namics.5 The underdamped Langevin dynamics (22) is widely used to describe the
motions of particles in the presence of frictions, where the momentum u is dampened
by a friction force and a Gaussian white noise. By comparison, the SDE (23) is math-
ematically well defined, indicating that the configuration x is affected by the force
field as in overdamped Langevin, in addition to the momentum. To our knowledge,
the physical meaning of (23) remains to be studied.

Third, the two special cases of η1 = 0 or η2 = 0 are directly related to HAMS-A
or HAMS-B, respectively. In fact, HAMS-A can be obtained by taking η1 = 0 or
equivalently c1 = 1 in (18) and the choice of ϕ as described in (16):

a1 = 1−
√

1− ϵ2, a2 = ϵ
√
c2, a3 = c2

(
1 +

√
1− ϵ2

)
, ϕ =

ϵ
√
c2

1 +
√
1− ϵ2

.(24)

Moreover, HAMS-B can be obtained by taking η2 = 0 or equivalently c2 = 1 and the
choice of ϕ as described in in (17):

a1 = 2− c1

(
1 +

√
1− ϵ2

)
, a2 = ϵ

√
c1, a3 = 1 +

√
1− ϵ2, ϕ =

ϵ
√
c1
(
1 +
√
1− ϵ2

) .(25)

See the appendix for simplification of the proposal scheme (6)–(8) for HAMS-A/B.
We record the following consequence of Proposition 1 for HAMS-A and HAMS-B.

Corollary 1. Under the setting of Proposition 1, in the limit of ϵ → 0, the
HAMS-A proposal (x∗, u∗) defined in (83)–(85) with c2 = e−η2ϵ/2 and fixed η2 satisfies
the underdamped Langevin SDE (22) with η1 = 0, and the HAMS-B proposal (x∗, u∗)
defined in (86)–(88) with c1 = e−η1ϵ/2 and fixed η1 satisfies the SDE (23) with η2 = 0.

The preceding result sheds new light on differences between HAMS-A and HAMS-
B. The parametrization (24) for HAMS-A is the same as used in Song and Tan (2021).
But the parametrization (25) for HAMS-B differs slightly from that used in Song
and Tan (2021) and has the conceptual advantage of inducing the SDE (23) with
c1 = e−η1ϵ/2 and any fixed η1 as ϵ → 0. See the supplement (section SM3.2) for
further discussion.

5The two dynamics (22) and (23) can be distinguished as follows (Bou-Rabee and Eberle, 2020,
Lemma 4.11): Consider an isotropic Gaussian target π(x) defined as N (0, γ−1I). For fixed η > 0,
the optimal convergence characterized by maximizing the spectral gap over (η1, η2) for the SDE (20)
subject to η1, η2 ≥ 0 and η1 + η2 ≤ η is achieved by (η1, η2) = (0, η) if γ ≤ 1 and η ≤ 2γ1/2 or
(η1, η2) = (η, 0) if γ ≥ 1 and η ≤ 2γ−1/2. In the case η > min(2γ1/2, 2γ−1/2), the optimal choices
of η1 and η2 can be shown to be both nonzero.
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4. Default choice of ϕ. The SDE (20) is informative about the behavior of
HAMS with the parametrization (18)–(19) in the limit of ϵ → 0, where ϕ = O(ϵ)
can be of a flexible form. To derive a specific choice of ϕ with fixed ϵ, we study the
generalized Hamiltonian difference, ∆G, in the acceptance probability (14) under a
univariate Gaussian target N (0, γ−1), which is called a harmonic oscillator in physics.
As discussed in section 2, when the target density π(x) is standard Gaussian, HAMS
is rejection-free: The acceptance probability (14) is always 1, or equivalently ∆G is
always 0. But when the target density is N (0, γ−1) with γ ̸= 1, HAMS is no longer
rejection-free. We seek a choice of ϕ such that ∆G is minimally affected as γ deviates
from 1.

Proposition 2. Suppose that the target density π(x) is N (0, γ−1). Then ∆G
defined in (14) can be expressed as a quadratic form:

∆G =
(
x0, u0, Z

(1)
0 , Z

(2)
0

)
D(γ)

(
x0, u0, Z

(1)
0 , Z

(2)
0

)T

,

where D(γ) is a 4× 4 matrix. For i, j = 1, 2, 3, 4, the (i, j)th entry of D(γ) is dij(γ),
a polynomial of γ, with coefficients depending on (a1, a2, a3, ϕ). The coefficient of the
leading term of d44(γ) is always 0. Furthermore, for any a1, a2, a3 such that 0 ≤ A ≤
2I, the coefficients of the leading terms of d11(γ), d22(γ), d33(γ) are simultaneously
minimized in absolute values by the choice ϕ = a2/(2− a1).

Proposition 2 can also be extended to a product Gaussian target π(x) with vari-
ance matrix diag(γ−1

1 , . . . , γ−1
d ), where ∆G is a sum of quadratic forms in the ith

coordinates of x0, u0, Z
(1)
0 and Z

(2)
0 for i = 1, . . . , d. The result gives a default choice

of ϕ for HAMS in a unified manner. In the special cases of HAMS-A and HAMS-B,
the choice ϕ = a2/(2 − a1) is easily seen to agree with those derived in Song and
Tan (2021) as stated in (24) and (25). The derivation of ϕ in Song and Tan (2021) is
similar as above for HAMS-A but involves a seemingly different angle for HAMS-B,
where the choice of ϕ in (25) is unique in ensuring that the two backward noise vectors

Z
(1)∗
1 and Z

(2)∗
2 in (12) are proportional to each other.

As another interesting consequence of the default choice of ϕ, the quantity ∆G
can be substantially simplified even for a general target density π(x).

Corollary 2. Suppose that ϕ = a2/(2 − a1) is used. Then for a general target
density π(x) on Rd, ∆G in the acceptance probability (14) reduces to

∆G = U(x∗)− U(x0) +
{∇U(x0) +∇U(x∗)}T

[
a1{∇U(x0) +∇U(x∗)} − 2

(
a2u0 + Z

(1)
0

)]
2(2− a1)

.

(26)

Particularly, for a product Gaussian target distribution N (0,diag(γ−1
1 , . . . , γ−1

d )), ∆G

reduces to ∆G =
∑d

i=1 ∆Gi, where

∆Gi =
a1γi(γi − 1)

2(2− a1)

(
a2u0i + Z

(1)
0i − a1γix0i

)(
a2u0i + Z

(1)
0i + (2− a1γi)x0i

)
,(27)

with x0i, u0i and Z
(1)
0i representing the ith coordinate of the vectors x0, u0 and Z

(1)
0 .

We remark that the expressions (26) and (27) depend on only (a1, a2) and

(x0, u0, Z
(1)
0 ) but not a3 or Z

(2)
0 , even though the proposal u∗ depends on a3 and

Z
(2)
0 . The expression (26) allows simple calculation of the acceptance probability (14)

in implementation of HAMS. The expression (27) is instrumental for our analysis of
acceptance rates in section 6.
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5. Stationary variance under product Gaussian. In section 4, we derive
a default choice of ϕ by exploiting an algebraic property of ∆G under a product
Gaussian target. In this and the following section, we also consider a product Gaussian
target distribution but turn to study stochastic properties of HAMS and understand
impacts of different choices for the tuning parameters (a1, a2, a3). To focus on main
ideas with succinct notation, we present the discussion here for a univariate Gaussian
target. The results can be easily extended to a product Gaussian target distribution.

We study the stationary variance of the HAMS proposal (6)–(8), applied itera-
tively without performing acceptance-rejection, under a univariate Gaussian target
N (0, γ−1). A similar approach can be found in Burrage, Lenane, and Lythe (2007) in
comparing various methods for solving the underdamped Langevin SDE (22). In this
setting, the updates (6)–(8) can be equivalently written as an order-1 VAR process,(

x∗

u∗

)
= Φ

(
x0

u0

)
+ ζ,(28)

where Φ is the coefficient matrix and ζ represents noise terms independent of (x0, u0).
Detailed expressions are given in the supplement (section SM3.5).

Proposition 3. Suppose that the target density π(x) is N (0, γ−1), and the choice
ϕ = a2/(2−a1) is used in HAMS. Then the stationary variance of the HAMS proposal
(6)–(8) or equivalently the VAR process (28) is

Var

(
x
u

)
=

( a1−2
γ(a1γ−2) 0

0 1

)
.(29)

It is interesting to compare the stationary variance matrix (29) with the variance
matrix from the augmented density π(x, u), that is,

Γ =

(
γ−1 0
0 1

)
.(30)

At stationarity, the HAMS proposal leads to Var(u) and Cov(x, u) which are the
same as the target values in (30). But Var(x) differs from γ−1 unless γ = 1 or a1 = 0.
The first case γ = 1 confirms the rejection-free property of HAMS under standard
Gaussian, as discussed in section 2. The latter case a1 = 0 is degenerate, where
a2 must also be 0 by the positive semidefiniteness of A, and hence the update of x
becomes nonergodic, x∗ = x0.

To study the order of error in Var(x), we use the parameterization of a1 in (18)–
(19) and take a Taylor expansion with respect to the step size ϵ:

Var(x) =
a1 − 2

γ(a1γ − 2)
=

1

γ
+

γ − 1

γ
· η1
2
ϵ+

γ − 1

γ
·
(
1 + (γ − 1/2)η21

4

)
ϵ2 +O(ϵ3).

(31)

The leading error term in Var(x) is {(γ − 1)/γ}η1ϵ/2 for γ ̸= 1. For HAMS-A with
η1 = 0 as in (24), this term vanishes, and the overall error is O(ϵ2). More generally,
if we set η1 = kϵ for some k ≥ 0, then the expansion (31) becomes

Var(x) =
a1 − 2

γ(a1γ − 2)
=

1

γ
+

γ − 1

γ

(
1

4
+

k

2

)
ϵ2 +O(ϵ3),(32)

and hence the overall error is also O(ϵ2). Nevertheless, for any fixed γ, the coefficient
of the leading error term in (32), γ−1

γ ( 14 + k
2 ), is minimized in absolute values by
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taking k = 0, corresponding to HAMS-A. Therefore HAMS-A is the best within the
HAMS class when considering the stationary variance in the univariate (or product)
Gaussian setting.

We remark that under univariate (or product) Gaussian, several existing algo-
rithms for simulating Langevin dynamics are known to yield the correct variance γ−1

for x, including Mannella’s leapfrog (Mannella, 2004; Burrage, Lenane, and Lythe,
2007), the GJF algorithm (Grønbech-Jensen and Farago, 2013), and BAOAB and
ABOBA (Leimkuhler and Matthews, 2012; Leimkuhler and Matthews, 2013). But
the variance for u obtained from these algorithms is shown to be (1−γ−1ϵ2/4)−1, hence
with error of order O(ϵ2) from the exact variance 1 for u. For harmonic oscillators,
the variances of x and u are related to the configurational and kinetic temperatures
(Farago, 2019); see the supplement, section SM4.1. Nevertheless, these results are
primarily of interest in the MD settings where no acceptance-rejection is performed.
When using HAMS or Metropolis-adjusted versions of these algorithms for sampling
from the augmented density π(x, u), the acceptance-rejection step is defined, depend-
ing on both x and u. We provide further discussion from the sampling perspective in
section 6.

6. Expected acceptance rate under product Gaussian. Section 5 investi-
gates the stationary variance under a product Gaussian target when using the HAMS
proposal without acceptance-rejection. In this section, we study the expected ac-
ceptance rate of HAMS under product Gaussian while incorporating the acceptance-
rejection step. Our analysis under univariate Gaussian N (0, γ−1) reveals that HAMS-
A achieves an expected rejection rate which is the smallest by the leading term of order
O(ϵ3) among the HAMS class, in agreement with the best accuracy of the stationary
variance obtained by HAMS-A without acceptance-rejection. The leading rejection
rate is of lower order O(ϵ5/2) for Metropolized BAOAB and ABOBA or of order O(ϵ3)
for Metropolized OBABO but with a larger prefactor for γ near 1 when compared with
HAMS-A. Such differences are also shown to translate into meaningful advantages of
HAMS-A under product Gaussian.

First, we provide a useful result about the expected acceptance rate of HAMS
under a general target density π(x). A similar result is discussed in Neal (2011) and
Calvo, Sanz-Alonso, and Sanz-Serna (2019) for HMC, which uses, as a proposal, a
deterministic integrator such as the leapfrog integrator for the Hamiltonian dynamics.
By comparison, the HAMS proposal (6)–(8) is a stochastic mapping, depending on a
noise vector Z.

Lemma 1. Assume that the HAMS chain is stationary, with (x0, u0) ∼ π(x, u).
Then the expected acceptance rate is

E[α] = 2P[∆G < 0] + P[∆G = 0],

where α is the acceptance probability defined in (14).

The preceding result includes the term P[∆G = 0], which is important for HAMS
because P[∆G = 0] = 1 for HAMS under a standard Gaussian target. Such a term is
absent in the related result for HMC in Calvo, Sanz-Alonso, and Sanz-Serna (2019),
where the probability that the change in the Hamiltonian, ∆H, equals zero is assumed
to be zero.

Next, we consider a univariate Gaussian target. The expected acceptance rate of
HAMS can be monotonically linked to the expectation of the generalized Hamiltonian
difference ∆G. Interestingly, Calvo, Sanz-Alonso, and Sanz-Serna (2019) shows that

D
ow

nl
oa

de
d 

08
/0

1/
22

 to
 1

28
.6

.3
6.

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2102 ZEXI SONG AND ZHIQIANG TAN

under univariate Gaussian, the expected acceptance rate of HMC satisfies a similar
formula as (33) below, with ∆G replaced by ∆H. However, the rescaling argument
used in Calvo, Sanz-Alonso, and Sanz-Serna (2019) to directly transfer the formula
from standard to nonstandard Gaussian for HMC is not applicable to HAMS, partly
because (33) holds trivially for HAMS with α ≡ 1 and ∆G ≡ 0 under standard
Gaussian.

Proposition 4. Suppose that the target density π(x) is N (0, γ−1), and the choice
ϕ = a2/(2 − a1) is used in HAMS. Then the expected acceptance rate of HAMS in
stationarity is

E[α] = 1− 2

π
arctan

(√
E[∆G]

2

)
.(33)

To assess the order of acceptance rates, we use the parameterization of a1 in
(18)–(19) and apply the following formula of E[∆G] from the proof of Proposition 4:

E[∆G] =
a31(γ − 1)2γ

2(2− a1)
.(34)

For fixed η1 > 0, a series expansion of (33) with respect to ϵ gives

E[α] = 1−
√
γ(γ − 1)2√

2π
η
3/2
1 ϵ3/2 +

√
γ(γ − 1)2

8
√
2π

(η21 − 6)η
1/2
1 ϵ5/2 +O(ϵ7/2).(35)

The leading error term in (35) is O(ϵ3/2) for γ ̸= 1. For HAMS-A with η1 = 0, both
the first two error terms vanish in (35), and a separate expansion of (33) shows that
E[α] = 1 − O(ϵ3). If we set η1 = kϵ for k ≥ 0, the expected acceptance rate is also
1−O(ϵ3).

Corollary 3. With η1 = kϵ for k ≥ 0 in the parameterization (18)–(19), the
expected acceptance rate of HAMS under univariate Gaussian N (0, γ−1) satisfies

E[α] = 1− (1 + 2k)3/2

4π

√
γ(γ − 1)2 · ϵ3 +O(ϵ5).(36)

For any fixed γ, a smaller k leads to a smaller prefactor in the leading error
term in (36), and hence a higher expected acceptance rate as ϵ→ 0 under univariate
Gaussian, with k = 0 (i.e., HAMS-A) being optimal in the HAMS class.

As mentioned in section 5, several existing algorithms lead to the correct vari-
ance for x but incur errors in the variance for u under univariate Gaussian. In the
supplement, section SM1, we derive Metropolized versions of BAOAB and ABOBA
(Leimkuhler and Matthews, 2012) and OBABO (Bussi and Parrinello, 2007) and then
study the corresponding expected acceptance rates under univariate Gaussian. Inter-
estingly, for each method with appropriately defined ∆G, identity (33) remains valid
in relating E[α] to E[∆G].

Corollary 4. Under univariate Gaussian N (0, γ−1), the expected acceptance
rate of Metropolis-adjusted BAOAB or ABOBA satisfies

E[α] = 1−
√
2

4π
γ
√
η · ϵ5/2 +O(ϵ7/2),(37)

whereas the expected acceptance rate of Metropolis-adjusted OBABO satisfies

E[α] = 1− γ3/2

4π
· ϵ3 +O(ϵ9).(38)
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The expected acceptance rate (37) for Metropolis-adjusted BAOAB or ABOBA
deviates from 1 by a lower order O(ϵ5/2), compared with O(ϵ3) for HAMS-A or HAMS
with η1 = kϵ. The expected acceptance rate (38) for Metropolis-adjusted OBABO
deviates from 1 by a leading term of the same order O(ϵ3) as in (36) for HAMS with
η1 = kϵ, but the prefactor γ3/2/(4π) is larger than in (36) for γ near 1. The leading
term in (36) reduces to 0 due to the rejection-free property of HAMS under standard
Gaussian (γ = 1).

Finally, we investigate the expected acceptance rate under a product Gaussian
target distribution N (0,diag(γ−1

1 , . . . , γ−1
d )). In contrast with section 5, analysis

of acceptance rates under product Gaussian is more involved than under univari-
ate Gaussian, because acceptance-rejection is determined jointly over all coordinates.
The acceptance probability of a generalized Metropolis–Hastings sampler including
HAMS is α = min(1, exp(−∆G)), where ∆G =

∑d
i=1 ∆Gi and each ∆Gi depends

on γi, respectively. For HAMS, ∆Gi is given by (27) under product Gaussian. We
consider the asymptotic regime where d → ∞ and ϵ → 0 as a function of d and
use the following result on the limiting behavior of expected acceptance rates, which
can be proved similarly as Theorem 2 in Calvo, Sanz-Alonso, and Sanz-Serna (2019).
For simplicity, the dependency of quantities on the dimension d is suppressed in the
notation.

Lemma 2. In the general scenario described above, assume that

E[∆G2
i ] = 2µi +O(µ2

i ), E[∆G3
i ] = O(µ2

i ), E[∆G4
i ] = O(µ2

i ),(39)

where µi = E[∆Gi]. In addition, assume that

lim
d→∞

max
1≤i≤d

E[∆Gi] = 0,(40)

and for some µ ∈ [0,∞),

lim
d→∞

E[∆G] = lim
d→∞

d∑
i=1

E[∆Gi] = µ.(41)

Then as d→∞, the following results hold.
• The random variables ∆G in stationarity converge in distribution to N (µ, 2µ).
• The expected acceptance rates also converge: E[α] → 2Φ(−

√
µ/2), where Φ

is the cumulative distribution function of standard Gaussian.

For HAMS, combining Lemma 2 and formula (34) for E[∆Gi] leads to Corollary
5. Condition (39) can be directly verified, whereas (40)–(41) impose conditions on
(γ1, . . . , γd).

Corollary 5. For HAMS under product Gaussian, suppose that for some m, τ ∈
[0,∞),

lim
d→∞

a31
4
d = m, lim

d→∞

1

d

d∑
i=1

γi(γi − 1)2 = τ, lim
d→∞

max
1≤i≤d

γi(γi − 1)2

d
= 0.

With η1 = kϵ for k ≥ 0 in (18)–(19), the first condition above is limd→∞(k +
1
2 )

3ϵ6d/4 = m. Take µ = mτ . Then in stationarity as d→∞,

∆G→D N (µ, 2µ) and E[α]→ 2Φ
(
−
√
µ/2

)
.(42)
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Under similar conditions, Corollary 5 can also be extended to Metropolis-adjusted
BAOAB, ABOBA, and OBABO, with the corresponding definitions of µ.

Corollary 6. For Metropolis-adjusted BAOAB and ABOBA under product
Gaussian, suppose that for some m, τ ∈ [0,∞),

lim
d→∞

ηϵ5

16
d = m, lim

d→∞

1

d

d∑
i=1

γ2
i = τ, lim

d→∞

ϵ

d

d∑
i=1

γ3
i = 0, lim

d→∞
max
1≤i≤d

γ2
i

d
= 0.

Then (42) holds with µ = mτ . For Metropolis-adjusted OBABO under product Gauss-
ian, suppose that for some m, τ ∈ [0,∞),

lim
d→∞

ϵ6

32
d = m, lim

d→∞

1

d

d∑
i=1

γ3
i = τ, lim

d→∞
max
1≤i≤d

γ3
i

d
= 0.

Then (42) holds with µ = mτ .

The preceding results reveal an interesting comparison between HAMS and re-
lated algorithms. Using the parameterization (18)–(19) with η1 = kϵ for k ≥ 0, the
requirement limd→∞ a31d/4 = m in Corollary 5 is satisfied by taking ϵ = O(d−1/6).
For Metropolis-adjusted OBABO, the condition limd→∞ ϵ6d/32 = m is also satisfied
by taking ϵ = O(d−1/6). However, for Metropolis-adjusted BAOAB and ABOBA,
in order to achieve a nonzero limit of E[α] in Corollary 6, we require ϵ = O(d−1/5)
which is worse than HAMS and Metropolis-adjusted OBABO. Furthermore, while
the limits of the expected acceptance rate E[α] take the same form of (42), the exact
expressions of µ = mτ differ between the aforementioned methods. The quantity τ is
derived from the prefactors of the leading error terms in (36)–(38). For HAMS with
η1 = kϵ including HAMS-A, τ is approximately the average of γi(γi − 1)2 over the
coordinates instead of direct powers of γi as in the other methods. Therefore, if a
high proportion of γi’s are close to 1, HAMS with η1 = kϵ tends to achieve higher
expected acceptance rates than the others. This provides an explanation for superior
performance of HAMS when the target distribution can be made to resemble product
Gaussian with many variance components near 1 after preconditioning, as reported
in Song and Tan (2021) and the simulation study later.

7. Convergence rate under standard Gaussian. In sections 5–6, we mainly
study stationary properties of HAMS under product Gaussian, where the HAMS chain
is assumed to be stationary without or with acceptance-rejection. In this section, we
examine how the convergence rate can be optimized within the HAMS class under
standard Gaussian, taken to be univariate without loss of generality. The analysis
is facilitated by the fact that the HAMS chain under standard Gaussian is rejection-
free and reduces to a VAR process. Our investigation reveals an interesting trade-off
between different versions of HAMS and leads to a specific choice of c2 given (ϵ, c1) or
c1 given (ϵ, c2), which can be used as the default choices when the target distribution
can be transformed into roughly standard Gaussian after preconditioning.

Consider the standard Gaussian setting, where HAMS is rejection-free. In this
case, the HAMS proposal reduces to the order-1 VAR process (15) or equivalently(

x∗

u∗

)
= Φ

(
x0

u0

)
+ Z0,(43)

where Z0 ∼ N (0, 2A−A2) and Φ = ( 1−a1 a2
−a2 a3−1 ), depending on A = ( a1 a2

a2 a3
) such that

0 ≤ A ≤ 2I as stated in (6). The convergence rate of the VAR process (43) is known
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IRREVERSIBLE METROPOLIS SAMPLING A2105

to be captured by the spectral radius of the coefficient matrix Φ, which is defined as
the maximum modulus of its eigenvalues (Roberts and Sahu, 1997, Theorem 1). A
smaller spectral radius of Φ leads to faster convergence for the VAR process (43).

If the coefficients a1, a2, a3 are all free to choose, subject to 0 ≤ A ≤ 2I, then the
spectral radius of Φ can be made equal to 0 by setting a3 = a1 and a2 = ±(1 − a1)
for a1 ∈ [.5, 1.5]. The corresponding VAR process (43) can be shown to converge
to N (0, I) after 2 iterations for any initial value. However, such choices of A are
incompatible with the parametrization (18)–(19), where a1 → 0 and a3 → 2 as ϵ→ 0
for appropriate SDE limits.

To obtain a meaningful solution, we seek to minimize the spectral radius of Φ over
possible choices of (a2, a3) while fixing a1 and ν ≡ a22/a3. For the parametrization
(18), this program corresponds to optimizing the choice of c2 while fixing (ϵ, c1), which
indicates that both a1 = 2 − c1(1 +

√
1 + ϵ2) and ν = a22/a3 = c1(1 −

√
1− ϵ2) are

fixed.

Proposition 5. Suppose that the target density π(x) is N (0, 1). For any fixed
0 < a1 < 2 and ν ≡ a22/a3 ≥ 0 such that ν ≤ a1 ≤ 1 + ν, the convergence rate of the
HAMS process (43) is optimized, or the spectral radius of Φ is minimized over (a2, a3)
by the choices

a∗3 =
(√

ν + 2− a1 −
√
ν
)2

, a∗2 = ±
√

νa∗3,(44)

with the minimum spectral radius given by
|a∗

3−a1|
2 .

There are two constraints on the fixed values of (a1, ν) in the preceding result. The
first constraint ν ≤ a1 is needed to ensure a1a3 ≥ a22 = νa3, and hence A ≥ 0. The
second constraint a1 ≤ 1+ν is equivalent to requiring c1 ≥ 1/2 in the parametrization
(18) by the expression of (a1, ν) mentioned above. If this constraint were relaxed, then
the optimal choice of (a2, a3) would be of a different form than (44) by extending the
proof of Proposition 5. Nevertheless, the constraint a1 ≤ 1+ν or equivalently c1 ≥ 1/2
is automatically satisfied in HAMS-A, with ν = a1 and c1 = 1. For HAMS-A, the
optimal choice (44) given a1 reduces to a∗3 = (

√
2 − √a1)2 and a∗2 = ±

√
a1a∗3 in

agreement with Song and Tan (2021), Lemma 3. Moreover, for c1 = e−η1ϵ/2 in the
parametrization (19) with η1 bounded, the constraint c1 ≥ 1/2 is also satisfied in the
practical situation where the step size ϵ is relatively small.

As motivated by the discussions in sections 5–6, we study HAMS with η1 = kϵ
in (19) for some constant k ≥ 0. Given 0 < ϵ < 1 and 1/2 ≤ c1 ≤ 1 in the
parametrization (18), (a1, ν) are fixed as mentioned above. The optimal choice of a3
in (44) translates into

a∗3 =

{
3−

√
1− ϵ2 − 2

√
2ϵ
(
1 +

√
1− ϵ2

)−1/2
}
c1.(45)

For η1 = kϵ and c1 = exp(−kϵ2/2), by the expressions of a1 in (18) and a∗3 in (45),
the minimum spectral radius of Φ can be shown as ϵ→ 0 to be

|a∗3 − a1|
2

= 1− ϵ− kϵ2 +O(ϵ3).(46)

From (46), a larger k corresponds to a smaller spectral radius for Φ, hence faster
convergence for HAMS under standard Gaussian. By comparison, as seen from (32)
and (36), a smaller k corresponds to a more accurate stationary variance without
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A2106 ZEXI SONG AND ZHIQIANG TAN

acceptance-rejection and a higher expected acceptance rate with acceptance-rejection
for HAMS when the target density is nonstandard Gaussian. Hence there exists a
trade-off in the behavior of HAMS when using η1 = kϵ and the associated choice a∗3
for different values of k.

The preceding scheme of optimizing over (a2, a3) given (a1, ν) extends the cor-
responding scheme for HAMS-A, where ν is identical to a1 by definition. A similar
extension can be obtained for HAMS-B by minimizing the spectral radius of Φ over
possible choices of (a1, a2) while fixing a3 and ν̃ ≡ a22/(2− a1). For the parametriza-
tion (18), this scheme corresponds to optimizing the choice of c1 while fixing (ϵ, c2),
which leads to fixed a3 = c2(1 +

√
1 + ϵ2) and ν̃ = a22/(2− a1) = c2(1−

√
1− ϵ2).

Proposition 6. Suppose that the target density π(x) is N (0, 1). For any fixed
0 < a3 < 2 and ν̃ ≡ a22/(2 − a1) ≥ 0 such that ν̃ ≤ 2 − a3 ≤ 1 + ν̃, the convergence
rate of the HAMS process (43) is optimized, or the spectral radius of Φ is minimized
over (a1, a2) by the choices

2− a∗1 =
(√

ν̃ + a3 −
√
ν̃
)2

, a∗2 = ±
√
ν̃(2− a∗1),(47)

with the minimum spectral radius given by
|a3−a∗

1 |
2 .

For HAMS-B, defined with c2 = 1 as in (25), simple calculation shows that ν̃ is
identical to 2 − a3, and hence the optimal choice (47) given a3 reduces to 2 − a∗1 =
(
√
2−
√
2− a3)

2 and a∗2 = ±
√
(2− a3)(2− a∗1). This result is symmetric to Song and

Tan (2021), Lemma 3, where the optimal choices of (a2, a3) given a1 are determined
for HAMS-B by the relationship 2 − a3 = (

√
2 −
√
2− a1)

2. The change that a1 is
tuned given a3, instead of a3 given a1, is due to the parametrization (25) used here for
HAMS-B, which is slightly different from that in Song and Tan (2021) as mentioned
at the end of section 3.

In connection with the SDEs in section 3, we record the implied choice of η2 by
(44) for HAMS-A with η1 = 0 and that of η1 by (47) for HAMS-B with η2 = 0. The
optimal choice identified as ϵ → 0 can also be obtained by specializing the general
analysis of optimal convergence for linear SDEs in Lelièvre, Nier, and Pavliotis (2013)
to the standard Gaussian setting (Bou-Rabee and Eberle, 2020, Theorem 4.13).6 Our
general results above are derived with any fixed step size under a standard Gaussian
target and may still be useful in the case where the target is made roughly standard
Gaussian after preconditioning.

Corollary 7. For HAMS-A, the choice of η2 based on (44) is of the order 2 +
O(ϵ2), and the associated HAMS-A proposal satisfies the underdamped Langevin SDE
(22) with η2 = 2 as ϵ→ 0. For HAMS-B, the choice of η1 based on (47) is of the order
2+O(ϵ2), and the associated HAMS-B proposal satisfies the SDE (22) with η1 = 2 as
ϵ→ 0.

For any fixed, possibly nonzero η1, the optimal parameter identified as ϵ → 0 in
Proposition 5 also agrees with that leading to the optimal convergence of SDE (20)
under standard Gaussian, which can be deduced from Bou-Rabee and Eberle (2020),
Lemma 4.12.

6The optimal convergence in Lelièvre, Nier, and Pavliotis (2013) is characterized by maximizing
over η2 the spectral gap for the Langevin SDE (22), defined as the minimum real part of the eigen-
values of the coefficient matrix for (xt, ut)dt. The optimal convergence in our analysis corresponds
to minimization of the spectral radius of Φ in VAR process (43), defined as the maximum modulus
of the eigenvalues of Φ. The optimal choice from our analysis as ϵ → 0 agrees with that from the
SDE-based analysis in the standard Gaussian setting.
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Corollary 8. For HAMS with fixed ϵ and η1 in the parametrization (18)–(19),
the choice of η2 based on (44) is of order 2 + η1 + O(ϵ2). The corresponding SDE
(20) achieves the optimal convergence rate with respect to η2 for the fixed η1 under
standard Gaussian.

The SDE-based analysis in Lelièvre, Nier, and Pavliotis (2013) can also be applied
with various constraints on the SDE coefficients to a multivariate Gaussian target
with a known variance matrix. The optimal choice would agree with that from our
analysis (as ϵ → 0) after preconditioning with the known variance matrix, provided
that the same constraints can be properly incorporated. Further comparison of the
two approaches can be studied in future work.

To facilitate tuning, the formulas in Propositions 5 and 6 can be used as the default
choices given (ϵ, c1) as in HAMS-A or given (ϵ, c2) as in HAMS-B. Whenever possible,
it is helpful to exploit preconditioning, that is, applying a linear transformation of x
based on an approximate variance matrix such that the target density can be roughly
aligned with standard Gaussian. Further discussion about preconditioning is provided
in the appendix.

8. Matching with existing algorithms. The HAMS class is related to a class
of SDEs (20) including underdamped Langevin in section 3 in the limit of a small step
size. In this section, we show that various popular algorithms for simulating Langevin
dynamics (22) can be put in the HAMS class up to negligible differences which are of
higher orders of the step size than the associated leading terms. For the purpose of
matching, all physical quantities such as the Boltzmann constant, the temperature,
and the mass are set to 1 in the existing algorithms. In addition, to simplify the
notation, the target density π(x) or the potential function U(x) is assumed to be
univariate.

As the existing algorithms are conventionally used for MD simulations without
acceptance-rejection, we only discuss how the proposal (x∗, u∗) is defined given the
current variables (x0, u0). Nevertheless, as described in the supplement (section SM1),
an acceptance-rejection step can be incorporated into these algorithms in the frame-
work of generalized Metropolis–Hastings sampling (Song and Tan, 2021). The result-
ing sampling algorithms are used in our numerical experiments (section 9).

GJF, BAOAB, and impulsive Langevin leapfrog (IL). First, we study
three relatively recent algorithms, where a single noise is used in each update. The
GJF algorithm (Grønbech-Jensen and Farago, 2013) is defined as follows:

x∗ = x0 −
ϵ2

2 + ηϵ
∇U(x0) +

2ϵ

2 + ηϵ
u0 +

ϵ

2 + ηϵ
W,(48)

u∗ =
2− ηϵ

2 + ηϵ
u0 +

ηϵ2 − 2ϵ

2(2 + ηϵ)
∇U(x0)−

ϵ

2
∇U(x∗) +

2

2 + ηϵ
W,(49)

where W ∼ N (0, 2ηϵ). Throughout, η ≥ 0 is the friction coefficient playing the role
of η2 in (22). The BAOAB algorithm (Leimkuhler and Matthews, 2012) is given by

ũ = u0 −
ϵ

2
∇U(x0), x̃ = x0 +

ϵ

2
ũ,(50)

˜̃u = e−ηϵũ+
√
1− e−2ηϵW,(51)

x∗ = x̃+
ϵ

2
˜̃u, u∗ = ˜̃u− ϵ

2
∇U(x∗),(52)
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where W ∼ N (0, 1). The IL algorithm (Goga et al., 2012) is expressed in terms of
half-step momentums, which are denoted as u− 1

2
and u 1

2
. The update is given as

follows:

ũ = u− 1
2
− ϵ∇U(x0), ˜̃u = −c̃ũ+

√
c̃(2− c̃)W,(53)

x∗ = x0 + ϵ

(
ũ+

1

2
˜̃u

)
, u 1

2
= ũ+ ˜̃u,(54)

where W is a N (0, 1) noise and 0 ≤ c̃ ≤ 1 represents the fraction of momentum lost
due to friction with c̃ = 1− e−ηϵ.

Proposition 7. Suppose that we rescale the momentum in GJF and BAOAB by

u∗ ←
√
4− ϵ2

2
u∗, u0 ←

√
4− ϵ2

2
u0,

and define the full-step momentum in IL by

u0 =
2√

4− ϵ2

(
u− 1

2
− ϵ

2
∇U(x0)

)
, u∗ =

2√
4− ϵ2

(
u 1

2
− ϵ

2
∇U(x∗)

)
.

See the appendix for explicit expressions. Then the following results hold.
• BAOAB and IL are equivalent to each other.
• GJF, BAOAB, and IL can be put exactly into the HAMS form (6)–(8), with
(a1, a2, a3, ϕ) satisfying (16) in HAMS-A except for a difference of the order
O(ϵ2) in ϕ.

From the proof of Proposition 7, the choices of (a1, a2, a3, ϕ) used to match
rescaled GJF, BAO, and IL with HAMS-A are of the order

a1 =
ϵ2

2

(
1− ηϵ

2

)
+O(ϵ4), a2 = ϵ

(
1− ηϵ

2

)
+O(ϵ3), a3 = 2

(
1− ηϵ

2

)
+O(ϵ2),

(55)

ϕ =
ϵ

2
+O(ϵ2).

(56)

By comparison, the SDE parametrization (24) for HAMS-A with η2 = η satisfies

a1 =
ϵ2

2
+O(ϵ4), a2 = ϵ

(
1− ηϵ

4

)
+O(ϵ3), a3 = 2

(
1− ηϵ

2

)
+O(ϵ2),(57)

ϕ =
ϵ

2
+O(ϵ2).(58)

Interestingly, the choices of (a1, a2, a3) in (55) and (57) agree in the (first) leading
terms but not in the second leading terms. This difference does not affect the conver-
gence of all these algorithms to underdamped Langevin SDE (22) as ϵ→ 0.

OBABO and Vanden-Eijnden–Ciccotti (VEC). Next we study two algo-
rithms where two noise variables are used in each update. The OBABO algorithm
(Bussi and Parrinello, 2007) is given by

u+ =
√
cu0 +

√
1− cW1,(59)

ũ = u+ − ϵ

2
∇U(x0), x∗ = x0 + ϵũ, u− = ũ− ϵ

2
∇U(x∗),(60)

u∗ =
√
cu− +

√
1− cW2,(61)
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where 0 ≤ c ≤ 1 is the amount of momentum carryover defined as c = e−ηϵ, and
W1,W2 ∼ N (0, 1) independently. The VEC integrator described by Equation 21 in
Vanden-Eijnden and Ciccotti (2006) is

x∗ = x0 −
ϵ2

2
∇U(x0) +

2ϵ− ηϵ2

2
u0 +

√
2ηϵ3/2

2
W1 +

√
6ηϵ3/2

6
W2,

(62)

u∗ =

(
1− ηϵ+

η2ϵ2

2

)
u0 +

ηϵ2 − ϵ

2
∇U(x0)−

ϵ

2
∇U(x∗) +

√
2ηϵ

2
(2− ηϵ)W1 −

√
6

6
(ηϵ)3/2W2,

(63)

where W1,W2 ∼ N (0, 1) independently.

Proposition 8. If the coefficient ϵ/2 is replaced by ϵ/(1 +
√
1− ϵ2) for ∇U(x0)

and ∇U(x∗) in (60), then OBABO can be put exactly into the HAMS form (6)–(8),

with the default choice ϕ in Proposition 2. If the coefficient ηϵ2−ϵ
2 is replaced by

ηϵ2−ϵ
2 − ϵ3

4 for ∇U(x0) in (63), then VEC can be matched with HAMS with default ϕ,
except for differences of order O(ϵ2) in the ϕ choice and O(ϵ3) in the variances and
covariance of (x∗, u∗) given (x0, u0). See the appendix for explicit expressions of the
modified algorithms.

From the proof of Proposition 8, the choices of (a1, a2, a3, ϕ) used to match modi-
fied OBABO and VEC with HAMS satisfy the same expansions as in (55)–(56). Even
though two noise variables are used per iteration, the leading terms of (a1, a2, a3)
satisfy a1a3 = a22, characteristic of HAMS-A, which explicitly uses only one noise
variable per iteration.

Shifted HAMS. For all the methods discussed so far, including HAMS, x∗ is
determined using the gradient ∇U(x0) evaluated at the current step. There exist
other methods, however, which first update x0 to some intermediate value x̃ and
then use ∇U(x̃) in the expression of x∗. In an attempt to match such methods, we
introduce a variation of HAMS, called shifted HAMS, with the following update:

(
x∗

u∗

)
=

(
x0

−u0

)
− Ã

(
∇U(x̃)
−u0

)
+

(
Z

(1)
0

Z
(2)
0

)
,(64)

where x̃ = x0 + bu0, (Z
(1)
0 , Z

(2)
0 )T ∼ N (0, 2A−A2), and

A =

(
a1 a2
a2 a3

)
, Ã = A

(
1 b
0 1

)
=

(
a1 ba1 + a2
a2 ba2 + a3

)
.

Here b is a scalar tuning parameter involved to define the shifted value x̃ such that
the gradient ∇U(x̃) is used in the update instead of ∇U(x0). Taking b = 0 in (64)
leads back to the original HAMS update (7) before the u∗ update. The coefficient
matrix Ã in (64) is derived to achieve the property that when the target density π(x)
is standard Gaussian with ∇U(x) = x, the update (64) reduces to the same VAR
process (15) as the original HAMS.

ABOBA, SPV, and Mannella’s leapfrog. The ABOBA algorithm (Leimkuh-
ler and Matthews, 2012) is defined by the following update:
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x̃ = x0 +
ϵ

2
u0,(65)

ũ = u0 −
ϵ

2
∇U(x̃), ˜̃u = e−ηϵũ+

√
1− e−2ηϵW, u∗ = ˜̃u− ϵ

2
∇U(x̃),(66)

x∗ = x̃+
ϵ

2
u∗,(67)

where W ∼ N (0, 1). The update in the stochastic position Verlet (SPV) algorithm
(Melchionna, 2007) is given by

x̃ = x0 +
ϵ

2
u0,(68)

u∗ = e−ηϵu0 −
1− e−ηϵ

η
∇U(x̃) +

√
1− e−2ηϵW,(69)

x∗ = x̃+
ϵ

2
u∗,(70)

where W ∼ N (0, 1). Mannella’s leapfrog (Mannella, 2004) is given by

x̃ = x0 +
ϵ

2
u0,(71)

u∗ = c2

(
c1u0 − ϵ∇U(x̃) +

√
2ηW

)
,(72)

x∗ = x̃+
ϵ

2
u∗,(73)

where W ∼ N (0, ϵ), c1 = 2−ηϵ
2 , and c2 = 2

2+ηϵ .

Proposition 9. Suppose that the coefficient ϵ/2 for u0 and u∗ is replaced by
ϵ/(1 +

√
1− ϵ2) in (65) and (67) for ABOBA and in (71) and (73) for Mannella’s

leapfrog and replaced by

b =
2(1− e−ηϵ)/η

1 + e−ηϵ +
√
(1 + e−ηϵ)2 − 4(1− e−ηϵ)2/η2

in (68) and (70) for SPV. Then ABOBA, SPV, and Mannella’s leapfrog can be put
into the form of (64) in shifted HAMS with suitable choices (a1, a2, a3, b), except for
differences of order O(ϵ3) in the variances and covariance of (x∗, u∗) given (x0, u0).

From the proof of Proposition 9, the choices of (a1, a2, a3) used to match the three
algorithms with shifted HAMS are the same as in (55) for matching other algorithms
with HAMS. Moreover, the two choices of b stated in Proposition 9 are both of the
order

b =
ϵ

2
+O(ϵ3),(74)

which shares the same leading term, ϵ
2 , as the ϕ choice in (56), although the ϵ2 term

vanishes in (74). These observations shed interesting light on the relationship among
the existing algorithms in addition to their connections with HAMS.

9. Numerical experiments. We conduct numerical experiments to compare
HAMS-A, HAMS-B, and HAMS with η1 = kϵ, henceforth labeled as HAMS-k, for
k = 1, 2, 3, and Metropolized versions of BAOAB, ABOBA, and OBABO, which are
derived in the framework of generalized Metropolis–Hastings sampling as described in
the supplement, section SM1. The target densities include a one-dimensional double
well potential and two higher-dimensional latent variable distributions.
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9.1. Sampling from a double well. Consider the one-dimensional double well
as in Leimkuhler and Matthews (2013):

π(x) ∝ exp(−T−1U(x)), U(x) = (x2 − 1)2 + x,

where both the temperature T and the Boltzmann’s constant are set to 1. See the
accompanying supplemental file M142370SupMat.pdf [local/web 3.26MB]for a plot of
π(x). For a unit mass, the augmented density with the momentum u is

π(x, u) ∝ exp

{
−T−1

(
U(x) +

1

2
u2

)}
.(75)

We compare different algorithms for sampling from (75), where acceptance-rejection
is included at each iteration. The estimation error is nonmonotonic in the step size.
In contrast, the experiment in Leimkuhler and Matthews (2013) is conducted in the
MD setting, where every proposal is accepted, and the estimation error increases with
the step size.

We follow Leimkuhler and Matthews (2013) and set the friction in underdamped
Langevin to one. Thus for HAMS-A and HAMS-1/2/3, we fix η2 = 1. For BAOAB,
ABOBA, and OBABO, we fix η = 1. For HAMS-B, which is associated with SDEs
with fixed η2 = 0 (section 3), we set η1 = 1 to reciprocate. We use 8 different step
sizes starting from ϵ = 0.04 and increase by 0.04 until ϵ = 0.32. For each ϵ, we collect
10000 draws and repeat this process 3000 times. The starting values of x and u are
randomly drawn from Uniform[−1, 1].

We assess the performance using the accuracy in temperature estimates. In fact,
the temperature T can be equivalently expressed as the configurational temperatures

TC1 = E[x · ∇U(x)], TC2 =
E[(∇U(x))2]

E[∇2U(x)]
,(76)

or as the kinetic temperature

TK = E[u2].(77)

The expression TC1 is used in Leimkuhler and Matthews (2013), whereas TC2 is used in
Farago (2019). It can be directly shown that the theoretical values of these expressions
are the same as T , TC1 = TC2 = TK = T (see supplemental section SM4.1). However,
due to sampling errors, the empirical estimates of these temperatures can be different.
We use root mean squared errors of TC1, TC2, and TK from repeated experiments as
metrics. In the supplement, we also report density estimation and details of error
calculation.

In Figure 1, the errors in TC1, TC2, and TK are plotted on the log scale. First,
we examine estimates of the configurational temperatures. There appear to be three
groups among the algorithms studied. The first group is HAMS-1/2/3, which leads
to smallest errors in both TC1 and TC2 among all algorithms, when ϵ ≤ 0.16. The
performance of HAMS-k improves as k increases from 1 to 3, when ϵ is small. In the
second group, the error curves of HAMS-A, BAOAB, and OBABO are comparable
and those of ABOBA consistently higher. For both TC1 and TC2, HAMS-B, in its
own group, is the best for the smallest ϵ but as ϵ increases its performance quickly
deteriorates. Over the whole range of ϵ, HAMS-1 has the smallest TC1 error, whereas
both HAMS-2 and HAMS-3 reach the smallest error in TC2.
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(d) Acceptance rates

Fig. 1. Root mean squared errors in configurational temperatures and kinetic temperature,
average acceptance rates for the double well. Results are based on 3000 repeated experiments.

For the kinetic temperature TK , the same three groups of algorithms emerge as
above. When ϵ ≤ 0.16, we see two groups each with comparable performance: the
first group is HAMS-1/2/3, which outperforms the second group including HAMS-A,
BAOAB, ABOBA, and OBABO. As ϵ increases beyond 0.2 the two groups diverge
with ABOBA achieving the smallest error overall while BAOAB producing larger
errors. In its own group, HAMS-B leads to large errors in TK , which are decreasing
as ϵ increases in the range studied.

We also present the average acceptance rates in Figure 1. The algorithms can also
be divided into three groups as above. For the group HAMS-A, BAOAB, ABOBA,
and OBABO, which are directly related to underdamped Langevin, the acceptance
rates are relatively high across the range of ϵ. For a fixed ϵ, when k increases (with
k = 0 corresponding to HAMS-A), the acceptance rates of HAMS-k drops, which is
consistent with the discussion in section 6. When achieving the smallest TC1 and TC2

errors as remarked above, HAMS-1/2/3 have much lower acceptance rates compared
with the HAMS-A group at the same step sizes. The step sizes leading to the best
accuracy in TC1 and TC2 are higher within the HAMS-A group than within HAMS-
1/2/3. This illustrates the interesting behavior of HAMS-k, distinct from existing
algorithms purely based on underdamped Langevin.
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9.2. Latent variable sampling. We compare the methods by sampling latent
variables in a stochastic volatility model and a log-Gaussian Cox model. In order
to improve sampling efficiency, we perform preconditioning on the target densities,
as described in the appendix for HAMS and in the supplement for other algorithms
studied. This allows us to employ the default tuning suggested by Propositions 5 and
6. Consequently each method only depends on a single step size parameter ϵ. We tune
ϵ during a burn-in period to achieve roughly 70% acceptance rates for all methods.
All simulation details are provided in supplement section SM4.

To evaluate MCMC samples, a useful metric is the effective sample size (ESS),
ESS = n/{1 + 2

∑∞
l=1 ρ(l)}, where n is the total number of draws and ρ(l) is the

lag-l autocorrelation. We report two estimators of ESS which are both suitable for
irreversible Markov chains. The first one is the Bartlett window estimator (labeled as
ESS1):

ESS1 =
n

1 + 2
∑L

l=1

(
1− l

L

)
ρ(l)

,(78)

where the cutoff value L is a large number (taken to be 3000 in our results). The
second one (labeled as ESS2) is based on the within and between variances from
multiple chains in repeated simulations. Suppose that we have m Markov chains
each with n draws, denoted as {xij : i = 1, . . . , n, j = 1, . . . ,m}. Then ESS can be
estimated by

ESS2 = n
W

B
, W =

1

m(n− 1)

∑
i,j

(xij − x̄.j)
2, B =

n

m− 1

∑
j

(x̄.j − x̄)2,(79)

where x̄.j = n−1
∑n

i=1 xij and x̄ = m−1
∑m

j=1 x̄.j . In fact, B/n is an estimator of
the variance of the average of n draws, whereas W is an estimator of the marginal
variance of x. For relatively large m (50 in our experiments), the estimator ESS2
can be more reliable than ESS1 based on within-chain auto-correlations in directly
measuring consistency between repeated simulations. Both ESS estimators are com-
puted from each coordinate for a multidimensional distribution. Following Girolami
and Calderhead (2011), we report the minimum ESS over all coordinates, adjusted
by runtime, as a measure of computational efficiency.

Stochastic volatility model. First, consider a stochastic volatility model stud-
ied in Kim, Shephard, and Chib (1998), where latent volatilities are generated as

xt = φxt−1 + θt, θt ∼ N (0, σ2), t = 2, 3, . . . , T,(80)

with x1 ∼ N (0, σ2/(1− φ2)), and the observations are generated as

yt = ztβ exp(xt/2), zt ∼ N (0, 1), t = 1, . . . , T.(81)

Let x = (x1, . . . , xT )
T and y = (y1, . . . , yT )

T. We generate T = 1000 observations
from (80)–(81) using parameter values β = 0.65, σ = 0.15, and φ = 0.98. We fix
y and the parameters and then sample latent variables from p(x|y, β, σ, φ). See the
accompanying supplemental file M142370SupMat.pdf [local/web 3.26MB]for expres-
sions of gradients and preconditioning matrices used. All algorithms are run for 5000
burn-in iterations, and then 5000 draws are collected. Initial values of latent variables
are drawn from standard normal distribution. The simulation process is repeated for
50 times.
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Table 1
Runtime and ESS comparison for sampling latent variables in the stochastic volatility model.

Results are averaged over 50 repetitions.

Method Time (s)
ESS1

(min, median, max)
minESS1

Time
ESS2

(min, median, max)
minESS2

Time

HAMS-A 33.0 (2000, 3728, 7034) 60.56 (563, 1093, 2619) 17.05
HAMS-1 32.1 (2117, 3461, 6349) 65.99 (505, 1032, 2101) 15.73
HAMS-2 32.2 (1936, 3276, 5754) 60.05 (496, 1029, 2247) 15.37
HAMS-3 32.3 (2199, 3221, 6014) 68.11 (461, 988, 2301) 14.27
HAMS-B 33.4 (2301, 3487, 6890) 68.84 (501, 1058, 2997) 14.99
BAOAB 33.8 (466, 801, 1188) 13.79 (128, 235, 481) 3.81
ABOBA 34.1 (443, 756, 1143) 13.00 (132, 224, 538) 3.88
OBABO 32.8 (667, 1050, 1624) 20.31 (141, 318, 709) 4.29
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Fig. 2. Trace and auto-correlation function plots of a latent variable from an individual run
for sampling latent variables in the stochastic volatility model.

Table 1 shows the runtime and ESS comparison. In terms of ESS1, HAMS-B is the
best, followed closely by HAMS-3 and then HAMS-1, which are slightly better than
HAMS-A and HAMS-2. On the other hand, in terms of ESS2, HAMS-A clearly leads
all other methods. We also observe that the performance of HAMS-k improves as k
decreases, whereas HAMS-B is in between HAMS-2 and HAMS-3. Using either ESS
metric, we see that all HAMS variants are superior to BAOAB, ABOBA, and OBABO.

Trace plots in Figure 2 show that HAMS methods have much better mixing than
the rest. The average sample means of latent variables are similar across all methods,
as shown by Figure SM2 in the supplement. Hence it is more informative to compare
the variation among repeated experiments. Figure 3 shows the sample means of latent
variables after centering. A thinner spread indicates better consistency. We see that
HAMS-A, HAMS-1, and HAMS-B have comparable spread, while BAOAB, ABOBA,
and OBABO show much larger variation. The performance of HAMS-2/3 (omitted
in Figure 3) is similar to that of HAMS-1.
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IRREVERSIBLE METROPOLIS SAMPLING A2115

Fig. 3. Centered plots of sample means of all 1000 latent variables over 50 repetitions for
sampling latent variables in the stochastic volatility model.

Table 2
Runtime and ESS comparison for sampling latent variables in the log-Gaussian Cox model.

Results are averaged over 50 repetitions.

Method Time (s)
ESS1

(min, median, max)
minESS1

Time
ESS2

(min, median, max)
minESS2

Time

HAMS-A 528.4 (968, 1467, 4607) 1.83 (218, 444, 1406) 0.41
HAMS-1 530.1 (665, 1142, 3118) 1.25 (175, 344, 937) 0.33
HAMS-2 530.3 (700, 1080, 2740) 1.32 (174, 323, 1011) 0.33
HAMS-3 530.3 (656, 1019, 2546) 1.24 (159, 308, 800) 0.30
HAMS-B 529.8 (606, 938, 2680) 1.14 (142, 279, 804) 0.27
BAOAB 530.5 (316, 494, 972) 0.60 (68, 144, 401) 0.13
ABOBA 536.2 (324, 478, 1080) 0.60 (76, 143, 348) 0.14
OBABO 529.4 (348, 555, 1215) 0.66 (75, 166, 420) 0.14

Log-Gaussian Cox model. Next consider a log-Gaussian Cox model, where the
latent variables x = (xij)i,j=1,...,m are associated with an m ×m grid (Christensen,
Roberts, and Rosenthal, 2005). Assume that xij ’s are normal with means 0 and

a covariance function C[(i, j), (i′, j′)] = σ2 exp(−
√
(i− i′)2 + (j − j′)2/(mβ)). By

abuse of notation, we denote x ∼ N (0, C) of dimension n = m2. The observations
(yij)i,j=1,...,m are independently Poisson, where the mean of yij is λij = n−1 exp(xij+
µ), with µ treated as known. The density of latent variables given response y is

p(x|y, β, σ2, µ) ∝ exp

{
−1

2
xTC−1x

}
exp

∑
i,j

(yij(xij + µ)− λij)

 .(82)

We take m = 64 and generate n = 642 = 4096 observations using the parameter
values σ2 = 1.91, β = 1/33, and µ = log(126)− 0.955. We fix the simulated y values
and the parameters, and then sample latent variables x from the density (82). All
algorithms are run for 5000 burn-in iterations, and then 5000 draws are collected. We
initialize the latent variables from a standard normal distribution. The simulation
process is repeated for 50 times.
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A2116 ZEXI SONG AND ZHIQIANG TAN

From Table 2, we see that for the Cox model, HAMS-A is the best in both ESS1
and ESS2. In terms of ESS2, we see that similarly as in Table 1, HAMS-k becomes
worse as k increases. However, this does not hold true for ESS1, where HAMS-2 is
slightly better than HAMS-1. Among the HAMS methods, HAMS-B has the lowest
ESS in this case. Similarly to the stochastic volatility results, all three non-HAMS
methods show inferior performance.

According to trace plots in Figure 4, HAMS methods mix better than the other
methods. Furthermore, the auto-correlation function (ACF) of HAMS-A has the
fastest decay. The average sample means of latent variables are also aligned across
different methods (see Figure SM3 in the supplement). From the centered sample
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Fig. 4. Trace and ACF plots of a latent variable from an individual run for sampling latent
variables in the log-Gaussian Cox model.

Fig. 5. Centered plots of sample means of all 4096 latent variables over 50 repetitions for
sampling latent variables in the stochastic volatility model.
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means in Figure 5, we see that HAMS-A has a slight advantage over HAMS-1 and
HAMS-B. The three remaining methods are clearly less consistent than HAMS. The
performance of HAMS-2/3 (omitted in Figure 5) is similar to that of HAMS-1.

10. Conclusion. We investigate HAMS in several directions, including deriving
SDE limits, studying theoretical properties under the product or standard Gaussian
setting, and establishing connections to existing algorithms for Langevin dynamics.
Further work is needed to study possible extensions of our results to non-Gaussian
target distributions, for example, properties from the default choice of ϕ. Recently,
convergence properties of underdamped Langevin dynamics and Euler’s discretiza-
tions have been obtained under general settings (Cheng et al., 2018; Dalalyan and
Riou-Durand, 2020; Cao, Lu, and Wang, 2020). It is interesting to study the impact
of using improved discretizations including HAMS and those in section 8 and that
of incorporating acceptance-rejection. Moreover, investigation of HAMS and related
methods is desired in simulation settings more diverse than our current experiments.

11. Appendix.

11.1. Proposal schemes of HAMS-A/B. For the choice (24) for HAMS-A,
the proposal scheme (6)–(8) can be simplified to

ũ =
√
c2u0 −

ϵ

1 +
√
1− ϵ2

∇U(x0) + Z,(83)

x∗ = x0 + ϵũ,(84)

u∗ = −u0 + 2
√
c2ũ+

ϵ
√
c2

1 +
√
1− ϵ2

(∇U(x0)−∇U(x∗)) ,(85)

with Z ∼ N (0, (1 − c2)I). For the choice (25) for HAMS-B, the proposal scheme
(6)–(8) can be simplified to

ũ =
√
c1u0 −

2− c1
(
1 +
√
1− ϵ2

)
ϵ

∇U(x0) +

√
c1
(
1 +
√
1− ϵ2

)
ϵ

Z,(86)

x∗ = x0 + ϵũ,(87)

u∗ = u0 −
ϵ

√
c1
(
1 +
√
1− ϵ2

) (∇U(x0) +∇U(x∗)) ,(88)

with Z ∼ N (0, (1− c1)I). Taking c2 = 1 in (83)–(85) or c1 = 1 in (86)–(88) yields

ũ = u0 −
ϵ

1 +
√
1− ϵ2

∇U(x0), x∗ = x0 + ϵũ, u∗ = ũ− ϵ

1 +
√
1− ϵ2

∇U(x∗),

which is the same as the leapfrog discretization of the Hamiltonian dynamics, except
with step size ϵ/(1 +

√
1− ϵ2) instead of ϵ/2 for momentum updates.

11.2. Preconditioning. We present a preconditioned HAMS algorithm in Algo-
rithm 1. Let Σ̂ be an approximation of Var(x), and take the Cholesky decomposition
Σ̂−1 = LLT where L is lower triangular. By preconditioning, we apply HAMS to
the target density of the transformed variable x̂ = LTx, while keeping the momen-
tum variable u ∼ N (0, I). Algorithm 1 is formulated similarly as the preconditioned
HAMS-A/B in Song and Tan (2021) to minimize the number of matrix-by-vector
manipulations per iteration for efficient implementation.

11.3. Modified algorithms for matching. We first state the modified al-
gorithms studied in Propositions 7–8 for matching with HAMS. The rescaled GJF
update is
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Algorithm 1. Preconditioned HAMS

Initialize x0, u0, x̂0 = LTx0 and ∇U(x̂0) = L−1∇U(x0).
for t = 0, 1, 2, . . . , Niter do

Sample w ∼ Uniform[0, 1] and (
Z

(1)
0

Z
(2)
0

) ∼ N (0, 2A−A2)

ξ = a2ut + Z
(1)
0 , x̂∗ = x̂t − a1∇U(x̂t) + ξ

Propose x∗ = (LT)−1x̂∗

∇U(x̂∗) = L−1∇U(x∗), ξ̃ = ∇U(x̂∗) +∇U(x̂t)
ρ = exp{U(xt)− U(x∗) + 1

2−a1
(ξ̃)T(ξ − a1

2 ξ̃)}
if w < min(1, ρ) then

xt+1 = x∗, x̂t+1 = x̂∗, ∇U(x̂t+1) = ∇U(x̂∗) # Accept

ut+1 =
a1+a2

2+2a3−a1a3−2
2−a1

ut − a2

2−a1
ξ̃ + a2

2−a1
Z

(1)
0 + Z

(2)
0

else
xt+1 = xt, ut+1 = −ut, x̂t+1 = x̂t,∇U(x̂t+1) = ∇U(x̂t) # Reject

x∗ = x0 −
ϵ2

2 + ηϵ
∇U(x0) +

ϵ
√
4− ϵ2

2 + ηϵ
u0 +

ϵ

2 + ηϵ
W,

u∗ =
2− ηϵ

2 + ηϵ
u0 +

ηϵ2 − 2ϵ√
4− ϵ2(2 + ηϵ)

∇U(x0)−
ϵ√

4− ϵ2
∇U(x∗) +

4√
4− ϵ2(2 + ηϵ)

W,

where W ∼ N (0, 2ηϵ). The rescaled BAOAB update is

ũ = u0 −
ϵ√

4− ϵ2
∇U(x0), x̃ = x0 +

ϵ
√
4− ϵ2

4
ũ, ˜̃u = e−ηϵũ+

√
1− e−2ηϵ

4− ϵ2
W,

x∗ = x̃+
ϵ
√
4− ϵ2

4
˜̃u, u∗ = ˜̃u− ϵ√

4− ϵ2
∇U(x∗),

which can be written more succinctly as

x∗ = x0 −
ϵ2

4
(1 + e−ηϵ)∇U(x0) +

ϵ
√
4− ϵ2

4
(1 + e−ηϵ)u0 +

ϵ
√
1− e−2ηϵ

2
W,

u∗ = e−ηϵu0 −
ϵe−ηϵ

√
4− ϵ2

∇U(x0)−
ϵ√

4− ϵ2
∇U(x∗) + 2

√
1− e−2ηϵ

4− ϵ2
W,

whereW ∼ N (0, 1). With the full-step momentum in Proposition 7, the IL update can
be shown to be equivalent to rescaled BAOAB (see the supplement, section SM3.13).
The rescaled OBABO update is

u+ =
√
cu0 +

√
1− cW1, ũ = u+ − ϵ

1 +
√
1− ϵ2

,∇U(x0), x∗ = x0 + ϵũ,

u− = ũ− ϵ

1 +
√
1− ϵ2

∇U(x∗), u∗ =
√
cu− +

√
1− cW2,

where c = e−ηϵ and W1,W2 ∼ N (0, 1) independently. The modified VEC update is

x∗ = x0 −
ϵ2

2
∇U(x0) +

2ϵ− ηϵ2

2
u0 +

√
2ηϵ3/2

2
W1 +

√
6ηϵ3/2

6
W2,

u∗ =
2− 2ηϵ+ η2ϵ2

2
u0 +

ϵ3 + 2ηϵ2 − 2ϵ

4
∇U(x0)−

ϵ

2
∇U(x∗)

+

√
2ηϵ

2
(2− ηϵ)W1 −

√
6

6
(ηϵ)3/2W2,

where W1,W2 ∼ N (0, 1) independently.
Next we state the modified algorithms studied in Proposition 9 for matching with

shifted HAMS. The modified ABOBA update is

D
ow

nl
oa

de
d 

08
/0

1/
22

 to
 1

28
.6

.3
6.

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IRREVERSIBLE METROPOLIS SAMPLING A2119

x̃ = x0 + bu0, ũ = u0 −
ϵ

2
∇U(x̃), ˜̃u = e−ηϵũ+

√
1− e−2ηϵW, u∗

= ˜̃u− ϵ

2
∇U(x̃), x∗ = x̃+ bu∗,

where W ∼ N (0, 1) and b = ϵ
1+

√
1−ϵ2

. The modified SPV update is

x̃ = x0 + bu0, u∗ = e−ηϵu0 −
1− e−ηϵ

η
∇U(x̃) +

√
1− e−2ηϵW, x∗ = x̃+ bu∗,

where W ∼ N (0, 1) and b is defined in Proposition 9. The modified Mannella’s
leapfrog is

x̃ = x0 + bu0, u∗ = c2

(
c1u0 − ϵ∇U(x̃) +

√
2ηW

)
, x∗ = x̃+ bu∗,

where W ∼ N (0, ϵ), c1 = 2−ηϵ
2 , c2 = 2

2+ηϵ , and b = ϵ
1+

√
1−ϵ2

.
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