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On Loss Functions and Regret Bounds for
Multi-Category Classification

Zhiqiang Tan and Xinwei Zhang

Abstract— We develop new approaches in multi-class settings1

for constructing loss functions and establishing corresponding2

regret bounds with respect to the zero-one or cost-weighted3

classification loss. We provide new general representations of4

losses by deriving inverse mappings from a concave generalized5

entropy to a loss through a convex dissimilarity function related6

to the multi-distribution f -divergence. This approach is then7

applied to study both hinge-like losses and proper scoring8

rules. In the first case, we derive new hinge-like convex losses,9

which are tighter extensions outside the probability simplex10

than related hinge-like losses and geometrically simpler with11

fewer non-differentiable edges. We also establish a classification12

regret bound in general for all losses with the same generalized13

entropy as the zero-one loss, thereby substantially extending and14

improving existing results. In the second case, we identify new sets15

of multi-class proper scoring rules through different types of dis-16

similarity functions and reveal interesting relationships between17

various composite losses currently in use. We also establish new18

classification regret bounds in general for multi-class proper19

scoring rules and, as applications, provide simple meaningful20

regret bounds for two specific sets of proper scoring rules. These21

results generalize, for the first time, previous two-class regret22

bounds to multi-class settings.23

Index Terms— Boosting, Bregman divergence, composite loss,24

exponential loss, f -divergence, generalized entropy, hinge loss,25

proper scoring rule, surrogate regret bounds.26

I. INTRODUCTION27

MULTI-CATEGORY classification has been extensively28

studied in machine learning and statistics. For concrete-29

ness, let {(Xi, Yi) : i = 1, . . . , n} be training data generated30

from a certain probability distribution on (X,Y ), where X31

is a covariate or feature vector and Y is a class label, with32

possible values from 1 to m (≥ 2). Various learning methods33

are developed in the form of minimizing an empirical risk34

function,35

R̂L(α) =
1
n

n�
i=1

L(Yi, α(Xi)), (1)36

where L(y, α(x)) is a loss function, and α(x) is a37

vector-valued function of covariates, taken from a potentially38
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rich family of functions, for example, reproducing kernel 39

Hilbert spaces or neural networks. For convenience, α(x) 40

is called an action function, following the terminology of 41

decision theory [1], [2]. The performance of α(x) is typically 42

evaluated by the zero-one risk on test data, 43

E
�
Lzo(Y0, α̃(X0))

�
, (2) 44

where (X0, Y0) is a new observation, independent of train- 45

ing data, and α̃(x) is m-dimensional, either α(x) itself 46

or converted from α(x), depending on whether α(x) is 47

m-dimensional or not, and Lzo(y, α̃(x)) is the zero-one loss, 48

defined as 0 if the yth component of α̃(x) is a maximum 49

and 1 otherwise. Due to discontinuity, using Lzo directly as L 50

in (1) is computationally intractable. Hence the loss L used 51

in (1) is also referred to as a surrogate loss for Lzo. 52

It is helpful to distinguish two types of loss functions L 53

commonly used for training in (1). One type of losses, called 54

scoring rules, involves an action defined as a probability vector 55

q : X → Δm, where X is the covariate space and Δm 56

is the probability simplex with m categories [3], [4]. The 57

elements of q(x) can be interpreted as class probabilities. 58

Typically, the probability vector q(x) is parameterized in terms 59

of a real vector h(x) as qh(x), via an invertible link such 60

as the multinomial logistic (or softmax) link. The resulting 61

loss L(y, qh(x)) is then called a composite loss, with h(x) 62

as an action function [5]. It is often desired to combine a 63

proper scoring rule, which ensures infinite-sample consistency 64

of probability estimation (see Section II-B), with a link func- 65

tion qh such that L(y, qh(x)) is convex in h. In multi-class 66

settings, composite losses satisfying these properties include 67

the standard multinomial likelihood loss and two variants of 68

exponential losses related to boosting [6], [7], all combined 69

with the multinomial logistic link. 70

Another type of losses involves an action function, α : X → 71

R
m, allowed to take unrestricted values in R

m. The elements 72

of α(x), loosely called margins, can be interpreted as relative 73

measures of association of x with the m classes. Although 74

a composite loss L(y, qh(x)) based on a scoring rule can be 75

considered with h(x) as a margin vector, it is mainly of interest 76

to include in this type hinge-like losses, where the margins 77

are designed not to be directly mapped to probability vectors. 78

The hinge loss is originally related to support vector machines 79

in two-class settings. This loss, Lhin(y, τ(x)), is known to be 80

convex in its action τ , and achieve classification calibration (or 81

infinite-sample classification consistency), which means that a 82

minimizer of the hinge loss in the population version leads to 83
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a Bayes rule minimizing the zero-one risk (2) [8]–[10]. There84

are various extensions of the hinge loss to multi-class settings.85

The hinge-like losses in [11] and [12] are shown to achieve86

classification calibration, whereas those in [13] and [14] fail87

to achieve such a property [15], [16].88

Classification calibration is also called Fisher consistency,89

although it is appropriate to distinguish two types of Fisher90

consistency, in parallel to the two types of losses above: Fisher91

probability consistency as satisfied by a proper scoring rule or92

Fisher classification consistency as achieved by a hinge-like93

loss. In general, Fisher probability consistency (or properness)94

implies classification consistency, but not vice versa [5].95

On the other hand, there are interesting results indicating that96

only hinge-like losses are classification consistent with respect97

to the zero-one loss when both an action function and a data98

quantizer are estimated [12], [17].99

The purpose of this article is two-fold: first constructing new100

multi-class losses while studying existing ones, and second101

establishing corresponding classification regret bounds. Such a102

regret bound compares the regret of the loss under study with103

that of the zero-one or cost-weighted classification loss and104

implies that classification calibration is achieved with a quan-105

titative guarantee [10]. Our development in both directions is106

facilitated by the concept of a generalized entropy, defined107

as the minimum Bayes risk for a loss [2]. In the following,108

we give an overview of the main results and related work.109

A. Main Results110

The main results from our work can be split into three111

groups.112

First, in Section III, we provide new general representa-113

tions of multi-class loss functions depending on a (concave)114

generalized entropy through a (convex) dissimilarity func-115

tion f , which is related to the multi-distribution f -divergence116

[18], [19]. These results are complementary to previous rep-117

resentations directly based on the generalized entropy [3],118

[12], [20]. While the generalized entropy is defined on119

m-dimensional probability vectors, the dissimilarity function120

is defined on (m − 1)-dimensional free-varying vectors of121

probability ratios. To demonstrate advantages, this approach122

is applied in the subsequent sections to construct new specific123

hinge-like losses and proper scoring rules.124

Second, in Section IV, we investigate hinge-like losses in125

two directions.126

• We derive two new hinge-like losses, related to [11]127

and [12] respectively (Section IV-A). In each case, our128

new loss and the existing one admit the same generalized129

entropy and coincide with each other for actions restricted130

to the probability simplex Δm, but our loss is uniformly131

lower (hence a tighter extension outside the probabil-132

ity simplex) and geometrically simpler with fewer non-133

differentiable edges.134

• We establish classification regret bounds for our new135

hinge-like losses (Section IV-B) and more broadly for all136

losses with the same generalized entropy as the zero-one137

loss (Section IV-C). These results represent a substantial138

extension and improvement over existing ones [12], [16].139

Third, in Section V, we investigate proper scoring rules in 140

two directions. 141

• We derive two new sets of proper scoring rules: 142

multi-class pairwise losses corresponding a univariately 143

additive dissimilarity function f and multi-class simul- 144

taneous losses with non-additive dissimilarity functions 145

(Section V-A). These sets of losses not only reveal inter- 146

esting relationships between the likelihood and exponen- 147

tial losses mentioned earlier, but also lead to new specific 148

losses including a pairwise likelihood loss distinct from 149

the standard multinomial likelihood loss. 150

• We establish classification regret bounds for multi-class 151

proper scoring rules in general with respect to the 152

zero-one or cost-weighted classification loss, and then 153

derive simple meaningful regret bounds for two specific 154

sets of proper scoring rules including the multinomial 155

likelihood loss and the pairwise likelihood and expo- 156

nential losses (Section V-B). These results appear to 157

generalize, for the first time, previous two-class regret 158

bounds to multi-class settings [10], [21]. 159

B. Related Work 160

There is an extensive literature on multi-category clas- 161

sification including and beyond the special case of binary 162

classification. We discuss directly related work to ours, in addi- 163

tion to those mentioned above. An inverse mapping from a 164

generalized entropy to a proper scoring rule can be seen in the 165

canonical representation of proper scoring rules [3], [20]. This 166

and related representations are extensively used in the design 167

and study of composite binary losses [4], [21] and composite 168

multi-class losses [5]. 169

Recently, an inverse mapping is constructed by [12] from a 170

generalized entropy to a convex loss with actions in R
m, hence 171

different from the canonical representation of proper scoring 172

rules. Our construction of losses is in a similar spirit as [12], 173

but operates explicitly through a dissimilarity function f . Our 174

approach is applicable to handling both hinge-like losses and 175

proper scoring rules and leads to interesting new findings. For 176

example, our inverse mapping in terms of f are applied to 177

discover new hinge-like losses, by first identifying a hinge-like 178

loss on the probability simplex and then constructing a convex 179

extension. The hinge-like losses in [11] and [12] are also 180

such convex extensions. This point of view enriches our 181

understanding of multi-class hinge-like losses. For another 182

example, using an additive function f provides a convenient, 183

general extension of two-class proper scoring rules to multi- 184

class settings. By comparison, using an additive generalized 185

entropy does not seem to achieve a similar effect. 186

Our regret bounds for the new hinge-like losses are similar 187

to those in [12]. However, we also establish in general that all 188

losses with the same generalized entropy as the zero-one loss 189

achieve a regret bound which ensures classification calibration. 190

Compared with [16], our result provides a more concrete 191

sufficient condition for achieving classification calibration, 192

in addition to a quantitative guarantee. 193

Our new regret bounds for proper scoring rules generalize 194

two-class results in [21], Section 7.1, to multi-class settings, 195
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by carefully exploiting the Bregman representation for the196

regret of a proper scoring rule together with a novel bound on197

the regret of the zero-one or cost-weighted classification loss198

(Lemmas 5–6). Such a generalization seems to be previously199

unnoticed (cf. [5]).200

As noted earlier, classification regret bounds provide a201

quantitative guarantee on classification calibration, a quali-202

tative property studied in [15], [22], and [16] among oth-203

ers. Although two-class regret bounds can be obtained for204

all margin-based losses including the hinge loss and proper205

scoring rules [9], [10], [23], such results seem to rely on206

simplification due to two classes.207

Notation: Denote R = R ∪ {∞}, R+ = {b ∈ R : b ≥ 0},208

and R+ = {b ∈ R : b ≥ 0}. For m ≥ 2, denote [m] as the209

set {1, . . . ,m}, 1m as the m × 1 vector of all ones, Im as210

the m×m identity matrix, and Δm as the probability simplex211

{q ∈ R
m
+ : 1T

mq = 1}. For j ∈ [m], a basis vector ej ∈ Δm212

is defined such that its jth element is 1 and the remaining213

elements are 0. The indicator function 1{·} is defined as 1 if214

the argument is true or 0 otherwise.215

II. BACKGROUND216

We provide a selective review of basic concepts and217

results which are instrumental to our subsequent development.218

See [2], [4], [20], and [12] among others for more information.219

A. Losses, Risks and Entropies220

Consider the population version of the multi-category clas-221

sification problem. Let X ∈ X be a vector of observed222

covariates or features, but Y ∈ [m] an unobserved class label,223

where (X,Y ) are generated from some joint probability dis-224

tribution which can be assumed to be known unless otherwise225

noted. It is of interest to predict the value of Y based on X226

(i.e., assign X to one of the m classes). The prediction can be227

performed using an action function α : X → A, and evaluated228

through a loss function L(y, α(x)) when the true label of x229

is y. Typically, an action in the space A is a vector whose230

components, as probabilities or margins, measure the strengths231

of association with the m classes. The risk (or expected loss)232

of the action function α(x) is233

RL(α) = E(L(Y, α(X)) = E

⎧⎨
⎩

m�
j=1

πj(X)L(j, α(X))

⎫⎬
⎭ ,

(3)

234

where πj(x) = P (Y = j|X = x), the conditional probability235

of class j given covariates x, and the second expectation is236

taken over the marginal distribution of X only.237

From another perspective, the preceding problem can also238

be formulated as a Bayesian experiment with m probabil-239

ity distributions (P1, . . . , Pm) on X , corresponding to the240

within-class distributions of covariates [1]. Denote by pj(x)241

the density function of Pj with respect to a baseline measure μ.242

Given a label Y = j (regarded as an m-valued parameter),243

the random variable X is drawn from the distribution Pj .244

Let π0 = (π0
1 , . . . , π

0
m)T ∈ Δm be the prior probabilities245

of Y , corresponding to the marginal class probabilities. Then246

the posterior probabilities of Y given X = x are πj(x) = 247

π0
jpj(x)/{

�m
k=1 π

0
kpk(x)}, the same as the conditional class 248

probabilities given covariates mentioned above. In this context, 249

RL(α) is also called the Bayes risk of α(x). By standard 250

Bayes theory [19, Eq. (5)], the minimum Bayes risk, or even 251

shortened as the Bayes risk, can be obtained as 252

inf
α:X→A

RL(α) = E{HL(π(X))}, 253

(4) 254

where α : X → A can be any measurable function, π(x) = 255

(π1(x), . . . , πm(x))T, and HL is a function defined on Δm 256

such that for η = (η1, . . . , ηm)T ∈ Δm, 257

HL(η) = inf
γ∈A

⎧⎨
⎩

m�
j=1

ηjL(j, γ)

⎫⎬
⎭ , (5) 258

The function HL, which is concave on Δm, is called an 259

uncertainty function [1] or a generalized entropy associated 260

with the loss L [2]. 261

A subtle point is that minimization in (4) is over all 262

measurable functions α : X → A, whereas minimization 263

in (5) is over all elements γ ∈ A. The generalized entropy 264

HL is merely a function on Δm, induced by the loss L(j, γ) 265

on [m] × A, where the covariate vector X is conditioned on 266

(or lifted out). Similarly, the risk of an action γ ∈ A is defined 267

as RL(η, γ) =
�m

j=1 ηjL(j, γ), and the regret (or excess risk) 268

of the action is defined as 269

BL(η, γ) = RL(η, γ) −HL(η), (6) 270

where HL(η) = infγ′∈ARL(η, γ′) by (5). This simplification 271

where the covariate vector X is lifted out is often useful when 272

studying losses and regrets. 273

B. Scoring Rules 274

A scoring rule is a particular type of loss L(j, q), where 275

its action q is a probability vector in Δm, interpreted as the 276

predicted class probabilities [2]. Sometimes, the expected loss, 277

RL(η, q) =
�m

j=1 ηjL(j, q), is also referred to as a scoring 278

rule, for measuring the discrepancy between underlying and 279

predicted probability vectors, η and q [20]. 280

A scoring rule L(j, q) is said to be proper if HL(η) = 281

RL(η, η), i.e., 282

RL(η, η) ≤ RL(η, q), η, q ∈ Δm. 283

The rule is strictly proper if the inequality is strict for q �= η. 284

Hence for a proper scoring rule, the expected loss RL(η, q) is 285

minimized over q ∈ Δm when q = η, the predicted probability 286

vector coincides with the underlying probability vector. This 287

condition is typically required for establishing large-sample 288

consistency of (conditional) probability estimators 289

(e.g., [4], [9]). 290

As shown in [3] and [20], a proper scoring rule L(j, q) in 291

general admits the following representation: 292

RL(η, q) = HL(q) − (q − η)T∂HL(q), η, q ∈ Δm, (7) 293
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where −∂HL is a sub-gradient of the convex function −HL294

on R
m. Note that the generalized entropy HL is evaluated at q,295

not η, in (7). Then the regret in (6) becomes296

BL(η, q) = HL(q) −HL(η) − (q − η)T∂HL(q), (8)297

which is the Bregman divergence from q to η associated with298

the convex function −HL.299

An important example of proper scoring rules is the log-300

arithmic scoring rule [24], L(j, q) = − log qj . The cor-301

responding expected loss is RL(η, q) = −
�m

j=1 ηj log qj ,302

which is, up to scaling, the negative expected log-likelihood303

of the predicted probability vector q with the underlying304

probability vector η for multinomial data. The generalized305

entropy is HL(η) = −
�m

j=1 ηj log ηj , the negative Shannon306

entropy. The regret is BL(η, q) =
�m

j=1 ηj log(ηj/qj), the307

Kullback–Liebler divergence.308

C. Classification Losses309

Consider the zero-one loss, formally defined as310

Lzo(j, γ) = 1{j �= argmaxk∈[m]γk}, j ∈ [m], γ ∈ R
m,311

where, if not unique, argmaxk∈[m]γk can be fixed as the index312

of any maximum component of γ. As mentioned below (2),313

Lzo is typically used to evaluate performance, but not as the314

loss L for training, and the action γ can be transformed from315

the action of L. Nevertheless, the generalized entropy defined316

by (5) with L = Lzo is317

Hzo(η) = 1 − max
k∈[m]

ηk, η ∈ Δm. (9)318

This function is concave and continuous, but not everywhere319

differentiable.320

In practice, there can be different costs of misclassification,321

depending on which classes are involved. For example, the cost322

of classifying a cancerous tumor as benign can be greater than323

in the other direction. Let C = (cjk)j,k∈[m] be a cost matrix,324

where cjk ≥ 0 indicates the cost of classifying class j as325

class k. For each j ∈ [m], assume that cjj = 0 and cjk > 0 for326

some k �= j. Consider the cost-weighted classification loss327

Lcw(j, γ) = cjk if k = argmaxl∈[m]γl, j ∈ [m], γ ∈ R
m.328

As shown in [12], the generalized entropy defined by (5) with329

L = Lcw is330

Hcw(η) = min
k∈[m]

ηTCk, η ∈ Δm, (10)331

where C = (C1, . . . , Cm) is the column representation of C.332

The standard zero-one loss corresponds to the special choice333

C = 1m1T
m − Im.334

An intermediate case is the class weighted classification335

loss,336

Lcw0(j, γ) = cj01{j �= argmaxk∈[m]γk}, j ∈ [m], γ ∈ R
m,337

where cj0 > 0 is the cost associated with misclassification of338

class j. This loss is more general than the standard zero-one339

loss Lzo, although a special case of the cost-weighted loss Lcw
340

with C = C01T
m − diag(C0), where C0 = (c10, . . . , cm0)T.341

The generalized entropy associated with Lcw0 is Hcw0(η) =342

ηTC0 − maxk∈[m] ηkck0.343

D. Entropies and Divergences 344

In DeGroot’s theory [1], any concave function H on Δm 345

can be used as an uncertainty function. The information of 346

X about label (“parameter”) Y is defined as the reduction of 347

uncertainty (or entropy) from the prior to the posterior: 348

IH(X ;π0) = H(π0)−E{H(π(X))}, 349

which is nonnegative by the concavity of H . The infor- 350

mation IH(X ;π0) is closely related to the f -divergence 351

between the multiple distributions (P1, . . . , Pm), which is a 352

generalization of the f -divergence between two distributions 353

[25], [26]. Heuristically, the more dissimilar (P1, . . . , Pm) are 354

from each other, the more information about Y is obtained 355

after observing X . 356

For a convex function f on R
m−1

+ with f(1m−1) = 0, the 357

f -divergence between (P1, . . . , Pm−1) and Pm with densities 358

(p1, . . . , pm−1) and pm is 359

Df(P1:(m−1)	Pm) 360

=
1
m

�
f


p1(x)
pm(x)

, . . . ,
pm−1(x)
pm(x)

�
pm(x) dμ(x), 361

which is nonnegative by the convexity of f . Compared with the 362

standard definition of multi-way f -divergences [12], [18], our 363

definition above involves a rescaling factor m−1, for notational 364

simplicity in the later discussion; otherwise, for example, 365

rescaling would be needed in Eqs. (14) and (15). 366

There is a one-to-one correspondence between the statistical 367

information IH(X ;π0) and multi-way f -divergences, as dis- 368

cussed in [19]. For any prior probability π0 ∈ Δm and 369

probability distributions (P1, . . . , Pm), if a convex function 370

f on R
m−1

+ with f(1m−1) = 0 and a concave function H on 371

Δm are related such that for η = (η1, . . . , ηm)T ∈ Δn, 372

H(η) = − ηm

mπ0
m

f


π0

m

π0
1

η1
ηm

, . . . ,
π0

m

π0
m−1

ηm−1

ηm

�
, (11) 373

then IH(X ;π0) = Df (P1:(m−1)	Pm) or, because H(π0) = 374

−f(1m−1) = 0 here, 375

−E{H(π(X))} = Df (P1:(m−1)	Pm), (12) 376

where the expectation is taken over X ∼
�m

j=1 π
0
jPj . 377

III. GENERAL CONSTRUCTION OF LOSSES 378

In practice, a learning method for classification involves 379

minimization of (1), an empirical version of the risk (3) 380

based on training data, with specific choices of a loss function 381

L(y, α) and a potentially rich family of action functions α(x). 382

As suggested in Section II-A, we study construction of the loss 383

L(y, α) as a function of a label y and a freely-varying action α, 384

with the dependency on covariates (or features) lifted out. 385

As a result, we not only derive new general classes of losses, 386

but also improve understanding of various existing losses as 387

shown in Sections IV–V. Nevertheless, the interplay between 388

losses and function classes remains important, but challenging 389

to study, for further research. 390

Equation (5) is a mapping from a loss L to a generalized 391

entropy HL, which is in general many-to-one (i.e., different 392
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losses can lead to the same generalized entropy). [12] con-393

structed an inverse mapping from a generalized entropy to394

a convex loss. For a closed, concave function H on Δm,395

define a loss with action space A = R
m such that for396

γ = (γ1, . . . , γm)T ∈ R
m,397

LH(j, γ) = −γj + (−H)∗(γ), (13)398

where (−H)∗(γ) = supδ∈Δm
{γTη + H(η)}, the conjugate399

of −H . Then LH(j, γ) is convex in γ and (5) is satisfied with400

HLH = H , by [12], Proposition 3. Hence a convex loss is401

obtained for a concave function on Δm to be the generalized402

entropy. Note that the loss LH is over-parameterized, because403

(−H)∗(γ−b1m) = −b + (−H)∗(γ) and hence LH(j, γ −404

b1m) = LH(j, γ) for any constant b ∈ R.405

We derive a new mapping from generalized entropies to406

convex losses, by working with perspective-like functions407

related to multi-distribution f -divergences. First, there exists a408

one-to-one correspondence between concave functions H on409

Δm and convex functions f on R
m−1

+ . For a convex function410

f on R
m−1

+ , define a function on Δm:411

Hf (η) = −ηmf


η1
ηm

, . . . ,
ηm−1

ηm

�
. (14)412

Conversely, for a concave functionH on Δm, define a function413

on R
m−1

+ :414

fH(t) = −t•H

t1
t•
, . . . ,

tm−1

t•
,

1
t•

�
, (15)415

where t = (t1, . . . , tm−1)T and t• = 1 +
�m−1

j=1 tj . The map-416

pings Hf and fH are of a similar form to perspective functions417

associated with f and H respectively, although neither fits the418

standard definition of perspective functions [27].419

Lemma 1 (García-García and Williamson [19]): For a420

convex function f on R
m−1

+ , the function Hf defined by (14)421

is concave on Δm such that (15) is satisfied with fHf
= f .422

Conversely, for a concave function H on Δm, the function423

fH defined by (15) is convex on R
m−1

+ such that (14) is424

satisfied with HfH = H . Moreover, it is preserved that425

H(1m/m) = −m−1f(1m−1) under (14) and (15).426

Remark 1: Equations (14) and (15) can be obtained as a427

special case of (11) with π0 = 1m/m, from [19]. As men-428

tioned in Section II-D, (11) is originally determined such that429

identity (12) holds for linking the expected entropy and multi-430

way f -divergences, which are, by definition, concerned with431

the covariates and within-class distributions. Nevertheless, our432

subsequent development is technically independent of this433

connection, because covariates are lifted out in our study.434

In other words, we merely use (14) and (15) as convenient435

mappings between H and f . The usual restriction f(1m−1) =436

0 used in f -divergences does not need to be imposed.437

Our first main result shows a mapping from a convex438

function f to a convex loss L such that the concave function439

Hf is the generalized entropy associated with L.440

Proposition 1: For a closed, convex function f on R
m−1

+ ,441

define a loss with action space A = dom(f∗) such that for442

Fig. 1. Relations between loss L, generalized entropy H , and dissimilarity
function f .

s = (s1, . . . , sm−1)T ∈ dom(f∗), 443

Lf(j, s) =
�

−sj , j ∈ [m− 1],
f∗(s), j = m,

(16) 444

where f∗(s) = sup
t∈R

m−1
+

{sTt− f(t)} and dom(f∗) = {s ∈ 445

R
m−1
+ : f∗(s) <∞}. Then Lf(j, s) is convex in s. Moreover, 446

the concave function Hf defined by (14) is the generalized 447

entropy associated with Lf , that is, (5) is satisfied with 448

HLf
= Hf . 449

Proof: For η ∈ Δm and s ∈ dom(f∗), the definition of 450

Lf implies that
�m

j=1 ηjLf(j, s) = −
�m−1

j=1 ηjsj +ηmf
∗(s). 451

Hence 452

inf
s∈A

⎧⎨
⎩

m�
j=1

ηjLf(j, s)

⎫⎬
⎭ = − sup

s∈A

⎧⎨
⎩

m−1�
j=1

ηjsj − ηmf
∗(s)

⎫⎬
⎭ 453

= −ηm sup
s∈dom(f∗)

⎧⎨
⎩

m−1�
j=1

ηj

ηm
sj − f∗(s)

⎫⎬
⎭ 454

= −ηmf


η1
ηm

, . . . ,
ηm−1

ηm

�
= Hf (η), 455

where the second last equality holds by Fenchel’s conjugacy 456

relationship. � 457

Compared with (13), Eq. (16) together with (15) presents an 458

alternative approach for determining a convex loss L from a 459

generalized entropy H through a dissimilarity function f . See 460

Figure 1 which illustrates various relationships discussed. For 461

ease of interpretation, a convex function f on R
m−1

+ can be 462

called a dissimilarity function, similarly as a concave function 463

H on Δm can be a generalized entropy. 464

In spite of the one-to-one correspondence between entropy 465

and dissimilarity functions H and f by (14) and (15), 466

we stress that the new loss (16) is in general distinct 467

from (13). An immediate difference, which is further discussed 468

in Section IV, is that the action space for loss (16), dom(f∗), 469

can be a strict subset of R
m−1, whereas the action space 470

for loss (13) is either R
m with over-parametrization as noted 471

above or R
m−1 with, for example, γm = 0 fixed to remove 472

over-parametrization. Moreover, loss (16) can also be used to 473

derive a new class of closed-form losses based on arbitrary 474

convex functions f as shown in the following result and, 475

as discussed in Section IV, to find novel multi-class, hinge-like 476

losses related to the zero-one or cost-weighted classification 477

loss. 478

Proposition 2: For a closed, convex function f on R
m−1

+ , 479

define a loss with action space A = R
m−1

+ such that for 480
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u = (u1, . . . , um−1)T ∈ R
m−1

+ ,481

Lf2(j, u) =
�

−∂jf(u), j ∈ [m− 1],
uT∂f(u) − f(u), j = m,

(17)482

where ∂f = (∂1 f, . . . , ∂m−1f)T is a sub-gradient of f ,483

arbitrarily fixed (if needed). Then the concave function Hf484

defined by (14) is the generalized entropy associated with Lf2,485

that is, (5) is satisfied with HLf2 = Hf .486

Proof (Outline): A basic idea is to use the parametrization487

s = ∂f(u) and Fenchel’s conjugacy property f∗(s) = uTs−488

f(u), and then obtain the loss Lf2 from Lf in Proposi-489

tion 1. This argument gives a one-sided inequality for the490

desired equality (5). A complete proof is provided in the491

Supplement. �492

Compared with loss (16), the preceding loss (17) is of493

a closed form without involving the conjugate f∗, which494

can be nontrivial to calculate. On the other hand, loss (17)495

may not be convex in its action u. Nevertheless, it is often496

possible to choose a link function, for example, uh =497

(uh
1 , . . . , u

h
m−1)

T with uh
j = exp(hj) such that Lf2(j, uh)498

becomes convex in (h1, . . . , hm−1). This link can be easily499

identified as the multinomial logistic link after reparameteriz-500

ing (u1, . . . , um−1) as probability ratios below.501

The following result shows that a reparametrization of502

loss (17) with actions defined as probability vectors in Δm503

automatically yields a proper scoring rule. See Section II-B504

for the related background on scoring rules. Together with505

the relationship between f and H by (14) and (15), our506

construction gives a mapping from a dissimilarity function f507

or equivalently a generalized entropy H to a proper scoring508

rule.509

Proposition 3: For a closed, convex function f on R
m−1

+ ,510

define a loss with action space A = Δm such that for q =511

(q1, . . . , qm)T ∈ Δm,512

Lf3(j, q) =
�

−∂jf(uq), j ∈ [m− 1],
uqT∂f(uq) − f(uq), j = m,

(18)513

where uq = (q1/qm, . . . , qm−1/qm)T. Then Lf3 is a proper514

scoring rule, with Hf defined by (14) as the generalized515

entropy, satisfying516

inf
q∈Δm

⎧⎨
⎩

m�
j=1

ηjLf3(j, q)

⎫⎬
⎭ = Hf (η) =

m�
j=1

ηjLf3(j, η).517

Proof: The generalized entropy from Lf3 is Hf , due518

to Proposition 2 and the one-to-one mapping uq =519

(q1/qm, . . . , qm−1/qm)T. Then direct calculation shows that520

m�
j=1

ηjLf3(j, η)521

= −
m−1�
j=1

ηj∂jf(uδ) + ηm

⎧⎨
⎩

m−1�
j=1

ηj

ηm
∂jf(uδ) − f(uδ)

⎫⎬
⎭522

= −ηmf(uδ) = Hf (η) = inf
q∈Δm

⎧⎨
⎩

m�
j=1

ηjLf3(j, q)

⎫⎬
⎭ .523

Hence Lf3 is a proper scoring rule. �524

For completeness, the expected loss associated with Lf3 can 525

be shown to satisfy the canonical representation (7) with Hf 526

defined by (14): 527

m�
j=1

ηjLf3(j, q) 528

= −
m−1�
j=1

ηj∂jf(uq) + ηm

⎧⎨
⎩

m−1�
j=1

qj
qm

∂jf(uq) − f(uq)

⎫⎬
⎭ 529

= Hf (q) −
m�

j=1

(qj − ηj)∂jHf (q), (19) 530

where −∂Hf = (−∂1Hf , . . . ,−∂mHf )T is the sub-gradient 531

of −Hf . See the Supplement for a proof. Conversely, the 532

loss Lf3 can also be obtained by calculating the canonical 533

representation (7) for the concave functionHf in (14) and then 534

taking η to be a basis vector, e1, . . . , em, one by one in the 535

resulting expression, which is on the left of the second equality 536

in (19). Moreover, by the necessity of the representation (7), 537

we see that Lf3 in (18) is the only proper scoring rule with 538

the generalized entropy Hf . 539

Corollary 1: For a closed, convex function f on R
m−1

+ , any 540

proper scoring rule with Hf in (14) as the generalized entropy 541

can be expressed as Lf3 in (18), up to possible choices of 542

sub-gradients of f , {∂jf : j ∈ [m− 1]}. 543

While the preceding use of the canonical representation (7) 544

seems straightforward, our development from Propositions 1 545

to 3 remains worthwhile. The proper scoring rule Lf3 in (18) 546

is of simple form, depending explicitly on a dissimilarity 547

function f . Moreover, as shown in Section IV, Proposition 1 548

can be further exploited to derive new convex losses which 549

are related to classification losses but are not proper scoring 550

rules. 551

IV. HINGE-LIKE LOSSES 552

The purpose of this section is three-fold. We derive novel 553

hinge-like, convex losses which induce the same generalized 554

entropy as the zero-one, or more generally, cost-weighted clas- 555

sification loss in multi-class settings. Our hinge-like losses are 556

uniformly lower (after suitable alignment) and geometrically 557

simpler (with fewer non-differentiable ridges) than related 558

hinge-like losses in [11] and [12]. Moreover, we show that sim- 559

ilar classification regret bounds are achieved by our hinge-like 560

losses and those in [11] and [12]. These regret bounds give a 561

quantitative guarantee on classification calibration as studied 562

in [15] and [16] among others. Finally, we provide a general 563

characterization of losses with the same generalized entropy 564

as the zero-one loss and establish a general classification 565

regret bound for all such losses, beyond the hinge-like losses 566

specifically constructed. 567

A. Construction of Hinge-Like Losses 568

We propose a novel approach for constructing hinge-like, 569

convex losses in multi-class settings: we first derive (using 570

Proposition 1) a new loss with actions restricted to the proba- 571

bility simplex Δm and its generalized entropy identical to that 572
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Fig. 2. Two-class hinge loss (left) and hinge-like loss in [12].

of the zero-one or cost-weighted classification loss, and then573

we find a convex extension of the loss such that its actions are574

defined on R
m and its generalized entropy remains unchanged.575

As a prologue, we discuss why Proposition 1 is used here576

instead of Proposition 3 (which is used in Section V for577

constructing proper scoring rules). It is helpful to consider the578

two-class setting. The generalized entropy for the zero-one579

loss is Hzo(η) = min(η1, η2) and the dissimilarity function is580

f zo(t1) = −min(1, t1). For this choice of f , it remains valid581

to apply Proposition 3. With ∂f zo(t1) = −1{t1 ≤ 1}, the582

resulting loss can be shown to be Lf3(1, q) = 1{q1 ≤ q2} and583

Lf3(2, q) = 1{q2 > q1}, which is just the zero-one loss with584

action q ∈ Δ2. Such a discontinuous loss is computationally585

intractable for training, even though it is a proper but not586

strictly proper scoring rule (consistently with Proposition 3).587

In contrast, as illustrated in Figure 2, the popular hinge loss588

can be defined, for notational consistency with our later results,589

such that for τ ∈ R,590

Lhin(1, τ) = max(0, 1 − τ), Lhin(2, τ) = max(0, τ). (20)591

which is continuous and convex in τ and known to yield the592

same generalized entropy Hzo as the zero-one loss (Nguyen et593

al. 2009). In the following, we show that Proposition 1 can be594

leveraged to develop convex, hinge-like losses in multi-class595

settings.596

1) Application of Proposition 1: Our application of Propo-597

sition 1 is facilitated by the following lemma based on [28].598

The lemma gives the conjugate function of the dissimilarity599

function f cw, corresponding to the generalized entropy Hcw
600

in (10) for the cost-weighted classification loss Lcw. By def-601

inition (15), the dissimilarity function f cw can be calculated602

as603

f cw(t) = − min
k∈[m]

CT
k t̃,604

where t̃ = (tT, 1)T = (t1, . . . , tm−1, 1)T and, as before, C =605

(C1, . . . , Cm) is a column representation of the cost matrix606

for the cost-weighted classification loss Lcw.607

Lemma 2: The conjugate of the convex function f cw is608

f cw ∗(s) = min
{λ∈Δm:sj≤−(Cλ)j ,j∈[m−1]}

(Cλ)m,609

where (Cλ)j denotes the jth component of Cλ for j ∈ [m],610

and the minimum over an empty set is defined as ∞.611

From Lemma 2, the domain of f cw∗ is a strict sub-612

set of R
m−1, a phenomenon mentioned earlier in the613

discussion of Proposition 1: 614

dom(f cw∗) = {s ∈ R
m−1 : sj ≤ −(Cλ)j , j ∈ [m− 1] 615

for some λ ∈ Δm}. 616

The following loss can be obtained from Proposition 1 with 617

the convex function f = f cw and further simplification with a 618

reparametrization sj = −(Cλ)j for j ∈ [m− 1]. 619

Lemma 3: Define a loss with action space A = Δm such 620

that for λ ∈ Δm, 621

Lcw2(j, λ) =
�

(Cλ)j , j ∈ [m− 1],
(Cλ)m, j = m,

(21) 622

Then the loss Lcw2 induces the same generalized entropy Hcw
623

in (10) as does the cost-weighted classification loss Lcw. 624

It is interesting that the loss Lcw2 is defined with actions 625

restricted to the probability simplex Δm. But Lcw2 is not a 626

proper scoring rule, because in general 627

inf
λ∈Δm

⎧⎨
⎩

m�
j=1

ηjL
cw2(j, λ)

⎫⎬
⎭ = inf

λ∈Δm

ηTCλ = min
k∈[m]

ηTCk 628

�= ηTCη =
m�

j=1

ηjL
cw2(j, η). 629

by Lemma 3. In fact, the minimum risk in the first line is 630

achieved by λ equal to a basis vector el ∈ Δm such that 631

ηTCl = mink∈[m] η
TCk. 632

2) Extension Beyond the Probability Simplex: The loss 633

Lcw2(j, λ) is convex (more precisely, linear!) in its action 634

λ when restricted to Δm. To handle this restriction, there 635

are several possible approaches. One is to introduce a 636

link function such as the multinomial logistic link λh = 637

(λh
1 , . . . , λ

h
m)T, where λh

j = exp(hj)/
�m

k=1 exp(hk) with 638

h = (h1, . . . , hm−1)T ∈ R
m−1 unrestricted and hm = 0 fixed. 639

But the resulting loss Lcw2(j, λh) would be non-convex in h. 640

Another approach is to define a trivial extension of Lcw2 such 641

that Lcw2(j, λ) = ∞ whenever λ lies outside the restricted set 642

Δm. But for numerical implementation with this extension, 643

either a link function such as the multinomial logistic link 644

would still be needed, or the predicted action for a new 645

observation is likely to lie outside the probability simplex Δm, 646

which then requires additional treatment. By comparison, our 647

approach is to carefully construct an extension of Lcw2 which 648

remains convex in its action and induces the same generalized 649

entropy Hcw, while avoiding the infinity value outside the 650

restricted set Δm. 651

The version of Lcw2 in (21) with C = 1m1T
m− Im as in the 652

zero-one loss is 653

Lzo2(j, λ) = 1 − λj , j ∈ [m], λ ∈ Δm. (22) 654

In the two-class setting, the hinge loss Lhin can be shown to 655

be a desired convex extension of the loss Lzo2, considered a 656

function of j and λ1: 657

Lzo2(1, λ) = 1 − λ1, Lzo2(2, λ) = λ1, λ1 ∈ [0, 1]. 658

See Figure 2 for an illustration. In multi-class settings, our 659

first extension of the loss Lcw2 is as follows, related to the 660

multi-class hinge-like loss in [11]. 661
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Proposition 4: Define a loss with action space A = R
m−1

662

such that for τ ∈ R
m−1,663

Lcw3(j, τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cjm(τ (j)

m )+ +
�

k∈[m−1],k �=j cjkτk+,

if j ∈ [m− 1],�
k∈[m−1] cmkτk+,

if j = m,

(23)664

where b+ = max(0, b) for b ∈ R, and665

τ
(j)
m = 1 − τj −

�
k∈[m−1],k �=j τk+, j ∈ [m− 1]. (24)666

Then Lcw3(j, τ) is convex in τ , and coincides with Lcw2(j, τ̃ )667

provided τ̃ ∈ Δm, where τ̃ = (τ1, . . . , τm−1, 1−
�m−1

k=1 τk)T.668

Moreover, Lcw3 induces the same generalized entropy Hcw
669

in (10) as does the cost-weighted classification loss Lcw.670

A special case of the loss Lcw3 with the cost matrix C =671

1m1T
m−Im as in the zero-one loss can be expressed such that672

for τ = (τ1, . . . , τm−1)T ∈ R
m−1,673

Lzo3(j, τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
�
1 − τj ,

�
k∈[m−1],k �=j τk+

�
,

if j ∈ [m− 1],�
k∈[m−1] τk+,

if j = m,

674

where the summation over an empty set is defined as 0. Then675

Lzo3 induces the same generalized entropy Hzo in (9) as does676

the zero-one loss Lzo. In the two-class setting, the loss Lzo3
677

can be easily seen to coincide with the hinge loss (20).678

We compare the new loss with the hinge-like loss in [11]679

corresponding to the zero-one loss with C = 1m1T
m − Im,680

which is defined such that for γ ∈ R
m,681

LLLW(j, γ) =
�

k∈[m],k �=j

(1 + γk)+, j ∈ [m],682

subject to the restriction that
�m

k=1 γk = 0. The general683

case of cost-weighted classification can be similarly discussed.684

To facilitate comparison, a reparametrization of the loss LLLW
685

can be obtained such that for τ ∈ R
m−1,686

LLLW2(j, τ)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
k∈[m−1],k �=j τk++

�
1−
�

k∈[m−1] τk

�
+
,

if j ∈ [m− 1],�
k∈[m−1] τk+,

if j = m.

687

In the Supplement, it is shown that LLLW2(j, τ) =688

LLLW(j, γ)/m for j ∈ [m], provided that τk = (1 + γk)/m689

for k ∈ [m − 1]. Figure 3 illustrates the two losses Lzo3 and690

LLLW2 in the three-class setting. The loss Lzo3 is a tighter691

convex extension than LLLW2 from Lzo2 in (22), and Lzo3(j, τ)692

is geometrically simpler with fewer non-differentiable ridges693

than LLLW2(j, τ) for j ∈ [m − 1]. See the Supplement for694

further discussion of the comparison.695

There are various ways in which the loss Lcw2 can be696

extended from the probability simplex Δm to R
m. We describe697

another extension, related to the multi-class hinge-like loss698

in [12] associated with the zero-one loss. The general case699

of cost-weighted classification can be handled through the700

transformation (53) in Section V-B, although such a general 701

construction is not discussed in [12]. 702

Proposition 5: Define a loss with action space A = R
m−1

703

such that for τ ∈ R
m−1, 704

Lzo4(j, τ) = 1 − τ̃j + S(j)
τ , j ∈ [m], (25) 705

where (τ̃1, . . . , τ̃m−1) = (τ1, . . . , τm−1), τ̃m = 1−
�m−1

k=1 τk, 706

and for j ∈ [m], 707

S(j)
τ = max

�
0, τ̃j − 1,

τ̃j + τ̃j(1) − 1
2

, 708

. . . ,
τ̃j + τ̃j(1) + · · · + τ̃j(m−2) − 1

m− 1

�
, 709

with τ̃j(1) ≥ . . . ≥ τ̃j(m−1) the sorted components of τ̃ = 710

(τ̃1, . . . , τ̃m)T excluding τ̃j . Then Lzo4(j, τ) is convex in τ , 711

and coincides with Lzo2(j, τ̃ ) provided τ̃ ∈ Δm. Moreover, 712

Lzo4 induces the same generalized entropy Hzo in (9) as does 713

the zero-one loss Lzo. 714

The hinge-like loss in [12] is defined such that for γ ∈ R
m, 715

LDKR(j, γ) = 1 − γj + Sγ , j ∈ [m], 716

where Sγ = max{γ(1) − 1, γ(1)+γ(2)−1

2 , . . . ,
γ(1)+···+γ(m)−1

m }, 717

and γ(1) ≥ . . . ≥ γ(m) are the sorted components of 718

γ ∈ R
m. This loss is invariant to any translation in γ, 719

that is, LDKR(j, γ − b1m) = LDKR(j, γ) for any b ∈ R. 720

It suffices to consider LDKR(j, γ) subject to the restriction that 721�m
k=1 γk = 1, or equivalently consider the loss 722

LDKR2(j, τ) = 1 − τ̃j + Sτ , j ∈ [m], 723

where (τ̃1, . . . , τ̃m−1) = (τ1, . . . , τm−1) and τ̃m = 1 − 724�m−1
k=1 τk as in (25), and 725

Sτ = max
�

0, τ̃(1) − 1,
τ̃(1) + τ̃(2) − 1

2
, 726

. . . ,
τ̃(1) + · · · + τ̃(m−1) − 1

m− 1

�
, 727

with τ̃(1) ≥ . . . ≥ τ̃(m) the sorted components of τ̃ = 728

(τ̃1, . . . , τ̃m)T. There does not seem to be a direct transforma- 729

tion between the two losses Lzo4 and LDKR2, in spite of their 730

similar expressions. An illustration is provided by Figures 2 731

and 4 in two- and three-class settings. The loss Lzo4 is a tighter 732

convex extension than LDKR2 from Lzo2 in (22), and Lzo4(j, τ) 733

is geometrically simpler with fewer non-differentiable ridges 734

than LLLW2(j, τ) for j ∈ [m]. See the Supplement for further 735

discussion of the comparison. 736

For motivation, we discuss two possible reasons why the 737

new hinge-like losses can be preferred over their previous 738

counterparts, for example, Lzo4 over LDKR2. The first reason is 739

based on classification regret bounds. From Proposition 6 and 740

[12, Proposition 5] as discussed in Section IV-B, we have, 741

for L to be either Lzo4 or LDKR2 (which induces the same 742

generalized entropy Hzo as the zero-one loss, i.e., HLzo4 = 743

HLDKR2 = Hzo), 744

1
m
E
�
Lzo(Y0, τ̃ (X0)) −Hzo(π(X0))

�
745

≤ E
�
L(Y0, τ(X0)) −Hzo(π(X0))

�
, (26) 746
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Fig. 3. Three-class hinge-like losses LLLW2 (top) and Lzo3 (bottom). Regions separated by solid lines are associated with the function values indicated.

Fig. 4. Three-class hinge-like losses LDKR2 (top) and Lzo4 (bottom). Regions separated by solid lines are associated with the function values indicated.

where (X0, Y0) is a test observation as in (2) and πj(x) =747

P (Y0 = j|X0 = x) as in (3). Let τ zo4 or τDKR2 be the action748

function determined by minimizing the expected value of Lzo4
749

or LDKR2 respectively. Then750

E
�
Lzo4(Y0, τ

zo4(X0)) −Hzo(π(X0))
�

751

≤ E
�
Lzo4(Y0, τ

DKR2(X0)) −Hzo(π(X0))
�

(27) 752

≤ E
�
LDKR2(Y0, τ

DKR2(X0)) −Hzo(π(X0))
�
. (28) 753

The first line follows by definition of τ zo4. The second line 754

follows because the fact that Lzo4 is a tighter extension than 755

LDKR2 implies that the right-hand side of (26) with L = Lzo4
756
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is no greater than that with L = LDKR2 for the same function757

τ(x). Hence the right-hand side of (26) with L = Lzo4 and758

τ = τ zo4 is never greater and may be much smaller than that759

with L = LDKR2 and τ = τDKR2. This suggests that the excess760

zero-one risk on the left-hand side of (26) with τ = τ zo4 may761

be smaller than that with τ = τDKR2. The second reason is762

based on generalization bounds, in the form of upper bounds763

on the following quantity764

sup
τ∈T

����� 1n
n�

i=1

L(Yi, τ(Xi))−E
�
L(Y0, τ(X0))

������ ,765

where T is a certain function class. As seen from [29],766

such generalization bounds depend linearly on the Lipschitz767

constant of the loss function L(j, τ) in τ . The fact that Lzo4
768

is a tighter extension than LDKR2 implies a smaller Lipschitz769

constant for Lzo4, which leads to a smaller generalization770

bound for Lzo4. While the preceding reasoning may indicate771

potential advantages of the new hinge-like losses over existing772

ones, our discussion is heuristic and further comparison of773

these losses can be studied in future work.774

B. Regret Bounds for Hinge-Like Losses775

The preceding section mainly focuses on constructing multi-776

class hinge-like losses which induce the generalized entropy777

Lzo or Hcw as does the zero-one or cost-weighted classification778

loss, while achieving certain desirable properties geometrically779

compared with hinge-like losses in [11] and [12]. Here we780

derive classification regret bounds, which compare the regrets781

of our hinge-like losses with those of the zero-one and782

cost-weighted losses, where the actions are take from those of783

the hinge-like losses by a prediction mapping. Such bounds784

provide a quantitative guarantee on classification calibration,785

a qualitative property which leads to infinite-sample786

classification consistency under suitable technical787

conditions [15], [16].788

Proposition 6: The following regret bounds hold for the789

hinge-like losses Lcw3 and Lzo4.790

(i) For η ∈ Δm and τ ∈ R
m−1, m−1BLcw(η, τ†) ≤791

BLcw3(η, τ), that is,792

1
m

⎧⎨
⎩

m�
j=1

ηjL
cw(j, τ†) −Hcw(η)

⎫⎬
⎭793

≤
m�

j=1

ηjL
cw3(j, τ) −HLcw3(η), (29)794

where τ† = (τ1, . . . , τm−1, 1 −
�m−1

k=1 τk+)T.795

(ii) For η ∈ Δm and τ ∈ R
m−1, m−1BLzo(η, τ̃ ) ≤796

BLzo4(η, τ), that is,797

1
m

⎧⎨
⎩

m�
j=1

ηjL
zo(j, τ̃ ) −Hzo(η)

⎫⎬
⎭798

≤
m�

j=1

ηjL
zo4(j, τ) −HLzo4(η), (30)799

where τ̃ = (τ1, . . . , τm−1, 1 −
�m−1

k=1 τk)T.800

The regret bounds (29) and (30) directly lead to classifica- 801

tion calibration, which can be defined as follows, allowing a 802

prediction mapping [15], [16]. For a loss L(j, γ) with action 803

space A, let σ = (σ1, . . . , σm)T : A → R
m be a prediction 804

mapping which carries an action in A to a vector in R
m, 805

to be used as the corresponding action in the zero-one or cost- 806

weighted classification loss. The prediction mapping can be 807

defined directly as the identity mapping, σ(γ) = γ, in the case 808

of A ⊂ R
m, but needs to convert an action γ to a vector in R

m
809

in the case of A ⊂ R
m−1. A loss L(j, γ) with action space 810

A and prediction mapping σ(·) is said to be classification 811

calibrated for the zero-one loss if for any η ∈ Δm and k ∈ [m] 812

with ηk < maxj∈[m] ηj , 813

inf
γ∈A

⎧⎨
⎩

m�
j=1

ηjL(j, γ) −HL(η) : σk(γ) = max
j∈[m]

σj(γ)

⎫⎬
⎭ > 0. 814

(31) 815

For L = Lzo4 and σ(τ) = τ̃ , inequality (30) implies 816

that the left-hand side of (31) is no smaller than (−ηk + 817

maxj∈[m] ηj)/m > 0. Hence Lzo4 is classification calibrated 818

for the zero-one loss. Similarly, a loss L(j, γ) with action 819

space A and prediction mapping σ(·) is said to be classi- 820

fication calibrated for cost-weighted classification with cost 821

matrix C if for any η ∈ Δm and k ∈ [m] with ηTCk > 822

maxj∈[m] η
TCj , 823

inf
γ∈A

⎧⎨
⎩

m�
j=1

ηjL(j, γ) −HL(η) : σk(γ) = max
j∈[m]

σj(γ)

⎫⎬
⎭ > 0. 824

(32) 825

For L = Lcw3 and σ(τ) = τ†, inequality (29) implies 826

that the left-hand side of (32) is no smaller than (ηTCk − 827

minj∈[m] η
TCj)/m > 0. Hence the loss Lcw3 is classification 828

calibrated with σ(τ) = τ† for cost-weighted classification. 829

There is an interesting feature in the regret bound (29) for 830

Lcw3(j, τ), compared with the regret bound (30) for Lzo4(j, τ). 831

The prediction mapping associated with the loss Lcw3(j, τ) 832

with τ ∈ R
m−1 is τ† = (τ1, . . . , τm−1, 1 −

�m−1
k=1 τk+)T, 833

whose components may sum to less than one, instead of 834

τ̃ = (τ1, . . . , τm−1, 1 −
�m−1

k=1 τk)T, whose components nec- 835

essarily sum to one. Although this difference warrants further 836

study, using τ† instead of τ̃ for classification ensures that the 837

predicted value formth class, 1−
�m−1

k=1 τk+, is not affected by 838

any negative components among (τ1, . . . , τm−1). For example, 839

if m = 3 and (τ1, τ2) = (.6,−.3), then 1 −
�2

k=1 τk+ = 840

.4 but 1 −
�2

k=1 τk = .7. Using τ† means that class 1 is 841

predicted, whereas using τ̃ means that class 3 is predicted, 842

which seems to be artificially caused by the negative value 843

of τ2. See Figure 5 for an illustration and Proposition 8 for 844

an explanation. 845

The regret bounds (29) and (30) for the losses Lcw3 and 846

Lzo4 are similar to those for the losses LLLW2 and LDKR2
847

in [12]. In fact, the regret bound for LLLW2 in Duchi et al. 848

can be seen as (29) with Lcw3(j, τ) and Lcw(j, τ†) replaced 849

by LLLW2(j, τ) and Lcw(j, τ̃ ) respectively, because LLLW2 is 850

LLLW multiplied by m after a reparametrization noted earlier. 851
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Fig. 5. Classification using the prediction mapping τ̃ (left) or τ† (right),
defined in Proposition 6, with τ = (τ1, τ2) ∈ R

2 for m = 3. Each region
separated by solid lines from others is classified by the index of a maximum
component of τ̃ or τ†.

The regret bound for LDKR2 in Duchi et al. can be seen as (30)852

with Lzo4(j, τ) replaced by LDKR2(j, τ) and with Lzo(j, τ̃ )853

unchanged. As mentioned in Section IV-A, further research854

is desired to compare these hinge-like losses in theory and855

empirical evaluation.856

C. General Characterization and Regret Bounds857

Our new hinge-like losses are explicitly derived to induce858

the same generalized entropy as the zero-one or cost-weighted859

classification loss, and shown to achieve comparable regret860

bounds to those for existing hinge-like losses. In this section,861

we provide a general result indicating that all losses with862

the same generalized entropy as the zero-one loss achieve a863

classification regret bound similarly as in Proposition 6. This864

result relies on a general characterization of such losses in865

terms of the value manifold defined below.866

For a loss L(j, γ) with action space A, the value manifold867

is defined as SL = conv(RL), where conv denotes the closure868

of the convex hull and869

RL = {(L(1, γ), . . . , L(m, γ))T : γ ∈ A} .870

The concept of the set RL and its convex hull, conv(RL),871

also plays an important role in [16], where the admissibility872

of conv(RL) can be equivalently defined as that of SL because873

conv(RL) and SL share the same boundary, denoted as ∂SL.874

Then the generalized entropy of L can be expressed such that875

for any η ∈ Δm,876

HL(η) = inf
γ∈A

⎧⎨
⎩

m�
j=1

ηjL(j, γ)

⎫⎬
⎭ = inf

z∈RL

ηTz = inf
z∈SL

ηTz,877

(33)878

similarly as in [16], Eq. (7). For the zero-one loss Lzo, the879

value manifold is denoted as880

Szo =
�

(z1, . . . , zm)T :
�m

j=1zj = m− 1881

and 0 ≤ z1, . . . , zm ≤ 1
�
.882

The set Szo is an (m−1)-dimensional polytope in R
m, where883

each vertex is a m-dimensional vector with one component884

0 and the remaining 1.885

Proposition 7: A loss L(j, γ) induces the same generalized 886

entropy as the zero-one loss, i.e., HL(η) = Hzo(η) = 1 − 887

maxk∈[m] ηk for η ∈ Δm if and only if 888

Szo ⊂ SL ⊂ Szo∗, (34) 889

where Szo∗ = {z + b : z ∈ Szo, b ∈ R
m
+}, also denoted as 890

Szo + R
m
+ . 891

Figure 6 shows, in the three-class setting, the value man- 892

ifolds for the zero-one and several hinge-like losses with 893

the same generalized entropy as the zero-one loss. These 894

value manifolds all satisfy the inclusion property as stated in 895

Proposition 7. 896

The following result establishes a general link from the 897

generalized entropy of the zero-one loss to classification regret 898

bounds. The link involves a particular prediction mapping 899

σL(γ), defined from the negative values of a given loss L. 900

Such a prediction mapping is also exploited to study classifi- 901

cation calibration in [16], with an additional assumption that 902

the value manifold SL is symmetric. 903

Proposition 8: Suppose that a loss L(j, γ) with action space 904

A induces the same generalized entropy as the zero-one 905

loss (i.e., HL = Hzo). Then for η ∈ Δm and γ ∈ A, 906

m−1BLzo(η, σL(γ)) ≤ BL(η, γ), that is, 907

1
m

⎧⎨
⎩

m�
j=1

ηjL
zo(j, σL(γ)) −Hzo(η)

⎫⎬
⎭ 908

≤
m�

j=1

ηjL(j, γ) −HL(η), (35) 909

where σL(γ) = (−L(1, γ), . . . ,−L(m, γ))T. Moreover, the 910

loss L(j, γ), with the prediction mapping σL, is classification 911

calibrated for the zero-one loss. 912

Proposition 8 provides a theoretical support for our 913

approach in constructing hinge-like losses with the same 914

generalized entropy as the zero-one loss in Section IV-A. The 915

regret bound (35) implies classification calibration similarly as 916

discussed in Section IV-B. Compared with [16, Section 4], 917

our result gives a more concrete sufficient condition for 918

achieving classification calibration, in addition to a quantitative 919

guarantee. Because the loss is unspecified except for its 920

generalized entropy being Hzo in Proposition 8, our result 921

is of a different nature from [12, Proposition 4], where 922

classification calibration is shown to be achieved by the 923

specific loss LH in (13) given a concave function H (as its 924

generalized entropy). Classification regret bounds then need to 925

be proved on a case-by-case basis, for example, for the loss 926

LDKR given Hzo in [12]. 927

By the nature of the zero-one loss, the regret bound (35) 928

remains valid with σL(γ) replaced by another prediction 929

mapping σ(γ) subject to the monotonicity property that the 930

components in σ(γ) are in the same order as in σL(γ) for 931

any γ ∈ A. Then the regret bounds for Lzo3, as a special 932

case of Lcw3, and Lzo4 in Proposition 6 can be deduced 933

from (35), because the monotonicity property is satisfied by 934

the prediction mappings τ† and τ̃ used in (29) and (30). See the 935

Supplement for details. Possible extensions of Proposition 8 936

to cost-weighted classification can be studied in future work. 937
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Fig. 6. The boundaries of value manifolds for three-class hinge-like losses LDKR2/Lzo4 (left), LLLW2 (middle) and Lzo3 (right). The triangle polytope in the
center of each plot is the value manifold Szo for the zero-one loss. The boundary of Szo∗, defined as Szo + R

m
+ , is the same as in the left plot.

D. Numerical Illustration938

We provide a simple numerical experiment to illus-939

trate potential advantages of the proposed hinge-like losses.940

As motivated by [30] in the binary setting, we consider a941

three-class setting to study misclassification rates committed942

by linear classifiers obtained through minimizing hinge-like943

(surrogate) losses when a small, optimal error rate can be944

achieved by a linear classifier based on minimizing the zero-945

one loss.946

We investigate the proposed Lzo4 loss, and compare it947

with LDKR, LLLW, and the hinge-like losses in [13] and [14],948

denoted as WW and CS. In the comparison, we also include949

the multinomial logistic regression, as well as the two com-950

mon strategies based on binary classification, one-versus-one951

(OVO) and one-versus-all (OVA). For all methods, the action952

function τ(x) is linear in x with an intercept. The multinomial953

logistic regression is implemented through the glmnet R954

package [31], and all other methods are implemented through955

the CVXR R package [32] based on the mosek solver [33].956

We consider a three-class data generating process as fol-957

lows: 98% of (X,Y ) are drawn such that X |Y = j ∼958

N(μj , 0.12I) and P (Y = j) = 1/3 for j = 1, 2, 3, and959

the remaining 2% of (X,Y ) are outliers with Y = 1 and960

X drawn from N(μ4, 0.12I), where (μ1, . . . , μ4) are (−1, 0),961

(0, 0.25), (1, 0), and (1 + ρ, 0) respectively. The parameter962

ρ > 0 controls the separation degree (how far away) between963

outliers and the main data. We train all methods on a training964

set of size 3,000 and calculate misclassification error rates on965

a test set of size 50,000. For each method, we do not apply966

regularization to isolate the effect of the loss function given the967

large training data size. We vary ρ from 0 to 2.5, i.e., moving968

outliers away while keeping main data fixed, to investigate969

how each method’s performance changes.970

For example, Figure 7 shows the training data and classifi-971

cation regions and test error rates from different methods for972

ρ = 2. The optimal error rate for linear classifiers is virtually973

2%, achieved by the Bayes classifier on the main data (hence974

correctly classifying 98% of the entire data). In principle, this975

optimal linear classifier can be derived by minimizing the zero-976

one loss. However, minimizing hinge-like (surrogate) losses977

lead to error rates greater than the optimal rate in various978

degrees. For ρ = 2 as shown in Figure 7, the proposed Lzo4
979

method achieves the smallest error rate, 4.27%, among all 980

hinge-like methods under study. 981

In Figure 8a, we plot the test error rates over ρ from all 982

methods. Only the proposed method, CS, and OVO achieve 983

near-optimal error rates (around 2.4%) when ρ < 0.5. CS is 984

slightly better than our method when ρ < 1.5, but its 985

error rate quickly rises and becomes higher than ours, as ρ 986

further increases. Compared with the other three classification 987

calibrated methods, DKR, LLW, and multinomial logistic, our 988

method achieves smaller error rates, sometimes to a large 989

extent, over the range of ρ. The error rate from LLW decreases 990

as ρ increases, which is paradoxical and may be further 991

studied. 992

Figure 8b shows the loss values as well as test error rates 993

over ρ from our method, DKR, and LLW, where the loss 994

functions can be perfectly aligned on the probability simplex. 995

In accordance with (27)–(28), depending on the proposed 996

Lzo4 loss being a tighter extension outside the probability 997

simplex, the loss values from our method are always smaller 998

than those from DKR and LLW. Then as suggested by the 999

regret bound (26), our method also achieves smaller error rates 1000

than the other two methods, even though the regret bound 1001

only gives an upper bound on the error rates for all three 1002

methods. 1003

V. PROPER SCORING RULES 1004

We investigate proper scoring rules in two similar directions 1005

as in Section IV: first deriving new proper scoring rules (while 1006

recovering existing ones) and second establishing classification 1007

regret bounds with respect to the zero-one or cost-weighted 1008

classification loss. 1009

A. Examples of Proper Scoring Rules 1010

We examine various examples of multi-class proper scoring 1011

rules, obtained from Proposition 3. In particular, it is of interest 1012

to study how commonly used two-class losses can be extended 1013

to multi-class ones. These examples lead to new multi-class 1014

proper scoring rules and shed new light on existing ones. 1015

See Section IV for a discussion of multi-class hinge-like 1016

losses related to zero-one classification losses, derived using 1017

Proposition 1. 1018

Authorized licensed use limited to: Rutgers University. Downloaded on August 01,2022 at 23:23:42 UTC from IEEE Xplore.  Restrictions apply. 



TAN AND ZHANG: ON LOSS FUNCTIONS AND REGRET BOUNDS FOR MULTI-CATEGORY CLASSIFICATION 5307

Fig. 7. Classification regions and test error rates when the separation degree
ρ = 2. The gray area in the OVO’s plot indicates where pairwise votes are
tied and thus prediction can not be uniquely determined.

Fig. 8. Trend plots over separation degree ρ. Loss values on the training
and test sets are reported for three methods where the loss functions can be
aligned.

1) Two-Class Losses: For two-class classification (m = 2)1019

and a univariate convex function f0 on R+, the proper scoring1020

rule (18) in Proposition 3 reduces to1021

Lf0(j, q) = − �1(j)∂f0(uq)1022

+ �2(j)
�
uq∂f0(uq) − f(uq)

�
, j = 1, 2, (36)1023

where uq = q1/q2 for q = (q1, q2)T ∈ Δ2, ∂f0 denotes a1024

sub-gradient of f0, and �k(j) is an indicator defined as 1 if1025

j = k or 0 otherwise. For a twice-differentiable function f0,1026

the gradient of the loss (36) can be directly calculated as1027

d
dq1

Lf0(j, q) = −{�1(j) − q1}w(q1), (37)1028

where d/dq1 denotes a derivative taken with respect to q1 with1029

q2 = 1−q1, and the weight function w(q1) = f ′′
0 (uq)/q32 with1030

f ′′
0 the second derivative of f0. From (37), Lf0(j, q) can1031

be put into an integral representation in terms of w(·) and1032

the cost-weighted binary classification loss [4], [21], [34].1033

The formula (36) in terms of f0 differs from the integral1034

representation or the canonical representation (7), even though 1035

they can be transformed into each other. 1036

For concreteness, consider the following examples of two- 1037

class losses: 1038

• Likelihood Loss: L�(j, q) = − log qj with f0 = t log t− 1039

(1 + t) log(1 + t), 1040

• Exponential Loss: Le(j, q) = �1(j)
�
q2/q1 + 1041

�2(j)
�
q1/q2 with f0 = (

√
t− 1)2, 1042

• Calibration Loss: Lc(j, q) = {�1(j)(q2/q1) + 1043

�2(j) log(q1/q2)}/2 with f0 = −(log t)/2, 1044

where all the expressions for L(j, q) are up to additive con- 1045

stants in q. See Supplement Table S1 for further information. 1046

While the likelihood loss is tied to maximum likelihood 1047

estimation, the exponential loss is associated with boosting 1048

algorithms [35], [36]. The calibration loss is studied in [37] 1049

for logistic regression, where the fitted probabilities are used 1050

for inverse probability weighting. See the Supplement for a 1051

discussion on convexity of these losses with a logistic link. 1052

Remark 2: The loss (36) was also derived in [38] for 1053

training a discriminator in generative adversarial learning 1054

[39], [40]. In that context, the loss for training a generator 1055

is, in a nonparametric limit, the negative Bayes risk from 1056

discrimination or the f0-divergence by relationship (12) with 1057

π0 = 1m/m, 1058

Df0(P1	P2) = − inf
q:X→Δ2

E
�
Lf0(Y, q(X))

�
, 1059

where P1 is the data distribution represented by training data 1060

and P2 is the model distribution represented by simulated data 1061

from the generator. Hence the generator can be trained to min- 1062

imize various f0-divergences, including forward and reverse 1063

Kullback–Liebler and Hellinger divergences. See Supplement 1064

Table S1 in [38]. 1065

2) Multi-Class Pairwise Losses: There can be numerous 1066

choices for extending a two-class loss (36) to multi-class ones, 1067

just as a univariate convex function f0 can be extended in 1068

multiple ways to multivariate ones. A simple approach is to 1069

use an additive extension, f(u1, . . . , um−1) =
�m−1

k=1 f0(uk). 1070

The corresponding loss (18) is then 1071

Lpw,a
f0

(j, q) =
m−1�
k=1

�
− �k(j)∂f0(

qk
qm

) 1072

+ �m(j)
�
qk
qm

∂f0(
qk
qm

) − f0(
qk
qm

)
��

, 1073

(38) 1074

Equivalently, the loss (38) can be obtained by applying the 1075

two-class loss (36) to a pair of classes, k and m, and summing 1076

up such pairwise losses for k ∈ [m − 1]. In this sense, the 1077

loss (38) can be interpreted as performing multi-class classifi- 1078

cation via pairwise comparison of each class k ∈ [m−1] with 1079

class m. 1080

The preceding loss (38) is asymmetric with class m com- 1081

pared with the remaining classes k ∈ [m− 1]. A symmetrized 1082

version can be obtained by varying the choice of a base class 1083
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and summing up the resulting losses as1084

Lpw,s
f0

(j, q)1085

=
�

l,k∈[m],k �=l

�
− �k(j)∂f0(

qk
ql

)1086

+ �l(j)
�
qk
ql
∂f0(

qk
ql

) − f0(
qk
ql

)
��

1087

=
�

k∈[m],k �=j

�
−∂f0(

qj
qk

) +
qk
qj
∂f0(

qk
qj

) − f0(
qk
qj

)
�
. (39)1088

See the Supplement for a proof. The symmetrized loss (39) can1089

also be deduced from (18) with the choice f(u1, . . . , um−1) =1090 �
l,k∈[m],k �=l ulf0(uk

ul
), where um ≡ 1. In spite of the1091

interpretation via pairwise comparison, our approach involves1092

optimizing the loss (38) or (39) jointly over q ∈ Δm using1093

all m labels, and hence differs from the usual one-against-1094

all or all-pairs approach, which performs binary classification1095

with 2 reduced labels separately for multiple times. Further1096

comparison of these approaches can be studied in future work.1097

Consider a multinomial logistic link qh = (qh
1 , . . . , q

h
m)T,1098

where h = (h1, . . . , hm)T and1099

qh
j =

exp(hj)�m
k=1 exp(hk)

, j ∈ [m]. (40)1100

The link is a natural extension of the logistic link, because log1101

ratios between (q1, . . . , qm) are related to contrasts between1102

(h1, . . . , hm). To remove over-parametrization, a restriction is1103

often imposed such as hm ≡ 0 or
�m

k=1 hk ≡ 0. By the1104

additive construction, the composite losses obtained from (38)1105

and (39) can be easily shown to be convex in h whenever the1106

two-class loss (36) with a logistic link qh0
1 /qh0

2 = exp(h0) is1107

convex in h0.1108

For the two-class likelihood, exponential, and calibration1109

losses above, the pairwise extensions (39) can be calculated1110

as follows:1111

• Pairwise likelihood loss:1112

L
pw,s
� (j, q) = 2

�
k∈[m],k �=j log(1 + qk

qj
),1113

• Pairwise exponential loss:1114

Lpw,s
e (j, q) = 2

�
k∈[m],k �=j

�
qk

qj
,1115

• Multi-class calibration loss:1116

L
pw,s
c (j, q) =

�
k∈[m],k �=j{log( qk

qj
) + qk

qj
}/2,1117

where additive constants in q are dropped for simplicity. See1118

Supplement Table S1 for the expressions of the corresponding1119

f , H , and gradients. By convexity of the associated two-class1120

composite losses [4], we see that with the multinomial logistic1121

link (40), the three composite losses, Lpw,s
� (j, qh), Lpw,s

e (j, qh),1122

and Lpw,s
c (j, qh), are all convex in h. In particular, the pairwise1123

exponential composite loss is1124

Lpw,s
e (j, qh) = 2

�
k∈[m],k �=j

e(hk−hj)/2,1125

which is associated with multi-class boosting algorithms1126

AdaBoost.M2 [41] or AdaBoost.MR [42]. See [7] for further1127

study. The pairwise likelihood and calibration losses appear1128

to be new. The pairwise likelihood loss, with m ≥ 3, differs1129

from the standard likelihood loss based on multinomial data,1130

which will be discussed later. The multi-class calibration loss1131

has recently been re-derived and studied for propensity score1132

estimation with multi-valued treatments [43].1133

3) Multi-Class Simultaneous Losses: Apparently, there exist 1134

various multi-class proper scoring rules, which cannot be 1135

expressed as pairwise losses (38) or (39) and hence will be 1136

referred to as simultaneous losses. A notable example as men- 1137

tioned above is the standard likelihood loss (or the logarithmic 1138

scoring rule) for multinomial data, L(j, q) = − log qj . In fact, 1139

a large class of multi-class simultaneous losses can be defined 1140

with the generalized entropy in the form 1141

Hβ(q) =
�

	q	β, if β ∈ (0, 1),
−	q	β, if β ∈ (1,∞), 1142

where 	q	β = {
�m

j=1 q
β
j }1/β is the Lβ norm. The corre- 1143

sponding dissimilarity function is fβ(t) = −	t̃	β if β ∈ (0, 1) 1144

or 	t̃	β if β ∈ (1,∞), where t̃ = (t1, . . . , tm−1, 1)T. The 1145

resulting scoring rule can be calculated by (18) as 1146

Lβ(j, q) =
�

(qj/	q	β)β−1, if β ∈ (0, 1),
−(qj/	q	β)β−1, if β ∈ (1,∞). (41) 1147

The case β > 1 is called a pseudo-spherical score [20], [44]. 1148

The limiting case β → 1 is also known to yield the logarithmic 1149

score, L(j, q) = − log qj , after suitable rescaling. The case 1150

β ∈ (0, 1) seems previously unstudied. There are also two 1151

additional limiting cases as β → 0+ or ∞. See Supplement 1152

Table S1 for further details. 1153

Proposition 9: Define a rescaled version of Hβ as 1154

H r
β(q) =

	q	β − 1
m1/β−1 − 1

, (42) 1155

if β ∈ (0, 1) ∪ (1,∞), and H r
β(q) = limβ′→β H

r
β′(q), if β = 1156

0, 1,∞. Then the following proper scoring rules are obtained. 1157

(i) Simultaneous exponential loss (β = 0): 1158

Lr
0(j, q) = (

�m
k=1

qk

qj
)1/m corresponding to H r

0(q) = 1159

m(
�m

j=1 qj)
1/m. 1160

(ii) Pairwise exponential loss (β = 1/2): 1161

Lr
1/2(j, q) = (m− 1)−1

�
k∈[m],k �=j

�
qk

qj
corresponding 1162

to H r
1
2
(q) = (m− 1)−1(	q	 1

2
− 1). 1163

(iii) Multinomial likelihood loss (β = 1): 1164

Lr
1(j, q) = −(logm)−1 log qj corresponding to H r

1(q) = 1165

−(logm)−1
�m

j=1 qj log qj . 1166

(iv) Multi-class zero-one loss (β = ∞): 1167

Lr
∞(j, q) = (1 −m−1)−11{j �= argmaxk∈[m]qk} corre- 1168

sponding to H r
∞(q) = (1 −m−1)−1(1 − maxj∈[m] qj). 1169

Moreover, with a multinomial logistic link (40), the composite 1170

loss Lr
β(j, qh) is convex in h if β ∈ [0, 1], but non-convex in 1171

h if β > 1. 1172

There are several interesting features. First, with a multino- 1173

mial logistic link (40), the scoring rule Lr
0(j, q) leads to a 1174

composite loss 1175

Lr
0(j, q

h) = e
1
m

�m
k=1(hk−hj), 1176

which coincides with the exponential loss in [6]. For this 1177

reason, Lr
0(j, q) is called the simultaneous exponential loss. 1178

Moreover, the scoring rule Lr
1/2(j, q) yields, up to a multi- 1179

plicative factor, the pairwise exponential loss Lpw,s
e (j, q), which 1180

is connected with the boosting algorithms in [41] and [42] as 1181

mentioned earlier. The logarithmic rule Lr
1(j, q) corresponds 1182

to the standard likelihood loss based on multinomial data. 1183

Finally, the loss Lr
∞(j, q) obtained as β → ∞ recovers the 1184
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zero-one loss, which is a proper scoring rule (although not1185

strictly proper). Further research is desired to study relative1186

merits of these losses.1187

B. Regret Bounds for Proper Scoring Rules1188

We derive classification regret bounds for proper scoring1189

rules, which compare the regrets of the proper scoring rules1190

(as losses) with those of the corresponding zero-one and cost-1191

weighted classification losses, similarly as in Proposition 6 for1192

hinge-like losses. All such bounds are also called surrogate1193

regret bounds, in the sense that the a proper scoring rule or1194

a hinge-like loss can be considered a surrogate criterion for1195

the zero-one or cost-weighted classification loss. Similarly as1196

discussed in Section IV-B, these results provide a quantitative1197

guarantee on classification calibration [15], [16].1198

Compared with hinge-like losses, a potential gain in using1199

proper scoring rules is that classification regret bounds can be1200

obtained with respect to a range of cost-weighted classification1201

losses with different cost matrices C for a proper scoring1202

rule, defined independently of C. The cost matrix is involved1203

only to convert an action (in the form of a probability vector)1204

from the scoring rule to a prediction for the cost-weighted1205

classification loss. See Corollary 3. In contrast, for the regret1206

bound (29), the hinge-like loss Lcw3 depends on the cost-1207

matrix C used in the classification loss Lcw. A similar obser-1208

vation is made by [21, Corollary 28] in two-class settings.1209

A general basis for deriving regret bounds, applicable to not1210

just scoring rules but arbitrary losses L(j, γ) with an action1211

space A ⊂ R
m, can be cast as1212

ψ(Bzo(η, γ)) ≤ BL(η, γ), (43)1213

where Bzo(η, γ) = BLzo(η, γ), the regret of the zero-one loss1214

Lzo(η, γ), and1215

ψ(t) = inf
δ′∈Δm,γ′∈A: Bzo(δ′,γ′)=t

BL(η′, γ′), t ≥ 0.1216

In fact, (43) is a tautology from the definition of ψ. Various1217

regret bounds can be obtained by identifying convenient lower1218

bounds of ψ. In the two-class setting, the regret for the1219

zero-one loss isBzo(η, γ) = |2η1−1|1{(2η1−1)(γ1−γ2) ≤ 0}1220

for η = (η1, η2)T ∈ Δ2 and γ = (γ1, γ2)T. For t > 0,1221

Bzo(η, γ) = t means η1 = (1 ± t)/2, and hence ψ(t) can1222

be simplified as1223

ψBJM(t) = min
�

inf
γ′:t(γ′

1−γ′
2)≤0

B1
L


1 + t

2
, γ′
�
,1224

inf
γ′:t(γ′

1−γ′
2)≥0

B1
L


1 − t

2
, γ′
��

,1225

where B1
L(η1, γ) denotes BL(η, γ) as a function of (η1, γ).1226

Moreover,ψBJM(t) at t = 0 also satisfies ψBJM(0) = 0 ≤ ψ(0).1227

Therefore, (43) holds with ψ replaced by ψBJM:1228

ψBJM(Bzo(η, γ)) ≤ BL(η, γ). (44)1229

In the multi-class setting, the regret Bzo(η, γ) does not admit a1230

direct simplification. Nevertheless, our results below for proper1231

scoring rules can be seen as further manipulation of (43) by1232

exploiting the fact that the regret (8) is a Bregman divergence1233

due to the canonical representation (7) for proper scoring rules.1234

Remark 3: Replacing ψBJM in (44) by the greatest convex1235

lower bound on ψBJM (or the Fenchel biconjugate of ψBJM)1236

recovers the regret bound in [10, Theorem 1] in the symmetric 1237

case where L(1, γ) = L(2,−γ). In general, there is a benefit 1238

from such a modification in the setting where covariates are 1239

restored, instead of being lifted out in most of our discussion. 1240

For a regret bound in the form φ(Bzo(η, γ)) ≤ BL(η, γ), if φ 1241

is convex, then application of Jensen’s inequality gives 1242

φ
�
E{Bzo(η(X), γ(X))}

�
≤ E

�
φ{Bzo(η(X), γ(X))}

�
1243

≤ E{BL(η(X), γ(X))}, 1244

where E{Bzo(η(X), γ(X)) and E{BL(η(X), γ(X))} are the 1245

average regret over X . 1246

1) Zero-One Classification: Before presenting our gen- 1247

eral regret bounds for proper scoring rules with respect 1248

to cost-weighted classification in Sections V-B.2–V-B.3, we 1249

demonstrate novel implications of our general results in the 1250

simple but important setting of zero-one classification. 1251

For a proper scoring rule L(j, q), an application of our regret 1252

bound (56) or (60) with respect to the zero-one loss with C0 = 1253

1m shows that for any η, q ∈ Δm, 1254

ψ (Bzo(η, q)) ≤ BL(η, q), (45) 1255

where ψ(·) is defined as 1256

ψ(t) = inf
δ′,q′∈Δm: ‖δ′−q′‖∞2=t,

maxj∈[m] q′
j≤1/2

BL(η′, q′), t ≥ 0. (46) 1257

For a vector b = (b1, . . . , bm)T, 	b	∞2 denotes maxj �=k∈[m] 1258

(|bj |+|bk|). Inequality (45) can be seen to extend the two-class 1259

regret bound (44) in Bartlett et al. (2006) to multi-class 1260

settings for proper scoring rules. Unlike the two-class setting, 1261

additional effort is needed to find a simple meaningful lower 1262

bound of ψ in the multi-class setting. Our current approach 1263

involves deriving a lower bound on the regret (or Bregman 1264

divergence) BL by the L1 norm, in the form such that for any 1265

η, q ∈ Δm, 1266

BL(η, q) = HL(q) −HL(η) − (q − η)T∂HL(q) 1267

≥ κL

2
	η − q	2

1, (47) 1268

where κL > 0 is a constant depending on L, and 	b	1 = 1269�m
j=1 |bj | is the L1 norm for any vector b = (b1, . . . , bm)T. 1270

Hence (47) can be interpreted as saying that −HL is strongly 1271

convex with respect to the L1 norm with modulus κL. Because 1272

	η−q	1 ≥ 	η−q	∞2, the regret bound (45) together with (47) 1273

implies that for any η, q ∈ Δm, 1274

κL

2
(Bzo(η, q))2 ≤ BL(η, q). (48) 1275

In general, the preceding discussion shows that a potentially 1276

improved lower bound on the Bregman divergence BL(η, q) 1277

by a non-quadratic function of 	η− q	1 can also be translated 1278

into a classification regret bound. 1279

Our current approach does not exploit the restriction that 1280

maxj∈[m] q
′
j ≤ 1/2 in the definition of ψ. Hence it is 1281

interesting to study how our results here can be improved. 1282

On the other hand, such an improvement, even if achieved, 1283

may be limited. See the later discussion on regret bounds for 1284

the pairwise exponential loss. 1285

Our approach leads to the following result for two classes 1286

of proper scoring rules discussed in Section V-A: a class of 1287
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pairwise losses (39) with f0 associated with a Beta family of1288

weight functions as studied in [4], and a class of simultaneous1289

losses (41). In all these cases, inequalities (47) can be of1290

independent interest.1291

Proposition 10: Inequalities (47) and (48) hold for the1292

following proper scoring rules.1293

(i) Consider a pairwise loss L = Lpw,s
f0

in (39), with1294

a univariate function f0 defined such that (37) holds1295

with a weight function w(q1) = 22νqν−1
1 qν−1

2 for1296

(q1, q2)T ∈ Δ2. If ν ≤ 0, then (47) and (48) are valid with1297

κL = 2. In general, the constant κL cannot be improved1298

to be greater for m = 2 or for m ≥ 3 and ν ∈ (−1, 0].1299

(ii) Consider a simultaneous loss L = Lβ in (41). Then (47)1300

and (48) are valid with1301

κL =

�
(1 − β)m(1−1/β)(2β−1)22−2β, if β ∈ [1/2, 1),
(1 − β)21/β−1, if β ∈ (0, 1/2].

1302

The bounds from the two segments both give κL = 1 at1303

β = 1/2. In general, the constant κL cannot be improved1304

to be greater for m = 2 or for m ≥ 3 and β ∈ (0, 1/2].1305

We discuss several specific examples. The standard likeli-1306

hood loss L(j, q) = − log qj is equivalent to the simultaneous1307

loss Lβ in the limit of β → 1 after properly rescaled. In this1308

case, Pinsker’s inequality states that (47) holds with κL = 11309

[45, Lemma 12.6.1]:1310

m�
j=1

ηj log(ηj/qj) ≥
1
2

⎛
⎝ m�

j=1

|ηj − qj |

⎞
⎠

2

. (49)1311

The resulting regret bound (48) for the standard likelihood loss1312

L then gives1313

1
2

(Bzo(η, q))2 ≤ BL(η, q). (50)1314

This surrogate regret bound for the multinomial likelihood loss1315

appears new, even though the Bregman divergence bound (49)1316

is known. In the Supplement, we verify that (49) can be1317

recovered from (47), using Proposition 10(ii) as β → 1.1318

The constant κL in Proposition 10(ii) may be improvable1319

for fixed β ∈ (1/2, 1), but is not improvable in the limit1320

β → 1, i.e., the constant 1/2 in (49) is not improvable. On the1321

other hand, an improved lower bound of the KL divergence1322

than (49) can be found in terms of a non-quadratic function1323

of 	η − q	1 (e.g., [21]). Such bounds can also be translated1324

into classification regret bounds for the likelihood loss by the1325

discussion from (47) to (48).1326

The pairwise exponential loss associated with multi-class1327

boosting is defined equivalently as L
pw,s
e (j, q) = 2(L1/2 −1328

1) = 2
�

k∈[m],k �=j

�
qk/qj in Section II-B. The two inequal-1329

ities (47) obtained from Proposition 10, part (i) with ν =1330

−1/2 and part (ii) with β = 1/2, are equivalent to each other1331

and both lead to1332

HL1/2(q) −HL1/2(η) − (q − η)T∂HL1/2(q) ≥
1
2
	η − q	2

1,

(51)

1333

where HL1/2(q) = 	q	1/2 and L1/2(j, q) = (	q	1/2/qj)1/2 =1334 �m
k=1

�
qk/qj . The resulting regret bound (48) for the1335

rescaled pairwise exponential loss L1/2 gives 1336

1
2

(Bzo(η, q))2 ≤ BL1/2(η, q). (52) 1337

The two bounds (50) and (52) for the likelihood and rescaled 1338

pairwise exponential losses happen to be of the same form, due 1339

to the scaling used. For the two-class exponential loss defined 1340

as Le = L1/2−1, the existing regret bound (44), corresponding 1341

to an exact calculation of ψ by the proof of (61) later, is 1342

1 −
�

1 − (Bzo(η, q))2 ≤ BL1/2(η, q), 1343

which is slightly stronger than (52) because 1 −
√

1 − δ2 ≥ 1344

δ2/2 for δ ∈ [0, 1], but (1−
√

1 − δ2)/(δ2/2) → 1 as δ → 0. 1345

Therefore, our result (52) provides a reasonable extension 1346

of existing regret bounds to multi-class pairwise exponential 1347

losses. 1348

A notable proper scoring rule which is not informed by 1349

Proposition 10 for m ≥ 3 is the simultaneous exponential loss 1350

Lr
0 as used in [6], even though the loss Lr

0 is equivalent to the 1351

exponential loss for m = 2. See the Supplement for details. 1352

Remark 4: Inequality (47) on the Bregman divergence in 1353

general differs from generalized Pinsker inequalities relating 1354

(two-distribution) f -divergences to the total variation studied 1355

in [21], Section 7.2, for binary experiments. For the pairwise 1356

exponential loss, the Bregman divergence on the left-hand side 1357

of (51) can be calculated as (
�

j∈[m]

√
qj)(
�

j∈[m] ηj/
√
qj)− 1358

(
�

j∈[m]

√
ηj)2, which is apparently not any f -divergence 1359

between probability vectors η and q. An exception is the 1360

classical Pinsker inequality (49): the Kullback–Liebler diver- 1361

gence on the left-hand side of (49) is both an f -divergence 1362

with f(t) = t log t and a Bregman divergence with HL(η) = 1363

−
�

j∈[m] ηj log ηj . 1364

Remark 5: In the two-class setting, a scoring rule satisfying 1365

inequality (47) is called a strongly proper loss, and surrogate 1366

regret bounds are obtained for strongly proper losses with 1367

respect to the area under the curve (AUC) in [46]. It is 1368

interesting to investigate possible extensions of such results 1369

to the multi-class setting. 1370

2) Cost-Transformed Losses: We study two types of classi- 1371

fication regret bounds with respect to a general cost-weighted 1372

classification loss as defined in Section II-C. This subsection 1373

deals with the first type where a classification regret bound 1374

is derived for a loss, allowed to depend on a pre-specified 1375

cost matrix C, similarly as the hinge-like loss Lcw3 in (23). 1376

An action of the loss is directly taken as a prediction for the 1377

cost-weighted classification loss. See the next subsection on 1378

the second type of classification regret bounds. 1379

For a general loss L(j, γ) (not just scoring rules), define a 1380

cost-transformed loss, depending on a cost matrix C, as 1381

L̃(j, γ) = cjML(j, γ) +
�

k∈[m],k �=j

(cjM − cjk){L(k, γ)− 1}, 1382

(53) 1383

where cjM = maxk∈[m] cjk. In the special case where 1384

C = 1m1T
m − Im for the zero-one loss, the transformed loss 1385

L̃(j, γ) reduces to the original loss L(j, γ). A motivation for 1386

this construction is that the cost-weighted classification loss 1387
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can also be obtained in this way from the zero-one loss:1388

Lcw(j, γ) = L̃zo(j, γ). In general, the risk and regret of the1389

transformed loss can be related to those of the original loss as1390

follows.1391

Lemma 4: The risks of the losses L̃(j, γ) and L(j, γ) satisfy1392

RL̃(η, γ) = (1T
mη̃)RL(˜̃η, γ) −D(η),1393

where D(η) =
�

j∈[m]

�
k∈[m],k �=j ηj(cjM − cjk), ˜̃η =1394

η̃/(1T
mη̃) ∈ Δm, and η̃ = (η̃1, . . . , η̃m)T ∈ R

m
+ with1395

η̃j = cjMηj +
�

k∈[m],k �=j

(ckM − ckj)ηk.1396

Moreover, the regrets of L̃ and L satisfy BL̃(η, γ) =1397

(1T
mη̃)BL(˜̃η, γ).1398

For a scoring rule L(j, q) with actions defined as probability1399

vectors q ∈ Δm, there is a simple upper bound on the regret1400

of the associated zero-one loss Lzo(j, q), which is instrumental1401

to our derivation of classification regret bounds.1402

Lemma 5: For any η, q ∈ Δm, it holds that1403

Bzo(η, q) ≤ 	η−q	∞2,1404

where 	b	∞2 = maxj �=k∈[m] (|bj | + |bk|) for any vector b =1405

(b1, . . . , bm)T. The bound is tight for any m ≥ 2 in that there1406

exist η, q ∈ Δm for which the bound becomes exact.1407

Combining the preceding two lemmas and invoking a simi-1408

lar argument as indicated by (43) leads to the following regret1409

bound, depending on the action q.1410

Proposition 11: For a scoring rule L(j, q), define a nonde-1411

creasing function ψq:1412

ψq(t) = inf
δ′∈Δm:‖δ′−q‖∞2≥t

BL(η′, q), t ≥ 0.1413

Then the regrets of the cost-weighted classification loss1414

Lcw(j, q) and the cost-transformed scoring rule L̃(j, q) satisfy1415

ψq


Bcw(η, q)

1T
mη̃

�
≤ BL̃(η, q)

1T
mη̃

, (54)1416

where Bcw = BLcw , and η̃ is defined, depending on η and C,1417

as in Lemma 4.1418

A cost-transformed loss (53) from a proper scoring rule can1419

be easily shown to remain a proper scoring rule. In this case,1420

a uniform regret bound can be obtained from (54), by taking1421

an infimum over q and incorporating simplification due to the1422

representation of the regret (8) as a Bregman divergence for a1423

proper scoring rule.1424

Corollary 2: For a proper scoring rule L(j, q), the regrets1425

of Lcw(j, q) and L̃(j, q) satisfy1426

ψ


Bcw(η, q)

1T
mη̃

�
≤ BL̃(η, q)

1T
mη̃

, (55)1427

where ψ is defined in (46), and η̃ is defined, depending on η1428

and C, in Lemma 4.1429

It is instructive to examine the regret bound (55) in the1430

special case of class-weighted costs, where C = C01T
m −1431

diag(C0) with C0 = (c10, . . . , cm0)T. The cost-transformed1432

loss L̃ reduces to L̃(j, q) = cj0L(j, q). The regret bound (55)1433

becomes1434

ψ


Bcw0(η, q)
CT

0 η

�
≤ BL̃(η, q)

CT
0 η

, (56)1435

where Bcw0 = BLcw0 . We defer a discussion of these results 1436

until after Corollary 3. 1437

3) Cost-Independent Losses: We derive a different type of 1438

classification regret bounds than in the preceding subsection. 1439

Here a loss used for training is defined independently of any 1440

cost matrix, but an action of the loss can be converted after 1441

training to a prediction, depending on the cost matrix C, for 1442

the cost-weighted classification loss. For scoring rules, our 1443

derivation relies on the following extension of Lemma 5 on 1444

the regret of the cost-weighted classification loss, where a 1445

prediction is linearly converted from a probability vector. 1446

Lemma 6: For any η, q ∈ Δm, it holds that 1447

Bcw(η, C
T
q) ≤ 	CT

(η−q)	∞2, 1448

where C = CM1T
m − C and CM = (c1M , . . . , cmM )T with 1449

cjM = maxk∈[m] cjk for j ∈ [m] as defined in the transformed 1450

loss (53). 1451

By a similar argument as indicated by (43), we obtain a 1452

regret bound which compares the regret of a scoring rule 1453

L(j, q) with that of the cost-weighted classification loss with 1454

a prediction depending on both q and C as in Lemma 6. 1455

Proposition 12: For a scoring rule L(j, q), define a nonde- 1456

creasing function ψC
q : 1457

ψC
q (t) = inf

δ′∈Δm:‖C
T
(δ′−q)‖∞2≥t

BL(η′, q), t ≥ 0. 1458

Then the regrets of the cost-weighted classification loss 1459

Lcw(j, C
T
q) and the scoring rule L(j, q) satisfy 1460

ψC
q

�
Bcw(η, C

T
q)
�
≤ BL(η, q). (57) 1461

For a proper scoring rule L(j, q), the regret bound (57) can 1462

be strengthened (see the Supplement for a proof) such that for 1463

each w ∈ Wδ,q , 1464

ψC
qw

�
Bcw(η, C

T
q)
�
≤ BL(η, q), (58) 1465

where qw = (1 − w)η + wq and 1466

Wδ,q =
�
w ∈ [0, 1] :C

T

kq
w = max

j
(C

T

j q
w) 1467

for k = argmaxj(C
T

j q)
�

� 1. 1468

By definition, w ∈ Wδ,q means that using qw yields the same 1469

classification as using q. Moreover, a uniform regret bound can 1470

be obtained from (58) by minimizing over qw with w ∈ Wδ,q 1471

such that maxj∈[m] C
T

j q
w ≤ 1T

mC
T
qw/2. 1472

Corollary 3: For a proper scoring rule L(j, q), define 1473

ψC(t) = inf
δ′,q′∈Δm: ‖C

T
(δ′−q′)‖∞2=t,

maxj∈[m](C
T
j q′)≤1T

mC
T

q′/2

BL(η′, q′), t ≥ 0. 1474

Then the regrets of Lcw(j, C
T
q) and L(j, q) satisfy 1475

ψC
�
Bcw(η, C

T
q)
�
≤ BL(η, q). (59) 1476

In the special case of class-weighted costs, corresponding 1477

to C = C01T
m − diag(C0) with C0 = (c10, . . . , cm0)T, define 1478

ψC0(t) = inf
δ′,q′∈Δm: ‖C0◦(δ′−q′)‖∞2=t,

maxj∈[m](cj0q′
j)≤CT

0 q′/2

BL(η′, q′), t ≥ 0, 1479

Authorized licensed use limited to: Rutgers University. Downloaded on August 01,2022 at 23:23:42 UTC from IEEE Xplore.  Restrictions apply. 



5312 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

where ◦ denotes the component-wise product between two1480

vectors. The regret bound (59) for proper scoring rules reduces1481

to1482

ψC0
#
Bcw0(η, C0 ◦ q)

$
≤ BL(η, q). (60)1483

It is interesting to compare the two regret bounds (56) and (60).1484

On one hand, for the zero-one loss with C0 = 1m, both1485

of these bounds lead to the regret bound (45) discussed1486

in Section V-B.1. On the other hand, the two bounds (56)1487

and (60) in general serve different purposes. The bound (56)1488

compares the regrets of the transformed scoring rule L̃ depend-1489

ing on C0 and the classification loss Lcw0 with the prediction1490

always set to q. To use L̃, a different round of training is1491

required for a different choice of C0. The bound (60) relates1492

the regrets of the original scoring rule L, independent of C0,1493

and the classification loss Lcw0 with the prediction defined as1494

C0 ◦ q. Only one round of training is needed to determine q1495

when using L, and then the prediction can be adjusted from q1496

according to the choice of C0. Hence the bound (60) can be1497

potentially more useful than (56).1498

For binary classification with m = 2, the regret bound (60)1499

for proper scoring rules can be shown to recover Theorem1500

25 in [21]. For a proper scoring rule L(j, q) and any η, q ∈ Δ2,1501

it holds that1502

min
�
ψRW(δ), ψRW(−δ)

�
≤ BL(η, q), (61)1503

where δ = Bcw0(η, C0 ◦ q), ψRW(δ) = B1
L((c20 + δ)/(c10 +1504

c20), c20/(c10 + c20)), and B1
L(η1, q1) = BL(η, q) with η =1505

(η1, η2)T and q = (q1, q2)T, that is, B1
L(η1, q1) is BL(η, q)1506

treated as a function of (η1, q1) only. See the Supplement for1507

details.1508

VI. CONCLUSION1509

In this article, we are mainly concerned with constructing1510

losses and establishing corresponding regret bounds in multi-1511

class settings. Various topics remain to be studied in further1512

research. Large sample theory can be studied regarding esti-1513

mation and approximation errors, similarly as in [9] and [10],1514

by taking advantage of our multi-class regret bounds. It is1515

also of interest to incorporate estimation of a data quantizer1516

[12], [17]. Computational algorithms need to be developed for1517

implementing our new hinge-like losses and, in connection1518

with boosting algorithms, for implementing composite losses1519

based on new proper scoring rules. Numerical experiments1520

are also desired to evaluate empirical performance of new1521

methods.1522

ACKNOWLEDGMENT1523

The authors thank the Associate Editor and two referees for1524

constructive comments leading to various improvements in the1525

article.1526

REFERENCES1527

[1] M. H. DeGroot, “Uncertainty, information, and sequential experiments,”1528

Ann. Math. Stat., vol. 33, no. 2, pp. 404–419, 1962.1529

[2] P. D. Grünwald and A. P. Dawid, “Game theory, maximum entropy, min-1530

imum discrepancy and robust Bayesian decision theory,” Ann. Statist.,1531

vol. 32, no. 4, pp. 1367–1433, Aug. 2004.1532

[3] L. J. Savage, “Elicitation of personal probabilities and expectations,” 1533

J. Amer. Stat. Assoc., vol. 66, no. 336, pp. 783–801, Dec. 1971. 1534

[4] A. Buja, W. Stuetzle, and Y. Shen, “Loss functions for binary class 1535

probability estimation and classification: Structure and applications,” 1536

Univ. Pennsylvania, Philadelphia, PA, USA, Tech. Rep., 2005. 1537

[5] R. C. Williamson, E. Vernet, and M. D. Reid, “Composite multiclass 1538

losses,” J. Mach. Learn. Res., vol. 17, no. 222, pp. 7860–7911, 2016. 1539

[6] H. Zou, J. Zhu, and T. Hastie, “New multicategory boosting algorithms 1540

based on multicategory Fisher-consistent losses,” Ann. Appl. Statist., 1541

vol. 2, no. 4, pp. 1290–1306, 2008. 1542

[7] I. Mukherjee and R. E. Schapire, “A theory of multiclass boosting,” 1543

J. Mach. Learn. Res., vol. 14, pp. 437–497, Feb. 2013. 1544

[8] Y. Lin, “Support vector machines and the Bayes rule in classification,” 1545

Data Mining Knowl. Discovery, vol. 6, pp. 259–275, Jul. 2002. 1546

[9] T. Zhang, “Statistical behavior and consistency of classification methods 1547

based on convex risk minimization,” Ann. Statist., vol. 32, no. 1, 1548

pp. 56–85, 2004. 1549

[10] P. L. Bartlett, M. Jordan, and J. D. McAuliffe, “Convexity, classification, 1550

and risk bounds,” J. Amer. Statist. Assoc., vol. 101, pp. 138–156, 1551

Apr. 2006. 1552

[11] Y. Lee, Y. Lin, and G. Wahba, “Multicategory support vector machines: 1553

Theory and application to the classification of microarray data and 1554

satellite radiance data,” J. Amer. Statist. Assoc., vol. 99, no. 465, 1555

pp. 67–81, 2004. 1556

[12] J. Duchi, K. Khosravi, and F. Ruan, “Multiclass classification, infor- 1557

mation, divergence and surrogate risk,” Ann. Statist., vol. 46, no. 6B, 1558

pp. 3246–3275, Dec. 2018. 1559

[13] J. Weston and C. Watkins, “Multi-class support vector machines,” Dept. 1560

Comput. Sci., Roy. Holloway College, Univ. London, London, U.K., 1561

Tech. Rep. CSD-TR-98-04, 1998. 1562

[14] K. Crammer and Y. Singer, “On the algorithmic implementation of 1563

multiclass kernel-based vector machines,” J. Mach. Learn. Res., vol. 2, 1564

pp. 265–292, Mar. 2001. 1565

[15] T. Zhang, “Statistical analysis of some multi-category large margin 1566

classification methods,” J. Mach. Learn. Res., vol. 5, pp. 1225–1251, 1567

Oct. 2004. 1568

[16] A. Tewari and P. L. Bartlett, “On the consistency of multiclass classifica- 1569

tion methods,” J. Mach. Learn. Res., vol. 8, pp. 1007–1025, May 2007. 1570

[17] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “On surrogate loss func- 1571

tions and f -divergences,” Ann. Statist., vol. 37, pp. 876–904, Apr. 2009. 1572

[18] L. Györfi and T. Nemetz, “F-dissimilarity: A generalization of the 1573

affinity of several distributions,” Ann. Inst. Stat. Math., vol. 30, no. 1, 1574

pp. 105–113, Dec. 1978. 1575

[19] D. García-García and R. C. Williamson, “Divergences and risks for 1576

multiclass experiments,” in Proc. 25th Annu. Conf. Learn. Theory, 2012, 1577

pp. 28.1–28.20. 1578

[20] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, 1579

and estimation,” J. Amer. Stat. Assoc., vol. 102, no. 477, pp. 359–378, 1580

Jan. 2012. 1581

[21] M. D. Reid and R. C. Williamson, “Information, divergence and risk for 1582

binary experiments,” J. Mach. Learn. Res., vol. 12, no. 3, pp. 731–817, 1583

Mar. 2011. 1584

[22] I. Steinwart, “How to compare different loss functions and their risks,” 1585

Constructive Approx., vol. 26, no. 2, pp. 225–287, 2007. 1586

[23] C. Scott, “Calibrated asymmetric surrogate losses,” Electron. J. Statist., 1587

vol. 6, pp. 958–992, May 2012. 1588

[24] I. Good, “Rational decisions,” J. Roy. Stat. Soc. B, Methodol., vol. 14, 1589

pp. 107–114, Jan. 1952. 1590

[25] S. M. Ali and S. D. Silvey, “A general class of coefficients of divergence 1591

of one distribution from another,” J. Roy. Statist. Soc. B, Methodol., 1592

vol. 28, no. 1, pp. 131–142, 1966. 1593

[26] I. Csiszár, “Information-type measures of difference of probability distri- 1594

butions and indirect observation,” Studia Scientiarum Mathematicarum 1595

Hungarica, vol. 2, pp. 299–318, 1967. 1596

[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: 1597

Cambridge Univ. Press, 2004. 1598
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