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On Loss Functions and Regret Bounds for
Multi-Category Classification

Zhigiang Tan

Abstract— We develop new approaches in multi-class settings
for constructing loss functions and establishing corresponding
regret bounds with respect to the zero-one or cost-weighted
classification loss. We provide new general representations of
losses by deriving inverse mappings from a concave generalized
entropy to a loss through a convex dissimilarity function related
to the multi-distribution f-divergence. This approach is then
applied to study both hinge-like losses and proper scoring
rules. In the first case, we derive new hinge-like convex losses,
which are tighter extensions outside the probability simplex
than related hinge-like losses and geometrically simpler with
fewer non-differentiable edges. We also establish a classification
regret bound in general for all losses with the same generalized
entropy as the zero-one loss, thereby substantially extending and
improving existing results. In the second case, we identify new sets
of multi-class proper scoring rules through different types of dis-
similarity functions and reveal interesting relationships between
various composite losses currently in use. We also establish new
classification regret bounds in general for multi-class proper
scoring rules and, as applications, provide simple meaningful
regret bounds for two specific sets of proper scoring rules. These
results generalize, for the first time, previous two-class regret
bounds to multi-class settings.

Index Terms— Boosting, Bregman divergence, composite loss,
exponential loss, f-divergence, generalized entropy, hinge loss,
proper scoring rule, surrogate regret bounds.

I. INTRODUCTION

ULTI-CATEGORY classification has been extensively

studied in machine learning and statistics. For concrete-
ness, let {(X;,Y;) : 4 =1,...,n} be training data generated
from a certain probability distribution on (X,Y"), where X
is a covariate or feature vector and Y is a class label, with
possible values from 1 to m (> 2). Various learning methods
are developed in the form of minimizing an empirical risk
function,

Rufa) = 5 37 L(¥i,a(X) m

where L(y,a(x)) is a loss function, and «(z) is a
vector-valued function of covariates, taken from a potentially
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rich family of functions, for example, reproducing kernel
Hilbert spaces or neural networks. For convenience, a(z)
is called an action function, following the terminology of
decision theory [1], [2]. The performance of «(z) is typically
evaluated by the zero-one risk on test data,

E{L™(Yo,&(X0))}, &)

where (Xo,Y() is a new observation, independent of train-
ing data, and &(x) is m-dimensional, either «(z) itself
or converted from «(x), depending on whether «(x) is
m-dimensional or not, and L*(y, &(x)) is the zero-one loss,
defined as O if the yth component of &(z) is a maximum
and 1 otherwise. Due to discontinuity, using L*° directly as L
in (1) is computationally intractable. Hence the loss L used
in (1) is also referred to as a surrogate loss for L.

It is helpful to distinguish two types of loss functions L
commonly used for training in (1). One type of losses, called
scoring rules, involves an action defined as a probability vector
qg: X — A, where X is the covariate space and A,,
is the probability simplex with m categories [3], [4]. The
elements of g(z) can be interpreted as class probabilities.
Typically, the probability vector ¢(z) is parameterized in terms
of a real vector h(x) as ¢"(x), via an invertible link such
as the multinomial logistic (or softmax) link. The resulting
loss L(y,q"(x)) is then called a composite loss, with h(x)
as an action function [5]. It is often desired to combine a
proper scoring rule, which ensures infinite-sample consistency
of probability estimation (see Section II-B), with a link func-
tion ¢ such that L(y,¢"(z)) is convex in h. In multi-class
settings, composite losses satisfying these properties include
the standard multinomial likelihood loss and two variants of
exponential losses related to boosting [6], [7], all combined
with the multinomial logistic link.

Another type of losses involves an action function, o : X —
R™, allowed to take unrestricted values in R™. The elements
of a(x), loosely called margins, can be interpreted as relative
measures of association of = with the m classes. Although
a composite loss L(y,¢"(x)) based on a scoring rule can be
considered with h(x) as a margin vector, it is mainly of interest
to include in this type hinge-like losses, where the margins
are designed not to be directly mapped to probability vectors.
The hinge loss is originally related to support vector machines
in two-class settings. This loss, L' (y, 7(x)), is known to be
convex in its action 7, and achieve classification calibration (or
infinite-sample classification consistency), which means that a
minimizer of the hinge loss in the population version leads to
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a Bayes rule minimizing the zero-one risk (2) [8]-[10]. There
are various extensions of the hinge loss to multi-class settings.
The hinge-like losses in [11] and [12] are shown to achieve
classification calibration, whereas those in [13] and [14] fail
to achieve such a property [15], [16].

Classification calibration is also called Fisher consistency,
although it is appropriate to distinguish two types of Fisher
consistency, in parallel to the two types of losses above: Fisher
probability consistency as satisfied by a proper scoring rule or
Fisher classification consistency as achieved by a hinge-like
loss. In general, Fisher probability consistency (or properness)
implies classification consistency, but not vice versa [5].
On the other hand, there are interesting results indicating that
only hinge-like losses are classification consistent with respect
to the zero-one loss when both an action function and a data
quantizer are estimated [12], [17].

The purpose of this article is two-fold: first constructing new
multi-class losses while studying existing ones, and second
establishing corresponding classification regret bounds. Such a
regret bound compares the regret of the loss under study with
that of the zero-one or cost-weighted classification loss and
implies that classification calibration is achieved with a quan-
titative guarantee [10]. Our development in both directions is
facilitated by the concept of a generalized entropy, defined
as the minimum Bayes risk for a loss [2]. In the following,
we give an overview of the main results and related work.

A. Main Results

The main results from our work can be split into three
groups.

First, in Section III, we provide new general representa-
tions of multi-class loss functions depending on a (concave)
generalized entropy through a (convex) dissimilarity func-
tion f, which is related to the multi-distribution f-divergence
[18], [19]. These results are complementary to previous rep-
resentations directly based on the generalized entropy [3],
[12], [20]. While the generalized entropy is defined on
m-dimensional probability vectors, the dissimilarity function
is defined on (m — 1)-dimensional free-varying vectors of
probability ratios. To demonstrate advantages, this approach
is applied in the subsequent sections to construct new specific
hinge-like losses and proper scoring rules.

Second, in Section IV, we investigate hinge-like losses in
two directions.

¢ We derive two new hinge-like losses, related to [11]
and [12] respectively (Section IV-A). In each case, our
new loss and the existing one admit the same generalized
entropy and coincide with each other for actions restricted
to the probability simplex A,,, but our loss is uniformly
lower (hence a tighter extension outside the probabil-
ity simplex) and geometrically simpler with fewer non-
differentiable edges.

o We establish classification regret bounds for our new
hinge-like losses (Section IV-B) and more broadly for all
losses with the same generalized entropy as the zero-one
loss (Section IV-C). These results represent a substantial
extension and improvement over existing ones [12], [16].
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Third, in Section V, we investigate proper scoring rules in

two directions.

e We derive two new sets of proper scoring rules:
multi-class pairwise losses corresponding a univariately
additive dissimilarity function f and multi-class simul-
taneous losses with non-additive dissimilarity functions
(Section V-A). These sets of losses not only reveal inter-
esting relationships between the likelihood and exponen-
tial losses mentioned earlier, but also lead to new specific
losses including a pairwise likelihood loss distinct from
the standard multinomial likelihood loss.

o We establish classification regret bounds for multi-class
proper scoring rules in general with respect to the
zero-one or cost-weighted classification loss, and then
derive simple meaningful regret bounds for two specific
sets of proper scoring rules including the multinomial
likelihood loss and the pairwise likelihood and expo-
nential losses (Section V-B). These results appear to
generalize, for the first time, previous two-class regret
bounds to multi-class settings [10], [21].

B. Related Work

There is an extensive literature on multi-category clas-
sification including and beyond the special case of binary
classification. We discuss directly related work to ours, in addi-
tion to those mentioned above. An inverse mapping from a
generalized entropy to a proper scoring rule can be seen in the
canonical representation of proper scoring rules [3], [20]. This
and related representations are extensively used in the design
and study of composite binary losses [4], [21] and composite
multi-class losses [5].

Recently, an inverse mapping is constructed by [12] from a
generalized entropy to a convex loss with actions in R™, hence
different from the canonical representation of proper scoring
rules. Our construction of losses is in a similar spirit as [12],
but operates explicitly through a dissimilarity function f. Our
approach is applicable to handling both hinge-like losses and
proper scoring rules and leads to interesting new findings. For
example, our inverse mapping in terms of f are applied to
discover new hinge-like losses, by first identifying a hinge-like
loss on the probability simplex and then constructing a convex
extension. The hinge-like losses in [11] and [12] are also
such convex extensions. This point of view enriches our
understanding of multi-class hinge-like losses. For another
example, using an additive function f provides a convenient,
general extension of two-class proper scoring rules to multi-
class settings. By comparison, using an additive generalized
entropy does not seem to achieve a similar effect.

Our regret bounds for the new hinge-like losses are similar
to those in [12]. However, we also establish in general that all
losses with the same generalized entropy as the zero-one loss
achieve a regret bound which ensures classification calibration.
Compared with [16], our result provides a more concrete
sufficient condition for achieving classification calibration,
in addition to a quantitative guarantee.

Our new regret bounds for proper scoring rules generalize
two-class results in [21], Section 7.1, to multi-class settings,
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by carefully exploiting the Bregman representation for the
regret of a proper scoring rule together with a novel bound on
the regret of the zero-one or cost-weighted classification loss
(Lemmas 5-6). Such a generalization seems to be previously
unnoticed (cf. [5]).

As noted earlier, classification regret bounds provide a
quantitative guarantee on classification calibration, a quali-
tative property studied in [15], [22], and [16] among oth-
ers. Although two-class regret bounds can be obtained for
all margin-based losses including the hinge loss and proper
scoring rules [9], [10], [23], such results seem to rely on
simplification due to two classes.

Notation: Denote R = RU {0}, Ry = {b € R :b >0},
and Ry = {b € R:b > 0}. For m > 2, denote [m] as the
set {1,...,m}, 1,, as the m x 1 vector of all ones, I,, as
the m x m identity matrix, and A, as the probability simplex
{qg € R : 17, = 1}. For j € [m], a basis vector e¢; € Ay,
is defined such that its jth element is 1 and the remaining
elements are 0. The indicator function 1{-} is defined as 1 if
the argument is true or O otherwise.

II. BACKGROUND

We provide a selective review of basic concepts and
results which are instrumental to our subsequent development.
See [2], [4], [20], and [12] among others for more information.

A. Losses, Risks and Entropies

Consider the population version of the multi-category clas-
sification problem. Let X € X be a vector of observed
covariates or features, but Y € [m] an unobserved class label,
where (X,Y") are generated from some joint probability dis-
tribution which can be assumed to be known unless otherwise
noted. It is of interest to predict the value of Y based on X
(i.e., assign X to one of the m classes). The prediction can be
performed using an action function a : X — A, and evaluated
through a loss function L(y,«(xz)) when the true label of z
is y. Typically, an action in the space A is a vector whose
components, as probabilities or margins, measure the strengths
of association with the m classes. The risk (or expected loss)
of the action function a(z) is

Ri(a) = E(L(Y,a(X)) = E ZWJ(X)L(J}@(X)) ;

3)

where 7;(x) = P(Y = j|X = ), the conditional probability
of class j given covariates x, and the second expectation is
taken over the marginal distribution of X only.

From another perspective, the preceding problem can also
be formulated as a Bayesian experiment with m probabil-
ity distributions (Pi,...,P,,) on X, corresponding to the
within-class distributions of covariates [1]. Denote by p;(z)
the density function of P; with respect to a baseline measure .
Given a label Y = j (regarded as an m-valued parameter),
the random variable X is drawn from the distribution P;.
Let 70 = (n?,...,7%)T € A,, be the prior probabilities
of Y, corresponding to the marginal class probabilities. Then
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the posterior probabilities of ¥ given X = z are 7,(x) =
79pi () /{> 1=, mopr ()}, the same as the conditional class
probabilities given covariates mentioned above. In this context,
Rp(«) is also called the Bayes risk of «(x). By standard
Bayes theory [19, Eq. (5)], the minimum Bayes risk, or even
shortened as the Bayes risk, can be obtained as
inf R =FE{H X
it Rp(a) = B{Hy(x(X))},

“)

where o : X — A can be any measurable function, m(x) =
(mi(x),...,mm(x))", and Hy, is a function defined on A,,
such that for n = (n1,...,0m)" € Ap,

> miL(i) ¢ Q)
J

The function Hj, which is concave on A,,, is called an
uncertainty function [1] or a generalized entropy associated
with the loss L [2].

A subtle point is that minimization in (4) is over all
measurable functions o« : X — A, whereas minimization
in (5) is over all elements v € A. The generalized entropy
Hj, is merely a function on A,,, induced by the loss L(j,~)
on [m] x A, where the covariate vector X is conditioned on
(or lifted out). Similarly, the risk of an action v € A is defined
as Rr(n,v) = Z;nzl n;L(j,), and the regret (or excess risk)
of the action is defined as

Br(n,v) = Rr(n,v) — Hp(n), (6)

where Hy,(n) = inf c 4 Rr(n,7") by (5). This simplification
where the covariate vector X is lifted out is often useful when
studying losses and regrets.

B. Scoring Rules

A scoring rule is a particular type of loss L(j,q), where
its action ¢ is a probability vector in A,,, interpreted as the
predicted class probabilities [2]. Sometimes, the expected loss,
Rr(n,q) = Y5 mL(j, q), is also referred to as a scoring
rule, for measuring the discrepancy between underlying and
predicted probability vectors, n and ¢ [20].

A scoring rule L(j,q) is said to be proper if Hp(n) =

R (n,n), ie.,
Rr(n.n) < Re(n.q),

The rule is strictly proper if the inequality is strict for g # 7.
Hence for a proper scoring rule, the expected loss Ry, (7, q) is
minimized over ¢ € A,, when ¢ = 7, the predicted probability
vector coincides with the underlying probability vector. This
condition is typically required for establishing large-sample
consistency of  (conditional)  probability  estimators
(e.g., [4], [9D).

As shown in [3] and [20], a proper scoring rule L(j,¢) in
general admits the following representation:

Ri(n,q) = Hr(q) — (¢ —n)"0HL(q),

7,9 € Apy.

n)q S AWM (7)
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where —0H 7, is a sub-gradient of the convex function —H,
on R™. Note that the generalized entropy H, is evaluated at g,
not 7, in (7). Then the regret in (6) becomes

Br(n,q) = Hr(q) — Hr(n) —(g—n)"0Hr(q), (8)

which is the Bregman divergence from ¢ to n associated with
the convex function —H7,.

An important example of proper scoring rules is the log-
arithmic scoring rule [24], L(j,q) = —logg;. The cor-
responding expected loss is Ry (n,q) = —Z;”:l 7; log q;,
which is, up to scaling, the negative expected log-likelihood
of the predicted probability vector ¢ with the underlying
probability vector n for multinomial data. The generalized
entropy is Hyp(n) = — Zj 1 mj logn;, the negative Shannon

entropy. The regret is B (n,q) = E; 115 log(nj/q;), the
Kullback-Liebler divergence.

C. Classification Losses

Consider the zero-one loss, formally defined as

Lzo(jv 7) = 1{] # argmaxke[m]PYk}a .7 € [m];’Y € Rm/v
where, if not unique, argmaxyc,, vk can be fixed as the index
of any maximum component of . As mentioned below (2),
L is typically used to evaluate performance, but not as the
loss L for training, and the action ~ can be transformed from
the action of L. Nevertheless, the generalized entropy defined
by (5) with L = L™ is

H”(n)=1— max ni, n € A,,. )
ke[m)]

This function is concave and continuous, but not everywhere

differentiable.

In practice, there can be different costs of misclassification,
depending on which classes are involved. For example, the cost
of classifying a cancerous tumor as benign can be greater than
in the other direction. Let C' = (cjx);,ke[m] be a cost matrix,
where cj; > 0 indicates the cost of classifying class j as
class k. For each j € [m], assume that ¢;; = 0 and ¢, > 0 for
some k # j. Consider the cost-weighted classification loss

L (j, ) = ey if k = argmaxje, v, J € [m],y € R™.
As shown in [12], the generalized entropy defined by (5) with
L=L"is

H™(n) = min 7" Ct,

cA,,
ke[m] n m

(10)
where C = (C1,...,Cyy,) is the column representation of C.
The standard zero-one loss corresponds to the special choice
C=1,1}, —In.

An intermediate case is the class weighted classification
loss,

L) = cjol{j # argmaxyep,, ), J € [ml,y € R™,

where c¢jp > 0 is the cost associated with misclassification of
class j. This loss is more general than the standard zero-one
loss L*°, although a special case of the cost-weighted loss LV
with C' = Cy1}, — diag(Cyp), where Cy = (c10,---,¢mo)"-
The generalized entropy associated with L0 is HY0(p)) =
n*Co — maXge[m] MkCk0-
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D. Entropies and Divergences

In DeGroot’s theory [1], any concave function H on A,,
can be used as an uncertainty function. The information of
X about label (“parameter”) Y is defined as the reduction of
uncertainty (or entropy) from the prior to the posterior:

In(X;7%) = H(x°)~E{H (r(X))},

which is nonnegative by the concavity of H. The infor-
mation Iz (X;7°) is closely related to the f-divergence
between the multiple distributions (P, ..., P,,), which is a
generalization of the f-divergence between two distributions
[25], [26]. Heuristically, the more dissimilar (P, ..., P,,) are
from each other, the more information about Y is obtained
after observing X.

For a convex function f on @Tfl with f(1,,-1) = 0, the
f-divergence between (P, ..., P,,_1) and P, with densities
(ph cee 7pm—1) and py, is

DfplmlHP)

-1y ( ...,p;m(lf)”)>pm<x>du<x>,

which is nonnegative by the convexity of f. Compared with the
standard definition of multi-way f-divergences [12], [18], our
definition above involves a rescaling factor m 1, for notational
simplicity in the later discussion; otherwise, for example,
rescaling would be needed in Eqgs. (14) and (15).

There is a one-to-one correspondence between the statistical
information Iy (X;7") and multi-way f-divergences, as dis-
cussed in [19]. For any prior probability 7° € A,, and
probability distributions (P, ..., P,,), if a convex function

f on ETA with f(1,,—1) = 0 and a concave function H on
A,, are related such that for n = (n1,...,9m)" € A,
0 0
m T 11 T NIm—1
H(n) = — Tm T Tm =1 (g
0=t (e s o)
then 15 (X;7°) = Dy(Py.(sm—1)||Pn) or, because H(m) =
—f(1—1) = 0 here,
—E{H(x(X))} = D (Pr(m-1) [ Pm); (12)

where the expectation is taken over X ~ Y " =17 Op;.

III. GENERAL CONSTRUCTION OF LOSSES

In practice, a learning method for classification involves
minimization of (1), an empirical version of the risk (3)
based on training data, with specific choices of a loss function
L(y, «) and a potentially rich family of action functions «(z).
As suggested in Section II-A, we study construction of the loss
L(y, ) as a function of a label y and a freely-varying action a,
with the dependency on covariates (or features) lifted out.
As a result, we not only derive new general classes of losses,
but also improve understanding of various existing losses as
shown in Sections IV-V. Nevertheless, the interplay between
losses and function classes remains important, but challenging
to study, for further research.

Equation (5) is a mapping from a loss L to a generalized
entropy Hjy, which is in general many-to-one (i.e., different
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losses can lead to the same generalized entropy). [12] con-
structed an inverse mapping from a generalized entropy to
a convex loss. For a closed, concave function H on A,,,
define a loss with action space A = R" such that for

Y= 7m)" €R™,

Lu(j,7) == + (=H)"(7), (13)
where (—H)*(y) = sup,ca, {7"n + H(n)}, the conjugate
of —H. Then Ly(j,7) is convex in + and (5) is satisfied with
Hyp, = H, by [12], Proposition 3. Hence a convex loss is
obtained for a concave function on A,, to be the generalized
entropy. Note that the loss Ly is over-parameterized, because
(=H)*(y=bly) = —=b+ (—H)*(7) and hence Ly (j,vy —
bl,,) = L (j,7) for any constant b € R.

We derive a new mapping from generalized entropies to
convex losses, by working with perspective-like functions
related to multi-distribution f-divergences. First, there exists a
one-to-one correspondence between concave functions H on

. —m—1 .
A, and convex functions f on R, . For a convex function

—m—1 i
f on RT , define a function on A,,:

= (2 22

) (14)
"77)’1, nm

Conversely, for a concave function H on A,,,, define a function
—m—1

on R,

B b b 1
fH(t) _—t.H(E7"'7 t. 75)7 (15)

where t = (t1,...,ty,-1)" and te = 1+ Z;”;ll t;. The map-
pings Hy and fy are of a similar form to perspective functions
associated with f and H respectively, although neither fits the
standard definition of perspective functions [27].

Lemma 1 (Garcia-Garcia and Williamson [19]): For a
convex function f on @T_l, the function Hy defined by (14)
is concave on A, such that (15) is satisfied with fy, = f.
Conversely, for a concave function H on A,,, the function
fr defined by (15) is convex on ETA such that (14) is
satisfied with Hy, = H. Moreover, it is preserved that
H(1,,/m) = —m~'f(1,,_1) under (14) and (15).

Remark 1: Equations (14) and (15) can be obtained as a
special case of (11) with 70 = 1,,/m, from [19]. As men-
tioned in Section II-D, (11) is originally determined such that
identity (12) holds for linking the expected entropy and multi-
way f-divergences, which are, by definition, concerned with
the covariates and within-class distributions. Nevertheless, our
subsequent development is technically independent of this
connection, because covariates are lifted out in our study.
In other words, we merely use (14) and (15) as convenient
mappings between H and f. The usual restriction f(1,,-1) =
0 used in f-divergences does not need to be imposed.

Our first main result shows a mapping from a convex
function f to a convex loss L such that the concave function

Hy is the generalized entropy associated with L.
. —m—1
Proposition 1: For a closed, convex function f on RT s

define a loss with action space A = dom(f*) such that for

5299

(5) (15)
/\ /\
(13) (14)
(16)
Fig. 1. Relations between loss L, generalized entropy H, and dissimilarity
function f.

s=(81,---,8m—1)" € dom(f*),
—sj, Jje€[m-—1],

Lf(jvs) = { f*(S), j=m,

where f*(s) = sup, _gm-1{s"t — f()} and dom(f*) = {s €
+
R ¢ f*(s) < oo}. Then Ly(j, s) is convex in s. Moreover,
the concave function Hy defined by (14) is the generalized
entropy associated with Ly, that is, (5) is satisfied with
Hp, = Hy.
Proof: For n € A,, and s € dom(f*), the definition of
S ) 21 *
Ly implies that S, 1Ly (7, 8) = — 537 1355+ f (5).
Hence

(16)

m m—1

inf anLf(jv S) = —sup Z nis; — 77mf*(8)

seA - seA :

j=1 j=1
m—1 ;i

J *

=Ny Sup —=s; — [*(s)
m sedom(f*) ]z:; Nm J
71 Nm—1

= f (., = He(n),
N f (nm " ) r(n)

where the second last equality holds by Fenchel’s conjugacy
relationship. u

Compared with (13), Eq. (16) together with (15) presents an
alternative approach for determining a convex loss L from a
generalized entropy H through a dissimilarity function f. See
Figure 1 which illustrates various relationships discussed. For
ease of interpretation, a convex function f on ET_l can be
called a dissimilarity function, similarly as a concave function
H on A,, can be a generalized entropy.

In spite of the one-to-one correspondence between entropy
and dissimilarity functions H and f by (14) and (15),
we stress that the new loss (16) is in general distinct
from (13). An immediate difference, which is further discussed
in Section IV, is that the action space for loss (16), dom(f*),
can be a strict subset of R™~1, whereas the action space
for loss (13) is either R™ with over-parametrization as noted
above or R™! with, for example, v,, = 0 fixed to remove
over-parametrization. Moreover, loss (16) can also be used to
derive a new class of closed-form losses based on arbitrary
convex functions f as shown in the following result and,
as discussed in Section IV, to find novel multi-class, hinge-like
losses related to the zero-one or cost-weighted classification
loss.

Proposition 2: For a closed, convex function f on @Tﬁl,

. . =m—1
define a loss with action space A = RT such that for
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u = (’U;l, e 7um,—1)T S Kfil’
o —0;f(u), — je[m—1],
LG ={ o) F,

where Of = (01 f,...,0m—1f)" is a sub-gradient of f,
arbitrarily fixed (if needed). Then the concave function Hy
defined by (14) is the generalized entropy associated with L s,
that is, (5) is satisfied with Hr,, = Hy.

Proof (Outline): A basic idea is to use the parametrization
s = 0f(u) and Fenchel’s conjugacy property f*(s) = u"s —
f(u), and then obtain the loss Lo from L, in Proposi-
tion 1. This argument gives a one-sided inequality for the
desired equality (5). A complete proof is provided in the
Supplement. |

Compared with loss (16), the preceding loss (17) is of
a closed form without involving the conjugate f*, which
can be nontrivial to calculate. On the other hand, loss (17)
may not be convex in its action u. Nevertheless, it is often
possible to choose a link function, for example, ul =
(uft, ..., ult, )T with u? = exp(h;) such that Lys(j, u")
becomes convex in (hy,...,hy,—1). This link can be easily
identified as the multinomial logistic link after reparameteriz-
ing (u1,...,un—1) as probability ratios below.

The following result shows that a reparametrization of
loss (17) with actions defined as probability vectors in A,,
automatically yields a proper scoring rule. See Section II-B
for the related background on scoring rules. Together with
the relationship between f and H by (14) and (15), our
construction gives a mapping from a dissimilarity function f
or equivalently a generalized entropy [ to a proper scoring
rule.

Proposition 3: For a closed, convex function f on Rf_l,
define a loss with action space A = A,, such that for ¢ =
(Q17 oo aqm)T € Ap,

A7)

o, jelm-1)
ti-n) = { arag  Fum, § S
where 9 = (¢1/G¢m,---+qm—1/¢m)". Then L3 is a proper

scoring rule, with H; defined by (14) as the generalized
entropy, satisfying

(18)

m m

anLf:a(j, q) ¢ = Hp(n) = Z??ijs(j, 7).

inf
qEA,

Proof: The generalized entropy from Lys is Hy, due

to Proposition 2 and the one-to-one mapping u? =
(@1/qm,- -+ @m—1/Gm)"- Then direct calculation shows that

> “niLys(j.n)
j=1

m—1 m—1 )
=" 0 W)+ S 0 f () — f(u)
i=1 j=1 m

= —nmf(u") = Hy(n) = uf > niLyss(ia)
- =
Hence L¢3 is a proper scoring rule. |
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For completeness, the expected loss associated with L ¢, can
be shown to satisfy the canonical representation (7) with Hy
defined by (14):

m
> niLyss(j.q)
j=1

m—1 m—1
= 00 f ) 4w $ > Ha, f(ut) — f(uf)
=1 =1 Im
=Hy(q) = (g5 — ;)0 Hs (), (19)

Jj=1

where —0H; = (—01Hy,...,—0nHy)" is the sub-gradient
of —Hy. See the Supplement for a proof. Conversely, the
loss Lyz can also be obtained by calculating the canonical
representation (7) for the concave function Hy in (14) and then
taking n to be a basis vector, eq,...,¢e,,, one by one in the
resulting expression, which is on the left of the second equality
in (19). Moreover, by the necessity of the representation (7),
we see that Ly, in (18) is the only proper scoring rule with
the generalized entropy Hy.

Corollary 1: For a closed, convex function f on @T_l, any
proper scoring rule with Hy in (14) as the generalized entropy
can be expressed as Ly in (18), up to possible choices of
sub-gradients of f, {9;f:j € [m —1]}.

While the preceding use of the canonical representation (7)
seems straightforward, our development from Propositions 1
to 3 remains worthwhile. The proper scoring rule L 3 in (18)
is of simple form, depending explicitly on a dissimilarity
function f. Moreover, as shown in Section IV, Proposition 1
can be further exploited to derive new convex losses which
are related to classification losses but are not proper scoring
rules.

I1V. HINGE-LIKE LOSSES

The purpose of this section is three-fold. We derive novel
hinge-like, convex losses which induce the same generalized
entropy as the zero-one, or more generally, cost-weighted clas-
sification loss in multi-class settings. Our hinge-like losses are
uniformly lower (after suitable alignment) and geometrically
simpler (with fewer non-differentiable ridges) than related
hinge-like losses in [11] and [12]. Moreover, we show that sim-
ilar classification regret bounds are achieved by our hinge-like
losses and those in [11] and [12]. These regret bounds give a
quantitative guarantee on classification calibration as studied
in [15] and [16] among others. Finally, we provide a general
characterization of losses with the same generalized entropy
as the zero-one loss and establish a general classification
regret bound for all such losses, beyond the hinge-like losses
specifically constructed.

A. Construction of Hinge-Like Losses

We propose a novel approach for constructing hinge-like,
convex losses in multi-class settings: we first derive (using
Proposition 1) a new loss with actions restricted to the proba-
bility simplex A,,, and its generalized entropy identical to that
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Lhin(j,7)

LPKR2(

J.7)

Fig. 2. Two-class hinge loss (left) and hinge-like loss in [12].

of the zero-one or cost-weighted classification loss, and then
we find a convex extension of the loss such that its actions are
defined on R™ and its generalized entropy remains unchanged.

As a prologue, we discuss why Proposition 1 is used here
instead of Proposition 3 (which is used in Section V for
constructing proper scoring rules). It is helpful to consider the
two-class setting. The generalized entropy for the zero-one
loss is H*°(n) = min(ny,72) and the dissimilarity function is
f*(t1) = —min(1,¢;1). For this choice of f, it remains valid
to apply Proposition 3. With 0f™(t1) = —1{t; < 1}, the
resulting loss can be shown to be Lys(1,¢q) = 1{¢1 < g2} and
L#3(2,q) = 1{g2 > q1}, which is just the zero-one loss with
action ¢ € As. Such a discontinuous loss is computationally
intractable for training, even though it is a proper but not
strictly proper scoring rule (consistently with Proposition 3).
In contrast, as illustrated in Figure 2, the popular hinge loss
can be defined, for notational consistency with our later results,
such that for 7 € R,

LMM(1,7) = max(0,1 — 7), LM"(2,7) = max(0,7). (20)

which is continuous and convex in 7 and known to yield the
same generalized entropy H”° as the zero-one loss (Nguyen et
al. 2009). In the following, we show that Proposition 1 can be
leveraged to develop convex, hinge-like losses in multi-class
settings.

1) Application of Proposition 1: Our application of Propo-
sition 1 is facilitated by the following lemma based on [28].
The lemma gives the conjugate function of the dissimilarity
function fY, corresponding to the generalized entropy H"
in (10) for the cost-weighted classification loss LY. By def-
inition (15), the dissimilarity function ¥ can be calculated
as

f¥(t) = — min C}t,
ke[m]
where t = (t*,1)" = (t1,...,tm—1,1)" and, as before, C' =
(C1,...,Cy) is a column representation of the cost matrix
for the cost-weighted classification loss LV,
Lemma 2: The conjugate of the convex function fV is

[ (s) =

= min ,
{A€A 55 <—(CN);,j€[m—1]} )m

where (C')\); denotes the jth component of C'A for j € [m],
and the minimum over an empty set is defined as oo.

From Lemma 2, the domain of f¥* is a strict sub-
set of R™~1 a phenomenon mentioned earlier in the
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discussion of Proposition 1:

dom(f™) ={s € R™ ' :s; < —(CN);,j € [m—1]
for some A € A, }.

The following loss can be obtained from Proposition 1 with
the convex function f = f¥ and further simplification with a
reparametrization s; = —(C\); for j € [m — 1].

Lemma 3: Define a loss with action space A = A,, such
that for A € A,,,

LCWZ(J', /\) :{ (C)‘)jv jE [m_ 1];

(CN)ms j=m, @h

Then the loss L2 induces the same generalized entropy H¥
in (10) as does the cost-weighted classification loss LV.

It is interesting that the loss L°V? is defined with actions
restricted to the probability simplex A,,. But Lt is not a
proper scoring rule, because in general

m
L2 A) S = inf n™CA = min n*C
;m (A p = inf 7 min " Ci

inf
AEA,

m
#n"Cn =Y nL™(j,m).
j=1
by Lemma 3. In fact, the minimum risk in the first line is
achieved by A equal to a basis vector ¢; € A,, such that
n"Cr = mingem 1 Ck.

2) Extension Beyond the Probability Simplex: The loss
L®2(j,)\) is convex (more precisely, linear!) in its action
A\ when restricted to A,,. To handle this restriction, there
are several possible approaches. One is to introduce a
link function such as the multinomial logistic link \* =
(AT, AR)T, where NI = exp(hy)/ Y L, exp(hy) with
h=(hi,...,hm_1)" € R™ ! unrestricted and h,,, = 0 fixed.
But the resulting loss LV2(j, \") would be non-convex in h.
Another approach is to define a trivial extension of L°%? such
that L¥2(j, \) = oo whenever A lies outside the restricted set
A,,. But for numerical implementation with this extension,
either a link function such as the multinomial logistic link
would still be needed, or the predicted action for a new
observation is likely to lie outside the probability simplex A,,,,
which then requires additional treatment. By comparison, our
approach is to carefully construct an extension of L2 which
remains convex in its action and induces the same generalized
entropy HY, while avoiding the infinity value outside the
restricted set A,,.

The version of L¥? in (21) with C' = 1,,1%, — I,,, as in the
zero-one loss is

LY §,A) =1—X\;, j€[m],A€ A, (22)

In the two-class setting, the hinge loss L"™ can be shown to
be a desired convex extension of the loss L?2, considered a
function of j and A;:

LP(1,0) =1— X1, L™ (2,0) =X, A\ €]0,1].

See Figure 2 for an illustration. In multi-class settings, our
first extension of the loss L"? is as follows, related to the
multi-class hinge-like loss in [11].
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Proposition 4: Define a loss with action space A = R™~!
such that for 7 € R™~1,
Cim (TV(V{))JF + Zk’e[m,—l],k;éj CikTh+;
if j -1
Lcw3(j7 7_) _ iy € [m ]7 (23)
Zk’e[m,—l] CmkTk+;
if j=m
where by = max(0,b) for b € R, and
T =1 =7 = Y epmothy Tt JEM =1 (24)

Then L¥3(j,7) is convex in 7, and coincides with L¥2(j, 7)
provided 7 € A, where 7 = (71,..., Tp—1, 1= >0 11 k)T,
Moreover, L induces the same generalized entropy HV
in (10) as does the cost-weighted classification loss L.

A special case of the loss LY with the cost matrix C' =

1,17, — I, as in the zero-one loss can be expressed such that
for 7= (71,...,Tm—1)" € R™L,
max (1 — Tjs Zke[mfl],kyéj Tk+) )
L3, 7) = if j € [m—1],
Zk’e[m,—l] Tk+
if j =m,

where the summation over an empty set is defined as 0. Then
L3 induces the same generalized entropy H? in (9) as does
the zero-one loss L”°. In the two-class setting, the loss 173
can be easily seen to coincide with the hinge loss (20).

We compare the new loss with the hinge-like loss in [11]
corresponding to the zero-one loss with C' = 1,17 — I,
which is defined such that for v € R™,

Y. (4w, jem],

kelm] k]

LMY (j,7) =

subject to the restriction that » ;- ;v = 0. The general
case of cost-weighted classification can be similarly discussed.
To facilitate comparison, a reparametrization of the loss LW
can be obtained such that for 7 € R™ 1,

Zke[m—l],k;ﬁj Th+ + (1_Zk’€[m—1] Tk)Jr ’
if j € [m— 1],

Zke[m—l] Th+>
ifj=m

LMY, 7) =

In the Supplement, it is shown that LYW2(j 7) =

LYW (j,~)/m for j € [m], provided that 7, = (1 + vx)/m
for k € [m — 1]. Figure 3 illustrates the two losses L“** and
LMW2 in the three-class setting. The loss L7 is a tighter

convex extension than L'™W? from L*? in (22), and L*3(j, 7)
is geometrically simpler with fewer non-differentiable ridges
than L*™W2(j 1) for j € [m — 1]. See the Supplement for
further discussion of the comparison.

There are various ways in which the loss L°*? can be
extended from the probability simplex A, to R"*. We describe
another extension, related to the multi-class hinge-like loss
in [12] associated with the zero-one loss. The general case
of cost-weighted classification can be handled through the
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transformation (53) in Section V-B, although such a general
construction is not discussed in [12].

Proposition 5: Define a loss with action space A = R™~!
such that for 7 € R™~1,

L, 1) =1-%+SY), jem], (25)

where (71, ., Fm-1) = (T, Trne1)s Tn = 1= S0 7o,

and for j € [m],

, 7+ Ty — 1
S$J>—max{0,%j—1,%,
T+ Tt F Tieme2) — 1
m—1 ’

with 7;1) = ... = Tjun—1) the sorted components of 7 =
(F1,...,7m)" excluding 7;. Then L**(j,7) is convex in T,
and coincides with L?2(j,7) provided 7 € A,,. Moreover,
L?* induces the same generalized entropy H* in (9) as does
the zero-one loss L.

The hinge-like loss in [12] is defined such that for v € R™,

LPR(j,y) =1—-~+S5,, jem],

1 Y+ —1 7(1>+ Yy —1
) 2 ) }7

where S, = max{vyq) — —

and ) > > YY) are the sorted components of
v € R™. This loss is invariant to any translation in -,
that is, LPXR(j ~ — bl,,) = LPXR(j ~) for any b € R.
It suffices to consider LPXR(j, ) subject to the restriction that
> vk = 1, or equivalently consider the loss

LPKR(j, 1) =1~ 7+ 87, j € [m],

where (71,...,7m-1) = (T1,..+,Tm-1) and 7, = 1 —
ZZ;I 7 as in (25), and

Fay + Ty — 1

S. — max {07;—(1) —1, mre =~

2 Y
Tyt Tme1) — 1}
M) )
m—1
with Ty = > T(m) the sorted components of 7 =
(T1,...,Tm)". There does not seem to be a direct transforma-

tion between the two losses L%* and LPXR? ip spite of their

similar expressions. An illustration is provided by Figures 2
and 4 in two- and three-class settings. The loss L?* is a tighter
convex extension than LPXR? from L*? in (22), and L**(j, )
is geometrically simpler with fewer non-differentiable ridges
than L'™W2(j 1) for j € [m]. See the Supplement for further
discussion of the comparison.

For motivation, we discuss two possible reasons why the
new hinge-like losses can be preferred over their previous
counterparts, for example, L*** over LPXR?, The first reason is
based on classification regret bounds. From Proposition 6 and

[12, Proposition 5] as discussed in Section IV-B, we have,
for L to be either L?* or LPKRZ (which induces the same
generalized entropy H?® as the zero-one loss, i.e., Hpwm =
Hoxve = H?),

HZ°( ( o))}
Hzo }7

%E{LZO(YO,%(XO))

< B{L(Yo.7(Xy)) - (26)
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LLLWZ(L T) LLLW2(2‘ 7_) LLLWZ(S, T)
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Fig. 3. Three-class hinge-like losses LHw2 (top) and L™3 (bottom). Regions separated by solid lines are associated with the function values indicated.
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Fig. 4. Three-class hinge-like losses LPXR2 (top) and L7°* (bottom). Regions separated by solid lines are associated with the function values indicated.

where (Xo,Y) is a test observation as in (2) and 7;(x) = < E{LZO4(YO,TDKR2(X0)) — HZO(W(X()))} 27)
P(YO. = j|Xo = x) as in .(3.). .Le.:t 7204 or 7PKR2 be the actior: < B{LPKR (v, rPKR2(X)) — H™(n(X,))}. 28)
function determined by minimizing the expected value of L*
DKR2 :
or L respectively. Then The first line follows by definition of 72°*. The second line
follows because the fact that L?** is a tighter extension than
E{L™*(Yy, 7°"(Xo)) — H*(n(X0))} LPKR2 implies that the right-hand side of (26) with L = L**

Authorized licensed use limited to: Rutgers University. Downloaded on August 01,2022 at 23:23:42 UTC from IEEE Xplore. Restrictions apply.



5304

is no greater than that with L = LP¥R? for the same function
7(x). Hence the right-hand side of (26) with L = L** and
T = 77°* is never greater and may be much smaller than that
with L = LPXR2 and 7 = 7PKR2 This suggests that the excess
zero-one risk on the left-hand side of (26) with 7 = 77°* may
be smaller than that with 7 = 7PXR2_ The second reason is
based on generalization bounds, in the form of upper bounds

on the following quantity

n

1
sup |— L(Y;, 7(X;
Tegn; (Yi, 7(X5))

—E{L(Yo,7(X0))}|,

where 7 is a certain function class. As seen from [29],
such generalization bounds depend linearly on the Lipschitz
constant of the loss function L(j,7) in 7. The fact that L%
is a tighter extension than LPXR? implies a smaller Lipschitz
constant for L%* which leads to a smaller generalization
bound for L**. While the preceding reasoning may indicate
potential advantages of the new hinge-like losses over existing
ones, our discussion is heuristic and further comparison of
these losses can be studied in future work.

B. Regret Bounds for Hinge-Like Losses

The preceding section mainly focuses on constructing multi-
class hinge-like losses which induce the generalized entropy
L or HY as does the zero-one or cost-weighted classification
loss, while achieving certain desirable properties geometrically
compared with hinge-like losses in [11] and [12]. Here we
derive classification regret bounds, which compare the regrets
of our hinge-like losses with those of the zero-one and
cost-weighted losses, where the actions are take from those of
the hinge-like losses by a prediction mapping. Such bounds
provide a quantitative guarantee on classification calibration,
a qualitative property which leads to infinite-sample
classification  consistency under  suitable technical
conditions [15], [16].

Proposition 6: The following regret bounds hold for the
hinge-like losses LY and L*°*.

(i) For n € A,, and 7 € R™ 1
Bres(n, ), that is,

277] T

< S LG r) — Hye (),
j=1

M B (,71) <

— H™(n)
(29)

m—1
1- Zk:l Thy )"

where 77 =

(Tla"'vafla
(ii) For n e Ay, oand 7 € R™ Y mTIBra(n,7) <
Bt (n, T), that is,

0 L*(j,7) — H*(n)

Ms

Il
_

1 {
m
J

<Y LG, ) = Hipws (1), (30)
7j=1

where%Z(ﬁ,-- y Tm— 1)1_219 1 Tk) :
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The regret bounds (29) and (30) directly lead to classifica-
tion calibration, which can be defined as follows, allowing a
prediction mapping [15], [16]. For a loss L(j, ) with action
space A, let 0 = (01,...,0m,)" : A — R™ be a prediction
mapping which carries an action in A to a vector in R™,
to be used as the corresponding action in the zero-one or cost-
weighted classification loss. The prediction mapping can be
defined directly as the identity mapping, o(v) = 7, in the case
of A C R™, but needs to convert an action - to a vector in R™
in the case of A C R™~ 1. A loss L(j,7) with action space
A and prediction mapping o(-) is said to be classification
calibrated for the zero-one loss if for any n € A,,, and k € [m]
with n, < max;e(m) ;5

inf, > niL(G,7) — Ho(n) = ox(y) = max o;(7) ¢ > 0.
j=1

J€[m]
31

For L = L* and o(r) = 7, inequality (30) implies
that the left-hand side of (31) is no smaller than (—7n +
max;e(m, 7;)/m > 0. Hence L** is classification calibrated
for the zero-one loss. Similarly, a loss L(j,y) with action
space A and prediction mapping o(-) is said to be classi-
fication calibrated for cost-weighted classification with cost
matrix C' if for any n € A,, and k € [m] with n"C) >
max;e(m) 1" Cj,

m

inf, > niL(G,7) — Ho(n) = ox(y) = max o;(y) ¢ > 0.
j=1

j€[m]
(32)

For L = L* and o(r) = 7T, inequality (29) implies
that the left-hand side of (32) is no smaller than (n*Cj —
min;ep,, 7"Cj)/m > 0. Hence the loss L*? is classification
calibrated with o(7) = 71 for cost-weighted classification.

There is an interesting feature in the regret bound (29) for
L*¥3(4,7), compared with the regret bound (30) for L**(j, 7).
The prediction mapping associated with the loss Lcwg(j T)
with 7 € R™ Vs 7t = (7, ..., 70n1, 1 Zk 1 Tk+) ,
whose components may sum to less than one, instead of
F= Tty s Tm—1,1 = > pe 11 7 )*, whose components nec-
essarily sum to one. Although this difference warrants further
study, using 7 instead of 7 for classification ensures that the
predicted value for mth class, 1—22;1 Tk, 18 not affected by
any negative components among (71, . .., T,,—1). For example,
if m = 3 and (7y,72) = (.6,—.3), then 1 — Zk | Tt =
4 but 1 — Zk 1 Tk = .7. Using 71 means that class 1 is
predicted, whereas using 7 means that class 3 is predicted,
which seems to be artificially caused by the negative value
of 75. See Figure 5 for an illustration and Proposition 8 for
an explanation.

The regret bounds (29) and (30) for the losses L°** and
L** are similar to those for the losses L'™W? and LPKR2
in [12]. In fact, the regret bound for L'"W? in Duchi et al.
can be seen as (29) with L3(j,7) and L¥(j,71) replaced
by LMW2(j 1) and L°V(j,7) respectively, because L'V is
L™V multiplied by m after a reparametrization noted earlier.
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)

Fig. 5. Classification using the prediction mapping 7 (left) or 71 (right),
defined in Proposition 6, with 7 = (71, 72) € R? for m = 3. Each region
separated by solid lines from others is classified by the index of a maximum
component of 7 or 71.

The regret bound for LPXR? in Duchi et al. can be seen as (30)
with L?%(j,7) replaced by LPXR?(j 7) and with L?(j,7)
unchanged. As mentioned in Section IV-A, further research
is desired to compare these hinge-like losses in theory and
empirical evaluation.

C. General Characterization and Regret Bounds

Our new hinge-like losses are explicitly derived to induce
the same generalized entropy as the zero-one or cost-weighted
classification loss, and shown to achieve comparable regret
bounds to those for existing hinge-like losses. In this section,
we provide a general result indicating that all losses with
the same generalized entropy as the zero-one loss achieve a
classification regret bound similarly as in Proposition 6. This
result relies on a general characterization of such losses in
terms of the value manifold defined below.

For a loss L(j,~) with action space A, the value manifold
is defined as Sy, = conv(R ), where conv denotes the closure
of the convex hull and

Re ={(L(1,7),...,L(m,))" : v € A}.

The concept of the set R, and its convex hull, conv(Rp,),
also plays an important role in [16], where the admissibility
of conv(R ) can be equivalently defined as that of Sy, because
conv(Ry) and Sy, share the same boundary, denoted as 9S;..
Then the generalized entropy of L can be expressed such that
for any n € A,,,

Hp(n) = Vlfeli

> niL(j.7) p = inf

Ty — inf nT
zERL ez zlens "z
(33)

similarly as in [16], Eq. (7). For the zero-one loss L*°, the
value manifold is denoted as

§° = {(zl, sy zm)T iz =m =1
and 0 < z1,...,2;, < 1}.
The set §* is an (m — 1)-dimensional polytope in R™, where

each vertex is a m-dimensional vector with one component
0 and the remaining 1.
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Proposition 7: A loss L(j,~) induces the same generalized
entropy as the zero-one loss, ie., Hy(n) = H*®(n) = 1 —
Maxge m) Mk for n € A,, if and only if

S SL c SZO*,

where S** = {z +b: 2z € §°,b € R}, also denoted as
S + R

Figure 6 shows, in the three-class setting, the value man-
ifolds for the zero-one and several hinge-like losses with
the same generalized entropy as the zero-one loss. These
value manifolds all satisfy the inclusion property as stated in
Proposition 7.

The following result establishes a general link from the
generalized entropy of the zero-one loss to classification regret
bounds. The link involves a particular prediction mapping
or(7), defined from the negative values of a given loss L.
Such a prediction mapping is also exploited to study classifi-
cation calibration in [16], with an additional assumption that
the value manifold Sy, is symmetric.

Proposition 8: Suppose that a loss L(j,~) with action space
A induces the same generalized entropy as the zero-one
loss (i.e., H, = H?). Then for n € A,, and v € A,
m ' Brw(n,01(7)) < Br(n,), that is,

(34)

(35)

where o, (y) = (—=L(1,7),...,—L(m,v))*. Moreover, the
loss L(j,7), with the prediction mapping o7y, is classification
calibrated for the zero-one loss.

Proposition 8 provides a theoretical support for our
approach in constructing hinge-like losses with the same
generalized entropy as the zero-one loss in Section IV-A. The
regret bound (35) implies classification calibration similarly as
discussed in Section IV-B. Compared with [16, Section 4],
our result gives a more concrete sufficient condition for
achieving classification calibration, in addition to a quantitative
guarantee. Because the loss is unspecified except for its
generalized entropy being H”® in Proposition 8, our result
is of a different nature from [12, Proposition 4], where
classification calibration is shown to be achieved by the
specific loss Ly in (13) given a concave function H (as its
generalized entropy). Classification regret bounds then need to
be proved on a case-by-case basis, for example, for the loss
LPKR given H™ in [12].

By the nature of the zero-one loss, the regret bound (35)
remains valid with oz (y) replaced by another prediction
mapping o(7y) subject to the monotonicity property that the
components in () are in the same order as in o, () for
any v € A. Then the regret bounds for L**, as a special
case of L3, and L?* in Proposition 6 can be deduced
from (35), because the monotonicity property is satisfied by
the prediction mappings 71 and 7 used in (29) and (30). See the
Supplement for details. Possible extensions of Proposition 8
to cost-weighted classification can be studied in future work.
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Fig. 6. The boundaries of value manifolds for three-class hinge-like losses LPXR2/L79% (left), LMW?2 (middle) and L?°3 (right). The triangle polytope in the
center of each plot is the value manifold S*° for the zero-one loss. The boundary of S*°*, defined as S*° 4 R"", is the same as in the left plot.

D. Numerical Illustration

We provide a simple numerical experiment to illus-
trate potential advantages of the proposed hinge-like losses.
As motivated by [30] in the binary setting, we consider a
three-class setting to study misclassification rates committed
by linear classifiers obtained through minimizing hinge-like
(surrogate) losses when a small, optimal error rate can be
achieved by a linear classifier based on minimizing the zero-
one loss.

We investigate the proposed L“°* loss, and compare it
with LPXR LW “and the hinge-like losses in [13] and [14],
denoted as WW and CS. In the comparison, we also include
the multinomial logistic regression, as well as the two com-
mon strategies based on binary classification, one-versus-one
(OVO) and one-versus-all (OVA). For all methods, the action
function 7(x) is linear in = with an intercept. The multinomial
logistic regression is implemented through the glmnet R
package [31], and all other methods are implemented through
the CVXR R package [32] based on the mosek solver [33].

We consider a three-class data generating process as fol-
lows: 98% of (X,Y) are drawn such that X|Y = j ~
N(p;,0.1%I) and P(Y = j) = 1/3 for j = 1,2,3, and
the remaining 2% of (X,Y") are outliers with Y = 1 and
X drawn from N (p4,0.121), where (p1, . . ., j1q) are (—1,0),
(0,0.25), (1,0), and (1 + p,0) respectively. The parameter
p > 0 controls the separation degree (how far away) between
outliers and the main data. We train all methods on a training
set of size 3,000 and calculate misclassification error rates on
a test set of size 50,000. For each method, we do not apply
regularization to isolate the effect of the loss function given the
large training data size. We vary p from O to 2.5, i.e., moving
outliers away while keeping main data fixed, to investigate
how each method’s performance changes.

For example, Figure 7 shows the training data and classifi-
cation regions and test error rates from different methods for
p = 2. The optimal error rate for linear classifiers is virtually
2%, achieved by the Bayes classifier on the main data (hence
correctly classifying 98% of the entire data). In principle, this
optimal linear classifier can be derived by minimizing the zero-
one loss. However, minimizing hinge-like (surrogate) losses
lead to error rates greater than the optimal rate in various
degrees. For p = 2 as shown in Figure 7, the proposed L**

method achieves the smallest error rate, 4.27%, among all
hinge-like methods under study.

In Figure 8a, we plot the test error rates over p from all
methods. Only the proposed method, CS, and OVO achieve
near-optimal error rates (around 2.4%) when p < 0.5. CS is
slightly better than our method when p < 1.5, but its
error rate quickly rises and becomes higher than ours, as p
further increases. Compared with the other three classification
calibrated methods, DKR, LLW, and multinomial logistic, our
method achieves smaller error rates, sometimes to a large
extent, over the range of p. The error rate from LLW decreases
as p increases, which is paradoxical and may be further
studied.

Figure 8b shows the loss values as well as test error rates
over p from our method, DKR, and LLW, where the loss
functions can be perfectly aligned on the probability simplex.
In accordance with (27)-(28), depending on the proposed
L** loss being a tighter extension outside the probability
simplex, the loss values from our method are always smaller
than those from DKR and LLW. Then as suggested by the
regret bound (26), our method also achieves smaller error rates
than the other two methods, even though the regret bound
only gives an upper bound on the error rates for all three
methods.

V. PROPER SCORING RULES

We investigate proper scoring rules in two similar directions
as in Section IV: first deriving new proper scoring rules (while
recovering existing ones) and second establishing classification
regret bounds with respect to the zero-one or cost-weighted
classification loss.

A. Examples of Proper Scoring Rules

We examine various examples of multi-class proper scoring
rules, obtained from Proposition 3. In particular, it is of interest
to study how commonly used two-class losses can be extended
to multi-class ones. These examples lead to new multi-class
proper scoring rules and shed new light on existing ones.
See Section IV for a discussion of multi-class hinge-like
losses related to zero-one classification losses, derived using
Proposition 1.
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aligned.

1) Two-Class Losses: For two-class classification (m = 2)
and a univariate convex function fy on R, the proper scoring
rule (18) in Proposition 3 reduces to

L, (5,9) = — 11(4)9 fo(u?)
+ Lo(j){u?dfo(u?) — f(u®)}, j=1,2, (36)

where u? = q1/q2 for ¢ = (q1,q2)" € Ag, Ofp denotes a
sub-gradient of fp, and 14(7) is an indicator defined as 1 if
j = k or 0 otherwise. For a twice-differentiable function f,
the gradient of the loss (36) can be directly calculated as

A LG = (L) - adwl@), G

dg:
where d/dg; denotes a derivative taken with respect to ¢; with
g2 = 1—qi1, and the weight function w(q1) = f{/(u?)/q3 with
f§ the second derivative of fo. From (37), Ly, (j,q) can
be put into an integral representation in terms of w(-) and
the cost-weighted binary classification loss [4], [21], [34].
The formula (36) in terms of f; differs from the integral
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representation or the canonical representation (7), even though
they can be transformed into each other.

For concreteness, consider the following examples of two-
class losses:

o Likelihood Loss: L(j,q) = —logg; with fo = tlogt —
(1+t)log(1 +¢),
o Exponential Loss: L.(j,q) = 11(j)vVa/1 +
L2(j)\/a1/g2 with fo = (VI —1)?,
o Calibration Loss: L.(j,q) = {11(4)(e2/q1) +
12(j)log(q1/q2)}/2 with fo = —(logt)/2,
where all the expressions for L(j,¢) are up to additive con-
stants in q. See Supplement Table S1 for further information.
While the likelihood loss is tied to maximum likelihood
estimation, the exponential loss is associated with boosting
algorithms [35], [36]. The calibration loss is studied in [37]
for logistic regression, where the fitted probabilities are used
for inverse probability weighting. See the Supplement for a
discussion on convexity of these losses with a logistic link.
Remark 2: The loss (36) was also derived in [38] for
training a discriminator in generative adversarial learning
[39], [40]. In that context, the loss for training a generator
is, in a nonparametric limit, the negative Bayes risk from

discrimination or the fy-divergence by relationship (12) with
70 = 1,,/m,

Dyy(Pu[P2) = = inf, B{Ly,(Y.q(X))}.

where P is the data distribution represented by training data
and P, is the model distribution represented by simulated data
from the generator. Hence the generator can be trained to min-
imize various fo-divergences, including forward and reverse
Kullback-Liebler and Hellinger divergences. See Supplement
Table S1 in [38].

2) Multi-Class Pairwise Losses: There can be numerous
choices for extending a two-class loss (36) to multi-class ones,
just as a univariate convex function fy can be extended in
multiple ways to multivariate ones. A simple approach is to
use an additive extension, f(uy,...,Upy_1) = E;”’:_ll fo(ug).
The corresponding loss (18) is then

m

1,6 { Zon(E) - )},
(38)

IR = 3 | - 1)of( )
k=1 q

Equivalently, the loss (38) can be obtained by applying the
two-class loss (36) to a pair of classes, & and m, and summing
up such pairwise losses for k& € [m — 1]. In this sense, the
loss (38) can be interpreted as performing multi-class classifi-
cation via pairwise comparison of each class k € [m — 1] with
class m.

The preceding loss (38) is asymmetric with class m com-
pared with the remaining classes k € [m — 1]. A symmetrized
version can be obtained by varying the choice of a base class
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and summing up the resulting losses as

Ly ()

:Z[—

1,ke[m],k#l

1:()0fo (%)
qi
. qk gk qdk
+ 1;(j) {agfo(q—) - fo(a)}]
> {-

kE[m],k#j
See the Supplement for a proof. The symmetrized loss (39) can
also be deduced from (18) with the choice f(u1,...,um—1) =
Dot kem) ket W fo(3E), where w, = 1. In spite of the
interpretation via pairwise comparison, our approach involves
optimizing the loss (38) or (39) jointly over ¢ € A,, using
all m labels, and hence differs from the usual one-against-
all or all-pairs approach, which performs binary classification
with 2 reduced labels separately for multiple times. Further
comparison of these approaches can be studied in future work.

o)+ ofy( L) - fo(%)}- (39)

qj

Consider a multinomial logistic link ¢" = (¢¥,...,¢")",
where h = (h1,...,hy)" and
exp(h; .
= ") e pm) (40)

Y T exp(he)
The link is a natural extension of the logistic link, because log
ratios between (g1, ...,qn) are related to contrasts between
(h1,...,h). To remove over-parametrization, a restriction is
often imposed such as h,, = 0 or >, hy = 0. By the
additive construction, the composite losses obtained from (38)
and (39) can be easily shown to be convex in h whenever the
two-class loss (36) with a logistic link ¢ /¢h° = exp(ho) is
convex in hg.

For the two-class likelihood, exponential, and calibration
losses above, the pairwise extensions (39) can be calculated
as follows:

e Pairwise likelihood loss:

L™ (j,q) = 2Zke 1,k£j log(1 + qk)
o Pairwise exponennal loss:
Le™(5.9) = 2 ke m) by \/%
e Multi-class calibration loss:
pr,s(j Q) Zke[m] k#j {1Og( ) Qk }/2
where additive constants in g are dropped for simplicity. See
Supplement Table S1 for the expressions of the corresponding
f, H, and gradients. By convexity of the associated two-class
composite losses [4], we see that with the multinomial logistic
link (40), the three composite losses, L) (4, ¢"), LEV* (4, ¢"),
and LEW’S( 7, qh), are all convex in h. In particular, the pairwise
exponential composite loss is
>

L2 (j,q") =2
Kelm] k]

which is associated with multi-class boosting algorithms
AdaBoost.M2 [41] or AdaBoost. MR [42]. See [7] for further
study. The pairwise likelihood and calibration losses appear
to be new. The pairwise likelihood loss, with m > 3, differs
from the standard likelihood loss based on multinomial data,
which will be discussed later. The multi-class calibration loss
has recently been re-derived and studied for propensity score
estimation with multi-valued treatments [43].

e(hk*hj)/Q7
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3) Multi-Class Simultaneous Losses: Apparently, there exist
various multi-class proper scoring rules, which cannot be
expressed as pairwise losses (38) or (39) and hence will be
referred to as simultaneous losses. A notable example as men-
tioned above is the standard likelihood loss (or the logarithmic
scoring rule) for multinomial data, L(j, ¢) = —log¢;. In fact,
a large class of multi-class simultaneous losses can be defined
with the generalized entropy in the form

s ifBe(0,1),
Hs(a) { lalla, if 8 € (1,00),

where [lqlls = {3272 lqﬁ}l/ﬁ is the Ls norm. The corre-
sponding dissimilarity function is fs(t) = —||tllg if B € (0,1)

or ||f]|g if B € (1,00), where £ = (t1,...,tm—1,1)". The
resulting scoring rule can be calculated by (18) as
: (a5/llalle)*~", if B€(0,1)
L ) = J o A y L) (41)
o) { —(q;/llallg)?~1, it B € (1,00).

The case 5 > 1 is called a pseudo-spherical score [20], [44].
The limiting case 5 — 1 is also known to yield the logarithmic
score, L(j,q) = —logg,, after suitable rescaling. The case
B € (0,1) seems previously unstudied. There are also two
additional limiting cases as  — 0+ or co. See Supplement
Table S1 for further details.

Proposition 9: Define a rescaled version of Hg as

lalls =1
Hple) =~ 7

if € (0,1)U(1,00), and Hj(q) = limp— Hf (q), if B =
0, 1, 0c. Then the following proper scoring rules are obtained.

(i) Simultaneous exponential loss (3 = 0):
Ly(j,q) = (I, g—j)l/m corresponding to Hf(q) =
m([T0y 4)/™
Pairwise exponential loss (5 = 1/2):
Lr1/2(j7 q) = (m - 1)_1 Eke[m] k#j
to Hi(g) = (m—1)7"(lglly —1).
Multinomial likelihood loss (6 =1):
L (j,q) = —(logm)~'log q; corresponding to H}(q) =
—(logm)*1 ST gjlogg;.
Multi-class zero-one loss (3 = oo):
Lo, ) = (1 =m™)"M1{j # argmax,c(,, qi} corre-
sponding to H%,(q) = (1—m~1)1(1 — maxjem] 4;)-
Moreover, with a multinomial logistic link (40), the composite
loss Lz (7, q") is convex in h if 3 € [0, 1], but non-convex in
hif g > 1.

There are several interesting features. First, with a multino-
mial logistic link (40), the scoring rule L{(j,q) leads to a
composite loss

(42)

(ii)

% corresponding
J
(iii)

(iv)

Ly, q") = o DR,

which coincides with the exponential loss in [6]. For this
reason, Lj(j,q) is called the simultaneous exponential loss.
Moreover, the scoring rule L /2(j7 q) yields, up to a multi-
plicative factor, the pairwise exponential loss L™ (4, ¢), which
is connected with the boosting algorithms in [41] and [42] as
mentioned earlier. The logarithmic rule LY (j,¢) corresponds
to the standard likelihood loss based on multinomial data.
Finally, the loss LY (j,¢) obtained as § — oo recovers the
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zero-one loss, which is a proper scoring rule (although not
strictly proper). Further research is desired to study relative
merits of these losses.

B. Regret Bounds for Proper Scoring Rules

We derive classification regret bounds for proper scoring
rules, which compare the regrets of the proper scoring rules
(as losses) with those of the corresponding zero-one and cost-
weighted classification losses, similarly as in Proposition 6 for
hinge-like losses. All such bounds are also called surrogate
regret bounds, in the sense that the a proper scoring rule or
a hinge-like loss can be considered a surrogate criterion for
the zero-one or cost-weighted classification loss. Similarly as
discussed in Section IV-B, these results provide a quantitative
guarantee on classification calibration [15], [16].

Compared with hinge-like losses, a potential gain in using
proper scoring rules is that classification regret bounds can be
obtained with respect to a range of cost-weighted classification
losses with different cost matrices C' for a proper scoring
rule, defined independently of C. The cost matrix is involved
only to convert an action (in the form of a probability vector)
from the scoring rule to a prediction for the cost-weighted
classification loss. See Corollary 3. In contrast, for the regret
bound (29), the hinge-like loss L depends on the cost-
matrix C' used in the classification loss LY. A similar obser-
vation is made by [21, Corollary 28] in two-class settings.

A general basis for deriving regret bounds, applicable to not
just scoring rules but arbitrary losses L(j,y) with an action
space A C R™, can be cast as

$(B*(n,7)) < Br(n,7), (43)
where B*(n,~) = Br~(n,7), the regret of the zero-one loss

L*(n,), and
t) = inf Br(n',7),
w( ) n' €A,y EA: B®(n' v )=t L(77 v )

In fact, (43) is a tautology from the definition of . Various
regret bounds can be obtained by identifying convenient lower
bounds of . In the two-class setting, the regret for the
zero-one loss is B*(n,y) = [2m —1|1{(2m—1) (71 —2) < 0}
for n = (m,n2)" € Ay and v = (y1,72)". For t > 0,
B™(n,y) = t means 7y = (1 +¢)/2, and hence % (t) can
be simplified as

1+t
BIM . : 1 /
t) = min nf B —_—
w ( ) ! {’y/:t(’yli—'yé)fo L ( 2 ,'Y) ’

s (7))
vitti—pz0 T\ 2 ) [

t>0.

inf

where B} (n1,7v) denotes Br(n,7) as a function of (11,7).
Moreover, B (t) at t = 0 also satisfies 1/B™(0) = 0 < (0).
Therefore, (43) holds with 2 replaced by B™:

PPM(B™(n,7)) < BL(n,7).

In the multi-class setting, the regret B (1, ) does not admit a
direct simplification. Nevertheless, our results below for proper
scoring rules can be seen as further manipulation of (43) by
exploiting the fact that the regret (8) is a Bregman divergence
due to the canonical representation (7) for proper scoring rules.

Remark 3: Replacing 18" in (44) by the greatest convex
lower bound on B™ (or the Fenchel biconjugate of 1/B™)

(44)
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recovers the regret bound in [10, Theorem 1] in the symmetric
case where L(1,7) = L(2,—7). In general, there is a benefit
from such a modification in the setting where covariates are
restored, instead of being lifted out in most of our discussion.
For a regret bound in the form ¢(B*(n,~)) < Br(n,7), if ¢
is convex, then application of Jensen’s inequality gives

S[E{B*((X),7(X))}] < E[o{B*(n(X),y(X))}]
< E{BL(n(X),7(X))},

where E{B*(n(X),v(X)) and E{B(n(X),v(X))} are the
average regret over X.

1) Zero-One Classification: Before presenting our gen-
eral regret bounds for proper scoring rules with respect
to cost-weighted classification in Sections V-B.2-V-B.3, we
demonstrate novel implications of our general results in the
simple but important setting of zero-one classification.

For a proper scoring rule (7, ¢), an application of our regret
bound (56) or (60) with respect to the zero-one loss with Cy =
1,, shows that for any 7,q € A,,,

¥ (B*(n,9)) < BL(n,q), 45)
where 1)(-) is defined as
vit) = inf Br(n',q), t=0. (46)

0 d" €Am: |10 —q'[loc2=t,
max;e m] q;- <1/2

For a vector b = (by,...,bm)", |[bl|oc2 denotes max;sie(m
(16514 b%]). Inequality (45) can be seen to extend the two-class
regret bound (44) in Bartlett et al. (2006) to multi-class
settings for proper scoring rules. Unlike the two-class setting,
additional effort is needed to find a simple meaningful lower
bound of ¢ in the multi-class setting. Our current approach
involves deriving a lower bound on the regret (or Bregman
divergence) By, by the L norm, in the form such that for any
7,4 € Ay,

Br(n,q) = Hr(q) — Hp(n) — (¢ —n)"0HL(q)
> %Llln —ql13,

(47)

where k7, > 0 is a constant depending on L, and ||b||; =
Z;’;l |b;| is the L; norm for any vector b = (b1,...,bm)".
Hence (47) can be interpreted as saying that —H, is strongly
convex with respect to the I.; norm with modulus x,. Because
[ln—all1 > [[n—¢lloo2, the regret bound (45) together with (47)
implies that for any n,q € A,,,

%L (B*(1.q))* < Br(n,q).

In general, the preceding discussion shows that a potentially
improved lower bound on the Bregman divergence By (7, q)
by a non-quadratic function of || — ¢||1 can also be translated
into a classification regret bound.

Our current approach does not exploit the restriction that
maXjc(m) ¢; < 1/2 in the definition of ¢. Hence it is
interesting to study how our results here can be improved.
On the other hand, such an improvement, even if achieved,
may be limited. See the later discussion on regret bounds for
the pairwise exponential loss.

Our approach leads to the following result for two classes
of proper scoring rules discussed in Section V-A: a class of

(48)
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pairwise losses (39) with f; associated with a Beta family of
weight functions as studied in [4], and a class of simultaneous
losses (41). In all these cases, inequalities (47) can be of
independent interest.

Proposition 10: Inequalities (47) and (48) hold for the
following proper scoring rules.

(i) Consider a pairwise loss L = Ll}‘:’s in (39), with
a univariate function fy defined such that (37) holds
with a weight function w(q) = 22¢" ‘¢4~ ' for
(q1,q2)" € Ag. If v <0, then (47) and (48) are valid with
k1 = 2. In general, the constant k7, cannot be improved
to be greater for m = 2 or for m > 3 and v € (—1,0].
Consider a simultaneous loss L = Lg in (41). Then (47)
and (48) are valid with

@ = pymU-VAEE-D22-28 i 3 € [1/2,1),
BT @ - g2, if 8 (0,1/2].

The bounds from the two segments both give k;, = 1 at

B = 1/2. In general, the constant £z, cannot be improved

to be greater for m = 2 or for m > 3 and 5 € (0,1/2].

We discuss several specific examples. The standard likeli-

hood loss L(j, q) = —logg; is equivalent to the simultaneous

loss Lg in the limit of 5 — 1 after properly rescaled. In this

case, Pinsker’s inequality states that (47) holds with k;, = 1
[45, Lemma 12.6.1]:

(ii)

m m

1
> njlog(n;/g;) > 5 > Iy — gl
j=1

j=1

(49)

The resulting regret bound (48) for the standard likelihood loss
L then gives

1 70 2

5 (B*®(,9))” < BL(1.4)-
This surrogate regret bound for the multinomial likelihood loss
appears new, even though the Bregman divergence bound (49)
is known. In the Supplement, we verify that (49) can be
recovered from (47), using Proposition 10(ii) as § — 1.
The constant x;, in Proposition 10(ii)) may be improvable
for fixed 5 € (1/2,1), but is not improvable in the limit
8 — 1, i.e., the constant 1/2 in (49) is not improvable. On the
other hand, an improved lower bound of the KL divergence
than (49) can be found in terms of a non-quadratic function
of ||n — ¢l]1 (e.g., [21]). Such bounds can also be translated
into classification regret bounds for the likelihood loss by the
discussion from (47) to (48).

The pairwise exponential loss associated with multi-class
boosting is defined equivalently as L2"*(j,q) = 2(Lyi/2 —
1)=2 Zke[m]’k# \/4x/q; in Section II-B. The two inequal-
ities (47) obtained from Proposition 10, part (i) with v =
—1/2 and part (i) with 8 = 1/2, are equivalent to each other
and both lead to

- 1
HL1/2 (Q) - HL1/2 (77) - ((] - 77) aHL1/2(Q) > 5”77 - QH%v
(51)

(50)

where Hy, ,(q) = |lall1/2 and Ly /2(j, @) = (lall1j2/a:)"* =
>, \/ar/qj- The resulting regret bound (48) for the
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rescaled pairwise exponential loss Ly /o gives

1 70 2

B (B*(m,q9))” < Br,,,(n,9)-
The two bounds (50) and (52) for the likelihood and rescaled
pairwise exponential losses happen to be of the same form, due
to the scaling used. For the two-class exponential loss defined
as Le = Ly /p—1, the existing regret bound (44), corresponding
to an exact calculation of ) by the proof of (61) later, is

1-— 1-— (BZO(U, q))2 S BLl/z (na Q)v

which is slightly stronger than (52) because 1 — /1 — 62 >
§2/2 for § € [0,1], but (1 —+/1—62)/(62/2) — 1asé — 0.
Therefore, our result (52) provides a reasonable extension
of existing regret bounds to multi-class pairwise exponential
losses.

A notable proper scoring rule which is not informed by
Proposition 10 for m > 3 is the simultaneous exponential loss

0 as used in [6], even though the loss Lj is equivalent to the
exponential loss for m = 2. See the Supplement for details.

Remark 4: Inequality (47) on the Bregman divergence in
general differs from generalized Pinsker inequalities relating
(two-distribution) f-divergences to the total variation studied
in [21], Section 7.2, for binary experiments. For the pairwise
exponential loss, the Bregman divergence on the left-hand side

of (51) can be calculated as (3_ ¢, /@) (22 jepm) 13/ V@) —
o jem] \/n_j)Q, which is apparently not any f-divergence
between probability vectors 1 and g. An exception is the
classical Pinsker inequality (49): the Kullback-Liebler diver-
gence on the left-hand side of (49) is both an f-divergence
with f(t) = tlogt and a Bregman divergence with Hy () =
- Eje[m] n; logn;.

Remark 5: In the two-class setting, a scoring rule satisfying
inequality (47) is called a strongly proper loss, and surrogate
regret bounds are obtained for strongly proper losses with
respect to the area under the curve (AUC) in [46]. It is
interesting to investigate possible extensions of such results
to the multi-class setting.

2) Cost-Transformed Losses: We study two types of classi-
fication regret bounds with respect to a general cost-weighted
classification loss as defined in Section II-C. This subsection
deals with the first type where a classification regret bound
is derived for a loss, allowed to depend on a pre-specified
cost matrix C, similarly as the hinge-like loss L in (23).
An action of the loss is directly taken as a prediction for the
cost-weighted classification loss. See the next subsection on
the second type of classification regret bounds.

For a general loss L(j,7) (not just scoring rules), define a
cost-transformed loss, depending on a cost matrix C, as

> (ejm —ep){L(k,y) =13,

(52)

i:/(j, 7) = CJML(]aIY) +

kE[m] k]
(53)
where cj = maxyem) Cjk- In the special case where
C = 1,1}, — I, for the zero-one loss, the transformed loss

L(j,7) reduces to the original loss L(j,). A motivation for
this construction is that the cost-weighted classification loss
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can also be obtained in this way from the zero-one loss:
L¥(j,7) = L*(j,~). In general, the risk and regret of the
transformed loss can be related to those of the original loss as
follows.

Lemma 4: The risks of the losses L(j, ) and L(j,v) satisfy

Ry (n,7) = (13,7) Re(n,7) — D(n),

where D(n) = Zje[m] Zke[m],k;ﬁj ni(cin — cji), 1 =
7/(127) € Ay, and 1§ = (71, .- . fim)" € R with

N = cjmn; + Z (CkM — Crj)Mk-
ke[m] k]

Moreover, the regrets of L and L satisfy Bj(n,7)
(12,7) BL (7. 7).

For a scoring rule L(j, ¢) with actions defined as probability
vectors g € A,,, there is a simple upper bound on the regret
of the associated zero-one loss L*°(j, ¢), which is instrumental
to our derivation of classification regret bounds.

Lemma 5: For any n,q € A,,, it holds that

B*(,q) < [[n—qllco2,

where [[b]|oc2 = max;srefm) (|bj| + |bk|) for any vector b =
(b1,...,b,)". The bound is tight for any m > 2 in that there
exist 17,q € A,, for which the bound becomes exact.

Combining the preceding two lemmas and invoking a simi-
lar argument as indicated by (43) leads to the following regret
bound, depending on the action q.

Proposition 11: For a scoring rule L(j,q), define a nonde-
creasing function v,:

wq(t) =

Then the regrets of the cost-weighted classification loss
LY(4, q) and the cost-transformed scoring rule L(j, q) satisfy

CcW ~

e <B 1T(nj Q)) < BL(nlq)7 (54)
ml L

where B®Y = By, and 17 is defined, depending on 7 and C,

as in Lemma 4.

A cost-transformed loss (53) from a proper scoring rule can
be easily shown to remain a proper scoring rule. In this case,
a uniform regret bound can be obtained from (54), by taking
an infimum over ¢ and incorporating simplification due to the
representation of the regret (8) as a Bregman divergence for a
proper scoring rule.

Corollary 2: For a proper scoring rule L(j,q), the regrets
of L¥(j,q) and i(j, q) satisfy

v (B”T(n:q)) < Bin9)

L L
where v is defined in (46), and 7) is defined, depending on 7
and C, in Lemma 4.

It is instructive to examine the regret bound (55) in the
special case of class-weighted costs, where C' = Cpl}, —
diag(Cyp) with Cy = (c10,---,¢mo)*. The cost-transformed
loss L reduces to i(j, q) = cjoL(4, q). The regret bound (55)

becomes
cw0
" B™(n,q) <
-\ Cn

inf Br(n',q), t>0.
N E€EAm:||0 —qlloc2>t (n )

; (55)

B (1, q)
Cen '

(56)
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where B°" = Bjo. We defer a discussion of these results
until after Corollary 3.

3) Cost-Independent Losses: We derive a different type of
classification regret bounds than in the preceding subsection.
Here a loss used for training is defined independently of any
cost matrix, but an action of the loss can be converted after
training to a prediction, depending on the cost matrix C, for
the cost-weighted classification loss. For scoring rules, our
derivation relies on the following extension of Lemma 5 on
the regret of the cost-weighted classification loss, where a
prediction is linearly converted from a probability vector.

Lemma 6: For any n,q € A,,, it holds that

B, C q) <|[C" (1—q)]| 02,

where 6 = CMl;Fn —C and Cyy = (611\4, - ,CmM)T with
CjM = MaXpe|m) Cjk for j € [m] as defined in the transformed
loss (53).

By a similar argument as indicated by (43), we obtain a
regret bound which compares the regret of a scoring rule
L(j,q) with that of the cost-weighted classification loss with
a prediction depending on both ¢ and C' as in Lemma 6.

Proposition 12: For a scoring rule L(j, g), define a nonde-
creasing function Q/chl

P9 (t) = inf

1 BL(77/7Q)a t 2 0.
' EAM:|CT (0" —q)|lcc2 >t

Then the regrets of the cost-weighted classification loss
—7T . . .
LY(4,C" q) and the scoring rule L(j,q) satisfy

vy (B”“(nqu)) < Br(1,q).

For a proper scoring rule L(j, q), the regret bound (57) can
be strengthened (see the Supplement for a proof) such that for
each w e W, 4,

v (Bcw(nfTQ)) < Br(n, q),

where ¢* = (1 —w)n + wq and

(57)

(58)

Wyq = {w €0,1]:Crg” = max(aj-q“’)
J

for k = argmax; (qu)} > 1.

By definition, w € W, , means that using ¢ yields the same
classification as using g. Moreover, a uniform regret bound can
be obtained from (58) by minimizing over ¢* with w € W, 4
such that max;eiy, C;qw < 1fnCTq“’/2.
Corollary 3: For a proper scoring rule L(j, q), define
vO) = inf Bi(n'.d), t=0.
14 €Am:ICT (' =q")l|ss2=t,
max;em) (6}ql)§1T g’ /2

m

Then the regrets of L (j,C q) and L(j,q) satisfy

¥° (Bcw(nqu)) < Br(1,q).

In the special case of class-weighted costs, corresponding
to C = Cyl}, — diag(Cyp) with Cy = (c10, ..., Cmo)", define

m
P(t) = Br(,d), t>0,

(59)

inf
n'.q' €A ||Coo(n' —q")||co2=t,
max;e(m] (cj0q;)<CQ ¢’ /2
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where o denotes the component-wise product between two
vectors. The regret bound (59) for proper scoring rules reduces
to

% (B™(n,Co 0 q)) < Br(n,q).

It is interesting to compare the two regret bounds (56) and (60).
On one hand, for the zero-one loss with Cy = 1,,, both
of these bounds lead to the regret bound (45) discussed
in Section V-B.1. On the other hand, the two bounds (56)
and (60) in general serve different purposes. The bound (56)
compares the regrets of the transformed scoring rule L depend-
ing on C and the classification loss L*° with the prediction
always set to ¢. To use L, a different round of training is
required for a different choice of Cy. The bound (60) relates
the regrets of the original scoring rule L, independent of Cj,
and the classification loss L? with the prediction defined as
Cp o q. Only one round of training is needed to determine ¢
when using L, and then the prediction can be adjusted from ¢
according to the choice of Cy. Hence the bound (60) can be
potentially more useful than (56).

For binary classification with m = 2, the regret bound (60)
for proper scoring rules can be shown to recover Theorem
25 in [21]. For a proper scoring rule L(j, ¢) and any 1, q € Aa,
it holds that

min {*V(8),p*V(=6)} < Br(n,q), (61)

whete 6 = B0(, Co 0 g), ¥RV (8) = B ((ca0 + 0)/ (er0 +
¢20),¢20/ (€10 + ¢20)), and By (m,q1) = Br(n,q) with 1 =
(n1,m2)" and ¢ = (q1,q2)", that is, B} (n1,q1) is Br(n,q)
treated as a function of (11, ;) only. See the Supplement for
details.

(60)

VI. CONCLUSION

In this article, we are mainly concerned with constructing
losses and establishing corresponding regret bounds in multi-
class settings. Various topics remain to be studied in further
research. Large sample theory can be studied regarding esti-
mation and approximation errors, similarly as in [9] and [10],
by taking advantage of our multi-class regret bounds. It is
also of interest to incorporate estimation of a data quantizer
[12], [17]. Computational algorithms need to be developed for
implementing our new hinge-like losses and, in connection
with boosting algorithms, for implementing composite losses
based on new proper scoring rules. Numerical experiments
are also desired to evaluate empirical performance of new
methods.
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